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Abstract: We present a novel approach to characterize and quantify microheterogeneity and mi-
crophase separation in computer simulations of complex liquid mixtures. Our post-processing
method is based on local density fluctuations of the different constituents in sampling spheres of
varying size. It can be easily applied to both molecular dynamics (MD) and Monte Carlo (MC)
simulations, including periodic boundary conditions. Multidimensional correlation of the density
distributions yields a clear picture of the domain formation due to the subtle balance of different
interactions. We apply our approach to the example of force field molecular dynamics simula-
tions of imidazolium-based ionic liquids with different side chain lengths at different temperatures,
namely 1-ethyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride, and 1-decyl-
3-methylimidazolium chloride, which are known to form distinct liquid domains. We put the results
into the context of existing microheterogeneity analyses and demonstrate the advantages and sensi-
tivity of our novel method. Furthermore, we show how to estimate the configuration entropy from
our analysis, and we investigate voids in the system. The analysis has been implemented into our
program package TRAVIS and is thus available as free software.

Keywords: ionic liquids; microheterogeneity; voids; molecular dynamics; Monte Carlo; liquid phase;
self organization; density fluctuations; mixtures; domain formation

1. Introduction

In principle known for more than 100 years now [1], ionic liquids (ILs) are a fas-
cinating class of organic salts with a melting point below 100 ◦C. They often feature
advantageous properties such as low vapor pressure, low toxicity, and good thermal
stability [2–4], and they possess a wide scope of applications in scientific and industrial
fields [5,6], medicine [7,8], electrochemistry [9], as solvents [10], and in organic synthesis [3].
An important class of ionic liquids are those which are based on alkylimidazolium cations,
which often feature a low viscosity, a high thermal stability, and a wide liquid tempera-
ture range [11–14]. One important feature of those compounds is the strong hydrogen
bond donated by the imidazolium ring protons, which is assumed to be responsible for
some of these properties and has been subject of many investigations [15–19]. Among the
imidazolium-based ILs, special attention has been given to 1-alkyl-3-methylimidazolium
salts, which have been used as solvent for biocatalysis [17], dissolving cellulose [20–23] and
chitin [24], and can capture significant amounts of CO2 [25].

Despite being macroscopically homogeneous liquids, some ILs possess a so-called
microheterogeneity or microphase separation [26]. As it is assumed that some of the advan-
tageous properties of ILs are somehow related to such phenomena, microheterogeneity has
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been extensively studied both by experimental and computational approaches [2,27–36].
There exist a few computational methods for the identification of microheterogeneity in sim-
ulations of complex liquids, based on, e.g., structure factors [37], mean field approaches [38],
or cluster analysis [39,40]. Another approach is the Voronoi-based domain analysis [41],
which has been successfully applied to investigate complex liquids and mixtures several
dozen times [29,42–45]. However, to the best of our knowledge, none of the existing ap-
proaches are well-suited to quantify microheterogeneity in ionic liquids or similar complex
systems. Therefore, we have developed a new method to perform such analyses, which we
present here. Our method is based on analyzing local density fluctuations within sampling
spheres of varying size. It can be easily applied to both molecular dynamics (MD) and
Monte Carlo (MC) simulations, including periodic boundary conditions. Our approach has
been implemented into our program package TRAVIS [46,47] and is thus available as free
software under the GNU GPL license.

The article is structured as follows. After a detailed discussion of the proposed
method, we apply it to the simple model system of argon at different temperatures in
order to introduce the different kinds of results. Subsequently, we apply our analysis
to a real application—namely, simulations of the three imidazolium-based ionic liquids
1-ethyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride, and 1-decyl-
3-methylimidazolium chloride at different temperatures. We will show that our approach
is well-suited to characterize and quantify microheterogeneity in these systems, and we
will comparatively discuss the results obtained by the Voronoi-based domain analysis for
these systems. The article ends with conclusions.

2. Proposed Method

Our proposed method is based on evaluating density histograms within sampling
spheres of varying radius. These sampling spheres are equidistantly moved through
the periodic simulation cell to obtain reasonable averaging for the histograms. Atoms
in the system are not represented as points, but rather as solid spheres with predefined
radii. To compute the local density within one particular sampling sphere, it needs to be
computed which atoms have (possibly fractional) overlap with the sphere. The geometric
situation is visualized in Figure 1. Note that the visualization is two-dimensional, while
the method itself works in three-dimensional space.

Figure 1. (Left panel) Two-dimensional illustration of the geometric situation where a spherical atom
(orange-filled circle) resides next to a sampling sphere (blue circle) with radii rA and rS, respectively,
and distance d; (Right panel) four different cases that need to be distinguished.

In the left panel of the figure, the atom (orange-filled circle) with radius rA as well
as the sampling sphere (blue circle) with radius rS are depicted. d corresponds to the
Euclidean distance between both spheres. For each atom, we need to compute a factor f
that describes which fraction of the atom is contained within the sampling sphere. While
f = 0 corresponds to the case where the atom and the sphere are disjunct, f = 1 depicts
the case where the atom is fully contained in the sphere. In total, four different cases need
to be distinguished, which are depicted in the right panel of Figure 1. The formal criteria
for these cases as well as the respective values for the f factors are found to be as follows
(derivation of Equation (4): see Appendix A):
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(a) If d ≥ rA + rS: Disjunct

f := 0 (1)

(b) If d ≤ rA − rS and rS ≤ rA: Sphere contained in atom

f :=
(

rS

rA

)3
(2)

(c) If d ≤ rS − rA and rS ≥ rA: Atom contained in sphere

f := 1 (3)

(d) Else: Partial overlap

f :=
1

16 d r3
A
· (rA + rS − d)2 ·

[
d2 + 2 d(rA + rS)− 3(rA − rS)

2
]

(4)

For one particular sampling sphere with fixed position and radius, the f values for all
atoms in the system are computed and summed up. Dividing this sum by the volume of
the sampling sphere yields the particle density (unit length−3) inside the sphere. If the f
value is multiplied with the mass of the corresponding atom before summing up, the mass
density (unit mass·length−3) inside the sphere is obtained instead. Going one step further,
the obtained density within each sphere can be divided by the overall density (either
particle density or mass density) of the periodic simulation cell, leading to a relative density.
Relative density values larger than 1 indicate that the density in the particular sampling
sphere is larger than that of the total system (enrichment), while values below 1 depict a
density in the sampling sphere smaller than that of the system (depletion).

2.1. Quantifying Heterogeneity

By moving the sampling sphere (with constant radius) to different positions within the
simulation cell, one can obtain a histogram of relative densities. It immediately becomes
clear how such a histogram is related to the question of possible heterogeneity in the system:
In a perfectly homogeneous system, the relative density in each sampling sphere would
be exactly 1, and the histogram would be infinitely narrow (a delta distribution) at value 1.
In a real homogeneous system, there would occur some fluctuations (e.g., due to the gaps
between the spherical atoms), but the histogram would still be relatively narrow. If the system
is heterogeneous, i.e., possesses regions with different local density, the histogram will be
significantly widened. The width of such a histogram can be quantified by its standard
deviation σ, which can be easily computed as

σ =

√√√√ 1
N

N

∑
i=1

(ρi − µ)2, (5)

where ρi is the relative density found in the i-th sampling sphere, N is the total number of
sampling spheres considered, and µ is the mean value of the relative densities. Note that
for a sufficiently fine-grained spatial sampling, it is always µ = 1 by definition (regions with
higher-than-average and lower-than-average density cancel each other out), so that Equation (5)
can be simplified accordingly.

2.2. Ideal Gas as a Reference

As mentioned above, a real (i.e., atomistic) system which is considered to be homo-
geneous will still possess a relative density standard deviation σ larger than zero, be-
cause there are always gaps in a packing of spherical atoms. If we want to determine if a
system is homogeneous or heterogeneous, we would require a threshold value of σ up to
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which we would still call the system homogeneous. Such a threshold value will obviously
depend on many parameters (sampling sphere radius, total number of atoms, . . . ). To find such
a value, we will consider the very simple model of an ideal gas in the following. Ideal gas
particles are non-interacting and do not possess a radius, and they are randomly (uniformly)
distributed within the simulation cell. In such a situation, the average probability p of
finding a particular ideal gas particle inside of the sampling sphere is simply given by the
ratio of the sampling sphere volume and the total simulation cell volume:

p =
VS

VTotal
=

4π r3
S

3 VTotal
. (6)

As the particles are indistinguishable in the scope of this analysis (note that this is not related
to the question if the particles are indeed indistinguishable in the underlying simulation model),
one can express the probability pn(k) to find k out of n total particles inside the sampling
sphere via combinatorics:

pn(k) = pk (1 − p)n−k
(

n
k

)
=

(
4π r3

S
3 VTotal

)k (
1 −

4π r3
S

3 VTotal

)n−k (
n
k

)
(7)

with the binomial coefficient (
n
k

)
:=

n!
k!(n − k)!

. (8)

Note that Equation (7) is the probability density function of the binomial probability distribu-
tion. For large particle numbers n, it converges towards the normal distribution, so that the
histograms can be expected to look like Gaussian curves in that case (for homogeneous systems).

Equation (7) can be used to construct the relative density histogram for the ideal
gas case, and thus also the σ value for the ideal gas. We can now introduce a relative
heterogeneity measure hrel as the quotient of observed standard deviation and ideal gas
standard deviation,

hrel :=
σObserved
σIdealGas

. (9)

Values of hrel above 1 depict some kind of heterogeneity in the system, while values below
1 indicate that the system is even more homogeneous than an ideal gas. While this may
sound strange at first, it can be understood as follows. In an ideal gas, the particles do not
possess a radius and are randomly distributed. In reality, atoms possess some exclusion
volume and cannot penetrate each other. Due to this, less effective volume is available for
the distribution of the particles, and the distribution is more regular than in the random case.
Just consider a noble gas in liquid phase: The distribution of the atoms will be significantly
more regular than just a random distribution of non-interacting points, leading to relative
heterogeneity measures hrel < 1. Please note that hrel is a function of sampling sphere
radius rS. Larger sampling sphere radii lead to more narrow histograms—both in the real
system and in the ideal gas case.

2.3. Estimating Configuration Entropy

One central quantity of thermodynamics is entropy. The same term is also used in
information theory (the so-called Shannon entropy [48,49]) for a—naively seen—completely
different concept. However, both concepts are closely related via statistical mechanics [50].
In the following, we will show how the local density fluctuation analysis can be used to
estimate the configuration entropy of the system. Note that there are many important
contributions to entropy in a chemical system, and the estimation will only cover the
contribution from the distribution of the particles in the simulation cell.

For a discrete random variable X, the Shannon entropy H(X) is defined [50] as

H(X) := − ∑
x∈X

p(x) log
[
p(x)

]
. (10)
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If only a histogram of the random variable is known, the Shannon entropy can be estimated
from such a histogram [51,52] by computing

H(X) ≈ −
n

∑
i=1

f (xi) log
[

f (xi)

w(xi)

]
, (11)

where xi is the position of the i-th histogram bin, f (xi) is the corresponding histogram value,
and w(xi) is the width of the bin. As we work with relative density histograms anyway,
we can directly apply Equation (11) to estimate the Shannon entropy corresponding to
the histogram.

2.4. Multiple Observations

Until now, we have considered all atoms in the system for computing the relative
densities within the sampling spheres. However, when one speaks about a liquid possessing
a microheterogeneity, one typically does not mean that the liquid possesses large voids (filled
with vacuum). One rather refers to the fact that there is some separation of the constituents of
the liquids—either the different components of a mixture, or the different regions of larger
molecules, as, e.g., with tensides. In order to capture such effects, the method described
above can be performed on a subset of atoms from the system, yielding partial relative
densities and corresponding histograms, standard deviations, and heterogeneity measures.
Each subset of atoms and the resulting quantities are termed one observation. Several such
observations can be computed at the same time. An application example where this is
useful will be presented in Section 4.

3. Verification: Argon

To verify if our novel method works as intended, we have applied it to a very sim-
ple model system, namely, argon with fixed density (0.2 g cm−3) at different temperatures.
The temperature range spans 50. . . 300 K, so that both the liquid phase and the gas phase
are captured. Due to the constant density (which is chosen much smaller than the liquid density
of ≈1.4 g cm−3, but much larger than the gas phase density of ≈0.0016 g cm−3), coexistence of
liquid phase and gas phase as well as aggregation phenomena can be observed at the lower
temperatures. Snapshots of the simulations at three different temperatures which visually
support this statement are presented in Figure 2. The computational details of the simulations
are discussed in Section 5. For the analysis, the atom radius of argon (see Equations (1)–(4))
was set to rA = 188 pm, which is the Van-der-Waals radius [53–55].

Figure 2. Representative snapshots of the argon simulation cell at three different temperatures.

As a first step, we computed the relative density histograms for a fixed sampling
sphere radius of rS = 2000 pm. The results are shown in Figure 3. The black curve, which
corresponds to the simulation at 50 K, shows no similarity to a Gaussian curve. It possesses
a strong maximum at hrel = 0, which indicates that a large fraction of the simulation
cell is completely empty, because the argon atoms are exclusively found inside a liquid
droplet (see left panel of Figure 2). When considering the simulation at 100 K, as shown
by the red curve, the situation is slightly different. The single liquid argon droplet still
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exists, but there is now also a gas phase in the remaining parts of the cell, which stands
in dynamic equilibrium with the liquid (see middle panel of Figure 2). Thus, the histogram
has no entries at hrel = 0 (because the cell no longer possesses any empty regions), but rather
possesses a maximum at hrel ≈ 0.2, which corresponds to a mass density of ρ = 0.04 g cm−3.
Therefore, the histogram clearly shows the co-existence of liquid and gas phase, and it even
reveals the gas phase density in that simulation.

Figure 3. Relative density histograms of four argon simulations at a sampling sphere radius of
rS = 2000 pm, together with the ideal gas histogram based on Equation (7) (purple curve).

When considering the two higher temperatures (150 and 200 K, green and blue curve in
Figure 2), the histogram becomes narrower, indicating a more homogeneous distribution
of atoms in the cell, and the curve shape becomes more similar to a Gaussian function.
In particular, the shape of the curve converges towards the result for the ideal gas, as derived
above in Equation (7), which is shown as purple curve in the figure. This indicates that
argon behaves more and more like an ideal gas at rising temperature, which is certainly true.

To quantify the heterogeneity, it is possible to consider the relative heterogeneity
measure hrel, which is related to the standard deviation of the relative density histograms
relative to the ideal gas result (see Equation (9)). Note that this condenses the information
from a whole relative density histogram into a number, so that the values of hrel can now
be visualized as a function of the sampling sphere radius (the histograms above were only for
one particular sampling sphere radius). The results for the six argon simulations at different
temperatures are presented in Figure 4. For the two simulations at 50 and 100 K (black
and red curve), the relative heterogeneity rises fast with increasing sampling sphere radius,
reaching up to values of 10 for sampling sphere radii above ≈ 2000 pm. This indicates that
the density histogram has a standard deviation 10 times larger than that for the ideal gas,
obviously caused by the phase boundary within the simulation cell (see Figure 2).

Figure 4. Relative heterogeneity measure hrel as a function of sampling sphere radius for the six
argon simulations. Inset shows zoom-out of the vertical axis.
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The four systems at higher temperatures (150. . . 300 K) behave similarly up to ≈250 pm,
where they all reach a plateau of hrel ≈ 0.8. At this radius, the sampling sphere is only slightly
larger than the argon atoms (188 pm, see above), so that no “soft” agglomerations can be captured.
The value of 0.8 is below the ideal gas value of 1.0, which is caused by the exclusion volume
of the atoms, see discussion above. If the argon atoms would be simulated as hard spheres
without mutual attraction, the curves would remain at this plateau value for larger sphere
radii. However, the Lennard-Jones potential that was applied accounts for attraction, and there
exist fluctuating regions with slightly higher density even in the gas phase. Due to this effect,
the curves begin to rise after the plateau, even crossing the hrel = 1 line for 150 and 200 K.
With rising temperature, this effect becomes less significant, because the attractive part of the
potential is very weak and can no longer compete with the thermal motion of the atoms. We
can conclude that the relative heterogeneity plots in Figure 4 give a very rich and insightful
picture of the heterogeneity present in the simulations.

Finally, we will estimate the Shannon configuration entropy of the argon simulations,
as described above in Section 2.3. By applying Equation (11) to the relative density his-
tograms, we directly obtain the Shannon entropy of the simulation for a given sampling
sphere radius, so that we can plot the entropy as a function of the sphere radius. The same
treatment can be performed for the ideal gas histogram, yielding a reference entropy func-
tion for the ideal gas case. The results are shown in the top panel of Figure 5. By subtracting
the ideal gas reference function from each curve, relative entropies can be obtained, as visu-
alized in the bottom panel of Figure 5, where the ideal gas function is indicated by the gray
horizontal line. It can be seen that the entropy increases with increasing sampling sphere
radius, but decreases with increasing temperature. At large temperatures, the entropy
remains very close to the ideal gas curve for all sampling sphere radii. A peculiarity can be
seen for the 50 K system (black curve) at around 600 pm sphere radius. There, the entropy
drops significantly below the ideal gas reference value. This is probably a consequence of
the fact that the 50 K system does not possess a gas phase—it can be considered a liquid
argon droplet in vacuum.

Figure 5. Shannon configuration entropy (see Equation (11)) of the argon simulations together with
the ideal gas reference value as a function of sampling sphere radius (top panel); same results shown
as relative entropies by subtracting the ideal gas reference curve (bottom panel).
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4. Application: Ionic Liquids

After having validated our new method with a simple model system, we will now
consider a real application—namely, three different imidazolium-based ionic liquids with
different side chain lengths, each at three different temperatures. In Figure 6, the ions
are shown which constitute the ionic liquids investigated here. The cations are 1-decyl-
3-methylimidazolium, abbreviated [DMIm]+, with a side chain length of 10, 1-hexyl-3-
methylimidazolium, abbreviated [HMIm]+, with a side chain length of 6, and 1-ethyl-3-
methylimidazolium chloride, abbreviated [EMIm]+, with a side chain length of 2. The anion
is chloride, abbreviated [Cl]−, in all cases. To investigate these systems, nine force field MD
simulations have been performed—the Computational Details in Section 5 contain a table
of the simulations.

As discussed in the introduction, it is well known that ionic liquids with relatively
long side chains can exhibit a certain degree of microheterogeneity. Figure 7 illustrates
snapshots from the [DMIm][Cl] simulation at 350 K (left panel) and 550 K (right panel). In the
illustration, only the polar parts of the ions (i.e., the imidazolium ring of the cations as well as
the chloride anion) are shown; the non-polar side chains are not visible. It can directly be seen
that the polar parts are not homogeneously distributed in the simulation cell, and there
seems to be some kind of microheterogeneity. This effect seems to be stronger at 350 K than
at 550 K. However, such a statement is very vague, and a rigorous quantification would be
highly desirable.

Figure 6. Illustration of the ions of which the ionic liquids in this study are composed.

The computational details of the simulations are discussed in Section 5. For the local
density analysis, we have defined two observations. The first one resembles all polar parts
of the system, it contains the geometric ring centers of the imidazolium cations with an
“atom” radius of 300 pm as well as the chloride anions with a radius of rA = 175 pm (the
Van-der-Waals radius [53–55]). The second observation corresponds to the terminal carbon
atoms of the alkyl side chains in the cations with a radius of rA = 300 pm to implicitly
account for the hydrogen atoms of the methyl group. Note that these definitions and radii
concern only the trajectory analysis, but not at all the underlying molecular dynamics
simulation. Many results below—e.g., Figures 8 and 9—are based on the first observation
(i.e., polar parts) only. The results for the second observation look very similar and do not
add further information in these cases.

In a first step, we have computed the relative density histograms of the nine simu-
lations. These can be visualized as 2D contour plots with the sampling sphere radius as
horizontal axis and the relative density for the histogram as the vertical axis. The resulting
contour plots for the three different ionic liquids at 350 K are presented in Figure 8. As ex-
pected, it can be seen that all three histograms are very wide for small sampling sphere
radii, and become narrower for increasing radii. However, this trend is much faster for
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[EMIm][Cl] with short side chain length. This can be well understood by the following
rationale. If the sampling sphere is significantly larger than the diameter of the cation, then
it will automatically capture both polar and non-polar parts of the cation, and there can be
no significant microheterogeneity. The largest diameter of the [EMIm]+ cation is around
800 pm, leading to narrow relative density histograms at radii of ≈1000 pm and above (note
that the sampling sphere size is given as a radius and not as a diameter—many [EMIm]+ cations
fit into a sphere with a radius of 1000 pm). [HMIm]+ cations are already considerably larger,
with a largest diameter of around 1300 pm, and therefore the histograms remain wide up
to larger radii. [DMIm]+ cations are very large and possess a maximum length of around
1850 pm. In that case, the histogram remains relatively wide up to very large radii of
≈2500 pm, and a significant microheterogeneity can be observed up to these length scales.

Figure 7. Snapshots of the simulation cell of the [DMIm][Cl] simulation—showing only the polar
parts of the ions—at two different temperatures; atomistic representation (top panel) and surface
representation (bottom panel). Microheterogeneity can be visually recognized.

To investigate the influence of the simulation temperature on the histogram shapes,
a 2D representation of the relative density histograms as a function of sampling sphere
radius for [DMIm][Cl] at three different temperatures is shown in Figure 9. Already at first
sight, it is visible that the three plots are very similar. There are minor differences, such as,
e.g., the histogram width at rS = 2500 pm, but it would be tough to draw any quantitative
conclusion from comparing these figures.



Entropy 2024, 26, 322 10 of 21

Figure 8. 2D visualizations of the relative density histograms (vertical axis) as a function of sampling
sphere radius (horizontal axis) for the three ionic liquids at 350 K.

Figure 9. 2D visualizations of the relative density histograms (vertical axis) as a function of sampling
sphere radius (horizontal axis) for the [DMIm][Cl] system at three different temperatures.

For a better quantification of the heterogeneity in the nine ionic liquid simulations,
we will resort to the relative heterogeneity measure hrel as described above. The results
are presented in Figure 10 for the polar parts of the system (top panel) as well as the
chain terminal carbon atoms (bottom panel). Several trends are visible. First, we note
that the results for both observations (top and bottom panel) are very similar, so that we
discuss only the top panel. For [EMIm][Cl] (red curves), the relative heterogeneity reaches a
plateau already at rS ≈ 500 with a value of hrel ≈ 0.25, which indicates significantly more
homogeneity than the ideal gas. This can be understood from the fact that the ions are
rather small and completely fill the cell without larger voids, so that the distribution is
much more ordered than just random positions (ideal gas). Furthermore, there is only a very
weak temperature effect for [EMIm][Cl]—the systems become slightly less homogeneous
at increased temperature.

The other extreme is represented by [DMIm][Cl] (black curves). The relative hetero-
geneity does not reach a plateau here, but quickly rises up to hrel ≈ 2 at slightly above
1000 pm sphere radius, just to fall back to hrel ≈ 1 when the sphere radius is further in-
creased. A very interesting feature of these curves is the local minimum at around 2000 pm.
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The [DMIm][Cl] systems are obviously very heterogeneous, but with this particular sam-
pling sphere radius, they appear homogeneous. The reason is the maximum length of
the [DMIm]+ cation of around 1850 pm. Imagine a micelle-like arrangement of the ions,
where the polar groups stick together, and the non-polar side chains extend to the outside
in both directions. A sampling sphere with a radius of 2000 pm would exactly capture such
a “micelle”, and this match in size might lead to the appearance of supposed homogeneity.
Further investigation would be required to substantiate this claim, but at least it is one
plausible explanation. The temperature dependence in [DMIm][Cl] is very strong, and the
system becomes significantly more homogeneous with rising temperature. This is due
to the fact that at higher temperature, the stronger thermal motion of the ions can over-
come the energetically favored arrangement with separated polar and non-polar domains.
Note that in [EMIm][Cl], the (weak) temperature dependence was of the opposite trend.
Finally, we discuss the [HMIm][Cl] simulations (blue curves). As already expected from the
molecular structure, the behavior is in between [EMIm][Cl] and [DMIm][Cl]. The systems
are less homogeneous than [EMIm][Cl], but still more homogeneous than the ideal gas
for all sampling sphere radii. Again, we find local minima at around 1400 pm, which
fits well to the largest diameter of the [HMIm]+ cation of around 1300 pm and further
strengthens the claim from above. The temperature dependence is significantly weaker
than in the [DMIm][Cl] case, but still in the same direction (increasing temperature increases
the homogeneity).

Figure 10. Relative heterogeneity measure hrel as a function of sampling sphere radius for the nine
ionic liquid simulations, observing either polar parts of the system (top panel) or chain terminal
carbon atoms of the cations (lower panel). Grey line corresponds to ideal gas result.

We can conclude that the relative heterogeneity measure hrel is a versatile tool to
understand and quantify heterogeneity in complex systems. For example, consider the
temperature dependence of the heterogeneity in [DMIm][Cl], while in the discussion of
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Figure 9 we found that the 2D plot is very similar for the three temperatures, the hrel plot in
Figure 10 clearly shows the differences in direct comparison. Even some features such as
a micelle-like arrangement of the cations can be estimated from the position of the local
minima in the curves.

In a next step, we discuss the Shannon configuration entropy that can be calculated
from the relative density histograms as described in Section 2.3. The results are given
in Figure 11, again shown as absolute values (top panel) as well as relative entropies
(bottom panel) with the ideal gas reference entropy subtracted. When comparing the top
panel of Figure 10 with the bottom panel of Figure 11, we note that both plots are very
similar, and the discussion of the further figure above completely applies also to the latter
figure here. It is not obvious that the relative heterogeneity measure and the Shannon
configuration entropy contain the same information—for the argon simulations, that was
not the case (compare Figure 4 to Figure 5).

Figure 11. Shannon configuration entropy (see Equation (11)) of the ionic liquid simulations as
a function of sampling sphere radius (top panel); same results shown as relative entropies by
subtracting the ideal gas reference curve (bottom panel).

4.1. Investigating Voids

Another possibly interesting information which can be extracted from the relative
density histograms are “voids” in the system. On the one hand side, this could be “real”
voids, i.e., regions in which no atoms are located inside of the liquid. On the other hand,
in microheterogeneous systems, one can also look for “partial” voids which just do not
contain any atom from a subset of the system (but other atoms instead). For example, in a
mixture, this could be a region which contains exclusively one of the constituents of the
mixture. Or in systems such as [DMIm][Cl], it could be a region which does not contain
any polar part of the ions. If such regions are spherical, they will be easily identified by
our analysis via sampling spheres which do not contain any of the investigated atoms.
The results from such an analysis are presented in Figure 12, where the sphere radius is
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given on the horizontal axis, and the fraction of spheres which do not contain any atom
of that kind on the vertical axis (note the logarithmic scale). The top panel corresponds to
sampling spheres which do not contain any atom from the polar part, while the bottom
panel depicts spheres which do not contain any chain terminal carbon atom. As the plots
corresponding to both observations are (again) very similar, we will only discuss the top
panel corresponding to the polar part.

In the case of [DMIm][Cl] (black curve), relatively small sampling spheres with a
radius of 100 . . . 200 pm are completely empty of polar atoms with a probability ≥50%.
This percentage obviously decreases with increasing sphere radius, but is still ≈ 10% at
rS = 500 pm, and still ≈ 1% at rS = 750 pm. In other words, 1% of the sampling spheres
with a diameter of 1500 pm do not contain any atom from the polar part, which corresponds
to a significant microheterogeneity. Going to even larger radii, we find that there even exist
rare cases in which a sampling sphere of rS = 1100 pm (i.e., 2200 pm diameter) is completely
free of atoms from the polar part. The influence of the temperature on the curves is relatively
minor. As we have seen above, increasing temperature reduces the heterogeneity in the
[DMIm][Cl] simulations, and therefore the probability for empty spheres is reduced with
increasing temperature. When going to [HMIm][Cl] (blue curves), the empty spheres are
significantly smaller, which is obvious from the smaller size of the cation. 1% of the spheres
are empty at rS = 400 pm, and the largest appearing empty spheres have a radius of 700 pm.
Finally, in [EMIm][Cl], the scale is reduced even further. Here, 1% of the spheres are empty
at rS = 150 pm, and the largest appearing empty spheres have a radius of 300 pm. Despite
the smaller values, this is an interesting finding. With a very small cation such as [EMIm]+

which has only methyl and ethyl groups as side chains, it is not obvious to find spheres of
600 pm diameter which do not contain any atom from the imidazolium ring or anion. We
conclude that for systems such as ionic liquids, the sphere-based void analysis can deliver
very interesting and useful insights.

Figure 12. Probability of finding an empty sampling sphere as a function of sphere radius for the
nine ionic liquid simulations, observing either polar parts of the system (top panel) or chain terminal
carbon atoms of the cations (lower panel). Note the logarithmic vertical axis.
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4.2. Partial Density Correlation

Finally, we combine the two observations (polar parts/chain terminal carbon atoms) and
investigate the correlation between the partial densities of both observations. To do so,
we compute both the relative density of polar parts and the relative density of chain
terminal carbon atoms within each individual sampling sphere, and put this pair of values
into a two-dimensional histogram. This reveals the (possible) correlation between both
partial densities. We present the resulting 2D histograms for the three ionic liquids at
350 K in Figure 13, using a fixed sampling sphere radius of 1000 pm. The sphere radius
was fixed here because a variable radius would add a third dimension and would thus
complicate visualization.

Figure 13. Partial density correlation histograms of the two observations (polar parts: horizontal axis,
chain terminal carbon atoms: vertical axis) at a sampling sphere radius of 1000 pm for the three ionic
liquid simulations at 350 K.

For all three systems, it can be seen that there is a negative correlation: Increased
partial density for one group of atoms leads to a reduced partial density of the other group
of atoms. In a certain sense, this is clear, because the space in the sampling sphere is
limited, and each atom from one group occupies a part of the sampling sphere which
can no longer be populated by an atom from the other group. However, there can also
be cases of positive correlation, such as choosing the polar parts from the cation as one
observation and the chloride anions as the other. Therefore, such a correlation analysis can
indeed yield additional insight into the heterogeneity in the system. As in [DMIm][Cl] the
heterogeneity is strongest, the histogram peak extends up to the borders, stating that there
exist sampling spheres which either include only polar parts or only chain terminal carbon
atoms. When going to [HMIm][Cl] and [EMIm][Cl], this tendency decreases, because the
heterogeneity and the cations themselves become smaller. But still the negative correlation
persists—slightly visible even for [EMIm][Cl].

4.3. Comparison to Voronoi-Based Domain Analysis

There already exist other approaches which are specifically suited to investigate
microheterogeneity in mixtures. One of them is the Voronoi-based domain analysis [41],
which has been successfully used several dozen times in literature to investigate complex
liquids [42–45]. To see if such a domain analysis can also give insight into the systems
studied here, we have performed the analysis on the nine ionic liquid simulation trajectories.
To obtain comparable results, the domains have been defined exactly as the observations
above: one polar domain which contains the cation ring atoms (including ring hydrogen
atoms) as well as the anions, and one non-polar domain which contains the chain terminal
carbon atoms. The results are summarized in Table 1.
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The first interesting quantity that results from a domain analysis is the average domain
count. In the table, it can be seen that this value is very close to 1 in all cases, which means
that in most of the simulation frames, all of the atoms of each group (polar and chain
terminal) are connected via Voronoi faces—there are no isolated “islands” of either polar
or chain terminal atoms. The domain count slightly rises with increasing temperature,
but the difference is likely too small to be significant or meaningful. Other interesting
results include the average domain surface area (fourth column) as well as the average
domain isoperimetric quotient (fifth column). Both of these quantities also tend to rise with
increasing temperature, but there is no way to judge which of the systems is more or less
homogeneous. The strong difference in homogeneity between [DMIm][Cl] and [EMIm][Cl]
can not at all be recognized from the results in the table. To summarize, we find that the
results of the domain analysis are inconclusive for this particular type of system, and cannot
be used to determine (or even quantify) microheterogeneity. This underscores the need for
a generally applicable and robust analysis that works also for such systems, as the one
that we have presented in this article. Note that we do not claim that our approach is
generally superior to the Voronoi-based domain analysis. These two approaches are based
on different principles and have their individual strengths and weaknesses, so that they
nicely complement each other.

Table 1. Results from the Voronoi-based domain analysis [41] for the three ionic liquids simulated a
three different temperatures. Q is the average isoperimetric quotient of the domains.

System Temp./K Dom. Count Dom. Surface Area/nm2 Dom. Q

[DMIm][Cl]
350
450
550

1.009
1.021
1.061

562
604
648

0.052
0.054
0.066

[HMIm][Cl]
350
450
550

1.020
1.044
1.065

724
763
806

0.049
0.057
0.064

[EMIm][Cl]
350
450
550

1.018
1.021
1.022

930
979
1032

0.046
0.047
0.046

5. Computational Details

A list of the force field molecular dynamics simulations performed within the scope of
this work is given in Table 2.

All simulations were performed with the LAMMPS package [56] (https://www.
lammps.org/index.html, accessed on 10 March 2024). For the ionic liquids, the CL&P force
field was utilized [57–59], which is an extension of the OPLS–AA force field [60–62] for
ionic liquids. After constructing the simulation box using Packmol [63], the following
equilibration protocol was employed. If some parameters (temperature, thermostat, . . . ) are
not specified in a step, they are identical to those in the previous step.

1. 25 ps NVT simulation at 500 K, using a Berendsen thermostat [64] with a coupling
constant of 1.0 fs.

2. 250 ps NVT simulation with temperature ramp from 500 K towards target temperature,
using a Nosé–Hoover thermostat [65–67] with a coupling constant of 100 fs.

3. 500 ps NVT simulation at target temperature.
4. 500 ps NVT simulation, using a Langevin thermostat [68,69] with a coupling constant

of 100 fs to dampen possible shock waves from the temperature ramp.
5. 500 ps NVT simulation, using a Nosé–Hoover thermostat with a coupling constant of 100 fs.
6. 1 ns NpT simulation, using a Nosé–Hoover thermostat with a coupling constant of

100 fs and a Nosé–Hoover barostat with a coupling constant of 2000 fs.

https://www.lammps.org/index.html
https://www.lammps.org/index.html
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7. 1 ns NpT simulation, using a Langevin thermostat with a coupling constant of 100 fs
(to dampen possible shock waves) and a Nosé–Hoover barostat with a coupling
constant of 2000 fs.

8. 15 ns NpT simulation, using a Nosé–Hoover thermostat with a coupling constant of
100 fs and a Nosé–Hoover barostat with a coupling constant of 2000 fs.

9. 15 ns NpT simulation, using a Nosé–Hoover thermostat with a coupling constant of
100 fs and a Nosé–Hoover barostat with a coupling constant of 2000 fs. The average
density is computed during this run.

10. 1 ns simulation to monotonously shrink/grow the simulation cell to match the target
density from the averaging, using a Nosé–Hoover thermostat with a coupling constant
of 100 fs.

11. 1 ns NVT simulation, using a Langevin thermostat with a coupling constant of 100 fs
to dampen possible shock waves.

12. 80 ns NVT simulation (final equilibration), using a Nosé–Hoover thermostat with a
coupling constant of 100 fs.

13. 30 ns NVT simulation (production run).

Table 2. Overview of performed molecular dynamics simulations. For the ionic liquids, the cell
density was equilibrated in NpT ensemble. The structure of the ions shown in Figure 6.

System Composition Temp./K Density/g cm−3 Cell/pm Duration/ns

[DMIm][Cl] 512 [DMIm]+

512 [Cl]−
350
450
550

0.935
0.863
0.796

6175
6342
6515

126

[HMIm][Cl] 640 [HMIm]+

640 [Cl]−
350
450
550

0.978
0.910
0.845

6039
6186
6341

126

[EMIm][Cl] 896 [EMIm]+

896 [Cl]−
350
450
550

1.078
1.009
0.943

5871
6002
6139

126

Ar 512 Ar

50
100
150
200
250
300

0.200 5538 10

During the production run, the positions of the particles were written to trajectory
every 1000 fs. An integrator time step of 0.5 fs was used during the whole protocol, and no
bonds or angles were constrained. The cutoff radius for the short-range electrostatic and
Lennard-Jones interactions was set to 1000 pm. The long-range electrostatics was treated
by a PPPM solver as implemented in LAMMPS [56].

For the argon simulations, a simple Lennard-Jones model with the parameters
σ = 340.5 pm and ϵ = 0.996 kJ mol−1 was used [70]. The Lennard-Jones cutoff radius
was set to 1500 pm in order to account for the importance of relatively weak attractive
dispersion interactions in noble gases. The computational protocol was similar to the
one described above, but no NpT equilibration of the cell density was performed (fixed to
0.2 g cm−3), and the equilibration and production runs were much shorter (10 ns in total).

All trajectory analyses were performed with the TRAVIS program package [46,47].
For the local density analysis, 200 frames were equidistantly selected from the trajectory of
the production run. The center of the sampling sphere was cycled over 150 × 150 × 150
Cartesian grid points over the simulation cell, corresponding to a grid spacing of ≈ 40 pm,
and 3.4 · 106 total sampling spheres per trajectory frame for the histogram averaging.
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The snapshots of the simulation cells were created in VMD [71] using the Tachyon
renderer [72] with ambient occlusion. The plots were created with Gnuplot [73] and
xmgrace [74].

6. Conclusions

In this article, we have presented a novel approach to characterize and quantify micro-
heterogeneity and microphase separation in computer simulations of complex liquid mixtures.
Our post-processing method is based on local density fluctuations of the different constituents
in sampling spheres of varying size. It can be easily applied to both molecular dynamics (MD)
and Monte Carlo (MC) simulations, including periodic boundary conditions.

After a detailed discussion of the method itself, we apply it to a simple model system
containing the noble gas argon to verify if it works as expected. After this has been
confirmed, we investigate a more complex application with our approach—namely three
imidazolium-based ionic liquids with different side chain lengths that are already known
to possess a certain degree of microheterogeneity. While the direct results (the relative
density histograms) are of limited use for quantification of heterogeneity, we develop some
derived quantities such as the relative heterogeneity measure hrel or the sphere-based void
analysis, and we show that these are powerful and robust tools to gain insight into the
heterogeneity present in a system, up to detecting possible micelle-like arrangements of
the ions. Based on the density histogram, we can also estimate the Shannon configuration
entropy of the systems. For comparison, we apply the already published Voronoi-based
domain analysis to our simulation trajectories, and find that it is not suited to detect or
even quantify the kinds of heterogeneities present here, which underscores the necessity of
a new heterogeneity analysis such as the one presented here.

Our novel approach has been implemented into our program package TRAVIS [46,47]
and is thus available as free software under the GNU GPL license.

This manuscript is only the first step for our method. There are already plans for future
work in several directions. On the one hand, we are planning to extend the approach to also
investigate the temporal development of local density fluctuations, for example by constructing
a density fluctuation autocorrelation function over simulation time. On the other hand, we have
plans for more effective implementations, such as to rewrite the approach as a convolution on a
3D grid and use parallelized 3D fast Fouier transform (FFT) to solve it efficiently.
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Appendix A. Derivation of Sphere Intersection Volume

In this section, we will derive the volume of the intersection between two overlapping
spheres, which is used in Equation (4). Assume two spheres with radii r1 and r2 in three-

http://www.travis-analyzer.de
http://www.travis-analyzer.de
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dimensional space. The first sphere shall be located in the origin, the second one on the X axis at
position d. Therefore, the distance between the spheres is d, as illustrated in Figure A1.

The equations of the two spheres are given by

x2 + y2 + z2 = r2
1 (A1)

(x + d)2 + y2 + z2 = r2
2 (A2)

By combining these equations, we obtain

(x − d)2 + (r2
1 − x2) = r2

2, (A3)

which can be solved for x, yielding

x =
d2 + r2

1 − r2
2

2d
. (A4)

The meaning of x is illustrated by the blue line in Figure A1.

Figure A1. Illustration of two overlapping spheres with radii r1 and r2 at a distance of d.

To compute the volume of the intersections, we need to sum the volumes of the two
spherical caps. As it can be seen in the sketch, the heights of the caps can be expressed as

h1 = r1 − x =
(r2 − r1 + d)(r2 + r1 − d)

2d
(A5)

h2 = r2 + x − d =
(r1 − r2 + d)(r1 + r2 − d)

2d
(A6)

The volume of a spherical cap of height h cut from a sphere of radius r is given by

Vcap(r, h) :=
1
3

π h2 (3r − h). (A7)

Now we can compute the intersection volume V as

V = Vcap(r1, h1) + Vcap(r2, h2) (A8)

=
1
3

π h2
1 (3r1 − h1) +

1
3

πh2
2(3r2 − h2) (A9)

=
π

12 d
(
r1 + r2 − d

)2
(

d2 + 2dr1 + 2dr2 − 3r2
1 − 3r2

2 + 6r1 r2

)
(A10)

=
π

12 d
(
r1 + r2 − d

)2
(

d2 + 2d(r1 + r2)− 3(r1 − r2)
2
)

. (A11)
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Finally, to compute the volume fraction f of the first sphere which is inside of the
second sphere, we divide V by the volume of the first sphere, obtaining

f :=
V

4
3 π r3

1
(A12)

=
1

16 d r3
1

(
r1 + r2 − d

)2
(

d2 + 2d(r1 + r2)− 3(r1 − r2)
2
)

, (A13)

which is equivalent to Equation (4).
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