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Abstract: Based on a 5-point stencil and three 3-point stencils, a nonlinear multi-order weighted
method adaptive to 5-3-3-3 stencils for shock capturing is presented in this paper. The form of the
weighting function is the same as JS (Jiang–Shu) weighting; however, the smoothness indicator of
the 5-point stencil adopts a special design with a higher-order leading term similar to the τ in Z
weighting. The design maintains that the nonlinear weights satisfy sufficient conditions for the
scheme to avoid degradation even near extreme points. By adjusting the linear weights to a specific
value and using the τ in Z weighting, the method can be degraded to Z weighting. Analysis of
linear weights shows that they do not affect the accuracy in the smooth region, and they can also
adjust the resolution and discontinuity-capturing capability. Numerical tests of different hyperbolic
conservation laws are conducted to test the performance of the newly designed nonlinear weights
based on the weighted compact nonlinear scheme. The numerical results show that there are no
obvious oscillations near the discontinuity, and the resolution of both the discontinuity and smooth
regions is better than that of Z weights.

Keywords: nonlinear weighted scheme; multi-order weighted method; shock capturing; WCNS
(weighted compact nonlinear scheme); gas dynamics

1. Introduction

Low-order schemes have been widely adopted to solve hyperbolic equations to avoid
non-physical oscillations near discontinuities [1]. However, the relatively large disper-
sion and dissipation errors of low-order schemes will smear out a lot of flow details in
smooth regions [2], which has promoted the development of high-order nonlinear schemes.
Representative achievements of high-order nonlinear schemes include ENO (essentially
non-oscillatory) [3], WENO (weighted ENO) [4], TENO (targeted ENO) [5], CNS (compact
nonlinear scheme) [6], WCNS (weighted CNS) [7], TCNS (targeted CNS) [8], etc. Nonlin-
ear weighting has played an important role in developing some of these schemes, which
provide largely improved scheme accuracy and computational efficiency.

The research on nonlinear weighted schemes has lasted for nearly 30 years. Many
kinds of nonlinear weighting functions based on the WENO scheme have been proposed
for better accuracy in the smooth region and better non-oscillatory properties near dis-
continuities. They mainly focus on improving the three main components of a nonlinear
weighting scheme, which are the candidate interpolation choice, smoothness indicator, and
nonlinear weighting function. Research focusing on improving candidate interpolation
choices includes the bandwidth optimization of Martin et al. [9] and the adaptive central-
upwind weighted scheme of Hu et al. [10]. Meanwhile, Ha [11] modified the calculation of
smoothness indicators, the special contribution of which lies in the parameter that adjusts
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the contribution of the first-order difference and the second-order difference to the smooth-
ness indicators. Henrick [12] improved the relationship between the smoothness indicator
and the nonlinear weight function by introducing an extra mapping function. Borges [13]
reconstructed the smoothness indicators of each sub-stencil by introducing a higher-order
smoothness indicator, thereby altering the expression form of the weight function. This
approach has subsequently been extensively studied and applied by numerous researchers.
The review papers [14–16] give a relatively comprehensive overview of the development of
the WENO schemes.

Another branch of nonlinear weighted schemes is the weighted compact nonlinear
scheme (WCNS) [7,17–19], which is the scheme the current research is based on. It was
summarized to have a series of advantages over the WENO schemes [2]. A key property
that distinguishes WCNS from WENO is that it has some advantages in the simulation of
complex geometries [20] because of satisfying the geometric conservation law [21–24]. Note
that WCNS and WENO share similar nonlinear weighting processes; therefore, nonlinear
weights for one of them can be easily generalized to another.

The improvements in the weighting functions share a common goal, which is to
maintain accuracy in smooth regions and capture discontinuities without introducing
obvious oscillations. After the proposal of the original fifth-order WENO-JS [25] scheme, an
issue of order reduction near extreme points was observed. As a result, several researchers
have made a series of modifications [9–13,26] to further improve the performance of the
weighting functions. Among these improved weighting functions, Zhu et al. [27] proposed
the WENO-ZQ scheme by adopting sub-stencils of different sizes, which is different from
the WENO-JS scheme using same-size sub-stencils. The sub-stencils of WENO-ZQ consist
of one 5-point sub-stencil along with two upwind and central 2-point sub-stencils, which
is represented by the notation (5-2-2) for simplicity. The WENO-ZQ scheme can achieve
optimal order even at extreme points, but it still exhibits non-physical oscillations near
strong discontinuities. Subsequently, the WENO-MR (5-3-1) scheme [28,29] was proposed
based on the combination of (5-3-1) sub-stencils, which reduced non-physical oscillations
near discontinuities and enhanced robustness. However, it is important to note that the
introduction of the first-order sub-stencil may potentially result in decreased resolution.
Zhang [30] applied a similar strategy of [28] to WCNS, resulting in the WCNS-MR (5-3-1)
scheme, which exhibits better resolution in smooth regions compared to the WENO-MR
(5-3-1) scheme. However, there are still significant non-physical oscillations near strong
discontinuities. Wang [31] further improved the efficiency of the WCNS-MR scheme.
In the above research, except for the 5-point sub-stencil, the interpolation accuracy of the
remaining sub-stencils is very low. To ensure accuracy, not only will the design complexity
of the nonlinear weight function increase, but the linear weight of the 5-point stencil in
actual examples also needs to be close to 1. This linear weight deteriorates the ability
to capture discontinuities. Since its proposal, the Z function has been widely used and
provides good stability and resolution near discontinuities. However, as the complexity of
the problem increases, it is necessary to obtain more flow details in smooth regions, and
the resolution of Z weights can no longer meet practical needs.

The goal of this article is to propose a new nonlinear weighted format based on the
WCNS-JS and 5-3-3-3 stencils. Its characteristic feature is that the order of smoothness
indicator on the stencil is related to the highest interpolation accuracy of the stencil, which
maintains that nonlinear weights meet sufficient conditions to ensure that the scheme does
not degrade in accuracy near extreme points. The smoothness indicator of the 5-point
sub-stencil is obtained by combining the smoothness indicators of two 3-point sub-stencils
and with an order higher than that of the 3-point sub-stencil. In addition, the ratio of linear
weights on the three 3-point stencils meets the requirements of convex combination to
fifth-order accuracy. A theoretical derivation and numerical tests are conducted to compare
the resolution of the weighted method with Z nonlinear weights. These tests demonstrate
the new weighted method’s ability to achieve the desired accuracy in the smooth region
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and near the first- and second-order extreme points as well as its capability to accurately
capture discontinuities.

The organization of the paper is as follows: In Section 2, we briefly introduce the
fifth-order WCNS scheme. In Section 3, we establish a multi-order nonlinear weighted
interpolation method based on the 5-3-3-3 stencils. In Section 4, some traditional numerical
examples are used to demonstrate the characteristics of the multi-order weighting strategy
in terms of smooth region resolution and discontinuous capture. In Section 5, we provide
the conclusions obtained in this article.

2. WCNS

We focus on hyperbolic conservation laws of the form

∂u
∂t

+
∂ f (u)

∂x
= 0. (1)

The WCNS procedure consists of three components: a high-order flux difference
scheme, numerical flux evaluation, and weighted nonlinear interpolation. WCNS-E5 [32] is
adopted for spatial discretizations, in which explicit flux differencing is used to calculate
the ∂ f /∂x term in Equation (1), which is

f
′
j =

1
h

[
a0

(
f̂ j+1/2 − f̂ j−1/2

)
+ a1

(
f̂ j+3/2 − f̂ j−3/2

)
+ a2

(
f̂ j+5/2 − f̂ j−5/2

)]
, (2)

where a0 = 75/64, a1 = −25/384, a2 = 3/640, f̂ j+l+1/2 is the numerical flux obtained
at cell-edge, and f

′
j represents a numerical approximation to the spatial derivative of

the numerical flux f at the j cell-node. Equation (2) is sixth-order in accuracy with the
parameters adopted.

In the WCNS, the flux at the half nodes is calculated using the flow variables û+
j+l+1/2

and û−
j+l+1/2, which are interpolated based on variables on the cell nodes. Numerical

dissipation and the capture of discontinuities can be achieved through the use of either
linear or nonlinear upwind interpolation and a suitable choice of the numerical flux.
The interpolations of û+

j+l+1/2 and û−
j+l+1/2 are symmetric to each other. For clarity, the

superscripts of + and − are dropped, and only the formulas for û+
j+l+1/2 are presented.

To ensure fifth-order accuracy of the overall scheme in smooth regions, the inter-
polation of û j+l+1/2 also requires fifth-order accuracy. The WCNS-E5 scheme designs
a nonlinear interpolation method with an ideal accuracy of fifth-order on the stencil(

xj+l−2, xj+l−1, xj+l , xj+l+1, xj+l+2

)
. The specific implementation of the interpolation pro-

cess is shown in Section 3.

3. Nonlinear Multi-Order Weighted Interpolation

The nonlinear weighted interpolation procedure in WCNS is very similar to the
weighted reconstruction in popular schemes such as WENO, TENO, etc. These weighted
nonlinear procedures commonly incorporate smoothness indicators on sub-stencils to
effectively detect and capture discontinuities. In theory, the research results obtained can
be generalized to other nonlinear weighting schemes as well.

After first introducing the general nonlinear weighted interpolation procedure, the
classical JS nonlinear interpolation and the Z nonlinear interpolation will be presented
in Sections 3.1 and 3.2, respectively. After that, the newly proposed weighting method is
presented in Section 3.3, followed by its spectral analysis in Section 3.4.

The Lagrangian interpolation expression for WCNS-E5 based on 5-point stencil
S =

{
xj−2, xj−1, xj, xj+1, xj+2

}
is

ulinear
j+1/2 =

1
128

(
3uj−2 − 20uj−1 + 90uj + 60uj+1 − 5uj+2

)
. (3)
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The above interpolation is decomposed into a combination of three third-order interpo-
lations based on 3-point sub-stencils S1 =

{
xj−2, xj−1, xj

}
, S2 =

{
xj−1, xj, xj+1

}
, and

S3 =
{

xj, xj+1, xj+2
}

. The specific form of the combination and the third-order interpola-
tions are

ulinear
j+1/2 = d1u1

j+1/2 + d2u2
j+1/2 + d3u3

j+1/2 = uj+1/2 + O(h5),

u1
j+1/2 =

1
8
(
3uj−2 − 10uj−1 + 15uj

)
= uj+1/2 + O(h3),

u2
j+1/2 =

1
8
(
−uj−1 + 6uj + 3uj+1

)
= uj+1/2 + O(h3),

u3
j+1/2 =

1
8
(
3uj + 6uj+1 − uj+2

)
= uj+1/2 + O(h3),

(4)

where the ideal weights are d1 = 1/16, d2 = 10/16 and d3 = 15/16, resulting in a
convex combination with fifth-order accuracy. The functions u1

j+1/2,u2
j+1/2, and u3

j+1/2 are
third-order interpolations for the S1, S2,and S3 stencils, respectively. Similar to the linear
weighted convex combination expression in Equation (4), nonlinear weighted interpolation
is written as

unonlinear
j+1/2 = ω1u1

j+1/2 + ω2u2
j+1/2 + ω3u3

j+1/2 (5)

3.1. JS Nonlinear Interpolation

The famous JS nonlinear weights from Jiang and Shu [25] are defined as

ωk =
αJS

k

∑3
i=1 αJS

i

, αJS
k =

dk(
βJS

k + ε
)q (6)

where the constant ε in the above equation is a small quantity to avoid the denominator
becoming 0, and βk is the smoothness indicator. Usually, q takes a value of 2. The term
βJS

k [14] is defined as
βJS

1 = 1
4
(
uj−2 − 4uj−1 + 3uj

)2
+
(
uj−2 − 2uj−1 + uj

)2

βJS
2 = 1

4
(
uj+1 − uj−1

)2
+
(
uj−1 − 2uj + uj+1

)2

βJS
3 = 1

4
(
−3uj + 4uj+1 − uj+2

)2
+
(
uj − 2uj+1 + uj+2

)2
(7)

Previous studies have shown that such nonlinear weights can lead to a decrease in
interpolation accuracy at the extreme points in smooth regions, resulting in a decrease in
the overall scheme accuracy. To address this issue, numerous scholars have conducted
extensive research, proposing the mapped WENO (M) [12], Z nonlinear weights [13], and
ZQ nonlinear weights [27], etc.

3.2. Z Nonlinear Interpolation

Z nonlinear weights proposes [13] a high-order smoothing indicator and uses it to
provide a construction method of smoothing indicators that differs from JS, theoretically
solving the problem of extreme point reduction. Although Z weights are proposed based
on the WENO format, this idea can be ported to nonlinear interpolation methods in the
WCNS scheme. A brief introduction is as follows:

The calculation method for the smoothness indicator of each stencil is Equation (7), and
the high-order smoothness indicator τz is defined as follows:

τz =
∣∣∣β3

JS − β1
JS
∣∣∣ = { O(h5), u′

j ̸= 0 or u′
j = 0, u′′

j ̸= 0
O(h7), u′

j = u′′
j = 0

(8)
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The redefined smoothness indicator for each stencil is represented as

βk
Z =

βk
JS + ε

βk
JS + τz + ε

, k = 1, 2, 3 (9)

The famous Z nonlinear weights from Jiang and Shu [25] are defined as

ωz
k =

αz
k

3
∑

i=1
αz

i

, αz
k =

dk
βk

z = dk

(
1 +

(
τz

βk
JS + ε

)q)
, k = 1, 2, 3 (10)

The order of the nonlinear weighting function at non-extreme points is

αz
k = dk + O((h3)q), k = 1, 2, 3 (11)

This can naturally meet the requirement of fifth-order accuracy for q = 1, and the order of
the nonlinear weighting function at the extreme point is

αz
k =

{
dk + O((h)q), u′ = 0, u′′

j ̸= 0
dk + O((h2)q), u′

j = u′′
j = 0

, k = 1, 2, 3 (12)

when q ≥ 2 can meet the accuracy requirements.

3.3. A New Fifth-Order Multi-Order Z Nonlinear Interpolation

Although Z weighting theoretically overcomes the problem of JS weighting decreasing
at extreme points, in practical example testing, the nonlinear weight values of the sub-
stencil often deviate from the linear weights on smooth regions, leading to smooth regions
not achieving fifth-order accuracy. Inspired by the Z weighting high-order smoothing
indicator, this article designs a nonlinear weighting method for the 5-3-3-3 stencils. The
weighting method is completely consistent with JS, and the interpolation expression for the
5-point stencil adopts Equation (3). The smoothing indicators of each sub-stencil are

βMOZ
0 =

(
β1

JS − β3
JS
)4(

β1
JS + β3

JS
)−3

βMOZ
1 = β1

JS

βMOZ
2 = β2

JS

βMOZ
3 = β3

JS

(13)

The nonlinear weighting is called MOZ (multi-order-Z) candidate interpolation weighting
since the order of the smoothness indicators for candidate interpolations of different orders
is also different. Their orders of magnitude are

βMOZ
0 =


O(h14), u′

j ̸= 0
O(h8), u′

j = 0, u′′
j ̸= 0

O(h10), u′ = u′′
j = 0

βMOZ
k =


O(h2), u′

j ̸= 0
O(h4), u′

j = 0, u′′
j ̸= 0

O(h6), u′
j = u′′

j = 0
, k = 1, 2, 3

(14)

The term βMOZ
0 depends on all the nodes in the whole stencil. Near discontinuities,(

|β1
JS − β3

JS|/(β1
JS + β3

JS)
)3

= O(1). In smooth regions,
(
|β1

JS − β3
JS|/(β1

JS + β3
JS)
)3

is a small quantity related to the grid scale. This design improves the order of the smooth-
ness indicator of the 5-point sub-stencil, which increases the nonlinear weight of the 5-point
sub-stencil in smooth regions to improve the scheme’s resolution and to avoid loss of
extreme point accuracy.
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The nonlinear weights of MOZ are specifically expressed as
ωMOZ

0 = CT
(βMOZ

0 )
p

(βMOZ
0 + ε)

q γ0

ωMOZ
k = CT

(βMOZ
0 )

p

(βMOZ
k + ε)

q γk

, k = 1, 2, 3; p = q = 1 (15)

where CT =

[
γ0 +

3
∑

k=1
γk

(βMOZ
0 )

p

(βMOZ
k +ε)

q

]−1

, and γ0, γk are the linear weights, which satisfy

γ0 + γ1 + γ2 + γ3 = 1. Based on order analysis using Taylor series expansions, the leading
terms of the nonlinear weights are

O(ωMOZ
0 ) = O(1)

O(ωMOZ
k ) = O

(
βMOZ

0

βMOZ
k + ε

)
=


O(h10), u′

j ̸= 0

O(h4), u′
j = u′′

j = 0

O(h4), u′
j = 0, u′′

j ̸= 0

, k = 1, 2, 3; p = q = 1
(16)

The final nonlinear interpolation expression at the half node is

uMOZ
j+1/2 =

3

∑
k=0

ωMOZ
k uk

j+1/2 (17)

in which uk
j+1/2 is given by Equation (4). To ensure that the denominator is not zero, all

subsequent examples in this article use ε = 10−20. Through accuracy analysis, it is easy
to obtain that MOZ weights avoid degrading the accuracy at both first- and second-order
extreme points. To improve the resolution near discontinuities, the linear weights of the
three 3-point stencils are set to γk = dk(1 − γ0), k = 1, 2, 3, which can achieve fifth-order
accuracy. In addition, it should be pointed out that based on the design concept of MOZ, it
is easy to prove that if βMOZ

0 = τz, p = 2, q = 2 and the linear weights satisfy{
γ0 = 0.5,

γk = dk(1 − γ0), k = 1, 2, 3.
(18)

MOZ can degenerate into Z weighting; When the linear weights satisfy Equation (19) and
p = 1, q = 2, it degenerates into JS weighting.{

γ0 = 0,

γk = dk(1 − γ0), k = 1, 2, 3.
(19)

To further illustrate the influence of the linear weight γ0 on the nonlinear weight values
of the 5-point sub-stencil in the MOZ weighting function, the variation of the nonlinear
weight values at the first-order extreme points and discontinuities is given based on the
following equation:

u(x) =

{
e0.75(x−1)x2, − 1 ⩽ x < 0.525,

e0.75(x−1)x2 + 2, 0.525 ⩽ x ⩽ 1.
(20)

From Figure 1, it can be seen that although γ0 is much smaller than the grid scale, the
nonlinear weight ωMOZ

0 quickly approaches 1.0. In the vicinity of discontinuities, as γ0
approaches 1.0, ωMOZ

0 is also much smaller than the grid scale. It can be seen that the MOZ
designed in this paper achieves fifth-order accuracy and is relatively lenient with regard to
the selection of linear weights.
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Figure 1. The variation of nonlinear weight ωMOZ
0 with linear weight γ0 for 5-point stencil: (a) first-

order extreme point; (b) discontinuities.

3.4. Spectral and Accuracy Analysis

In this section, a simple analysis is conducted for comparing MOZ weighting with
different linear weights and Z weighting in terms of accuracy and resolution. Using the
ADR (approximate dispersion relation) [33] method, the spectral properties of fifth-order
WCNS using ideal weights, Z weights, and MOZ weights with different linear weights
are presented. Figure 2 shows the modified wavenumber between the ideal linear scheme
and nonlinear weighted schemes. Figure 2a shows the real part, and Figure 2b shows the
imaginary part. MOZ weighting with different linear weights has better dispersion and
dissipation spectral characteristics than Z weighting.

(kh)


*(
R
e)

0 0.5 1 1.5 2 2.5 30

0.4

0.8

1.2

1.6

2
WCNS-Z
WCNS-MOZ(0=h)
WCNS-MOZ(0=0.01)
WCNS-MOZ(0=0.5)
WCNS-MOZ(0=0.8)
WCNS-Linear

1.4 1.6 1.8 2

1.4

1.6

(a)
(kh)


*(
Im
)

0 0.5 1 1.5 2 2.5 3

-1.2

-0.8

-0.4

0

WCNS-Z
WCNS-MOZ(0=h)
WCNS-MOZ(0=0.01)
WCNS-MOZ(0=0.5)
WCNS-MOZ(0=0.8)
WCNS-Linear

1.2 1.3 1.4 1.5 1.6 1.7 1.8
-0.3

-0.2

-0.1

0

(b)

Figure 2. Results of spectral characteristics of nonlinear weights using MOZ and Z: (a) real part;
(b) imaginary part. (Red square symbol denotes the result based on Z weights; Yellow right triangle,
blue left triangle, green top triangle, and purple circle have MOZ weights of γ0 = {h, 0.01, 0.5, 0.8},
respectively; Solid lines indicate linear format).

The convergence accuracy of Z weighting and MOZ weighting with different linear
weights are tested at extreme points using the function u = e0.75(x−1)xp [34]. The point
x = 0 is a first-order extreme point for p = 2, while a second extreme point is p = 3. Grid
spacing of h = 2−mh0(h0 = 0.04) is adopted. The accuracy test results are presented in
Tables 1 and 2. The MOZ weights successfully achieve the ideal order at both the first- and
second-order extreme points. The Z function still degrades in order at the second-order
extreme point. The actual errors of MOZ weighting are better than those of Z weighting,
which are the same up to the third significant digits in Tables 1 and 2.
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In addition, the MOZ weights constructed in this article have the following two
characteristics:

(1) Based on the original three 3-point stencils, a 5-point stencil is added and matched
with a high-resolution high-order smoothness indicator. The choice of the smooth-
ness indicator is consistent with the sub-stencil width. This choice helps the overall
nonlinear interpolation to achieve the ideal order of accuracy. This choice ensures
that despite the use of the JS weighting method, the format accuracy can still be main-
tained. In addition, by changing the linear weights, MOZ weighting can degrade to Z
weighting and JS weighting, resulting in high design flexibility.

(2) The linear weights of three 3-point stencils are designed in an ideal allocation ratio of
a convex combination to fifth-order accuracy, which increases the utilization of the
sub-stencil information and improves the resolution near discontinuities.

Table 1. Errors and accuracy of nonlinear weighted interpolation method at first-order extreme point
x = 0 for the case u = e0.75(x−1)x2 for grids of h = 2−mh0(h0 = 0.04).

WCNS-Z
WCNS-MOZ

γ0 = hmin

WCNS-MOZ
γ0 = 0.01

WCNS-MOZ
γ0 = 0.5

WCNS-MOZ
γ0 = 0.8

m Error Order Error Order Error Order Error Order Error Order
0 1.37 × 10−6 2.41 × 10−8 7.62 × 10−9 5.30 × 10−9 5.28 × 10−9

1 2.92 × 10−8 5.55 1.66 × 10−10 7.18 1.66 × 10−10 5.52 1.66 × 10−10 4.99 1.66 × 10−10 4.99
2 6.71 × 10−10 5.44 5.23 × 10−12 4.99 5.23 × 10−12 4.99 5.23 × 10−12 4.99 5.23 × 10−12 4.99
3 1.71 × 10−11 5.30 1.64 × 10−13 5.00 1.64 × 10−13 5.00 1.64 × 10−13 5.00 1.64 × 10−13 5.00
4 4.73 × 10−13 5.18 5.12 × 10−15 5.00 5.12 × 10−15 5.00 5.12 × 10−15 5.00 5.12 × 10−15 5.00
5 1.38 × 10−14 5.10 1.60 × 10−16 5.00 1.60 × 10−16 5.00 1.60 × 10−16 5.00 1.60 × 10−16 5.00

Table 2. Errors and accuracy of nonlinear weighted interpolation method at second-order extreme
point x = 0 for the case u = e0.75(x−1)x3 for grids of h = 2−mh0(h0 = 0.04).

WCNS-Z
WCNS-MOZ

γ0 = hmin

WCNS-MOZ
γ0 = 0.01

WCNS-MOZ
γ0 = 0.5

WCNS-MOZ
γ0 = 0.8

m Error Order Error Order Error Order Error Order Error Order
0 7.50 × 10−4 2.80 × 10−8 2.80 × 10−8 2.80 × 10−8 2.80 × 10−8

1 1.84 × 10−4 2.03 8.86 × 10−10 4.98 8.86 × 10−10 4.98 8.86 × 10−10 4.98 8.86 × 10−10 4.98
2 4.35 × 10−5 2.08 2.78 × 10−11 4.99 2.78 × 10−11 4.99 2.78 × 10−11 4.99 2.78 × 10−11 4.99
3 9.44 × 10−6 2.20 8.73 × 10−13 5.00 8.73 × 10−13 5.00 8.73 × 10−13 5.00 8.73 × 10−13 5.00
4 1.94 × 10−6 2.28 2.73 × 10−14 5.00 2.73 × 10−14 5.00 2.73 × 10−14 5.00 2.73 × 10−14 5.00
5 4.30 × 10−7 2.18 8.55 × 10−16 5.00 8.55 × 10−16 5.00 8.55 × 10−16 5.00 8.55 × 10−16 5.00

4. Numerical Tests

The 4-stage fourth-order Runge–Kutta method in reference [35] is used for temporal
discretization. To maintain the same temporal truncation error as the fifth-order spatial
discretization, the time-marching step calculation method is

∆t =
(

CFL
a

h
)1.25

, (21)

where (a, CFL, h) are the maximum eigenvalue, the Courant number, and the minimum
grid scale, respectively.

4.1. Linear Scalar Equation

∂u
∂t

+
∂u
∂x

= 0. (22)
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Example 1: This example is calculated in x ∈ [0, 1] using periodic boundary conditions
with initial conditions [30] of

u(x, 0) = e−300(x−0.5)2
. (23)

Based on the linear convection equation, the influence of MOZ weighting on the accuracy
of the scheme is tested. Different from the accuracy tests, especially only for the extreme
points in Section 3.4, the accuracy of the whole spatial and temporal discretization is tested
here. The computational efficiency is compared, as shown in Table 3. The CPU time for
MOZ is very close to that of Z.

Firstly, we test the impact of the linear weights γ0 = {hmin, 0.01, 0.5, 0.8} in MOZ
weighting on the calculation results. Taking u(x, 0) = e−300(x−0.5)2

as the initial value, the
solution is advanced to the non-dimensional time of 1 using a grid spacing of h = 0.1× 2−m

for the m-th level of the grid. Table 4 shows the errors and convergence orders of the results
using MOZ weighting. L1 is the average of the sum of errors of all grid points relative to
the analytical solution. L2 is the average of the sum of squares of errors of all grid points
relative to the analytical solution. L3 is the maximum value among the absolute values of
errors of all grid points relative to the analytical solution. The different choices of the linear
weights γ0 do not affect the convergence order of the schemes. Figure 3 shows the error
curves concerning grid resolutions using the three nonlinear weights. The resulting error
of MOZ weighting with different linear weights is better than that of Z weighting.

Table 3. A comparison of CPU times obtained by solving the scalar equation with different nonlinear
weights (the grid N is 1600).

Nonlinear Weights JS Z MOZ

CPU time 0.484 s 0.516 s 0.531 s
Time ratio 1.000 1.066 1.097

Table 4. For u(x, 0) = e−300(x−0.5)2
, t = 1, the error and order of Z weighting and different linear

weights of MOZ weighting.

WCNS-MOZ{γ1 = hmin}

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 1.25 × 10−1 2.31 × 10−1 6.83 × 10−1

21 7.69 × 10−2 0.70 1.59 × 10−1 0.54 4.59 × 10−1 0.57
41 1.31 × 10−2 2.55 3.35 × 10−2 2.25 1.08 × 10−1 2.08
81 1.25 × 10−3 3.39 2.90 × 10−3 3.53 9.02 × 10−3 3.59

161 4.68 × 10−5 4.75 1.10 × 10−4 4.71 3.47 × 10−4 4.70
321 1.45 × 10−6 5.01 3.44 × 10−6 5.00 1.09 × 10−5 5.00

WCNS-MOZ {γ1 = 0.01}

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 1.24 × 10−1 2.30 × 10−1 6.79 × 10−1

21 7.50 × 10−2 0.73 1.55 × 10−1 0.57 4.49 × 10−1 0.60
41 1.19 × 10−2 2.65 3.11 × 10−2 2.32 1.01 × 10−1 2.16
81 1.29 × 10−3 3.21 2.92 × 10−3 3.41 8.97 × 10−3 3.49

161 4.65 × 10−5 4.80 1.10 × 10−4 4.73 3.47 × 10−4 4.69
321 1.45 × 10−6 5.01 3.44 × 10−6 5.00 1.09 × 10−5 5.00
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Table 4. Cont.

WCNS-MOZ{γ1 = 0.5}

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 1.18 × 10−1 2.22 × 10−1 6.48 × 10−1

21 6.68 × 10−2 0.82 1.40 × 10−1 0.67 4.02 × 10−1 0.69
41 9.17 × 10−3 2.86 2.83 × 10−2 2.30 9.36 × 10−2 2.10
81 1.26 × 10−3 2.86 2.89 × 10−3 3.29 8.93 × 10−3 3.39

161 4.64 × 10−5 4.76 1.10 × 10−4 4.71 3.47 × 10−4 4.69
321 1.45 × 10−6 5.00 3.44 × 10−6 5.00 1.09 × 10−5 5.00

WCNS-MOZ{γ1 = 0.8}

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 1.16 × 10−1 2.19 × 10−1 6.36 × 10−1

21 6.45 × 10−2 0.85 1.35 × 10−1 0.70 3.89 × 10−1 0.71
41 9.06 × 10−3 2.83 2.82 × 10−2 2.26 9.35 × 10−2 2.06
81 1.25 × 10−3 2.86 2.88 × 10−3 3.29 8.93 × 10−3 3.39

161 4.64 × 10−5 4.75 1.10 × 10−4 4.71 3.47 × 10−4 4.69
321 1.45 × 10−6 5.00 3.44 × 10−6 5.00 1.09 × 10−5 5.00

WCNS-Z

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 1.27 × 10−1 2.34 × 10−1 6.95 × 10−1

21 8.01 × 10−2 0.66 1.63 × 10−1 0.52 4.77 × 10−1 0.55
41 1.59 × 10−2 2.34 3.69 × 10−2 2.15 1.16 × 10−1 2.04
81 1.55 × 10−3 3.35 3.24 × 10−3 3.51 9.24 × 10−3 3.64

161 4.74 × 10−5 5.04 1.11 × 10−4 4.87 3.49 × 10−4 4.73
321 1.45 × 10−6 5.03 3.45 × 10−6 5.01 1.09 × 10−5 5.00

Example 2: This example is calculated in x ∈ [−1, 1] using periodic boundary condi-
tions with initial conditions [13]

u(x, 0) =



1
6 [G(x, z − δ)− 4G(x, z) + G(x, z + δ)], x ∈ [−0.8,−0.6],

1, x ∈ [−0.4,−0.2],

1 − |10x − 1|, x ∈ [0,−0.2],
1
6 [F(x, a − δ)− 4F(x, z) + F(x, a + δ)], x ∈ [0.4, 0.6],

0, otherwise,

G(x, z) = e−β(x−z)2
,

F(x, a) =
√

max(1 − α2(x − a)2, 0),

(24)

where z = −0.7, δ = 0.005, β = log 2/(36δ2), a = 0.5, α = 10. The simulations are run to
t = 8. From Figure 4, it can be seen that Z weighting and MOZ weighting with different
linear weights have almost no oscillations near discontinuities. Meanwhile, MOZ weighting
exhibits higher resolution near extreme points and discontinuities than Z weighting.
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Figure 3. Convergence orders of fifth-order schemes based on Z and MOZ weighting with different
linear weights at t = 1 for the case of u(x, 0) = e−300(x−0.5)2

based on the linear advection equation.
(The horizontal axis represents the number of grid points (N) used in the calculation. The error of (a),
(b), and (c) has already been provided in the previous text respectively. The circular symbol denotes
the result of Z weighting; values of 1, 2, 3, and 4 denote the results of different linear weights of MOZ
weighting).
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Figure 4. Test of three types of nonlinear weights based on piecewise discontinuous solutions using
200 grid points at t = 8: (a) variable u; (b) variable u zoomed in. (Red square symbol denotes the result
based on Z weighting; yellow right triangle, blue left triangle, green top triangle, and purple circle
have MOZ weightings of γ0 = {h, 0.01, 0.5, 0.8}, respectively; solid lines denotes the exact solution).
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4.2. Burgers’ Equation

The Burgers’ equation is a nonlinear scalar equation with the form

∂u
∂t

+
∂

∂x

(
1
2

u2
)
= 0. (25)

This example is calculated in x ∈ [0, 2] using periodic boundary conditions with initial
conditions [12]

u(x, 0) = sin(πx). (26)

Table 5 and Figure 5 show the errors and convergence orders using four types of
weights at t = 1 when discontinuities of the solution have not formed. From the test results,
it can be seen that the convergence orders using Z and MOZ weights can converge to the
fifth order. The errors of MOZ weights are similar to those of Z weights.
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Figure 5. Convergence orders of four nonlinear fifth-order schemes at t = (0.5/π) of the one-
dimensional inviscid Burgers’ equation with u(x, 0) = sin(πx), t = (0.5/π) (The horizontal axis
represents the number of grid points (N) used in the calculation. The error of (a), (b), and (c) has
already been provided in the previous text respectively. The circular symbol denotes the result of Z
weighting; values of 1, 2, 3, and 4 denote the results of different linear weights of MOZ weighting).
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Table 5. For ut +
(

u2

2

)
x
= 0, u(x, 0) = sin(πx), t = 0.5/π, the error and order of Z weighting and

different linear weights of MOZ weighting.

WCNS-MOZ {γ1 = hmin}

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 8.23 × 10−4 1.36 × 10−3 2.95 × 10−3

21 2.33 × 10−4 1.82 4.34 × 10−4 1.65 9.74 × 10−4 1.60
41 1.14 × 10−5 4.36 2.50 × 10−5 4.12 9.88 × 10−5 3.30
81 3.11 × 10−7 5.19 7.37 × 10−7 5.08 3.47 × 10−6 4.83

161 9.79 × 10−9 4.99 2.27 × 10−8 5.02 9.96 × 10−8 5.12
321 2.95 × 10−10 5.05 6.60 × 10−10 5.11 3.15 × 10−9 4.98

WCNS-MOZ {γ1 = 0.01}

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 8.35 × 10−4 1.42 × 10−3 3.13 × 10−3

21 2.33 × 10−4 1.84 4.48 × 10−4 1.66 1.02 × 10−3 1.61
41 1.03 × 10−5 4.50 2.45 × 10−5 4.19 9.88 × 10−5 3.37
81 2.97 × 10−7 5.12 7.32 × 10−7 5.06 3.47 × 10−6 4.83

161 9.79 × 10−9 4.93 2.27 × 10−8 5.01 9.96 × 10−8 5.12
321 2.95 × 10−10 5.05 6.60 × 10−10 5.11 3.15 × 10−9 4.98

WCNS-MOZ {γ1 = 0.5}

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 1.13 × 10−3 1.91 × 10−3 4.10 × 10−3

21 2.08 × 10−4 2.44 4.58 × 10−4 2.06 1.14 × 10−3 1.85
41 9.54 × 10−6 4.45 2.92 × 10−5 4.24 9.88 × 10−5 3.52
81 2.96 × 10−7 5.01 7.31 × 10−7 5.05 3.47 × 10−6 4.83

161 9.79 × 10−9 4.92 2.27 × 10−8 5.01 9.96 × 10−8 5.12
321 2.95 × 10−10 5.05 6.60 × 10−10 5.11 3.15 × 10−9 4.98

WCNS-MOZ {γ1 = 0.8}

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 1.23 × 10−3 1.95 × 10−3 3.82 × 10−3

21 2.09 × 10−4 2.56 4.56 × 10−4 2.10 1.14 × 10−3 1.74
41 9.54 × 10−6 4.45 2.42 × 10−5 4.23 9.88 × 10−5 3.53
81 2.96 × 10−7 5.01 7.31 × 10−7 5.05 3.47 × 10−6 4.83

161 9.79 × 10−9 4.92 2.27 × 10−8 5.01 9.96 × 10−8 5.12
321 2.95 × 10−10 5.05 6.60 × 10−10 5.11 3.15 × 10−9 4.98

WCNS-Z

Grid Point Number
L1 L2 L∞

Error Order Error Order Error Order

11 8.80 × 10−4 1.60 × 10−3 3.66 × 10−3

21 2.18 × 10−4 2.02 4.49 × 10−4 1.83 1.08 × 10−3 1.76
41 1.04 × 10−5 4.39 2.46 × 10−5 4.19 9.89 × 10−5 3.45
81 3.31 × 10−7 4.97 7.46 × 10−7 5.04 3.47 × 10−6 4.83

161 1.08 × 10−8 4.93 2.35 × 10−8 4.98 9.96 × 10−8 5.12
321 3.29 × 10−10 5.04 7.01 × 10−10 5.07 3.15 × 10−9 4.98
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Discontinuity forms in the solution after t = 1.5/π. From Figure 6, it can be seen
that MOZ weights with different linear weights and Z weights effectively capture the
discontinuity.

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

WCNS-Z
WCNS-MOZ(0=0.01)
WCNS-MOZ(0=0.5)
WCNS-MOZ(0=0.8)
Exact

X

u

Figure 6. The results of four nonlinear fifth-order schemes of the one-dimensional inviscid Burgers’
equation with (x, 0) = sin(πx) at t = 1.5/π, grid N:100. (Red square symbol denotes the result based
on Z weighting; yellow top triangle, blue right triangle, and green left triangle have MOZ weighting
of γ0 = {0.01, 0.5, 0.8}, respectively; solid lines denote the exact solution.)

Next, the basic examples of one-dimensional and two-dimensional Euler equations
are used to test the resolution and discontinuous capture ability of MOZ weighting and
Z weighting. Based on the theoretical analysis and simple testing of scalar equations
mentioned above, it is known that the linear weight of MOZ weighting will not affect the
accuracy of the scheme, but the actual error will further decrease with the increase in linear
weights γ0. The following examples in this article were tested using linear coefficients of
γ0 = {h, 0.01, 0.5, 0.8}, and the test results of γ0 with the smallest results are still better
than those of Z weighting. The maximum γ0 can also achieve stable discontinuous capture.
Recommended values for linear weights are h ⩽ γ0 ⩽ 0.8. By adjusting γ0, the resolution
and discontinuous capture ability of specific examples can be flexibly controlled and have
a default value of γ0 = 0.5. Due to limited space, we only provide test results for γ0 = 0.5.

4.3. One-Dimensional Euler Equation

The Euler’ equation is a nonlinear scalar equation with the form

∂

∂t

 ρ
ρu
E

+
∂

∂x

 ρu
ρu2 + p
(E + p)u

 = 0. (27)

Example 1: The Sod and Lax problems [13] are both shock tube problems. The initial
conditions of the Sod problem are

(ρ, u, p, γ)T =

{
(1, 0, 1, 1.4)T , x ∈ [0, 0.5),

(0.125, 0, 0.1, 1.4)T , x ∈ [0.5, 1.0],
(28)

while the initial conditions of the Lax problem are

(ρ, u, p, γ)T =

{
(0.445, 0.698, 3.528, 1.4)T , x ∈ [−0.5, 0),

(0.5, 0, 0.571, 1.4)T , x ∈ [0, 0.5].
(29)
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All the boundaries adopt the Dirichlet boundary condition using the left and right
state values.

Figures 7 and 8 show the density results of nonlinear weighted functions at t = 0.25 on
the Sod problem and t = 0.15 on the Lax problem, respectively. It can be seen that there are
almost no non-physical oscillations near the discontinuity using Z weighting and MOZ
weighting. The resolution of MOZ weighting near the discontinuity is higher than that of Z
weighting.
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Figure 7. Numerical and exact solutions of the Sod problem at t = 0.25 using 200 grid points:
(a) density; (b) density zoomed in (red square symbol denotes Z weighting, blue upper triangle
denotes MOZ weighting, and solid line denotes the exact solution).
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Figure 8. Numerical and exact solutions of the Lax problem at t = 0.15 using 200 grid points:
(a) density; (b) density zoom in (red square symbol denotes Z weighting, blue upper triangle denotes
MOZ weighting, and solid line denotes the exact solution).

Example 2: The Shu–Osher problem [25] has initial conditions of

(ρ, u, p, γ)T =

{
(3.857, 2.629, 10.333, 1.4)T , x ∈ [0, 1),
(1 + 0.2 sin(5x), 0, 1, 1.4)T , x ∈ [1, 10].

(30)

All the boundaries adopt the Dirichlet boundary condition.
Figure 9 shows the density results of nonlinear weighted functions at t = 1.8 on the

Shu–Osher problem. From the enlarged density, it can be seen that MOZ weighting has
better resolution for high-frequency waves compared to Z weighting, and it is closer to the
exact solution.
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Figure 9. Numerical and exact solutions of the Shu–Osher problem at t = 1.8 using 200 grid points:
(a) density; (b) density zoom in (red square symbol denotes Z weighting, blue upper triangle denotes
MOZ weighting, and solid line denotes the exact solution).

4.4. Two-Dimensional Euler Equations

The equations have the form of

∂

∂t


ρ
ρu
ρv
E

+
∂

∂x


ρu
ρu2 + p
ρuv
(E + p)u

+
∂

∂y


ρv
ρvu
ρv2 + p
(E + p)v

 = 0. (31)

Example 1: Propagation of a vortex in two-dimensional space.A vortex is added to the
mean flow (ρ, u, v, p)∞ = (1, 1, 0, 1), specified as

(δu, δv) = εeα(1−r2)(ȳ,−x̄),

δT = − (γ−1)ε2

4γα e2α(1−r2),
δS = 0,

(32)

where (x̄, ȳ) = 1
Rc (x − 5, y − 5), r2 = x̄2 + ȳ2, ε = 0.3, Rc = 0.5, α = 0.35. The computations

are performed on domain [0, 10]× [0, 10]. The periodic boundary conditions are for all
boundaries. The Courant number is 0.1, and the calculation is conducted until t = 1. Table 6
compare the accuracy of different weighting functions for solving this Euler problem at
different grid resolutions. Although all weight functions can achieve the same convergence
accuracy, the error of the MOZ weight is smaller than those of the other weight functions.

The Courant number is 0.3, and calculation is conducted until t = 0.8. Figure 10 shows
that the results using MOZ weighting have more vortices resolved at the shear layer com-
pared to Z weighting at the same grid scale. With refinement of the grid, MOZ weighting
can distinguish more small vortex structures compared to Z weighting in locations similar
to the “mushroom-shaped” shape, resulting in a significant improvement in resolution.
Example 2: A two-dimensional Riemannian problem [30] has initial conditions of

(ρ, u, v, p, γ) =



(0.138, 1.206, 1.206, 0.029, 1.4) (x, y) ∈
[
0, 4

5

]
×
[
0, 4

5

]
,

(0.5323, 0, 1.206, 0.3, 1.4) (x, y) ∈
[

4
5 , 1
]
×
[
0, 4

5

]
,

(0.5323, 1.206, 0, 0.3, 1.4) (x, y) ∈
[
0, 4

5

]
×
[

4
5 , 1
]
,

(1.5, 0, 0, 1.5, 1.4) (x, y) ∈
[

4
5 , 1
]
×
[

4
5 , 1
]
,

(33)
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Table 6. Errors and convergence orders based on JS, Z, and MOZ weights for two-dimensional Euler
vortex simulation, at t = 1.

WCNS-JS

Grid Point Number
L1 L2 L∞

Error Order Order Error Order Error

41 8.88 × 10−5 3.19 × 10−4 1.06 × 10−5

81 1.16 × 10−5 2.94 8.05 × 10−5 1.99 2.94 × 10−3 0.44
161 1.33 × 10−6 3.13 1.06 × 10−5 2.92 2.78 × 10−4 3.40
321 8.41 × 10−8 3.98 6.84 × 10−7 3.95 1.88 × 10−5 3.89
641 2.46 × 10−9 5.09 2.13 × 10−8 5.00 8.64 × 10−7 4.44

WCNS-Z

Grid Point Number
L1 L2 L∞

Error Order Order Error Order Error

41 5.48 × 10−5 1.89 × 10−4 9.26 × 10−6

81 9.01 × 10−6 2.61 6.74 × 10−5 1.49 2.34 × 10−3 0.31
161 1.11 × 10−6 3.02 9.26 × 10−6 2.86 2.39 × 10−4 3.29
321 5.60 × 10−8 4.31 5.47 × 10−7 4.08 1.88 × 10−5 3.67
641 9.79 × 10−10 5.84 1.08 × 10−8 5.66 4.95 × 10−7 5.25

WCNS-MOZ

Grid Point Number
L1 L2 L∞

Error Order Order Error Order Error

41 3.09 × 10−5 1.21 × 10−4 2.51 × 10−6

81 3.52 × 10−6 3.13 2.37 × 10−5 2.36 5.77 × 10−4 1.62
161 2.93 × 10−7 3.58 2.51 × 10−6 3.24 5.60 × 10−5 3.37
321 7.17 × 10−9 5.35 7.27 × 10−8 5.11 2.61 × 10−6 4.43
641 7.81 × 10−11 6.52 4.23 × 10−10 7.43 1.21 × 10−8 7.75

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

WCNS-Z Nxy=400×400

(a)
x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

WCNS-Z Nxy=1024×1024

(b)

X

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

WCNS-MOZ Nxy=400×400

(c)
x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

WCNS-MOZ Nxy=1024×1024

(d)
Figure 10. The density contour of 2D-Lax–Liu–Riemannian problem at t = 0.8 using 400 × 400 and
1024 × 1024 grid points. CFL = 0.3. The figures use 30 density contour lines ranging from 0.1–1.8.
(a,b) Z; (c,d) MOZ.
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Example 3: A double Mach reflection problem [35] has initial conditions

(ρ, u, p, γ)T =

{
(1.4, 0, 0, 1, 1.4)T , y <

√
3(x − 1/6),

(8.0, 7.145,−4.125, 116.5, 1.4)T , otherwise.
(34)

The initial conditions lead to a Mach 10 oblique shock with an angle of π/3 rela-
tive to the x-axis. The oblique shock is deflected by the leading edge of the solid wall
at (x, y) = (1/6, 0). The solid wall is extended to x = 4 along the x-axis. The upper
boundary is assigned by a Dirichlet boundary condition based on the analytical speed
of the shock. The lower boundary of x ∈ [0, 1/6] uses an inviscid wall boundary. The
left and right boundaries are, respectively, the inlet boundary conditions and the outlet
boundary conditions. Using a Courant number of 0.3, the simulation is run until t = 0.8.
From the enlarged contour of the shear layer regions in Figure 11, it can be seen that MOZ
weighting shows better resolution compared to Z weighting. With refinement of the grid,
this difference becomes more significant.

2.2 2.4 2.6 2.80

0.2

0.4

WCNS-Z Nxy=800×200

y

x
(a)

2.2 2.4 2.6 2.80

0.2

0.4

WCNS-Z Nxy=1600×400

y

x
(b)

2.2 2.4 2.6 2.80

0.2

0.4

WCNS-MOZ Nxy=800×200

y

x
(c)

2.2 2.4 2.6 2.80

0.2

0.4

WCNS-MOZ Nxy=1600×400

y

x
(d)

Figure 11. The density contour of double Mach reflection problem at t = 0.2 using 800 × 200 and
1600 × 400 grid points. CFL = 0.3. The figures use 30 density contour lines ranging from 1.5–22.7.
(a,b) Z; (c,d) MOZ.

Example 4: A Rayleigh-Taylor instability problem [36] has initial conditions of

(ρ, u, v, p, γ)T =

{
(2, 0,−0.025a cos(8πx), 1 + 2y, 5/3), (x, y) ∈ [0, 0.25]× [0, 0.5),

(1, 0,−0.025a cos(8πx), y + 3/2, 5/3), (x, y) ∈ [0, 0.25]× [0.5, 1],
(35)

(ρ, u, v, p, γ) =

{
(1, 0, 0, 2.5, 5/3), y = 1,

(2, 0, 0, 1, 5/3), y = 0.
(36)
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The upper and lower boundaries use Dirichlet boundary conditions according to
Equation (36), while a symmetric boundary condition is adopted for the left and right
boundaries. Using a Courant number of 0.3, the simulation is run until t = 1.95. Figure 12
shows that MOZ weighting has already captured the vortices near y = 0.5 on a 481 × 121 grid.
However, these vortices have not yet fully formed when using Z weighting. With refine-
ment of the grid, MOZ weighting can distinguish smaller-scale vortex structures near
y = 0.6 compared to Z weighting. The results of MOZ weighting exhibit better resolution
compared to Z weighting. Example 5: A Richtmyer–Meshkova instability problem [31] has
initial conditions of

(ρ, u, v, p, γ) =


(3.33333, 2.07063, 0.0, 7.125, 1.4), 0 ⩽ x < 0.06,

(1.0, 0.0, 0.0, 1.0, 1.4), 0.06 ⩽ x < 0.1 + 0.008 · cos(nπy),

(0.138, 0.0, 0.0, 1.0, 1.4), 0.1 + 0.008 · cos(nπy) ⩽ x ⩽ 0.6.

(37)

The calculation domain is [0, 0.6]× [0, 0.1]. The upper and lower boundary conditions are
periodic, and the left and right boundary conditions are fixed values that corresponds to
the initial field. Using a Courant number of 0.3, the simulation is run until t = 0.16. Three
scenarios are calculated: namely, 1, 2, and 3 shock bubbles, corresponding to n = 20, 40, and
60, respectively, in the initial conditions. From the results in Figure 13, it can be seen that
the calculation results for all three cases show that MOZ weighting can capture more flow
details about the “wake vortex” and “rod-shaped” positions of the shock bubble compared
to Z-weighting, and its resolution is significantly better than that of Z weighting.

X

y

0 0.1 0.20

0.2

0.4

0.6

0.8

WCNS-Z

Nxy=120×480

(a)
X

y

0 0.1 0.20

0.2

0.4

0.6

0.8

WCNS-Z

Nxy=250×1000

(b)
X

y

0 0.1 0.20

0.2

0.4

0.6

0.8

WCNS-MOZ

Nxy=120×480

(c)
X

y

0 0.1 0.20

0.2

0.4

0.6

0.8

WCNS-MOZ

Nxy=250×1000

(d)

Figure 12. The density contour of Rayleigh–Taylor instability problem at t = 1.95 using 120 × 480
and 250 × 1000 grid points. CFL = 0.3. The figures use 30 density contour lines ranging from 0.9–2.2.
(a,b) Z; (c,d) MOZ.
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Figure 13. The density contour of the Richtmyer–Meshkova instability problem at t = 0.16 using
1200 × 200 grid points. CFL = 0.3. The figures use 30 density contour lines ranging from 0.2–3.2.
(a,c,e) Results for Z weighting for cases with n = 20, 40, and 60, respectively; similarly, (b,d,f) are the
results for MOZ weighting for cases with n = 20, 40, and 60, respectively.
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Example 6: Shock vortex interaction problem [37].
This example describes the interaction between a moving vortex and a steady shock

wave. The calculation domain is [0, 2] × [0, 1]. A shock wave with a Mach number of
1.1 is vertically located at x = 0.5 and has values of (ρ, u, v, p) = (1, 1.1

√
γ, 0, 1) on the

left-hand side, and the values on the right-hand side are calculated according to the shock
relationship. The left and right boundaries are fixed values, and the top and bottom
are symmetric boundaries. The vortex is initially located at x = 0.5, and the vortex is
described by

ũ = ετveα(1−τv
2)y,

ṽ = −ετveα(1−τv
2)x,

T̃ = − (γ−1)ε2e2α(1−τv2)
4αγ ,

S̃ = 0,
τv = r

rc
.

(38)

where r =
√
(x − xc)

2 + (y − yc)
2 is the distance from the vortex center, rc = 0.05 is a

parameter controlling the vortex size. ε = 0.3 controls the strength of the vortex, and
α = 0.204 controls the attenuation rate of the vortices. The simulations are run until t = 0.8.

Figure 14 shows that MOZ weighting can effectively simulate the shock. In addition,
the results of Z weighting and MOZ weighting are compared at t = 0.6. Figure 15 shows the
distribution of pressure at the vortex center y = 0.5. Compared with the finer-grid result
of JS weights, it can be seen that MOZ weights have lower dissipation, and no obvious
overshoot occurs post the shock wave. MOZ weighting has higher resolution before and
after shock waves than Z weighting.

0.5 10

0.5

1

x

y

WCNS-Z Nxy=300×150t=0.6

(a)

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

x

y

WCNS-Z Nxy=300×150t=0.8

(b)

0.5 10

0.5

1

x

y

WCNS-MOZ Nxy=300×150t=0.6

(c)

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

x

y

WCNS-MOZ Nxy=300×150t=0.8

(d)

Figure 14. Pressure contour lines of shock vortex interaction problem using 300 × 150 grid points.
(a,b) Present the pressure distribution of Z weighting at t = 0.6 and t = 0.8, respectively; (c,d) present
the pressure distribution of MOZ weighting at t = 0.6 and t = 0.8, respectively. There are 60 pressure
contour lines ranging from 1.19∼13.7. CFL = 0.3.
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Figure 15. Pressure distribution for the line y = 0.5 across the center of the vortex at t = 0.6 using
300 × 150 grid points. (a) Pressure distribution using different weights. (b)Pressure zoomed in
for the post-shock position. (c) Pressure zoomed in near the center of the vortex. (d) Pressure
zoomed in for the pre-shock position. The reference solution is calculated using JS weights and
1600 × 800 grid points. (The red square symbol denotes Z weighting, the blue upper triangle denotes
MOZ weighting, the blue long dash line denotes MOZ weighting (1600 × 800 grid points), the black
solid line denotes the reference solution.)

5. Conclusions

Based on 5-3-3-3 stencil interpolation, a new high-order smoothness indicator for the
fifth-order sub-stencil is proposed; the resulting multi-order weighting can maintain the
ideal order of the (5-3-3-3) nonlinear weighting. The linear weight selection of three 3-point
stencils satisfies the convex combination condition for the optimal accuracy of fifth-order
interpolation. These strategies form multi-order-Z nonlinear weighting, which we denote
as MOZ weighting. The main conclusions are as follows:

(1) Maintains accuracy: MOZ weighting ensures the ideal fifth-order accuracy of the
scheme at the first- and second-order extremum points.

(2) High aspect ratio: Numerical validation tests show that the format using MOZ weight-
ing has better resolution than Z weighting in smooth regions, shear layers, and dis-
continuities, which is consistent with the conclusions of spectral analysis, and there
are no obvious non-physical false fluctuations at discontinuities. From a theoretical
analysis perspective, the number of calculations for MOZ is equivalent to that required
by Z weighting, so increasing resolution does not decrease computational efficiency,
resulting in a significant improvement in the ratio of resolution to efficiency.
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