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Abstract: The theoretical connections between quantum trajectories and quantum dwell times,
previously explored in the context of 1D time-independent stationary scattering applications, are
here generalized for multidimensional time-dependent wavepacket applications for particles with
spin 1/2. In addition to dwell times, trajectory-based dwell time distributions are also developed, and
compared with previous distributions based on the dwell time operator and the flux–flux correlation
function. Dwell time distributions are of interest, in part because they may be of experimental
relevance. In addition to standard unipolar quantum trajectories, bipolar quantum trajectories are
also considered, and found to relate more directly to the dwell time (and other quantum time)
quantities of greatest relevance for scattering applications. Detailed calculations are performed for
a benchmark 3D spin-1/2 particle application, considered previously in the context of computing
quantum arrival times.

Keywords: dwell times; wavepacket dynamics; quantum trajectories; de Broglie–Bohm theory;
foundations of physics; quantum control; entanglement

1. Introduction

This article represents the coalescing of several different idea threads. First and fore-
most, there is the idea of quantum time, which has long been controversial—as evidenced,
e.g., by the plethora of different quantum time quantities available on the market [1–14]. It
is the general considered opinion that quantum mechanics does not endow time with a
Hermitian operator—at least not like other quantum observables [8,15–17]. So how does
one define, say, the collision time between two quantum particles? What does that quantity
mean precisely, and can it be experimentally measured? Then there is the idea of quantum
trajectories, going back to Madelung and Bohm [18–25]. Given that there are trajectory-
based ways to formulate or interpret quantum mechanics—where definite positions and
momenta of all particles can be determined over time—this seems a natural avenue towards
understanding the nature of quantum time. And yet, one of the most reliable quantum time
metrics currently in use—called the “dwell time” [2,7,26]—is generally inconsistent with the
corresponding quantum trajectory traversal time, even for the most straightforward case of
one-dimensional (1D) time-independent scattering. Although recent efforts demonstrate
that it is, indeed, possible to compute dwell times (and other related quantum time quanti-
ties) using quantum trajectories [5,6], these works also hint at the notion that an alternate
trajectory-based approach, using what are called bipolar quantum trajectories [27–33], may
be more appropriate. If so, would this imply that quantum particles actually follow bipolar,
rather than conventional “unipolar”, quantum trajectories [34]?

In this work, we explore all of the above questions, not only in the context of 1D time-
independent scattering with specific left- (or right-) incident boundary conditions, but also
more generally, for many-dimensional and/or time-dependent wavepacket applications,
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with arbitrary initial conditions. Furthermore, we consider the interesting case of spin-
1/2 particles. The issue of quantum time in the context of spin-1/2 particle dynamics
is a very topical—and controversial—one that has been vigorously debated in a very
recent set of publications [35–38]. At issue, it appears, is, once again, the question of
whether a given time quantity (in this case, the arrival time) can in principle be measured
experimentally or not. This is of interest, in part because quantum trajectory arrival time
statistics show starkly different features than would otherwise be predicted by the quantum
flux of the Pauli equation—and hence could help validate experimentally the “reality” of
quantum trajectories.

We wish to be clear at the outset: the present work in no way addresses or resolves the
above controversy. We focus solely on the (Pauli-equation-based) quantum dynamics itself,
and take a wholly agnostic view with regards to the issue of subsequent experimental
measurement—apart from offering a mild admonishment against saying “never”. Too many
“no-go” theorems from mathematics have been undone in practice by clever workarounds.
Indeed, even within the context of quantum time, we find one such very cogent example,
in the form of Pauli’s famous theorem that would seem to argue against the existence of
self-adjoint time operators conjugate to the Hamiltonian operator [39]. If not “undone”, per
se, this theorem has been severely undermined in work by Galapon [40], which, moreover,
has led to a better understanding of the theory of canonical commutation relations.

Be that as it may, we do adopt a stance insofar as the choice of quantum time quantity
is concerned. As mentioned, the earlier work with spin-1/2 particles has concentrated
on computing the distribution of particle arrival times, rather than dwell times. The former
has been described as an “instant” quantity, with the latter characterized as an “interval”
quantity [7]. Perhaps, more precisely, the arrival time is measured from an initial time
to a final place. At least in the references above, an ensemble of quantum trajectories
is distributed across a range of positions, (x, y, z), at initial time t = 0, and allowed to
propagate over time. The arrival time for a given trajectory is then defined as the time at
which said trajectory crosses the z = L plane—with the trajectory ensemble as a whole
thus providing a distribution across many such arrival time values. In contrast, the dwell
time describes how much time the particle spends within the interval, [zL, zR]. In many
circumstances, this amounts to how much time it takes for the particle to traverse the
interval, i.e., as measured from an initial place (or surface), z = zL, to a final place, z = zR
(or vice versa). That said, the dwell time can also incorporate “reflections”, for which the
particle exits the interval, turns around, and passes through the interval again, traveling in
the other direction.

The dwell time quantity offers a number of practical benefits. For example, the
boundary conditions are consistent, in the sense that dwell time represents a “place-to-
place” rather than “time-to-place” transition. Also, to the extent that one can construct
a corresponding time operator, the dwell time operator has nice properties (e.g., it is
Hermitian, and commutes with the Hamiltonian) [7]. In the time-independent scattering
context, the dwell time is also very closely related to other quantum time quantities, such as
the time delay matrix and the Smith lifetime matrix, and also the scattering S matrix [2,5–7].
Moreover, the dwell time can also be easily generalized for time-dependent wavepacket
dynamics as well.

Most intriguingly, for our purposes anyway, is the close connection between the dwell
time and the flux–flux correlation function (FFCF) discovered by Pollak and Miller [41].
The latter is based on the quantum mechanical flux operator, which, in turn, is motivated
by classical trajectories (despite being a fully quantum entity). Importantly, it is not the
dwell time, per se, that enters in here, but, rather, the average dwell time (which is also
what relates most closely to the diagonal Smith lifetime matrix elements [2,5,6]). As we
shall see, the dwell time itself often oscillates with respect to the interval endpoints, due to
quantum interference between incident and reflected waves. By averaging the dwell time
over these interference oscillations, cleaner asymptotic behavior can be achieved, as has
been recognized for many decades.
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In any event, the above facts—coupled with the fact that dwell times often do not agree
with their corresponding unipolar quantum trajectory traversal times—have motivated the
present dwell time formulation in terms of bipolar quantum trajectories [27–33]. The term
“bipolar” refers to a wavefunction decomposition,

ψ = ψ+ + ψ−, (1)

where ψ+ and ψ− are traveling waves headed in opposite directions. Whereas ψ itself
may show significant interference, the bipolar ψ± components generally do not. The
corresponding bipolar quantum trajectories, derived separately from ψ± rather than from
ψ, are accordingly smooth and well behaved. In particular, the fact that bipolar quantum
trajectories are (generally) nonoscillatory suggests that these might be better suited to
obtaining (average) dwell times than are unipolar quantum trajectories. More compellingly,
however, bipolar quantum trajectories are classical-like, and approach their true classical
trajectory counterparts in the classical limit of large action. In any event, the fact that
FFCF theory is also classical-like, thus, strongly suggests (at least to us) a close connection
between bipolar quantum trajectories and quantum dwell times.

This connection is explored and developed in the present work, and then investigated
in the specific context of the benchmark spin-1/2 three-dimensional (3D) wavepacket
system proposed by Das and Dürr [36]. In addition to the aforementioned arrival time
measurement controversy, this system is of interest for the different trajectory dynamics
that ensue, depending on whether the initial spin state is a σ̂z or a σ̂x eigenstate. The
quantum trajectories are different, despite the fact that the the time-evolving probability
density functions are the same in both cases (because the Hamiltonian itself has no explicit
spin dependence). For this system, we first solve for the unipolar quantum trajectories,
using a specialized ensemble [33,42–48] from which arrival time distributions may be
easily obtained.

After confirming agreement with the previous study [36], we then compute dwell time
distributions using the unipolar quantum trajectories. Additionally, we compute bipolar
wave components, ψ±, which are then used to compute bipolar quantum trajectories,
from which accurate dwell times for the ψ± component waves are also obtained. Finally,
symmetry, together with an alternate interpretation in terms of wave reflection at z = 0, are
used to obtain a bipolar-trajectory-based (average) dwell time distribution for ψ itself.

2. Theory
2.1. Dwell Times
2.1.1. Time-Independent

The dwell time quantity will first be defined for time-independent stationary scattering
solutions of the one-dimensional (1D) Schrödinger equation,[

− h̄2

2m
d2

dx2 + V(x)

]
ϕk(x) = E ϕk(x). (2)

For convenience, we focus on 1D systems, although the generalization to the many-
dimensional case is straightforward. Equation (2) above encompasses both left- and
right-incident scattering solutions, respectively, through the positive and negative val-
ues of the wavenumber parameter, k = ±

√
2mE/h̄. The potential energy function, V(x), is

thus presumed to vanish in both asymptotes, x → ±∞.
The “dwell time” τk, for a given time-independent scattering solution ϕk(x), is defined

as the integrated probability density over the region of interest [xL, xR], divided by the
incident flux:

τk =
1

|jin|

∫ xR

xL

ϕ∗
k (x)ϕk(x) dx (3)
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Note that in the definition of τk, the directionality matters, with left-incident flux (i.e.,
jin > 0) presumed for k > 0, and right-incident flux presumed for k < 0 (for a discussion of
the limit as k → 0, consult Ref. [7]). This is fitting and appropriate for left- and right-incident
scattering solutions, as presumed above.

What happens, however, for time-independent superposition states, i.e.,

ψk(x) = A+ϕk(x) + A−ϕ−k(x), (for k > 0) ? (4)

Presumably, Equation (3) still holds. Alternatively, we might imagine additive contri-
butions, i.e., |A+|2τk + |A−|2τ−k, with suitable normalization in effect (i.e., ⟨ϕk|ϕ′

k⟩ =
δ(k − k′)). We will return to this question in Section 3.1, as it impinges on the use of
bipolar trajectories.

Note the generality of the dwell time quantity, in that it can be defined over any desired
interval, [xL, xR]. In practice—and especially with regard to matching with other quantum
time and scattering matrix quantities—the interval is often chosen to include the entire
scattering potential, extending sufficiently far into each asymptotic region. Under these
circumstances, we have

τk =
PT(k)
|j|

∫ xR

xL

ϕ∗
k (x)ϕk(x) dx, (5)

where j is the overall flux (which, like jin, is constant over all x), and PT(k) = j/jin is the
transmission probability for the solution ϕk. Note that PT(k) = |T(E)|2, where T(E) is the
(energy-dependent) transmission amplitude, although the latter quantity itself is not used
or computed here.

Another important aspect about the time-independent dwell time that ought to be
considered, especially when the interval extends across the entire scattering range, is the
fact that τk oscillates with the interval limits, xL (e.g., for ϕk>0) or xR—since the density itself
oscillates in one asymptote or the other. For this reason, it can be useful to define an average
dwell time quantity ⟨τk⟩, where the effective average is taken in some suitable manner
(e.g., over one complete asymptotic cycle), such that changes in τk become proportional
to changes in both xR and xL. Indeed, it is ⟨τk⟩ rather than τk, per se, that is most directly
related to the other quantum time quantities—especially the diagonal Smith lifetime matrix
elements, here labeled Qkk (with k = ±|k|), which we have previously argued are the most
fundamental quantum time quantities [6]. In any event, one very straightforward way to
define such a ⟨τk⟩ quantity is through the use of bipolar quantum trajectories, and so we
defer any further discussion to Sections 2.2.4 and 3.2.1.

As a final clarifying comment, we point out that what we refer to above as the “average
dwell time” ⟨τk⟩ is by no means the same quantity which some other authors (notably Muga
and coworkers [7]) call by the same name. Their usage of this phrase refers to what is here
denoted τk—which is regarded to be an “average” (or “mean”, in our parlance) because it
can be obtained as the first moment over a suitable dwell time distribution. Particularly given
that the concept of dwell time distributions has been proposed to be amenable (possibly) to
experimental measurement—and given that the distribution from the standard definition
is different from that which arises naturally in the quantum trajectory picture—further
discussion of dwell time distributions is provided in Section 2.3.

2.1.2. Time-Dependent

Let the time-dependent wavepacket, ψ(x, t), be a solution of the time-dependent
Schrödinger equation, (

− h̄2

2m
d2

dx2 + V(x)

)
ψ(x, t) = ih̄

d
dt

ψ(x, t), (6)
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that is normalized to unity (i.e.,
∫
|ψ(x, t)|2 dx = 1 for all t). Then, the dwell time τ

for ψ(x, t) over the interval [xL, xR] is defined via the following simple and intuitive
expression [2,7,49,50]:

τ =
∫ ∞

−∞

(∫ xR

xL

|ψ(x, t)|2dx
)

dt (7)

Given the normalization condition, Equation (7) above clearly represents the amount of
time that the particle spends within the interval, as discussed. Incidentally, both Equation (7)
and the earlier Equation (3) can be derived from the same Hermitian dwell time operator, T̂:

T̂ =
∫ ∞

−∞
exp

(
iĤt
)[∫ xR

xL

∣∣x〉〈x
∣∣dx
]

exp
(
−iĤt

)
dt, (8)

where Ĥ is the Hamiltonian operator. Interestingly, T̂ commutes with Ĥ, rather than
satisfying the expected canonical commutation relation. In any event, given their common
origin in T̂, it is perhaps not surprising that the time-independent τk and time-dependent
τ quantities can be related to each other, provided that ψ(x, t) satisfy some additional
properties [7].

In particular, we generally require that only left-incident stationary solutions, ϕk>0(x),
contribute to the spectral decomposition of ψ(x, t), as follows:

ψ(x, t) =
∫ ∞

0

〈
ϕk
∣∣ψ0
〉

exp(−ih̄k2t/2m)ϕk(x) dk (9)

In Equation (9) above,
〈

x
∣∣ψ0
〉
= ψ(x, t = 0) is the initial wavepacket, presumed to lie

(with any significant probability) to the left of the scattering center. Note that exactly these
additional, left-incident wavepacket conditions, as described above, are also presumed in
the theoretical development of the bipolar wavepacket decomposition, ψ = ψ+ + ψ−, as
discussed in Ref. [31].

Assuming that the above left-incident wavepacket conditions also hold, we may also
write [7,49,50]

τ =
∫ ∞

0

∣∣〈ϕk
∣∣ψ0
〉∣∣2τk dk. (10)

This is an eminently reasonable relationship, which simply states that the dwell time
for the left-incident wavepacket ψ(x, t) is the probabilistically weighted sum of the time-
independent dwell times τk for the corresponding left-incident spectral states ϕk(x) that
make it up. Additionally, since the initial wavepacket ψ0(x) is situated in the left asymptote
where V(x) = 0, the spectral decomposition

〈
ϕk
∣∣ψ0
〉

is simply a Fourier transform. Further-
more, since only k > 0 states contribute,

∣∣ψ0
〉
=
∣∣ψ0+

〉
—i.e., the ψ−(x, t) wave only comes

into existence at later times, as a result of ψ+(x, t) encountering the scattering potential [31]
(note that later, when discussing free-particle wavepackets, t = 0 will correspond to ψ0(x)
in the vicinity of x = 0).

Like its time-independent analog τk, the time-dependent dwell time τ can be defined
over any desired interval, [xL, xR]. Unlike τk, however, τ does not tend to oscillate with
asymptotic variation of xL or xR. At least if the above left-incident wavepacket conditions
are employed, the reflected wave ψ−(x, t) only comes into being and propagates into the
left asymptotic region at late times t—i.e., long after the incident ψ+(x, t) wave has already
passed through this region. The two waves are thus time-separated, and therefore do not
interfere with one another in this region. This represents a substantial difference from the
stationary state case—suggesting that, asymptotically at least, τ and its oscillation-averaged
cousin ⟨τ⟩ (introduced in the time-independent context in Section 2.1.1) should agree for
suitable wavepackets. In any event, this difference will prove to have major ramifications
for the corresponding quantum trajectories.
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2.2. Quantum Trajectories
2.2.1. Introduction

The quantum trajectory picture attempts to frame quantum mechanics in a context that
strongly resembles classical mechanics. In particular, the time evolution of quantum sys-
tems is described by trajectories, for which all particles have definite positions and momenta
at all times. The Heisenberg uncertainty principle is not, however, violated, either because
the quantum trajectory for a given system is guided in part by the wavefunction, or because
the wavefunction itself is replaced with an ensemble of interacting trajectories [33,42–48],
depending on the particular approach (with the latter, incidentally, being first introduced
in a festschrift in honor of E. Pollak [42]).

Although quantum trajectories satisfy their own Newton-like evolution laws, there
are two “short cuts” that may be profitably used for obtaining them, when the solution
wavefunction ψ(x, t) is known a priori, as is the case here. The first approach is to compute
the velocity field v(x, t) directly from the wavefunction via [21,22]

v(x, t) =
h̄
m

Im
[(

∂ψ(x, t)
∂x

)/
ψ(x, t)

]
, (11)

and then integrate over time to obtain quantum trajectories. This results in one trajectory
traveling through every spacetime point. As a consequence, these “unipolar” trajectories
do not cross.

Although written in 1D form, Equation (11) above can be generalized in straightfor-
ward fashion to arbitrary system dimensionality, using gradients. In contrast, the second
“short cut” applies only to 1D time-dependent wavepacket applications. Here, the well-
known property that probability is conserved along quantum trajectories [20,21] (which
also holds true for spin-1/2 systems) implies that a given quantum trajectory x(t) must
satisfy [42,44]

C =
∫ x

0
|ψ(x′, t)|2 dx′ (12)

for some constant C.
In this manner, a given trajectory x(t) or entire trajectory ensemble, x(C, t), may be

easily and directly obtained from the time-evolving probability density |ψ(x, t)|2. Note
that C for a given trajectory is constant over time; therefore, this parameter serves as a
useful trajectory labeling coordinate. In practice, when performing numerical calculations,
it is convenient to discretize the x(C, t) ensemble uniformly over 0 < C < 1 [47]. In this
manner, each of the N trajectories in the ensemble carries the same probability, 1/N.

2.2.2. Spin-1/2 Particles

Quantum trajectory formulations for particles with spin 1/2 have also been devel-
oped [20,35,36,51–55]. Although it is far from a closed subject, most treatments perform a
trace over the spin variables to obtain a single probability density field. Thus, for Hamilto-
nians that do not depend explicitly on the spin (such as the applications considered here),
the time evolution of the density (or even the spatial part of the wavefunction) will proceed
the same, regardless of spin state.

Interestingly, the same cannot be said of the quantum trajectories themselves—even
though they preserve probability, and, thus, in 1D would be uniquely determined by the
density, as discussed in Section 2.2.1. For spin-1/2 particles, the spin state influences the
velocity field, and thereby the quantum trajectory dynamics, even for systems with identical
density evolutions. However, paradox is averted by the fact that for particles with spin, the
system dimensionality per particle is inherently 3D rather than 1D.

The derivation of the quantum trajectory formulation for particles with spin 1/2 is
rather involved, so in the interest of space (and indeed, as in the spin-free case), we forego
a detailed discussion here, and instead refer the reader to the articles cited above. We do,
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however, provide an expression for the velocity field v = ṙ, as we shall avail ourselves of
the shortcuts described in Section 2.2.1 for computational work.

Let Ψ⃗ denote the spinor wavefunction (two complex components) for a single spin-1/2
particle, factored into spatial and spin contributions as follows:

Ψ⃗(r, t) = ψ(r, t)χ⃗(r, t) (13)

In Equation (13) above, r = (x, y, z) is the position vector in 3D physical space, ψ represents
the spatial part of the wavefunction as before, and χ⃗ represents a Bloch spinor that is
normalized to unity (χ⃗†χ⃗ = 1).

In general, the velocity field is given by

v(r, t) =
h̄
m

Im

[
Ψ⃗†∇Ψ⃗
Ψ⃗†Ψ⃗

]
+

h̄
2m

[
∇× (Ψ⃗†σ⃗Ψ⃗)

Ψ⃗†Ψ⃗

]
, (14)

where σ⃗ is the Pauli spin matrix vector. Since we are considering systems where the
Hamiltonian does not explicitly depend on spin, χ⃗ is constant. Because of this, Equation (14)
can be simplified to

v(r, t) =
h̄
m

Im
[
∇ψ

ψ

]
+

1
m
∇(ln |ψ|2)× s (15)

where s is the spin vector associated with the Bloch spinor:

s =
h̄
2

χ⃗†σ⃗χ⃗. (16)

2.2.3. Dwell Times

In the computation of time spent within the interval [xL, xR], it is only natural that
quantum trajectories be considered. In particular, each quantum trajectory x(t), during the
course of its evolution from t → −∞ to t → +∞, spends a precisely determined amount of
time within the interval—which we call the quantum trajectory traversal time, τq. Moreover,
in the time-dependent wavepacket context, the x(C, t) ensemble provides a ready-built
distribution, across which statistical averages for τ

q
C (and other trajectory-based quantities)

may be easily computed.
Let us first, however, consider the even more straightforward case of 1D time-independent

scattering applications. Here, it is well established that the ensemble reduces to a single
quantum trajectory [42,44]—which is, moreover, always moving with either positive (ẋ > 0)
or negative (ẋ < 0) velocity, depending on if ϕk(x) is a left-incident (k > 0) or right-incident
(k < 0) scattering solution. Thus, for each ϕk(x) solution, there is a single well-defined
traversal time quantity, τ

q
k .

It is natural to imagine that τ
q
k = τk, but, in fact, this is not the case in general. What

we instead have is the relation [5,6],

j = |ψ(x, t)|2 ẋ, (17)

which implies

τk =

(
j

jin

)
τ

q
k = PT(k)τ

q
k . (18)

Thus, in general, the actual quantum dwell time is substantially lower than the correspond-
ing quantum trajectory traversal time.

It is worth examining this situation in some detail for the insight it provides. As a rule,
dwell times tend to be on the order of the classical trajectory traversal time τc

k —which, in
the limit that xL → −∞, xL → ∞ or V(x) → 0, becomes τc

k → (xR − xL)m/h̄k. Quantum
trajectory dwell times tend to do the same, but only in the absence of interference. Thus (for
k > 0 solutions), the x → ∞ part of the unipolar quantum trajectory travels with classical
velocity h̄k/m, but the x → −∞ part is subject to interference between the incident and
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reflected waves. As a result, in addition to being highly oscillatory, the quantum trajectory
in this region moves at a (sometimes much) slower average speed—commensurate with
flux j rather than jin. This situation is examined more closely in Sections 2.2.4 and 3.1.

Interestingly, the same conclusions do not hold for time-dependent wavepackets—at
least not those that satisfy the rigorous left-incident boundary conditions, as discussed
in Section 2.1.2. More precisely, one tends to find τ

q
C values that are comparable to their

classical counterparts in both asymptotic regions. Thus, provided that the interval limits are
sufficiently large, τ

q
C, τc, and τ values may all be expected to be comparable. The reason is

that discussed at the end of Section 2.1.2: for wavepackets, incident and reflected waves
are temporally separated, and, therefore, do not interfere. Moreover, that the asymptotic
wavepacket components move with roughly classical speeds is well established, e.g., using
semiclassical and/or dispersion-relation arguments [17,56].

In any event, given our distribution of quantum trajectory traversal times τ
q
C, across

the uniform ensemble of trajectories x(C, t), it is natural to define the mean (or distribution-
averaged) quantum trajectory traversal time for wavepackets as

τq =
∫ 1

0
τ

q
C dC (19)

(Note: in a sense, Equation (19) also applies to time-independent quantum trajectory
ensembles, except that there, all trajectories are the same, and therefore have identical τ

q
C

values.) Once again, we are prompted to ask the question, “Does τq = τ?”. This time, the
answer is “yes”, as will be demonstrated below.

Consider applying Equation (12) twice, once for x = xL, and once for x = xR. This
results in expressions for CL(t) and CR(t), which label the trajectories that are crossing the
left and right interval boundaries, respectively, at time t. Note that since the trajectories are
moving, these values vary over time. Next, we observe that

CR(t)− CL(t) =
∫ xR

xL

|ψ(x, t)|2 dx =
∫ CR

CL

dC. (20)

Thus, the x integral in Equation (7) is converted into a simpler integral in C space, result-
ing in

τ =
∫ ∞

−∞

(∫ CR

CL

dC
)

dt (21)

Any C value within the range [CL(t), CR(t)] corresponds to a quantum trajectory that lies
within the dwell time interval [xL, xR] at time t. Thus, for a given fixed C value, the time
integral in Equation (21) represents the total amount of time that that particular trajectory
spends within the interval—i.e., τ

q
C. Equation (21) thus becomes τ =

∫ 1
0 τ

q
C dC = τq.

2.2.4. Bipolar Quantum Trajectories

The unipolar quantum trajectories described thus far in this section act like classical
trajectories when there is no interference, but behave completely differently in the pres-
ence of wave interference. In particular, oscillations in the density due to constructive
and destructive interference imply (via Equation (17)) oscillating trajectories—together
with an average velocity that can be a tiny fraction of the classical v value, when inter-
ference is severe. In comparison with classical or semiclassical mechanics, we learn that
wave interference is usually associated with multivalued velocity fields—i.e., more than
one trajectory passing through each point. If, then, a suitable bipolar wave decomposi-
tion of the form of Equation (1) could be found such that the components ψ±(x, t) were
themselves interference-free, the corresponding bipolar quantum trajectories would be
nonoscillatory and otherwise classical-like everywhere. Such is the idea behind the bipolar
approach [27–32].

Bipolar quantum trajectories may be especially relevant for quantum dwell times,
given that the latter tend to correlate pretty closely with classical traversal times. Indeed,
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the quantum traversal times τ
q
k , as exhibited by unipolar quantum trajectories, can be much

larger than their dwell time counterparts—precisely when interference is substantial, as
implied by Equation (18). Would it be possible, therefore, to define a similar relation for
τk in terms of the bipolar trajectory traversal times, τ±

k —but of a more direct form, and
for which τ±

k values are comparable to τk (and presumably τc
k ), even when interference is

severe? In this section, we take a first look at this intriguing scenario.
In actuality, what may prove to be even more intriguing is the converse relationship—

i.e., what dwell times may be able to tell us about bipolar decompositions of the Equation (1)
form. In fact, there are several different bipolar decomposition schemes that have been
developed, which work quite well in practice, under a variety of circumstances. However,
no single scheme developed to date is perfect, nor can one be singled out as the most
theoretically compelling. The quantum dwell time may well provide such an avenue. The
idea would be to compute the bipolar velocity field across different x values, by computing
τk as a function of xL say (for fixed xR, or vice versa).

Of course, one difficulty with the above scheme is the fact that τk—although compa-
rable in magnitude to the classical traversal time τc

k —still oscillates with xL or xR. Since
the interference-free bipolar dwell times do not oscillate, this suggests a correspondence
with ⟨τk⟩ (defined as in Section 2.1.1), rather than with τk itself. In actuality, in many
respects, this is preferred; the relation between τk and other quantum time quantities,
such as Smith lifetimes and time delays, invariably involves a removal of the oscillatory
contribution—effectively replacing τk with ⟨τk⟩. Asymptotically, therefore, we expect no
difficulties, although it is not clear whether this process can be extended to intervals with
xL or xR in the interaction region of the scattering potential.

All of the above said, for free-particle Hamiltonians (i.e., V(x) = 0), as are considered
here, there is no ambiguity as to how to effect the bipolar decomposition—and thereby
compute bipolar quantum trajectories. For time-independent solutions,

ϕk(x) =
exp(ikx)√

2π
=

{
ϕ+

k (x) for k > 0
ϕ−

k (x) for k < 0
(22)

Thus, each plane-wave solution is a pure ϕ±
k (x) component, depending on the sign of k.

Likewise for time-dependent wavepacket decompositions as per Equation (1), at
any time t, the bipolar contributions are obtained as the positive and negative Fourier
contributions, respectively, i.e.:

ψ±(x, t) =
∫ ±∞

0

〈
ϕk
∣∣ψ0
〉

exp(−ih̄k2t/2m)ϕk(x) dk (23)

Left-incident free-particle solutions thus satisfy ψ(x, t) = ψ+(x, t) at all times t, not only as
t → −∞. The same is true for the right-incident solutions, for which ψ(x, t) = ψ−(x, t) for
all t.

The above equality of ψ with ψ± makes sense, given that there is no scattering. How-
ever, it implies that there is no difference between unipolar and bipolar waves, if rigorous
left/right-incident boundary conditions are imposed. What if such conditions are not
imposed on our wavepacket dynamics? This situation is reconsidered in Section 3, as it
characterizes all of the applications considered in this work.

One other attribute of the present applications merits a final comment. In Equation (22)
above, ϕk=0(x) does not appear. In fact, this is because of an additional restriction on the
form of ψ(x, t), which is necessary in order to ensure that the dwell time does not diverge.
This requires (for free-particle systems) that

〈
ϕk
∣∣ψ0
〉
→ 0 as k → 0 [7,57]. This condition is

satisfied for all applications considered here, but would not be true, e.g., for a stationary
dispersing Gaussian wavepacket.
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2.3. Dwell Time Distributions

The quantities referred to here as the dwell times—i.e., τ and τk—can be regarded
as the mean values of distributions of various types. It is worth exploring the differences
among these distributions in detail—in part because some authors [7,36] have suggested
that experiments may be capable of measuring not only dwell time distribution first
moments (i.e., the dwell times themselves) but also higher-order moments.

To begin with, there are the distributions that stem from the dwell time operator T̂, as
discussed in Section 2.1.2. For time-dependent wavepackets, this is defined as [7]

ρT̂(τ) =
〈
ψ
∣∣δ(T̂ − τ

)∣∣ψ〉. (24)

Interestingly, even the time-independent version has a nontrivial distribution, across two
time values whose average value is τk. This is because [Ĥ, T̂] = 0, and so the two time
values are eigenvalues of the 2 × 2 T̂ matrix, as represented in the ϕ±

k (x) basis.
There is also ρFFCF(τ), the distribution based on the FFCF approach discussed in

Section 1, which relies on the quantum mechanical flux operator. This approach will not
be described in detail here; the interested reader is directed to Refs. [7,41]. Suffice to say
that here, too, there are both time-dependent and time-independent versions, with even
the latter providing a distribution across a range of τ values.

Finally, we have the (unipolar) quantum trajectory distribution, ρq(τ). For time-
dependent wavepackets, this can be derived from the quantum trajectory traversal times
across the ensemble—i.e., the τ

q
C. Note that for time-independent applications (at least in

1D), since there is only one quantum trajectory, there is but a single distribution value—i.e.,
ρ

q
k(τ) = δ(τ − τk).

In principle—and certainly in the time-independent case—these three distributions
are different from each other. Yet, they all yield the same first moment—i.e., the mean
dwell time itself, τ or τk. Interestingly, it has also been shown that second moments agree
between ρT̂(τ) and ρFFCF(τ) [7]—though not with ρq(τ), at least in the time-independent
case. Higher moments are certainly different across the different distributions, however,
thereby presenting the prospect of possible experimental validation.

In a somewhat different category, we also have the bipolar quantum trajectory traversal
times. In principle, we have both τ+

k and τ−
k values for a given time-independent solution,

although in the present free-particle context, at least, these are the same. Again, the τ±
k relate

not to τk itself, but to the average dwell time ⟨τk⟩, as will be discussed in Section 3.1. As for
the time-dependent bipolar distributions, these are discussed in Sections 3.2.1 and 3.3.

3. Free-Particle Applications
3.1. Plane-Wave Superposition States

Consider the most general possible time-independent superposition state of energy
E = h̄2k2/2m, described by Equation (4). Next, imagine that the scattering potential
lies completely outside of the desired interval, [xL, xR], either to the right or left of it.
Then, within the interval, the individual ϕk(x)’s behave as free-particle bipolar plane-wave
components, as per Equation (22). We therefore posit that within the interval, there is no
difference between a left- (or right-) incident scattering solution ϕk(x), and a global free-particle
superposition state ψk(x). Whether the interference is global, or is caused by an external
scattering center, is immaterial.

The above supposition provides us with what we need to define (time-independent)
dwell times for superposition states, at least in potential-free regions. We thus find that, as
per the discussion in Section 2.1.1, Equation (3) indeed still holds—with ϕk(x) → ψk(x),
and with the appropriate jin determined by which constant is larger, |A+| or |A−|. Note
that |A+| > |A−| corresponds to the scattering case where the scattering center is to the
right of the interval (i.e., x > xR), so that |A+|ϕ+

k (x) corresponds to the (left-)incident
wave. Conversely, |A+| < |A−| corresponds to a scattering center situated at x < xL, with
|A−|ϕ−

k (x) analogous to the (right-)incident wave. Note that for |A+| = |A−|, we cannot
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tell which wave is which; thus, the computed dwell time τk should be the same whether
the solution is presumed to be left-incident or right-incident.

In any event, we now have a method for computing dwell times for superposition
states, at least in potential-free regions. From Equations (4) and (22), we obtain the following
expression for the density:

|ψk(x)|2 =
|A+|2 + |A−|2 + 2|A+||A−| cos(2kx + ϕ+ − ϕ−)

2π
, (25)

where ϕ± = arg(A±). Integrating Equation (25) over the interval, [xL, xR], and dividing by

jin =
max(|A+|2, |A−|2)

2π

(
h̄k
m

)
, we obtain (26)

τk =
mL
h̄k

{[
|A+|2 + |A−|2

|Amax|2

]
+

2
kL

[
|A+||A−|
|Amax|2

]
cos[k(xL + xR) + ϕ+ − ϕ−] sin(kL)

}
, (27)

where L = (xR − xL), and |Amax|2 = max(|A+|2, |A−|2).
Clearly, the τk expression of Equation (27) above is symmetric with exchange of |A+|

and |A−|, and also oscillates with variations of either xL or xR. Since the second term on the
right-hand side is the oscillatory contribution, removing it results in a compact expression
for the average dwell time (in the sense of Section 2.1.1), i.e.,

〈
τk
〉
=

mL
h̄k

[
|A+|2 + |A−|2

|Amax|2

]
=

mL
h̄k

[1 + PR(k)], (28)

where PR(k) = 1 − PT(k) is the “reflection probability” due to a hypothetical scattering
center, lying either to the left or right of the interval. Note that k > 0 throughout this
subsection; thus, all dwell time quantities above are positive.

Let us now consider the quantum trajectory traversal times, starting with unipolar
quantum trajectories. Our original supposition from the start of this subsection applies to
quantum trajectories as well, and in effect implies that Equation (18) still holds. In terms of
amplitudes, this becomes

τk =

∣∣|A+|2 − |A−|2
∣∣

|Amax|2
τ

q
k . (29)

Thus, as before, the unipolar quantum trajectory traversal time can be much longer than
the dwell time, when interference between left- and right-incident waves is significant.
However, τk and τ

q
k are in “lock-step” with each other, with respect to their oscillations

with xL or xR.
Next, let us consider the bipolar quantum trajectories—which, as already discussed

in Section 2.2.4, we expect to be affiliated with ⟨τk⟩, rather than τk. Since the bipolar
components are simple plane waves, their individual traversal times must be equal to the
classical time, i.e., τ±

k = τc
k = mL/h̄k. Equation (28) then implies the simple and eminently

sensible result, 〈
τk
〉
= τ±

k + PR(k) τ∓
k . (30)

Thus, the average dwell time is the sum of contributions from both bipolar wave compo-
nents. The first is a “full strength” contribution from the incident wave, as it passes through
the interval. Then, after a hypothetical reflection, the particle once again passes through
the same interval in the opposite direction, making a second contribution to the average
dwell time—although this time weighted by the reflection probability. A similar analysis
was considered in Ref. [7], albeit only for PR(k) = 1.
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3.2. Bipolar Superposition/Decomposition for Free-Particle Wavepackets
3.2.1. Definition of Dwell Time Quantities

For the free-particle Hamiltonian case at least, there are several ways to arrive at
unambiguous expressions for the bipolar dwell times τ±, and for the average dwell time〈

τ
〉
. The most straightforward is to substitute Equation (1) into Equation (7), to obtain

τ =
∫ ∞

−∞

(∫ xR

xL
|ψ+(x, t)|2dx

)
dt +

∫ ∞

−∞

(∫ xR

xL
|ψ−(x, t)|2dx

)
dt + . . .

= τ+ + τ− + 2Re
[∫ ∞

−∞

(∫ xR

xL

ψ∗
−(x, t)ψ+(x, t)dx

)
dt
]

.
(31)

Note that whereas the integrands comprising τ± above are positive definite, the last term
on the second line above has a highly oscillatory integrand with respect to x.

The above state of affairs highly suggests the following as the definition of the average
dwell time:

⟨τ⟩ = τ+ + τ−

with τ± =
∫ ∞

−∞

(∫ xR

xL
|ψ±(x, t)|2dx

)
dt

(32)

Note that we are here using bipolar dwell times to obtain the average dwell time, which
works because the bipolar decomposition for free-particle systems is unambiguously de-
fined via Equations (22) and (23). Going forward, we may well adopt the converse tack,
whereby average dwell times, if they can be unambiguously defined throughout the scat-
tering region (which may be suggested by earlier work [6]), are used to define the τ±.

In any event, it is clear that the above definitions are eminently sensible. In particular,〈
τ
〉

and τ± are nonoscillatory with respect to xL and xR, provided that the same is true of
ψ±(x, t), which is expected. Also, it is clear that the final, oscillatory integral in Equation (31)
vanishes (so that

〈
τ
〉
→ τ) in any of the following limits:

• Broad ψ± wavepackets (i.e., narrow wavepackets in Fourier space);
• Wide intervals [large L = (xR − xR)], regardless of location;
• Aasymptotically located intervals, regardless of width.

Note that ψ±(x, t) describe left- and right-moving, preferably localized wavepackets,
that necessarily cross each other in some region of spacetime—which, without loss of
generality, we may take to be centered at (x, t) = (0, 0). When this occurs, the two
bipolar wavepacket components interfere, potentially causing oscillations in the unipolar
density |ψ(x, t)|2 and/or oscillations and reflections in the unipolar quantum trajectories.
“Asymptotically located intervals” are, thus, those that lie well outside the “collision region”
of the bipolar wavepacket components—i.e., with either xL > 0 or xR < 0 large compared
to the collision width. At asymptotically large times, we expect ψ(x, t) to comprise spatially
well-separated lobes—with the (x → −∞) and (x → +∞) lobes corresponding to ψ+ and
ψ−, respectively, for t → −∞, and with these associations reversed for t → +∞.

3.2.2. Probability Weights

That
〈
τ
〉

is the sum of τ+ and τ−, and not their average, simply reflects the fact that
the bipolar waves are not normalized to unity. Instead, we have

p± =
〈
ψ±
∣∣ψ±

〉
=
∫ ∞

−∞
|ψ±(x, t)|2 dx (33)

with p+ + p− = 1, since
〈
ψ+

∣∣ ψ−
〉
= 0 (at least for free-particle wavepackets, as per

Equations (22) and (23)). Thus, the p± values represent bipolar probability weights, which
remain constant over time, and are also built into the definition of the τ±. As a consequence,
Equation (32) in effect represents a probability-weighted average.

Note that this interpretation is entirely consistent with the time-independent form of
Equation (30), for which the τ±

k quantity is not probabilistically weighted, and therefore the
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PR(k) factor must be introduced explicitly. In any event, it is clear from the definitions that
the bipolar time-independent and time-dependent dwell time quantities enjoy the same
simple probability-weighted relationship as do the corresponding unipolar quantities, as
expressed in Equation (10). We thus have

τ± =
∫ ∞

0

∣∣〈ϕ±k
∣∣ψ0
〉∣∣2τ±

k dk. (34)

Equation (34) may be regarded as an alternate definition of the τ±, that holds at least for
free-particle systems.

Given that the τ± definitions already include their probabilistic weights pi, this fact has
ramifications for the proper treatment of bipolar quantum trajectories. Generally speaking,
these are handled in fully analogous fashion to the unipolar quantum trajectories. Note
that each ψ± component has its own ensemble of bipolar quantum trajectories, labeled,
respectively, by the trajectory labeling coordinates, 0 < C± < 1. The trajectories belonging
to a given C± ensemble do not cross each other, but, of course, the C+ and C− trajectories
do cross—with one of each type passing through every spacetime point, (x, t).

From Equation (19), we see that for a numerical simulation comprising N uniformly-
distributed (in C space) unipolar quantum trajectories, each such trajectory carries an
equal probability of 1/N. Thus, τ = τq is computed by simply summing over all of the N
individual quantum trajectory traversal times, and then multiplying by 1/N. For bipolar
quantum trajectories, a similar procedure is followed, except that each bipolar quantum
trajectory only carries a probability of p±/N±, with N± being the number of trajectories in
the corresponding bipolar ensemble.

3.2.3. Symmetric Example

Consider a wavepacket that is real-valued and odd-symmetric at t = 0, i.e., ψ0(−x) =
−ψ0(x). Since ψ0 is real-valued, Equation (11) is zero everywhere, so that the wavepacket
is momentarily stationary. The time evolution of ψ(x, t) is symmetric in time, exhibiting no
net motion, but dispersing outwards symmetrically in x with increasing |t|. In particular,
ψ(−x, t) = −ψ(x, t), and ψ(x,−t) = ψ(x, t)∗ for all (x, t).

The unipolar quantum trajectories for this system exhibit symmetry in both x and
t—converging towards the “collision region” while t < 0, coming to a complete halt at
t = 0, and then turning around and fanning outwards again for t > 0. While in the collision
region, the colliding waves interfere, which may cause the unipolar quantum trajectories to
oscillate, but such oscillations are expected to dissipate in the asymptotic regions.

Given the reality of ψ0(x), it is clear that the bipolar waves must satisfy ψ0−(x) =
ψ0+(x)∗ at t = 0. Thus, |ψ0+(x)|2 = |ψ0−(x)|2, and p± = 1/2. Also, ψ0±(x)∗ =
−ψ0±(−x). More generally, the time-evolving bipolar waves satisfy the following symme-
try relationships:

ψ−(x, t) = −ψ+(−x, t) = ψ+(x,−t)∗ (35)

Thus, Re[ψ±(0, t)] = 0 and ψ(0, t) = 0 for all t.
Unlike the unipolar quantum trajectories, individual bipolar trajectories for ψ+ are

always moving to the right (i.e., in the positive x direction), whereas those for ψ− are always
moving to the left. Also, the bipolar trajectories are (ideally) smooth and well behaved in
the sense that they do not exhibit oscillations. The bipolar velocity fields are symmetric in
time and space, in that v±(−x,−t) = v±(x, t), and v−(−x, t) = −v+(x, t).

Regarding the dwell times, clearly, τ− = τ+, so that
〈
τ
〉
= 2τ±. At asymptotic times,

ψ(x, t) consists of two lobes, one corresponding to ψ+(x, t), and the other to ψ−(x, t). These
are symmetric in x, but switch roles as t changes sign. Consequently, for asymptotic inter-
vals, [xL, xR], there is no interference, and so τ = τ+ + τ− = 2τ±. This can be interpreted
as follows. One half of the unipolar trajectories pass through the same asymptotic interval
twice; once on their way in to the collision center, and once on their way out. Thus, on
average, we have one traversal per unipolar trajectory.
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Of the two unipolar traversals, one of these corresponds to a single traversal of the
interval by all of the ψ+ = (x, t) bipolar trajectories—and, thus, to one traversal per bipolar
trajectory, on average. However, these are weighted by p+ = 1/2. Similar comments apply
to the ψ−(x, t) bipolar trajectories, which necessarily correspond to the other unipolar
traversal. Hence, τ = τ+ + τ−. Of course, intervals that lie within (or contain) the collision
center need not satisfy this relation.

3.3. Spin 1/2: Das and Dürr Application
3.3.1. Introduction

In Refs. [35,36], the authors propose an experimental test of quantum trajectory arrival
times for a single spin-1/2 particle trapped in a cylindrical waveguide. The end face of the
waveguide blocks access to the z < 0 region, whereas the perpendicular potential,

V(x, y) =
1
2

mω2
(

x2 + y2
)

, (36)

models that of a quadrupole ion trap.
In Ref. [36], up until time t = 0, the particle is confined in the z direction as well, via

an additional (1/2)mz2 contribution to the potential. For all t ≤ 0, the spatial part of the
wavefunction, i.e., ψ(r, t), is taken to be a stationary eigenstate of Equation (2). Specifically,
we have the first-excited harmonic oscillator state in the z direction, and ground state
(Gaussian) in the perpendicular directions, i.e.,

ψ0(r) =

(√
4ω

π3/4

)
exp
[
−ω

2
(x2 + y2)

]
z e−z2/2 z > 0 (37)

Note that an odd excitation in z is required, in order to ensure that the wavefunction
vanishes as z → 0+, since the z < 0 region is not used.

In the Das and Dürr treatment, the z potential is suddenly “turned off” at t = 0,
allowing the formerly stationary wavepacket to disperse outward in z along the waveguide
as time progresses (t > 0), in accordance with the time-dependent Pauli equation [35,36,51].
Note that the spin and spatial components in Equation (13) are decoupled throughout—
with the spinor χ⃗(r, t) = χ⃗0 remaining constant. On the other hand, the (unipolar) quantum
trajectory dynamics depend very much on the spin orientation.

Two distinct cases are considered, which are called “spin up” and “spin up-down”,
defined as follows:

Ψ⃗↑(r, 0) = ψ0(r)
(

1
0

)
; Ψ⃗↕(r, 0) = ψ0(r)

(
1/

√
2

1/
√

2

)
(38)

For Ψ⃗↑, the quantum trajectories turn out to be dynamically independent across z and (x, y);
but this is not the case for the Ψ⃗↕ trajectories, which are accordingly far more complex
(although they are confined to the y–z plane). In each case, an appropriate ensemble of
quantum trajectories is propagated, and used to construct a distribution of arrival times.
These differ markedly between the two spin cases—thus motivating the idea that they can
be distinguished experimentally, although that notion has been questioned [37,38].

In any event, we take a slightly different approach here. Specifically, our use of the
dwell time requires a time-independent Hamiltonian over all time, in order for the dwell
time operator to be Hermitian [7]. Thus, our Hamiltonian potential is always that of
Equation (36), extended across −∞ < t < ∞. Our wavepacket density thus disperses
outwards in both t > 0 and t < 0 directions, and is temporarily stationary only at t = 0. In
this manner, the dwell time, even for intervals close to the z = 0 origin, is always found
to be finite—unlike in the Das and Dürr treatment, for which the dwell time technically
always diverges.
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We can demonstrate the finiteness of our dwell times as follows. Consider that our
time-dependent spatial wavefunction solution always takes the separable form ψ(r, t) =
ψxy(x, y)ψz(z, t), regardless of the spinor state. Moreover, ψz(z, t) is always the “right half”
of the spatially extended solution over −∞ < z < ∞, with ψz(−z, t) = −ψz(z, t). Since
ψz(z, t) describes free-particle evolution, the Fourier transform is the same for all t, apart
from phase shifts, with the form at t = 0 given by Equation (37). Since this form is that of
a harmonic oscillator eigenstate, which is well known to equal its own Fourier transform
(apart from scaling), the Fourier function must be linear in k in the vicinity of k = 0, for
all t. But this is the necessary condition for finite dwell times, as discussed at the end of
Section 2.2.4.

3.3.2. Unipolar Time Evolution

Since the wavepacket evolution is separable, and since the initial perpendicular wave-
function is an eigenstate of the perpendicular Hamiltonian, it remains so for all time. The
only interesting wavepacket dynamics, therefore, correspond to ψz(z, t). Here, the 1D time
evolution is in accordance with the free-particle propagator, which gives rise to dispersion
in both time directions as follows:

ψz(z, t) =
2

π1/4
z

(1 + it)3/2 exp
[
− z2

2(1 + it)

]
(39)

Note that the specific values h̄ = m = 1 are presumed in Equation (39) above, and
throughout the rest of this work.

The unipolar quantum trajectory dynamics are determined by Equation (14), which in
turn depend on the particular spin state. Below, we present specific results for each of the
two cases considered here.
spin up:

ẋ = −ωy ; ẏ = ωx ; ż =

(
t

1 + t2

)
z (40)

spin up-down:

ẋ = 0 ; ẏ =
1
z
− z

1 + t2 ; ż = ωy +

(
t

1 + t2

)
z (41)

Note that the spin-up equations decouple z from (x, y), whereas the spin-up-down trajecto-
ries remain in a y–z plane, as claimed earlier in Section 3.3.1.

Using the trajectory evolution equations from the preceding paragraph, we computed
a uniformly distributed ensemble of quantum trajectories for each of the two spin cases
listed above. For the spin-up case, it was only necessary to consider a 1D ensemble (in
Cz space) of 1D z-component trajectories—since all dwell time intervals of interest are z
intervals, and this component decouples from the perpendicular components. For the
spin-up-down case, however, because of the coupling, a 3D ensemble of 2D trajectories is
required. The statistical convergence of the latter is, therefore, not as good as for the former,
even though significantly more trajectories were used.

3.3.3. Bipolar Time Evolution

For the bipolar analysis, we consider only the spin-up case, for which the z evolution
becomes decoupled from (x, y), and is therefore purely 1D. This enables us to effect a
bipolar decomposition of the ψz(z, t) wavefunction of Equation (39), using Equation (23).
The resultant bipolar wavefunctions become

ψ±(z, t) =
1

π1/4
z

(1 + it)3/2 exp
[
− z2

2(1 + it)

]{
1 ± i erfi

[
z√

2(1 + it)

]}

∓ i
√

2
π3/4(1 + it)

,

(42)
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normalized such that
∫ ∞
−∞ |ψ±(z, t)|2 dz = 1 for all t (more on this convention below). From

the form of Equation (42) above, it is evident that ψ+(z, t) + ψ−(z, t) matches ψz(z, t) as
given in Equation (39).

The bipolar wavefunctions ψ±(z, t) as defined above correspond to the symmetric
wavepacket example of Section 3.2.3. Note, for instance, that the corresponding unipolar
wavepacket of Equation (39) is odd symmetric in z, as required. There is, however, one
important difference here, which is that ψz(z, t) is set to zero in the range z < 0.

This changes things in some interesting ways. First, the unipolar dwell time τ is double
what it would be in Section 3.2.3. This can be understood either in wave terms (i.e., because
of Equation (7), and the fact that the density |ψz|2 is now twice what it would be if the z < 0
region were included), or in trajectory terms (i.e., because all of the unipolar trajectories
now traverse the interval twice). In any event, we end up with two traversals per unipolar
trajectory on average, instead of one.

The bipolar analysis is decidedly more interesting. Unlike the unipolar wave, which
vanishes as z → 0 and, thus, remains confined to the z > 0 region, the bipolar waves ψ±(z)
move into (ψ+) or out of (ψ−) this region over time, maintaining positive and negative flux,
respectively, at z = 0 and across all times. One can thus imagine these solutions extended
into the z < 0 region, although it is only the z > 0 region that contributes probabilistically.
As a consequence, the probability weights p± are thus now changing over time, with p+ → 0
or 1, as t → −∞ or +∞ (and vice versa for p−).

For asymptotic intervals, p+ → 1 by the time that the unipolar wave is passing
through the interval at large t > 0; thus, all of the ψ+ bipolar trajectories pass through the
interval once, with a full weight of p+ = 1—resulting in double the τ+ value that would be
observed in Section 3.2.3. Of course, similar comments apply to τ−, and the first unipolar
traversal of the interval, at large t < 0. Ultimately, τ = τ+ + τ− = 2τ± as before, but all
dwell times are doubled.

For arbitrary intervals, [zL, zR] (with zL ≥ 0) we find that
〈
τ
〉
= τ+ + τ−, and also

τ+ = τ−. Note that it is not only the dwell times τ± themselves that are identical, but also
the dwell time distributions, ρ±(τ). Indeed, in the special case of asymptotic intervals, these
distributions are also equivalent to the unipolar dwell time distribution, ρq(τ)—apart from
a trivial factor-of-two rescaling of τ.

There is, however, an interesting and natural reinterpretation of the bipolar scenario
that will lead to a different dwell time distribution for asymptotic intervals (albeit the same
mean dwell time, τ). Consider the first of the Equation (35) relations, which relates, at any
given time t, the actual ψ−(z, t) wave in the z > 0 region, to the “virtual” ψ+(z, t) wave in
the z < 0 region, and vice versa. Given this association, it is natural to discard the virtual
waves altogether, and instead regard z = 0 as a V → ∞ scattering center that reflects the
outgoing ψ− wave into the incoming ψ+ wave.

With this new interpretation, there is a single bipolar wave, denoted ‘ψ±(z, t)’ (note
the use of superscripts), that is reflected at z = 0, and maintains unit probability weighting
p± = 1 throughout. The mean dwell time τ± as computed using the ψ±(z, t) is necessar-
ily the same as before—i.e., ⟨τ⟩. However, the distributions ρ±(2τ) and ρ±(τ) are now
significantly different. The reason is because there is now just a single ensemble of trajecto-
ries, C±, rather than two ensembles with different trajectories, C±, that are considered to
be uncorrelated. In effect, ψ±(z, t) induces a correlation between C+ and C− trajectories.
Moreover, for asymptotic intervals, it does so in a way that results in a significantly narrower
distribution for ρ±(τ).

To simulate the ρ±(τ) distribution numerically, the easiest way to achieve this is to
work with just ψ+(z, t), but extended across the entire −∞ < z < ∞ range. Then, in
addition to the original interval over [zL, zR], a second interval is added over [−zR,−zL], to
simulate the first traversal at large negative times. The total quantum trajectory traversal
time τ±

C for a given trajectory C is then taken to be the sum of the times required to
traverse both intervals. When integrated (or in numerical practice, summed) over C as per
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Equation (19), the resultant τ± must equal the average unipolar dwell time ⟨τ⟩, although
the correlations will induce a decidedly different dwell time distribution, as discussed.

4. Results
4.1. Overview

A large number and variety of quantum trajectory calculations were performed for the
3D spin-1/2 system of Das and Dürr [36], as discussed in Sections 2.2.2 and 3.3. Parameters
of this system were chosen as follows: h̄ = 1; m = 1; ω = 5. Both the spin-up and spin-up-
down cases were considered, although many more results are reported here for the spin-up
case. The reason is that in this case, the z-component of the quantum trajectory dynamics
separates out from (x, y). This presents at least two advantages. First, accurate 3D statistics
may be gathered from a 1D rather than 3D ensemble of trajectories, as discussed. Second, a
bipolar treatment in z becomes straightforward. We thus report bipolar quantum trajectory
results only for the spin-up case, although at least some unipolar results are presented for
both spin cases. Unless otherwise indicated, figures and tables presented here refer to the
spin-up system only.

We also considered three very distinct interval windows: [10, 20]; [0, 4]; [0, 0.4]. The
first is an asymptotic window, situated far beyond the t = 0 wavepacket. The second
interval, in contrast, begins at xL = 0, and includes the entire “collision region” (i.e., it
contains all significant density, |ψ0z(z)|2, at t = 0). The third window represents a narrow
slice, well in the interior of the collision region, also with xL = 0. This set of interval
windows provides a representative sampling of the types of dwell time behaviors that one
may expect to observe in practice. In any event, for the numerical results presented here,
all three windows were investigated in the spin-up case, whereas only the first, asymptotic
window was considered in the spin-up-down case.

Before computing dwell time quantities, as a “calibration” test, we first reproduced the
arrival time calculations of Das and Dürr [36], just to ensure that our numerical calculations
were working properly. We achieved near-perfect agreement with their arrival time results,
both for the spin-up and the spin-up-down case. For the dwell time calculations themselves,
we first computed dwell time distributions, gathered from traversal time statistics for the
individual quantum trajectories comprising each type of ensemble. Three distinct types of
dwell time distributions were thus obtained, i.e., unipolar [ρq(τ)]; bipolar [ρ±(τ)]; bipolar
reflected [ρ±(τ)]. In order to ensure numerical convergence of the results, these calculations
were repeated over a wide range of (1D) ensemble sizes, up to a maximum size of N = 1000
quantum trajectories.

Since the dwell time distributions themselves are evidently important, we shall report
on those, as well as on the corresponding dwell time quantities that may be derived from
them. The latter include the first moments or mean dwell times, i.e., τ [from ρq(τ)], τ±
and

〈
τ
〉

[from ρ±(τ)], and τ± [from ρ±(τ)]. In the case of the spin-up ρq(τ) and ρ±(τ)
distributions, we also computed second moments, reported here in the form of standard
deviations.

4.2. Wavefunctions and Quantum Trajectories

Insofar as the presentation of results is concerned, we begin with Figure 1, a plot of
the time evolution of the z component wavepacket density, |ψz(z, t)|2, which is common to
both the spin-up and spin-up-down applications. This is represented by the gray curves
at three different time values, t = 0, 5, 10, with later times corresponding to more spread-
out distributions. As predicted, the density consists of two equivalent lobes separated
by a node at z = 0—although in reality, only the z > 0 lobe is “real” (the z < 0 lobe is
“virtual”). Although colliding wavepackets may in principle exhibit substantial interference
within/during the collision window in space/time, we note that this is not the case here.
Here, because |ψz(z)|2 is a harmonic oscillator eigenstate, it preserves its initial shape over
all time, simply spreading out with a width that increases as

√
1 + t2.
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Figure 1. Plots of the unipolar probability density |ψz(z, t)|2 (gray) and bipolar probability densities
|ψ+(z, t)|2 (dashed) and |ψ−(z, t)|2 (dotted), at times t = 0, 5, 10 versus position z, in arbitrary units
(a.u.). For t = 0, the magnitude of the |ψz(z, 0)|2 = |ψ0z(z)|2 plot is halved in order to be completely
visible within the plot.

This presents an interesting situation for the traveling bipolar wave components,
ψ+(z, t) and ψ−(z, t), whose time-evolving densities are also indicated in Figure 1, using
dashed and dotted curves, respectively. At time t = 0, these components have maximum
density at z = 0—i.e., precisely where ψ(z, t) itself vanishes. At t = 0, the node at z = 0
thus corresponds to interference between equal and opposite colliding waves. Over time,
however, as ψ+(z, t) moves to the right and ψ−(z, t) moves to the left, these components
no longer interfere, and thus come to form the right and left lobes, respectively, of ψ(z, t),
as discussed in Section 3.3.3. For brevity, we refrain from presenting plots that show the
Re, Im, or arg parts of the above respective wavefunctions, although this behavior can
be largely deduced from the quantum trajectory plots, which we present next. In any
event, we note that the symmetry relations of Section 3.2.3 have all been verified, including
Equation (35).

Plots of the unipolar quantum trajectories associated with ψz(z, t) are indicated in
Figure 2, which also highlights the [0, 4] interval window. Here, only the “real” trajectories,
corresponding to z > 0, are indicated. From the figure, it is clear that the unipolar
trajectories first converge towards z ≈ 0 from above, then slow down and stop at time t = 0,
where they also reach their closest proximity to each other. Thereafter, they change direction
and fan outwards towards z → ∞, so that mirror symmetry in t is achieved. Beyond the
collision region indicated, all trajectories become straight lines. Note that despite turning
around, all quantum trajectories are smooth and nonoscillatory in the collision region—an
atypical situation, due to the solution being a harmonic oscillator eigenstate, as discussed.
In any event, this behavior is characteristic of what has been called a “type one” node [27].

In Figure 3, we find the corresponding bipolar quantum trajectory plots, associated
with the ψ+(z, t) bipolar right-traveling wave. The corresponding plots for ψ−(z, t) bipolar
trajectories are identical, apart from a mirror reflection in z. Here, both real and virtual
contributions are indicated, to highlight the symmetry properties discussed previously.
As predicted, these trajectories move monotonically across z, without changing direction.
They speed up and slow down a bit while moving through the collision region, but are
perfectly smooth and well behaved, as expected. In a similar manner to the unipolar
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trajectories, the bipolar trajectories continue to fan out and move in straight lines beyond
the indicated collision region—in fact, they become equal to the unipolar trajectories in
these asymptotic limits.
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Figure 2. Plots of the unipolar quantum trajectories, z(C, t), associated with ψz(z, t), versus time t,
in arbitrary units, for various values of C = 1
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6 . The window for the middle
interval, [0, 4], is indicated with dotted horizontal lines.
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Figure 3. Plots of the bipolar quantum trajectories, z+(C+, t), associated with ψ+(z, t), versus time
t, in arbitrary units, for various values of C+ = 1

6 (dashed), 1
3 , 1

2 , 2
3 , and 5

6 . The window for the
middle interval, [0, 4], is indicated with dotted horizontal lines—together with the “virtual” window
at [−4, 0], used in the calculation of τ± dwell times.
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Note that the bipolar trajectories are used to compute both the ρ±(τ) and the ρ±(τ)
dwell time distributions. The former is computed by integrating the time that each trajectory
spends in the real (z > 0) interval (e.g., [0, 4]), whereas the latter derives from the time each
trajectory spends in both real and virtual intervals (e.g., [0, 4] and [−4, 0]). Note from the
figure that a trajectory that moves relatively slowly through one interval moves relatively
quickly through the other. Hence, while mean dwell times are necessarily the same due to
symmetry, the ρ±(2τ) distribution may generally be expected to be narrower than ρ±(τ),
especially for asymptotic intervals.

4.3. Dwell Time Distributions

Moving on to dwell time distributions, Figures 4–6, respectively, present the dwell
time distributions, ρq(2τ), ρ±(τ), and ρ±(τ), for the [10, 20] interval window. Note that
the first two distributions are practically identical to each other, as was predicted to be
the case for asymptotic intervals. The ρ±(τ) distribution is radically different, however—
also as predicted. In particular, it is much narrower, and strongly peaked on the low-τ
end. Nevertheless, computed (mean) dwell times are in very close agreement, as will be
discussed in Section 4.5.
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Figure 4. Dwell time distribution ρq(2τ) for interval [10, 20], computed using N = 1000 unipolar
quantum trajectories.
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Figure 5. Dwell time distribution ρ±(τ) for interval [10, 20], computed using N = 1000 bipolar
quantum trajectories.
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Figure 6. Dwell time distribution ρ±(τ) for interval [10, 20] (plus virtual interval [−20,−10]), com-
puted using N = 1000 bipolar quantum trajectories.

Figures 7–9, respectively, present the dwell time distributions, ρq(τ), ρ±(τ), and ρ±(τ),
for the [0, 4] interval window. Now, we find that ρq(2τ) and ρ±(τ) are very different from
each other—with the latter much more narrowly peaked on the low-τ end. This is because
the bipolar trajectories are moving much more uniformly in relation to each other than are
the unipolar trajectories. For the latter, the trajectories on the left spend a comparatively
long time in the region; they must enter the interval window, penetrate close to z = 0, and
then turn around and go all the way back before exiting. The right-most trajectories, in
contrast, do not have nearly as far to travel, and, thus, spend considerably less time in the
region (see Figure 2). For this interval window, ρ±(τ) and ρ±(2τ) are actually pretty close
to each other, although the latter is still narrower, for reasons already discussed.

Finally, Figures 10–12, respectively, present the dwell time distributions, ρq(τ), ρ±(τ),
and ρ±(τ), for the [0, 0.4] interval window. In comparison with other interval windows,
the ρq(τ) distribution here is pushed up much more closely against the origin. This is due
to the fact that |ψz(z, t)| → 0 as z = 0, so that relatively few of the trajectories that enter
the window spend significant time there. Those trajectories that either just “graze” the
window, or penetrate only a short distance, are probabilistically favored. In any event, very
few of the unipolar quantum trajectories even enter the window—only 437 out of 10,000, to
be precise.
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Figure 7. Dwell time distribution ρq(τ) for interval [0, 4], computed using N = 1000 unipolar
quantum trajectories.
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Figure 8. Dwell time distribution ρ±(τ) for interval [0, 4], computed using N = 1000 bipolar quantum
trajectories.
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Figure 9. Dwell time distribution ρ±(τ) for interval [0, 4] (plus virtual interval [−4, 0]), computed
using N = 1000 bipolar quantum trajectories.
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Figure 10. Dwell time distribution ρq(τ) for interval [0, 0.4], computed using just those 437 of N =
10,000 unipolar quantum trajectories that pass through the window.
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Figure 11. Dwell time distribution ρ±(τ) for interval [0, 0.4], computed using N = 1000 bipolar
quantum trajectories.
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Figure 12. Dwell time distribution ρ±(τ) for interval [0, 0.4] (plus virtual interval [−0.4, 0]), computed
using N = 1000 bipolar quantum trajectories.

As for the bipolar dwell time distributions, ρ±(τ), and ρ±(2τ) are now found to be
nearly identical. Indeed, this finding is entirely to be expected in the xR → 0 limit, because
the bipolar quantum trajectories become straight lines over the z > 0 and z < 0 intervals.
Thus, for each individual trajectory, τ±

C → 2τC±, and so the distributions are identical apart
from the aforementioned factor-of-two rescaling. In any event, like for the other interval
windows, the bipolar distributions are heavily weighted towards smaller τ values. They are
also more consistently similar to each other than are the unipolar dwell time distributions,
across the range of intervals considered.

As a final note, we comment on the fact that the [0, 0.4] distribution figures above
appear to indicate a much larger apparent mean dwell time for ρq(τ) than for ρ±(τ) or
ρ±(τ). In fact, we shall see presently that the opposite is true. The reason for the apparent
discrepancy is that only a small fraction of unipolar trajectories actually enter the interval
window, whereas all of the bipolar trajectories do so.

4.4. Unipolar Quantum Trajectories for Spin-Up-Down Case

We would be remiss not to include at least one quantum trajectory plot for the spin-
up-down case. Figure 13 presents one such plot, indicating the z component of the unipolar
quantum trajectories, with initial values x0 = 0 and y0 = −0.136208. Note that the
trajectories do not cross; they only appear to do so, because we are projecting down to the
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z component only. Even so, it is clear that the trajectory behavior is much more complex
than for the spin-up case. This is owing to coupling between y and z, brought about by the
spinor components. From Equation (41), it is clear that the trajectory oscillations evident in
Figure 13 are due to the coupling contribution, which depends on the parameter ω, which
characterizes the perpendicular (x, y) potential. Thus, changing the value of ω would lead
to substantially different (but still quite complex) quantum trajectories.
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Figure 13. Plots of the z component of the spin-up-down unipolar quantum trajectories, z(C, t),
versus time t, in arbitrary units, for various values of Cz = 1
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6 . The window
for the asymptotic interval, [10, 20], is indicated with dotted horizontal lines.

4.5. Dwell Times, Standard Deviations, and Numerical Convergence

Finally, we extract first and second moments from the aforementioned dwell time
distributions, in the form of the (mean) dwell times themselves, as well as their corre-
sponding standard deviations. The spin-up results are presented in Table 1 for all three
intervals. The results are in exact accordance with our earlier predictions. In particular, for
every interval, we find that

〈
τ
〉
= τ+ + τ− = τ±, with agreement to within the level of

numerical accuracy achieved in the calculation (to be discussed shortly). Additionally, for
the asymptotic interval [10, 20],

〈
τ
〉
= τ, to the same level of numerical accuracy—also as

predicted. Despite this agreement, however, the standard deviations for ρq(τ) and ρ±(τ)
are very different, with ∆τ± significantly smaller than ∆τ, as indicated in the last two
columns of the second row of the table.

Table 1. Dwell times of various types (τ,
〈
τ
〉
= τ+ + τ−, τ+ = τ−, and τ±) and intervals [zL, zR],

in arbitrary units, computed for the spin-up spin-1/2 system of Das and Dürr, using unipolar and
bipolar quantum trajectory ensembles with N = 1000 trajectories. The last two columns indicate
standard deviations for two dwell time distributions: ∆τ (for ρq(τ), column 6) and ∆τ± (for ρ±(τ),
column 7).

Interval τ
〈
τ
〉

τ± τ± ∆τ ∆τ±

[10, 20] 22.47 22.59 11.30 22.59 14.74 7.15

[0, 4] 8.672 9.034 4.517 9.059 6.000 4.438

[0, 0.4] 0.089 0.905 0.452 0.906 0.076 0.486
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For the middle interval [0, 4], for which the entire collision region is spanned, Table 1
indicates a small but significant difference between τ and

〈
τ
〉
. This is reasonable, given

that τ values are known to oscillate with zR in this regime (albeit less so here than is typical
for other free-particle examples, as discussed). The ∆τ± value, though still smaller than ∆τ,
is much closer to ∆τ than for the aymptotic interval. This is because the bipolar trajectories
are much more fanned out asymptotically, then they are near the origin—implying a
much broader asymptotic distribution for ρ±(τ) than for ρ±(2τ) (and recalling, also, that
ρq(2τ) → ρ±(τ) asymptotically).

The last interval, [0, 0.4], is in some ways the most interesting. Here, the trajectories
are essentially straight lines, and so there is no difference between ρ±(τ) and ρ±(2τ). In
fact, all of the bipolar quantities are seen to scale roughly proportionately (i.e., by a factor
of 10) down from their [0, 4] interval values. In contrast, individual unipolar quantum
trajectories in this interval have much larger traversal times, because this is the region
where the unipolar trajectories are barely moving. Nevertheless, because so few of the
unipolar trajectories even enter this interval window (because the probability density is so
low), the mean dwell times are extremely small—an order of magnitude or so smaller than
for the bipolar quantities. Similar comments also apply to ∆τ vs. ∆τ±.

Numerical convergence for the unipolar dwell time results may be examined in Table 2,
where we also consider the spin-up-down case. In this table, only the asymptotic interval is
considered. For each of the two spin cases, the table indicates computed values for τ, as a
function of the number of trajectories, N (or N3, in the spin-up-down case). As expected,
the convergence is much faster for the spin-up system (in terms of the total number of
trajectories), because the distribution of trajectories is 1D rather than 3D. Nevertheless, we
were able to obtain quite accurate numerical convergence even in the 3D case.

Table 2. Numerical convergence of dwell time τ for interval [10, 20], in arbitrary units, computed for
the spin-1/2 system of Das and Dürr, using unipolar quantum trajectory ensembles with a range of
trajectories, N. First two rows: spin-up case. Last two rows: spin-up-down case.

spin-up N value 100 200 500 1000
case τ value 21.99 22.20 22.38 22.47

spin-up-down N3 value 53 203 463

case τ value 19.82 21.58 21.40

We also note that, despite the additional complexity of the trajectories in the spin-up-
down case, the resulting dwell time for this interval window is quite close to that of the
spin-up system. This can presumably be understood by the fact that both systems share
identical probability distributions over time. The dwell times and their distributions are
nevertheless different for the two spin systems—and it is, indeed, this very difference that
earlier researchers [36] have proposed might be experimentally discernible.

5. Conclusions

The connection between quantum trajectories, and quantum time quantities of various
kinds, has been explored previously [5,6,35–38]. However, in this paper, we extended
the previous theory in various ways. Recent work [35,36] concentrating on spin-1/2
particle systems has focused on the arrival time quantity, which has been criticized from
the perspective of its experimental validity [37,38]. The dwell time quantity may prove
to be more reliable [2,7], in part because it derives from a bona fide Hermitian quantum
operator T̂, which, moreover, commutes with the Hamiltonian Ĥ. Accordingly, other recent
work by one of the present authors (Poirier) and coworkers [5,6] has concentrated on the
relationship between quantum trajectories and dwell times—albeit only in the context of
1D time-independent stationary scattering applications, and for interval windows that
extend across the entire scattering region. All of this previous work was based on unipolar
quantum trajectories.
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The present contribution generalizes the earlier work by extending the quantum-
trajectory-based dwell time theory to multidimensional, time-dependent wavepacket ap-
plications, for particles with spin, and for arbitrary intervals. It is not only dwell times
themselves that are developed, and computed for a benchmark application considered pre-
viously [36]; it is also quantum-trajectory-based dwell time distributions that are derived and
computed—the latter being considered to be of significant experimental relevance [7,36].
Although at least two previous formulations exist for defining dwell time distributions—
i.e., one based on the dwell time operator itself [7] and the other on the flux–flux correlation
function [7,41]—these differ from each other, and also from the quantum trajectory-based
distribution developed here. Thus, if dwell time distributions really do prove to have
experimental relevance as has been suggested, it could be quite interesting to see what
those experiments reveal—although we leave such speculation to other papers (and likely
other authors).

Another way in which the present work differs from earlier contributions is that
we consider—evidently for the first time—the connection between quantum dwell times
and bipolar quantum trajectories. The seeds for this idea—and, indeed, many other ideas
explored in the present work—were planted in our earlier 1D time-independent stationary
scattering efforts [5,6]. There, it was discovered that unipolar quantum trajectory traversal
times are not equal to quantum dwell times, but, rather, the two are related by a factor
equal to the scattering transmission probability (Equation (18)). This suggests a more
direct connection with bipolar quantum trajectories. Indeed, we have now discovered a
relation between the bipolar trajectory traversal times and the average dwell time ⟨τ⟩—i.e.,
Equation (32)—that is so natural that we can take it as a definition of ⟨τ⟩.

Far from being a disappointing “second place” quantity, the average dwell time ⟨τ⟩
is arguably more important than τ proper. This assessment once again owes much to
previous work [2,5–7], which relates not τk itself, but, rather, its nonoscillatory or average
contribution ⟨τk⟩, to other time-independent quantum time quantities (i.e., time delays
and Smith lifetimes) that are directly linked to the scattering matrix. This earlier theory
was developed for intervals across the entire scattering region, and is important because it
includes both wave-based and trajectory-based determinations of ⟨τ⟩, for general scattering
potentials. Whether, and how, these techniques may be applied to intervals extending only
partway into the scattering region remains to be seen; however, the answers will prove
highly important for future work. The reason is that all of the bipolar theory developed in
this paper applies only to the special case of free-particle applications. Going forward, we
will wish to apply Equation (32) “in reverse”—i.e., to compute τ± from ⟨τ⟩. If the latter can
indeed be reliably computed across an arbitrary interval within the scattering region, and
if it is found to be nonoscillatory throughout, then we have a highly promising means of
defining bipolar quantum trajectories for arbitrary scattering potentials—a longstanding
goal of one of the authors [27–32].

In the meantime, both the unipolar and bipolar quantum trajectory treatments appear
here to have “proven their worth” with respect to computing dwell time quantities, even for
highly complex situations involving multidimensional wavepacket dynamics for particles
with spin—albeit all of it, thus far, under the simplifying assumption of free-particle
dynamics. In any event, the many results presented in Section 4 reveal interesting insights
into the behavior of the various kinds of dwell times and quantum trajectories. In particular,
bipolar quantum trajectories provide us with not just one, but two distinct new dwell time
distributions, to be possibly thrown into the experimental mix. Of the two types of quantum
trajectories, the bipolar trajectories may well prove superior to unipolar trajectories—not
only because they avoid the oscillatory behavior of the latter (which, admittedly, is not an
issue for the present applications), but also because they may provide robust dwell time
values in situations where the latter cannot.

It is worth addressing this last point in a bit more detail. As discussed in Section 2.2.4,
unipolar dwell times are guaranteed to be nondivergent only for wavepackets whose
Fourier density approaches zero as k → 0 [7,57]. For the present application, this condition
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was satisfied, but only by virtue of the fact that a first-excited harmonic oscillator state was
used for ψ0z(z). What if a ground state were used instead—i.e., a Gaussian wavepacket?
The unipolar dwell time τ could diverge in this case; unipolar quantum trajectories near
z = 0 approach infinite traversal times, and unlike the first-excited state case, this is not
mitigated by vanishing probability density as z → 0. At the very least, there will be
computational difficulties, as only a tiny fraction of unipolar trajectories contribute to τ (as
evidenced even in this work, e.g., for the [0, 0.4] interval window). Evidently, this is not a
problem for bipolar waves and trajectories, which pass through even the z ≈ 0 region with
finite velocity, and, thus, should yield finite dwell times, τ±. In any event, more analysis is
certainly needed here.

Author Contributions: Conceptualization, B.P. and R.L.; Methodology, B.P.; Software, R.L.; Validation,
B.P.; Formal analysis, B.P.; Investigation, B.P. and R.L.; Resources, R.L.; Writing—original draft, B.P.;
Writing—review & editing, B.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data generated by this project are available from the authors
on request.

Acknowledgments: The authors would like to acknowledge Lucien Dupuy, Gérard Parlant, and
Yohann Scribano, for their earlier insights regarding quantum trajectories and quantum time quan-
tities. We also wish to thank Randy Dumont and Eli Pollak for inviting us to take part in this
special issue.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wigner, E. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 1955, 98, 145. [CrossRef]
2. Smith, F.T. Lifetime Matrix in Collision Theory. Phys. Rev. 1960, 118, 349–356. [CrossRef]
3. Hauge, E.; Støvneng, J. Tunneling times: A critical review. Rev. Mod. Phys. 1989, 61, 917. [CrossRef]
4. Pollak, E. Tunneling in Molecules: Nuclear Quantum Effects from Bio to Physical Chemistry; The Royal Society of Chemistry: London,

UK, 2021; Chapter 12, pp. 399–424.
5. Dupuy, L.; Parlant, G.; Poirier, B.; Scribano, Y. Direct and accurate calculation of dwell times and time delays using quantum

trajectories. Phys. Lett. A 2022, 456, 128548. [CrossRef]
6. Dupuy, L.; Parlant, G.; Poirier, B.; Scribano, Y. Making sense of transmission resonances and Smith lifetimes in one-dimensional

scattering: The extended phase space quantum trajectory picture. Chem. Phys. 2023, 572, 111952. [CrossRef]
7. Muñoz, J.; Egusquiza, I.L.; del Campo, A.; Seidel, D.; Muga, J.G. Dwell-Time Distributions in Quantum Mechanics. In Time in

Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 97–125.
8. Muga, J.G.; Leavens, C.R. Arrival time in quantum mechanics. Phys. Rep. 2000, 338, 353–438. [CrossRef]
9. McDonald, C.; Orlando, G.; Vampa, G.; Brabec, T. Tunneling time, what is its meaning? J. Phys. Conf. Ser. 2015, 594, 012019.

[CrossRef]
10. Kelkar, N. Electron tunneling times. arXiv 2017, arXiv:1708.05101.
11. Davies, P.C.W. Quantum tunneling time. Am. J. Phys. 2005, 73, 23–27. [CrossRef]
12. Landauer, R.; Martin, T. Barrier interaction time in tunneling. Rev. Mod. Phys. 1994, 66, 217. [CrossRef]
13. Steinberg, A.M. Conditional probabilities in quantum theory and the tunneling-time controversy. Phys. Rev. A 1995, 52, 32.

[CrossRef] [PubMed]
14. Steinberg, A.M. How much time does a tunneling particle spend in the barrier region? Phys. Rev. Lett. 1995, 74, 2405. [CrossRef]

[PubMed]
15. Aharonov, Y.; Bohm, D. Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 1961, 122, 1649.

[CrossRef]
16. Egusquiza, I.L.; Muga, J.G.; Baute, A.D. “Standard” Quantum–Mechanical Approach to Times of Arrival. In Time in Quantum

Mechanics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 305–332.
17. Cohen-Tannoudji, C. Quantum Mechanics; Wiley: New York, NY, USA, 1977.
18. Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166.

[CrossRef]

http://doi.org/10.1103/PhysRev.98.145
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1103/RevModPhys.61.917
http://dx.doi.org/10.1016/j.physleta.2022.128548
http://dx.doi.org/10.1016/j.chemphys.2023.111952
http://dx.doi.org/10.1016/S0370-1573(00)00047-8
http://dx.doi.org/10.1088/1742-6596/594/1/012019
http://dx.doi.org/10.1119/1.1810153
http://dx.doi.org/10.1103/RevModPhys.66.217
http://dx.doi.org/10.1103/PhysRevA.52.32
http://www.ncbi.nlm.nih.gov/pubmed/9912218
http://dx.doi.org/10.1103/PhysRevLett.74.2405
http://www.ncbi.nlm.nih.gov/pubmed/10057920
http://dx.doi.org/10.1103/PhysRev.122.1649
http://dx.doi.org/10.1103/PhysRev.85.166


Entropy 2024, 26, 336 28 of 29

19. Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180.
[CrossRef]

20. Holland, P.R. Quantum Theory Motion; Cambridge University Press: Cambridge, UK, 1993.
21. Wyatt, R.E. Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics; Springer: New York, NY, USA, 2005.
22. Sanz, A.S.; Miret-Artés, S. A Trajectory Description of Quantum Processes. II. Applications: A Bohmian Perspective; Springer:

Berlin/Heidelberg, Germany, 2014.
23. Lopreore, C.L.; Wyatt, R.E. Quantum wavepacket dynamics with trajectories. Phys. Rev. Lett. 1999, 82, 5190–5193. [CrossRef]
24. Garashchuk, S.; Rassolov, V.A. Semiclassical dynamics based on quantum trajectories. Chem. Phys. Lett. 2002, 364, 562–567.

[CrossRef]
25. Martens, C.C.; Donoso, A.; Zheng, Y. Quantum trajectories in phase space. In Quantum Trajectories; CRC Press: Boca Raton, FL,

USA, 2011; p. 95.
26. Büttiker, M. Larmor precession and the traversal time for tunneling. Phys. Rev. B 1983, 27, 6178. [CrossRef]
27. Poirier, B. Reconciling Semiclassical and Bohmian Mechanics: I. Stationary states. J. Chem. Phys. 2004, 121, 4501–4515. [CrossRef]
28. Trahan, C.; Poirier, B. Reconciling Semiclassical and Bohmian Mechanics: II. Scattering States for Discontinuous Potentials.

J. Chem. Phys. 2006, 124, 034115. [CrossRef]
29. Trahan, C.; Poirier, B. Reconciling Semiclassical and Bohmian Mechanics: III. Scattering States for Continuous Potentials. J. Chem.

Phys. 2006, 124, 034116. [CrossRef] [PubMed]
30. Poirier, B.; Parlant, G. Reconciling Semiclassical and Bohmian Mechanics: IV. Multisurface Dynamics. J. Phys. Chem. A 2007,

111, 10400–10408. [CrossRef] [PubMed]
31. Poirier, B. Reconciling Semiclassical and Bohmian Mechanics: V. Wavepacket dynamics. J. Chem. Phys. 2008, 128, 164115.

[CrossRef] [PubMed]
32. Poirier, B. Reconciling Semiclassical and Bohmian Mechanics: VI. Multidimensional dynamics. J. Chem. Phys. 2008, 129, 084103.

[CrossRef] [PubMed]
33. da Conceição, N.C.; Carlson, B.; Poirier, B. Quantum trajectories and the nuclear optical model. Phys. Scr. 2023, 98, 115303.

[CrossRef]
34. Spierings, D.C.; Thywissen, J.H.; Steinberg, A.M. Spin Rotations in a Bose-Einstein Condensate Driven by Counterflow and

Spin-independent Interactions. arXiv 2023, arXiv:2308.16069.
35. Das, S.; Dürr, D. Arrival time distributions of spin-1/2 particles. Sci. Rep. 2019, 9, 2242. [CrossRef]
36. Das, S.; Nöth, M.; Dürr, D. Exotic Bohmian arrival times of spin-1/2 particles: An analytical treatment. Phys. Rev. A 2019,

99, 052124. [CrossRef]
37. Goldstein, S.; Tumulka, R.; Zanghì, N. On the spin dependence of detection times and the nonmeasurability of arrival times. Sci.

Rep. 2024, 14, 3775. [CrossRef]
38. Das, S.; Aristarhov, S. Comment on “the Spin Dependence of Detection Times and the Nonmeasurability of Arrival Times”. arXiv

2023, arXiv:2312.01802.
39. Pauli, W. Handbuch der Physik; Springer: Berlin/Heidelberg, Germany, 1933; Volume 24.
40. Galapon, E.A. Pauli’s Theorem and Quantum Canonical Pairs: The Consistency of a Bounded, Self-Adjoint Time Operator

Canonically Conjugate to a Hamiltonian with Non-Empty Point Spectrum. Proc. R. Soc. Lond. A 2002, 458, 451–472. [CrossRef]
41. Pollak, E.; Miller, W.H. New physical interpretation for time in scattering theory. Phys. Rev. Lett. 1984, 53, 115. [CrossRef]
42. Poirier, B. Bohmian mechanics without pilot waves. Chem. Phys. 2010, 370, 4–14. [CrossRef]
43. Poirier, B. Trajectory-Based Derivation of Classical and Quantum Mechanics. In Quantum Trajectories; Hughes, K., Parlant, G.,

Eds.; CCP6; Daresbury Laboratory: Warrington, UK, 2011; p. 6.
44. Schiff, J.; Poirier, B. Communication: Quantum mechanics without wavefunctions. J. Chem. Phys. 2012, 136, 031102. [CrossRef]

[PubMed]
45. Hall, M.J.; Deckert, D.A.; Wiseman, H.M. Quantum phenomena modeled by interactions between many classical worlds. Phys.

Rev. X 2014, 4, 041013. [CrossRef]
46. Cruz-Rodríguez, L.; Uranga-Piña, L.; Martinez-Mesa, A.; Meier, C. Quantum dynamics modeled by interacting trajectories. Chem.

Phys. 2018, 503, 39–49. [CrossRef]
47. Dupuy, L.; Talotta, F.; Agostini, F.; Lauvergnat, D.; Poirier, B.; Scribano, Y. Adiabatic and nonadiabatic dynamics with interacting

quantum trajectories. J. Chem. Theory Comput. 2022, 18, 6447–6462. [CrossRef] [PubMed]
48. González, M.F.; Giménez, X.; González, J.; Bofill, J.M. Effective potential, Bohm’s potential plus classical potential, analysis of

quantum transmission. J. Math. Chem. 2008, 43, 350–364. [CrossRef]
49. Jaworski, W.; Wardlaw, D.M. Time delay in tunneling: Transmission and reflection time delays. Phys. Rev. A 1988, 37, 2843.

[CrossRef]
50. Muga, J.; Brouard, S.; Sala, R. Transmission and reflection tunneling times. Phys. Lett. A 1992, 167, 24–28. [CrossRef]
51. Lombardini, R.; Poirier, B. Interacting Quantum Trajectories for Particles with Spin 1/2. Mol. Phys. 2024, e2334805. [CrossRef]
52. Dewdney, C.; Holland, P.R.; Kyprianidis, A. What happens in a spin measurement? Phys. Lett. A 1986, 119, 259–267. [CrossRef]
53. Dewdney, C.; Holland, P.R.; Kyprianidis, A.; Vigier, J.P. Spin and non-locality in quantum mechanics. Nature 1988, 336, 536–544.

[CrossRef]
54. Vink, J.C. Spin and Contextuality in Extended de Broglie-Bohm-Bell Quantum Mechanics. Found. Phys. 2022, 52, 97. [CrossRef]

http://dx.doi.org/10.1103/PhysRev.85.180
http://dx.doi.org/10.1103/PhysRevLett.82.5190
http://dx.doi.org/10.1016/S0009-2614(02)01378-7
http://dx.doi.org/10.1103/PhysRevB.27.6178
http://dx.doi.org/10.1063/1.1775766
http://dx.doi.org/10.1063/1.2145883
http://dx.doi.org/10.1063/1.2145923
http://www.ncbi.nlm.nih.gov/pubmed/16438576
http://dx.doi.org/10.1021/jp0731349
http://www.ncbi.nlm.nih.gov/pubmed/17887734
http://dx.doi.org/10.1063/1.2850207
http://www.ncbi.nlm.nih.gov/pubmed/18447429
http://dx.doi.org/10.1063/1.2969102
http://www.ncbi.nlm.nih.gov/pubmed/19044814
http://dx.doi.org/10.1088/1402-4896/acfe5d
http://dx.doi.org/10.1038/s41598-018-38261-4
http://dx.doi.org/10.1103/PhysRevA.99.052124
http://dx.doi.org/10.1038/s41598-024-53777-8
http://dx.doi.org/10.1098/rspa.2001.0874
http://dx.doi.org/10.1103/PhysRevLett.53.115
http://dx.doi.org/10.1016/j.chemphys.2009.12.024
http://dx.doi.org/10.1063/1.3680558
http://www.ncbi.nlm.nih.gov/pubmed/22280737
http://dx.doi.org/10.1103/PhysRevX.4.041013
http://dx.doi.org/10.1016/j.chemphys.2018.01.016
http://dx.doi.org/10.1021/acs.jctc.2c00744
http://www.ncbi.nlm.nih.gov/pubmed/36245093
http://dx.doi.org/10.1007/s10910-006-9201-y
http://dx.doi.org/10.1103/PhysRevA.37.2843
http://dx.doi.org/10.1016/0375-9601(92)90620-2
http://dx.doi.org/10.1080/00268976.2024.2334805
http://dx.doi.org/10.1016/0375-9601(86)90144-1
http://dx.doi.org/10.1038/336536a0
http://dx.doi.org/10.1007/s10701-022-00584-8


Entropy 2024, 26, 336 29 of 29

55. Yahalom, A. Pauli’s Electron in Ehrenfest and Bohm Theories, a Comparative Study. Entropy 2023, 25, 190. [CrossRef]
56. Tannor, D.J. Introduction to Quantum Mechanics: A Time-Dependent Perspective; University Science Books: Sausalito, CA, USA, 2007.
57. Miyamoto, M. The various power decays of the survival probability at long times for a free quantum particle. J. Phys. Math. Gen.

2002, 35, 7159. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/e25020190
http://dx.doi.org/10.1088/0305-4470/35/33/312

	Introduction
	Theory
	Dwell Times
	Time-Independent
	Time-Dependent

	Quantum Trajectories
	Introduction
	Spin-1/2 Particles
	Dwell Times
	Bipolar Quantum Trajectories

	Dwell Time Distributions

	Free-Particle Applications
	Plane-Wave Superposition States
	Bipolar Superposition/Decomposition for Free-Particle Wavepackets
	Definition of Dwell Time Quantities
	Probability Weights
	Symmetric Example

	Spin 1/2: Das and Dürr Application
	Introduction
	Unipolar Time Evolution
	Bipolar Time Evolution


	Results
	Overview
	Wavefunctions and Quantum Trajectories
	Dwell Time Distributions
	Unipolar Quantum Trajectories for Spin-Up-Down Case
	Dwell Times, Standard Deviations, and Numerical Convergence

	Conclusions
	References 

