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Abstract: Partial information decompositions (PIDs) aim to categorize how a set of source variables
provides information about a target variable redundantly, uniquely, or synergetically. The original
proposal for such an analysis used a lattice-based approach and gained significant attention. However,
finding a suitable underlying decomposition measure is still an open research question at an arbitrary
number of discrete random variables. This work proposes a solution with a non-negative PID
that satisfies an inclusion–exclusion relation for any f-information measure. The decomposition is
constructed from a pointwise perspective of the target variable to take advantage of the equivalence
between the Blackwell and zonogon order in this setting. Zonogons are the Neyman–Pearson region
for an indicator variable of each target state, and f-information is the expected value of quantifying
its boundary. We prove that the proposed decomposition satisfies the desired axioms and guarantees
non-negative partial information results. Moreover, we demonstrate how the obtained decomposition
can be transformed between different decomposition lattices and that it directly provides a non-
negative decomposition of Rényi-information at a transformed inclusion–exclusion relation. Finally,
we highlight that the decomposition behaves differently depending on the information measure used
and how it can be used for tracing partial information flows through Markov chains.

Keywords: partial information decomposition; redundancy; synergy; information flow analysis;
f-information; Rényi-information

1. Introduction

From computer science to neuroscience, we can find the following problem: We would
like to know information about a random variable T, called the target, which we cannot
observe directly. However, we can obtain information about the target indirectly from
another set of variables V = {V1, . . . , Vn}. We can use information measures to quantify
how much information any set of variables provides about the target. When doing so, we
can identify the concept of redundancy: For example, if we have two identical variables
V1 = V2, then we can use one variable to predict the other and, thus, anything that this
other variable can predict. Similarly, we can identify the concept of synergy: For example, if
we have two independent variables and a target that corresponds to their XOR operation
T = (V1 XOR V2), then both variables provide no advantage on their own for predicting
the state of T, yet their combination fully determines it. Williams and Beer [1] suggested
that it is possible to characterize information as visualized by the Venn diagram for two
variables V = {V1, V2} in Figure 1a. This decomposition attributes the total information
about the target to being redundant, synergetic, or unique to a particular variable. As
indicated in Figure 1a by I(·, T), we can quantify three of the areas using information
measures. However, this is insufficient to determine the four partial areas that represent
the individual contributions. This causes the necessity to extend an information measure to
either quantify the amount of redundancy or synergy between a set of variables.

Williams and Beer [1] first proposed a framework for Partial Information Decompo-
sitions (PIDs) and found favor by the community [2]. However, the proposed measure
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of redundancy was criticized for not distinguishing, “the same information and the same
amount of information” [3–6]. The proposal of Williams and Beer [1] focused specifi-
cally on mutual information. This work additionally studies the decomposition of any
f -information or Rényi-information at discrete random variables. They have significance,
among others, in parameter estimations, high-dimensional statistics, hypothesis testing,
channel coding, data compression, and privacy analyses [7,8].
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Figure 1. Partial information decomposition representations at two variables V = {V1, V2}. (a) De-
sired set-theoretic analogy: Visualization of the desired intuition for multivariate information as a
Venn diagram. (b) Representation as redundancy lattice, where the redundancy measure I∩ quantifies
the information that is contained in all of its provided variables (inside their intersection). The order-
ing represents the expected subset relation of redundancy. (c) Representation as synergy lattice, where
the loss measure I∪ quantifies the information that is contained in neither of its provided variables
(outside their union). (d) Information flow visualization: When having two partial information
decompositions with respect to the same target variable, we can study how the partial information
of one decomposition propagates into the next. We refer to this as information flow analysis of a
Markov chain such as T → (A1, A2) → (B1, B2).

1.1. Related Work

Most of the literature focuses on the decomposition of mutual information. Here, many
alternative measures have been proposed, but cannot fully replace the original measure
of Williams and Beer [1] since they do not provide non-negative results for any |V|: The
special case of bivariate partial information decompositions (|V| = 2) has been well studied,
and several non-negative decompositions for the framework of Williams and Beer [1] are
known [5,9–12]. However, each of these decompositions provides negative partial informa-
tion for |V| > 2. Further research [13–15] specifically aimed to define decompositions of
mutual information for an arbitrary number of observable variables, but similarly obtained
negative partial contributions and the resulting difficulty of interpreting their results. Grif-
fith et al. [3] studied the decomposition of zero-error information and obtained negative
partial contributions. Kolchinsky [16] proposed a decomposition framework for an arbitrary
number of observable variables that is applicable beyond Shannon information theory,
however, where the partial contributions do not sum to the total amount.

In this work, we propose a decomposition measure for replacing the one presented
by Williams and Beer [1] while maintaining its desired properties. To achieve this, we
combine several concepts from the literature: We use the Blackwell order, a preorder of
information channels, for the decomposition and for deriving its operational interpretation,
similar to Bertschinger et al. [9] and Kolchinsky [16]. We use its special case for binary
input channels, the zonogon order studied by Bertschinger and Rauh [17], to achieve
non-negativity at an arbitrary number of variables and provide it with a practical mean-
ing by highlighting its equivalence to the Neyman–Pearson (decision) region. To utilize
this special case for a general decomposition, we use the concept of a target pointwise
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decomposition as demonstrated by Williams and Beer [1] and related to Lizier et al. [18],
Finn and Lizier [13], and Ince [14]. Specifically, we use Neyman–Pearson regions of an
indicator variable for each target state to define distinct information and quantify point-
wise information from its boundary. This allows for the non-negative decomposition
of an arbitrary number of variables, where the source and target variables can have an
arbitrary finite number of states. Finally, we apply the concepts from measuring on
lattices, discussed by Knuth [19], to transform a non-negative decomposition with an
inclusion–exclusion relation from one information measure to another while maintaining
the decomposition properties.

Remark 1. We use the term “target pointwise” or simply “pointwise” within this work to refer to
the analysis of each target state individually. This differs from [13,14,18], who use the latter term
for the analysis of all joint source–target realizations.

1.2. Contributions

In a recent work [20], we presented a decomposition of mutual information on the
redundancy lattice (Figure 1b). This work aims to simplify, generalize, and extend these
ideas to make the following contributions to the area of partial information decompositions:

• We propose a representation of distinct uncertainty and distinct information, which is
used to demonstrate the unexpected behavior of the measure by Williams and Beer [1]
(Sections 2.2 and 3.1).

• We propose a non-negative decomposition for any f -information measure at an arbi-
trary number of discrete random variables that satisfies an inclusion–exclusion relation
and provides a meaningful operational interpretation (Sections 3.2, 3.3 and 3.5). The
decomposition satisfies the original axioms of Williams and Beer [1] (Theorems 3 and 4)
and obtains different properties from different information measures (Section 4).

• We demonstrate several transformations of the proposed decomposition: (i) We trans-
form the cumulative measure between different decomposition lattices (Section 3.4).
(ii) We demonstrate that the non-negative decomposition of f -information directly
provides a non-negative decomposition of Rényi- and Bhattacharyya-information at a
transformed inclusion–exclusion relation (Section 3.6).

2. Background

This section aims to provide the required background information and introduce the
notation used. Section 2.1 discusses the Blackwell order and its special case at binary targets,
the zonogon order, which will be used for operational interpretations and the representation
of f -information for its decomposition. Section 2.2 discusses the PID framework of Williams
and Beer [1] and the relation between a decomposition based on the redundancy lattice
and one based on the synergy lattice. We also demonstrate the unintuitive behavior of
the original decomposition measure, which will be resolved by our proposal in Section 3.
Section 2.3 provides the considered definitions of f -information, Rényi-information, and
Bhattacharyya-information for the later demonstration of transforming decomposition
results between measures.

Notation 1 (Random variables and their distribution). We use the notation T (upper case) to
represent a random variable, ranging over the event space T (calligraphic) containing events t ∈ T
(lower case) and use the notation PT (P with subscript) to indicate its probability distribution. The
same convention applies to other variables, such as a random variable S with events s ∈ S and
distribution PS. We indicate the outer product of two probability distributions as PS ⊗ PT , which
assigns the product of their marginals PS(s) · PT(t) to each event (s, t) of the Cartesian product
S × T . Unless stated otherwise, we use the notation T, S, and V to represent random variables
throughout this work.
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2.1. Blackwell and Zonogon Order

Definition 1 (Channel). A channel µ = T → S from T to S represents a garbling of the input
variable T, which results in variable S. Within this work, we represent an information channel µ as
a (row) stochastic matrix, where each element is non-negative, and all rows sum to one.

For the context of this work, we consider a variable S to be the observation of the
output from an information channel T → S from the target variable T, such that the
corresponding channel can be obtained from their conditional probability distribution, as
shown in Equation (1) where T = {t1, . . . , tn} and S = {s1, . . . , sm}.

µ = (T → S) = P(S|T) =

p(s1 | t1) . . . p(sm | t1)
...

. . .
...

p(s1 | tn) . . . p(sm | tn)

 (1)

Notation 2 (Binary input channels). Throughout this work, we reserve the symbol κ for binary
input channels, meaning κ signals a stochastic matrix of dimension 2 × m. We use the notation
v⃗ ∈ κ to indicate a column of this matrix.

Definition 2 (More informative [17,21]). An information channel µ1 = T → S1 is more
informative than another channel µ2 = T → S2 if—for any decision problem involving a set of
actions a ∈ Ω and a reward function u : (Ω, T ) → R that depends on the chosen action and state
of the variable T—an agent with access to S1 can always achieve an expected reward at least as high
as another agent with access to S2.

Definition 3 (Blackwell order [17,21]). The Blackwell order is a preorder of channels. A channel
µ1 is Blackwell superior to channel µ2, if we can pass its output through a second channel λ to
obtain an equivalent channel to µ2, as shown in Equation (2).

µ2 ⊑ µ1 ⇐⇒ µ2 = µ1 · λ for some stochastic matrix λ (2)

Blackwell [21] showed that a channel is more informative if and only if it is Blackwell
superior. Bertschinger and Rauh [17] showed that the Blackwell order does not form a
lattice for channels µ = T → S if |T | > 2 since the ordering does not provide unique
meet and join elements. However, binary target variables |T | = 2 are a special case where
the Blackwell order is equivalent to the zonogon order (discussed next) and does form a
lattice [17].

Definition 4 (Zonogon [17]). The zonogon Z(κ) of a binary input channel κ = T → S is defined
using the Minkowski sum from the collection of vector segments as shown in Equation (3). The
zonogon Z(κ) can similarly be defined as the image of the unit cube [0, 1]|S| under the linear map
of κ.

Z(κ) :=

{
∑

i
xi v⃗i : 0 ≤ xi ≤ 1, v⃗i ∈ κ

}
=
{

κa : a ∈ [0, 1]|S|
}

(3)

The zonogon Z(κ) is a centrally symmetric convex polygon, and the set of vectors
v⃗i ∈ κ spans its perimeter. Figure 2 shows an example of a binary input channel and its
corresponding zonogon.

Definition 5 (Zonogon sum). The addition of two zonogons corresponds to their Minkowski sum
as shown in Equation (4).

Z(κ1) + Z(κ2) := {a + b : a ∈ Z(κ1), b ∈ Z(κ2)} = Z
([

κ1 κ2
])

(4)
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Definition 6 (Zonogon order [17]). A zonogon Z(κ1) is zonogon superior to another Z(κ2) if
and only if Z(κ2) ⊆ Z(κ1).

Bertschinger and Rauh [17] showed that, for binary input channels, the zonogon
order is equivalent to the Blackwell order and forms a lattice (Equation (5)). In the re-
maining work, we will only discuss binary input channels, such that the orderings of
Definitions 2, 3, and 6 are equivalent and can be thought of as zonogons with a sub-
set relation.

κ1 ⊑ κ2 ⇐⇒ Z(κ1) ⊆ Z(κ2) (5)

To obtain an interpretation of what a channel zonogon Z(κ) represents, we can consider a
binary decision problem by aiming to predict the state t ∈ T of a binary target variable T
using the output of channel κ = T → S. Any decision strategy λ ∈ [0, 1]|S|×2 for obtaining
a binary prediction T̂ can be fully characterized by its resulting pair of True-Positive
Rate (TPR) and False-Positive Rate (FPR), as shown in Equation (6):

κ · λ = (T → S → T̂) = P(T̂|T) =

[
p(T̂ = t | T = t) p(T̂ ̸= t | T = t)
p(T̂ = t | T ̸= t) p(T̂ ̸= t | T ̸= t)

]
=

[
TPR 1 − TPR
FPR 1 − FPR

]
(6)

Therefore, a channel zonogon Z(κ) provides the set of all achievable (TPR,FPR)-pairs
for a given channel κ [20,22]. This can also be seen from Equation (3), where the unit
cube a ∈ [0, 1]|S| represents all possible first columns of the decision strategy λ. The
first column of λ fully determines the second since each row has to sum to one. As a
result, κa provides the (TPR,FPR)-pair for the decision strategy λ = [ a (1−a) ] and the
definition of Equation (3) for all achievable (TPR,FPR)-pairs for predicting the state of a
binary target variable. Since this will be helpful for operational interpretations, we label
the axis of zonogon plots accordingly, as shown in Figure 2. The zonogon ([17], p. 2480) is
the Neyman–Pearson region ([7], p. 231).
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Figure 2. An example zonogon (blue) for a binary input channel κ from T = {t1, t2} to
S = {s1, s2, s3, s4}. The zonogon is the Neyman–Pearson region, and its perimeter corresponds
to the vectors v⃗si ∈ κ sorted by an increasing/decreasing slope for the lower/upper half, which
results from the likelihood ratio test. The zonogon, thus, represents the achievable (TPR,FPR)-pairs
for predicting T while knowing S.

Definition 7 (Neyman–Pearson region [7] and decision regions). The Neyman–Pearson region
for a binary decision problem is the set of achievable (TPR,FPR)-pairs and can be visualized as
shown in Figure 2. The Neyman–Pearson regions underlie the zonogon order, and their boundary
can be obtained from the likelihood-ratio test. We refer to subsets of the Neyman–Pearson region as
reachable decision regions, or simply decision regions, and the boundary as the zonogon perimeter.
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Remark 2. Due to the zonogon symmetry, the diagram labels can be swapped (FPR x-axis/TPR
y-axis), which changes the interpretation to aiming at a prediction for T ̸= t.

Notation 3 (Channel lattice). We use the notation κ1 ⊓ κ2 for the meet element of binary in-
put channels under the Blackwell order and κ1 ⊔ κ2 for their join element. We use the nota-
tion ⊤BW =

[
1 0
0 1

]
for the top element of binary input channels under the Blackwell order and

⊥BW =
[

1
1

]
for the bottom element.

For binary input channels, the meet element of the Blackwell order corresponds to
the zonogon intersection Z(κ1 ⊓ κ2) = Z(κ1) ∩ Z(κ2) and the join element of the Blackwell
order corresponds to the convex hull of their union Z(κ1 ⊔ κ2) = Conv(Z(κ1) ∪ Z(κ2)).
Equation (7) describes this for an arbitrary number of channels.

Z

(
l

κ∈A

κ

)
=
⋂

κ∈A
Z(κ) and Z

(⊔
κ∈A

κ

)
= Conv

(⋃
κ∈A

Z(κ)

)
(7)

Example 1. The remaining work only analyzes indicator variables, so we only need to consider the
case |T | = 2 where all presented ordering relations of this section are equivalent and form a lattice.

Figure 3a visualizes a channel T κ−→ S with |S| = 3. We can use the observations of S for
making a prediction T̂ about T. For example, we predict that T is in its first state with probability
w1 if S is in its first state, with probability w2 if S is in its second state, and with probability w3 if S
is in its third state. These randomized decision strategies can be noted as stochastic matrix λ shown
in Figure 3a. The resulting TPR and FPR of this decision strategy is obtained from the weighted
sum of these parameters (w1, w2, and w3) with the vectors in κ. Each decision strategy corresponds
to a point within the zonogon, since the probabilities are constrained by w1, w2, w3 ∈ [0, 1] and the
resulting zonogon is the Neyman–Pearson region.
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Figure 3. Visualizations for Example 1 where |T | = 2. (a) A randomized decision strategy for
predictions based on T κ−→ S can be represented by a |S| × 2 stochastic matrix λ. The first column
of this decision matrix provides the weights for summing the columns of channel κ to determine
the resulting prediction performance (TPR, FPR). Any decision strategy corresponds to a point in
the zonogon. (b) All presented ordering relations in Section 2.1 are equivalent at binary targets and
correspond to the subset relation of the visualized zonogons. The variable S3 is less informative than
both S1 and S2 with respect to T, and the variables S1 and S2 are incomparable. The shown channel
in (a) is the Blackwell join of κ1 and κ2 in (b).
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Figure 3b visualizes an example for the discussed ordering relations, where all observable
variables have two states: |Si| = 2 where i ∈ {1, 2, 3}. The zonogon/Neyman–Pearson region corre-
sponding to variable S3 is fully contained within the others (Z(κ3) ⊆ Z(κ1) and Z(κ3) ⊆ Z(κ2)).
Therefore, we can say that S3 is Blackwell inferior (Definition 3) and less informative (Definition 2)
than S1 and S2 about T. Practically, this means that we can construct an equivalent variable to S3
by garbling S1 or S2 and that, for any sequence of actions based on S3 and any reward function
with dependence on T, we can achieve an expected reward at least as a high by acting based on S1 or
S2 instead. The variables S1 and S2 are incomparable to the zonogon order, Blackwell order, and
informativity order, since the Neyman–Pearson region of one is not fully contained in the other.

The zonogon shown in Figure 3a corresponds to the join under the zonogon order, Blackwell
order, and informativity order of S1 and S2 in Figure 3b about T. For binary targets, this distribution
can directly be obtained from the convex hull of their Neyman–Pearson regions and corresponds to a
valid joint distribution for (T, S1, S2). All other joint distributions are either equivalent or superior
to it. When doing this on indicator variables for |T | > 2, then the obtained joint distributions for
each t ∈ T may not combine into a specific valid overall joint distribution.

2.2. Partial Information Decomposition

The commonly used framework for PIDs was introduced by Williams and Beer [1].
A PID is computed with respect to a particular random variable that we would like to
know information about, called the target, and tries to identify from which variables that we
have access to, called visible variables, we obtain this information. Therefore, this section
considers sets of variables that represent their joint distribution.

Notation 4. Throughout this work, we use the notation T for the target variable and V = {V1, . . . , Vn}
for the set of visible variables. We use the notationP(V) for the power set of V andP1(V) = P(V) \ ∅
for its power set without the empty set.

Definition 8 (Sources, atoms [1]).

• A source Si ∈ P1(V) is a non-empty set of visible variables.
• An atom α ∈ A(V) is a set of sources constructed by Equation (8).

A(V) = {α ∈ P(P1(V)) : ∀Sa, Sb ∈ α, Sa ̸⊂ Sb}, (8)

The filter used for obtaining the set of atoms (Equation (8)) removes sets that would
be equivalent to other elements. This is required for obtaining a lattice from the following
two ordering relations:

Definition 9 (Redundancy/gain lattice [1] ). The redundancy lattice (A(V),≼) is obtained by
applying the ordering relation of Equation (9) to all atoms α, β ∈ A(V).

α ≼ β ⇐⇒ ∀Sb ∈ β, ∃Sa ∈ α, Sa ⊆ Sb (9)

The redundancy lattice for three visible variables is visualized in Figure 4a. On this
lattice, we can think of an atom as representing the information that can be obtained
from all of its sources about the target T (their redundancy or informational intersection).
For example, the atom α = {{V1, V2}, {V1, V3}} represents on the redundancy lattice the
information that is contained in both (V1, V2) and (V1, V3) about T. Since both sources
in α provide the information of V1, their redundancy contains at least this information,
and the atom β = {{V1}} is considered its predecessor. Therefore, the ordering indicates
an informational subset relation for the redundancy of atoms, and the information that
is represented by an atom increases as we move up. The up-set of an atom α on the
redundancy lattice indicates the information that is lost when losing all of its sources.
Considering the example from above, if we lose access to {V1 (or) V2} and {V1 (or) V3},
then we lose access to all atoms in the up-set of α = {{V1, V2}, {V1, V3}}.
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{S12, S13} {S12, S23} {S13, S23}

{S1} {S2} {S3} {S12, S13, S23}

{S1, S23} {S2, S13} {S3, S12}

{S1, S2} {S1, S3} {S2, S3}

{S1, S2, S3}

∅

(a)

∅
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Figure 4. For the visualization, we abbreviated the notation by indicating the contained visible
variable as the index of the source, for example S12 = {V1, V2} to represent their joint distribution:
(a) A redundancy/gain lattice (A({V1, V2, V3}), ≼) based on the ordering of Equation (9) quantifies
information present in all sources. The redundancy of all sources within an atom increases while
moving up on the redundancy lattice. (b) A synergy/loss lattice (A({V1, V2, V3}), ⪯) based on the
ordering of Equation (10) quantifies information present in neither source. On the synergy lattice, the
information that is obtained from neither source of an atom increases while moving up.

Definition 10 (Synergy/loss lattice [23]). The synergy lattice (A(V),⪯) is obtained by applying
the ordering relation of Equation (10) to all atoms α, β ∈ A(V).

α ⪯ β ⇐⇒ ∀Sb ∈ β, ∃Sa ∈ α, Sb ⊆ Sa (10)

The synergy lattice for three visible variables is visualized in Figure 4b. On this lattice,
we can think of an atom as representing the information that is contained in neither of its
sources (information outside their union). For example, the atom α = {{V1, V2}, {V1, V3}}
represents on the synergy lattice the information that is obtained from neither (V1, V2)
nor (V1, V3) about T. The ordering again indicates their expected subset relation: the
information that is obtained from neither {V1 (and) V2} nor {V1 (and) V3} is fully contained
in the information that cannot be obtained from β = {{V1}}, and thus, α is a predecessor
of β.

With an intuition for both ordering relations in mind, we can see how the filter in
the construction of atoms (Equation (8)) removes sets that would be equivalent to another
atom: the set {{V1, V2}, {V1}} is removed from the power set of sources since it would be
equivalent to the atom {{V1}} under the ordering of the redundancy lattice and equivalent
to the atom {{V1, V2}} under the ordering of the synergy lattice. Using Definition 11, one
can similarly define the atoms of the decomposition lattices from the power set of sources
without the equivalence relation.

Definition 11. We define equivalence relations for sets of sources under the redundancy and
synergy order:

Redundancy order: (α ≃ β) ⇐⇒ (α ≼ β and β ≼ α) (11a)

Synergy order: (α ∼= β) ⇐⇒ (α ⪯ β and β ⪯ α) (11b)
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We use the notation A {∼=} B to indicate that two sets of atoms are equal when comparing their
contained atoms with respect to equivalence under the synergy order.

Notation 5 (Redundancy/synergy lattices). We use the notation (A(V),⋎,⋏) for the join and
meet operators on the redundancy lattice, and (A(V),∨,∧) for the join and meet operators on the
synergy lattice. We use the notation ⊤RL = {V} for the top and ⊥RL = ∅ for the bottom atom on
the redundancy lattice, and ⊤SL = ∅ and ⊥SL = {V} for the top and bottom atom on the synergy
lattice. For an atom α on the redundancy lattice, we use the notation ↓Rα for its down-set, ↓̇Rα for
its strict down-set, ↑Rα for its up-set, ↑̇Rα for its strict up-set, and α−R for its cover set. For an
atom α on the synergy lattice, we use the notation ↓Sα for its down-set, ↓̇Sα for its strict down-set,
↑Sα for its up-set, ↑̇Sα for its strict up-set, and α−S for its cover set.

For convenience, Table 1 provides a summary of the notation used.

Table 1. Summary of the notation used for the redundancy and synergy lattice.

Redundancy Order Synergy Order

Ordering/equivalence ≼ / ≃ ⪯ / ∼=
Join/meet ⋎ / ⋏ ∨ / ∧

Up-set/strict up-set ↑R / ↑̇R ↑S / ↑̇S
Down-set/strict down-set ↓R / ↓̇R ↓S / ↓̇S

Cover-set α−R α−S

Top/bottom ⊤RL = {V} / ⊥RL = ∅ ⊤SL = ∅ / ⊥SL = {V}

The redundant, unique, or synergetic information (partial contributions) can be calcu-
lated based on either lattice. They are obtained by quantifying each atom of the redundancy
or synergy lattice with a cumulative measure that increases as we move up in the lattice.
The partial contributions are then obtained in a second step from a Möbius inverse.

Definition 12 ([Cumulative] redundancy measure [1]). A redundancy measure I∩(α; T) is
a function that assigns a real value to each atom of the redundancy lattice. It is interpreted as a
cumulative information measure that quantifies the redundancy between all sources S ∈ α of an
atom α ∈ A(V) about the target T.

Definition 13 ([Cumulative] loss measure [23]). A loss measure I∪(α; T) is a function that
assigns a real value to each atom of the synergy lattice. It is interpreted as a cumulative measure
that quantifies the information about T that is provided by neither of the sources S ∈ α of an atom
α ∈ A(V).

To ensure that a redundancy measure actually captures the desired concept of redun-
dancy, Williams and Beer [1] defined three axioms that a measure I∩ should satisfy. For the
synergy lattice, we consider the equivalent axioms discussed by Chicharro and Panzeri [23]:

Axiom 1 (Commutativity [1,23]). Invariance in the order of sources (σ permuting the order
of indices):

I∩({S1, . . . , Si}; T) = I∩({Sσ(1), . . . , Sσ(i)}; T)

I∪({S1, . . . , Si}; T) = I∪({Sσ(1), . . . , Sσ(i)}; T)

Axiom 2 (Monotonicity [1,23]). Additional sources can only decrease redundant information.
Additional sources can only decrease the information that is in neither source.

I∩({S1, . . . , Si−1}; T) ≥ I∩({S1, . . . , Si}; T)

I∪({S1, . . . , Si−1}; T) ≥ I∪({S1, . . . , Si}; T)
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Axiom 3 (Self-redundancy [1,23]). For a single source, redundancy equals mutual information.
For a single source, the information loss equals the difference between the total available mutual
information and the mutual information of the considered source with the target.

I∩({Si}; T) = I(Si; T) and I∪({Si}; T) = I(V; T)− I(Si; T)

The first axiom states that an atom’s redundancy and information loss should not
depend on the order of its sources. The second axiom states that adding sources to an
atom can only decrease the redundancy of all sources (redundancy lattice) and decrease the
information from neither source (synergy lattice). The third axiom binds the measures to
be consistent with mutual information and ensures that the bottom element of both lattices
is quantified to zero.

Once a lattice with the corresponding cumulative measure (I∩/I∪) is defined, we can
use the Möbius inverse to compute the partial contribution of each atom. This partial
information can be visualized as the partial area in a Venn diagram (see Figure 1a) and
corresponds to the desired redundant, unique, and synergetic contributions. However, the
same atom represents different partial contributions on each lattice: As visualized for the
case of two visible variables in Figure 1, the unique information of variable V1 is represented
by α = {{V1}} on the redundancy lattice and by β = {{V2}} on the synergy lattice.

Definition 14 (Partial information [1,23]). Partial information ∆I∩(α; T) and ∆I∪(α; T) cor-
responds to the Möbius inverse of its corresponding cumulative measure on the respective lattice.

Redundancy lattice: ∆I∩(α; T) = I∩(α; T)− ∑
β∈↓̇Rα

∆I∩(β; T), (12a)

Synergy lattice: ∆I∪(α; T) = I∪(α; T)− ∑
β∈↓̇Sα

∆I∪(β; T). (12b)

Remark 3. Using the Möbius inverse for defining partial information enforces an inclusion–
exclusion relation in that all partial information contributions have to sum to the corresponding
cumulative measure. Kolchinsky [16] argues that an inclusion–exclusion relation should not be
expected to hold for PIDs and proposes an alternative decomposition framework. In this case, the
sum of partial contributions (unique/redundant/synergetic information) is no longer expected to
sum to the total amount I(V; T).

Property 1 (Local positivity, non-negativity [1]). A partial information decomposition satisfies
non-negativity or local positivity if its partial information contributions are always non-negative, as
shown in Equation (13).

∀α ∈ A(V). ∆I∩(α; T) ≥ 0 or ∆I∪(α; T) ≥ 0 (13)

The non-negativity property is important if we assume an inclusion–exclusion relation
since it states that the unique, redundant, or synergetic information cannot be negative.
If an atom α provides a negative partial contribution in the framework of Williams and
Beer [1], then this may indicate that we over-counted some information in its down-set.

Remark 4. Several additional axioms and properties have been suggested since the original proposal
of Williams and Beer [1], such as target monotonicity and the target chain rule [4]. However, this
work will only consider the axioms and properties of Williams and Beer [1]. To the best of our
knowledge, no other measure since the original proposal (discussed below) has been able to satisfy
these properties for an arbitrary number of visible variables while ensuring an inclusion–exclusion
relation for their partial contributions.

It is possible to convert between both representations due to a lattice duality:
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Definition 15 (Lattice duality and dual-decompositions [23] ). Let C = (A(V)\{⊥RL},≼)
be a redundancy lattice with associated measure I∩, and let D = (A(V)\{⊥SL},⪯) be a synergy
lattice with measure I∪; then, the two decompositions are said to be dual if and only if the down-set
on one lattice corresponds to the up-set in the other, as shown in Equation (14).

∀α ∈ C, ∃β ∈ D : ∆I∩(α; T) = ∆I∪(β; T) (14a)

∀α ∈ D, ∃β ∈ C : ∆I∪(α; T) = ∆I∩(β; T) (14b)

∀α ∈ C, ∃β ∈ D : I∩(α; T) = ∑
γ∈↓Rα

∆I∩(γ; T) = ∑
γ∈↑S β

∆I∪(γ; T) (14c)

∀α ∈ D, ∃β ∈ C : I∪(α; T) = ∑
γ∈↓Sα

∆I∪(γ; T) = ∑
γ∈↑R β

∆I∩(γ; T) (14d)

I∩(⊥RL; T) = I∪(⊥SL; T) = 0 = ∆I∩(⊥RL; T) = ∆I∪(⊥SL; T) (14e)

Williams and Beer [1] proposed Imin
∩ , as shown in Equation (15), to be used as a

measure of redundancy and demonstrated that it satisfies the three required axioms and
local positivity. They define redundancy (Equation (15b)) as the expected value of the
minimum specific information (Equation (15a)).

Remark 5. Throughout this work, we use the term “target pointwise information” or simply
“pointwise information” to refer to “specific information”. This shall avoid confusion when naming
their corresponding binary input channels in Section 3.

I(Si; T = t) = ∑
s∈Si

p(s | t)
[

log
(

1
p(t)

)
− log

(
1

p(t | s)

)]
(15a)

Imin
∩ (S1, . . . , Sk; T) = ∑

t∈T
p(t) min

i∈1..k
I(Si; T = t). (15b)

To the best of our knowledge, this measure is the only existing non-negative decomposition
that satisfies all three axioms listed above for an arbitrary number of visible variables while
providing an inclusion–exclusion relation of partial information.

However, the measure Imin
∩ could be criticized for not providing a notion of distinct

information due to its use of a pointwise minimum (for each t ∈ T ) over the sources.
This leads to the question of distinguishing “the same information and the same amount of
information” [3–6]. We can use the definition through a pointwise minimum (Equation (15))
to construct examples of unexpected behavior: consider, for example, a uniform binary
target variable T and two visible variables as the output of the channels visualized in
Figure 5. The channels are constructed to be equivalent for both target states and provide
access to distinct decision regions while ensuring constant pointwise information ∀t ∈ T :
I(Vx, T = t) = 0.2.

Even though our ability to predict the target variable significantly depends on which
of the two indicated channel outputs we observe (blue or green in Figure 5, incomparable
informativity based on Definition 2), the measure Imin

∩ concludes full redundancy between
them I(V1; T) = Imin

∩ ({V1, V2}; T) = I(V2, T) = 0.2. We think this behavior is undesired
and, as discussed in the literature, caused by an underlying lack of distinguishing the same
information. To resolve this issue, we will present a representation of f -information in
Section 3.1, which allows the use of all (TPR,FPR)-pairs for each state of the target variable
to represent a distinct notion of uncertainty.
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κ(x, y) =
[

x 1 − x − y y
y 1 − x − y x

]
, where x ≤ y.

I(V1; T) = Imin
∩ ({V1, V2}; T) = I(V2, T) = 0.2

Figure 5. Example of the unexpected behavior of Imin
∩ : the dashed isoline indicates the pairs (x, y)

for which channel κ(x, y) = T → Vi results in pointwise information ∀t ∈ T : I(Vi, T = t) = 0.2
for a uniform binary target variable. Even though observing the output of both indicated example
channels (blue/green) provides significantly different abilities for predicting the target variable state,
the measure Imin

∩ indicates full redundancy.

2.3. Information Measures

This section discusses two generalizations of mutual information at discrete random
variables based on f -divergences and Rényi-divergences [24,25]. While mutual infor-
mation has interpretational significance in channel coding and data compression, other
f -divergences have their significance in parameter estimations, high-dimensional statistics,
and hypothesis testing ([7], p. 88), while Rényi-divergences can be found among others in
privacy analysis [8]. Finally, we introduce Bhattacharyya information for demonstrating
that it is possible to chain decomposition transformations in Section 3.6. All definitions in
this section only consider the case of discrete random variables (which is what we need for
the context of this work).

Definition 16 ( f -divergence [24]). Let f : (0, ∞) → R be a function that satisfies the following
three properties:

• f is convex;
• f (1) = 0;
• f (z) is finite for all z > 0.

By convention, we understand that f (0) = limz→0+ f (z) and 0 f
( 0

0
)
= 0. For any such function

f and two discrete probability distributions P and Q over the event space X , the f -divergence for
discrete random variables is defined as shown in Equation (16).

D f (P ∥ Q) := ∑
x∈X

Q(x) f
(

P(x)
Q(x)

)
= EQ

[
f
(

P(X)

Q(X)

)]
(16)

Notation 6. Throughout this work, we reserve the name f for functions that satisfy the required
properties for an f -divergence of Definition 16.

An f -divergence quantifies a notion of dissimilarity between two probability distribu-
tions P and Q. Key properties of f -divergences are their non-negativity, their invariance
under bijective transformations, and them satisfying a data-processing inequality ([7], p. 89).
A list of commonly used f -divergences is shown in Table 2. Notably, the continuation for
a = 1 of both the Hellinger- and α-divergence results in the KL-divergence [26].

The generator function of an f -divergence is not unique since D f (z) = D f (z)+c(z−1) for
a real constant c ∈ R ([7], p. 90f). As a result, the considered α-divergence is a linear scaling
of the Hellinger divergence (DHa = a · Dα=a), as shown in Equation (17).

za − 1
a − 1

+ c(z − 1) = a · za − 1 − a(z − 1)
a(a − 1)

for c = − a
a − 1

(17)
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Table 2. Commonly used functions for f -divergences.

Notation Name Generator Function

DKL Kullback-Leiber (KL)-divergence f (z) = z log z

DTV Total Variation (TV) f (z) = 1
2 |z − 1|

Dχ2 χ2-divergence f (z) = (z − 1)2

DH2 Squared Hellinger distance f (z) = (1 −
√

z)2

DLC Le Cam distance f (z) = 1−z
2z+2

DJS Jensen–Shannon divergence f (z) = z log 2z
z+1 + log 2

z+1

DHa Hellinger-divergence with a ∈ (0, 1) ∪ (1, ∞) f (z) = za−1
a−1

Dα=a α-divergence with a ∈ (0, 1) ∪ (1, ∞) f (z) = za−1−a(z−1)
a(a−1)

Definition 17 ( f -information [7]). An f -information is defined based on an f -divergence from
the joint distribution of two discrete random variables and the product of their marginals, as shown
in Equation (18).

I f (S; T) := D f

(
P(S,T) ∥ PS ⊗ PT

)
= ∑

(s,t)∈S×T
PS(s) · PT(t) · f

(
P(S,T)(s, t)

PS(s) · PT(t)

)

= ∑
t∈T

PT(t)

[
∑
s∈S

PS(s) · f

(
PS|T(s | t)

PS(s)

)] (18)

Definition 18 ( f -entropy). A notion of f -entropy for a discrete random variable is obtained from
the self-information of a variable H f (T) := I f (T; T).

Notation 7. Using the KL-divergence results in the definition of mutual information and Shannon
entropy. Therefore, we use the notation IKL for mutual information (KL-information) and HKL (KL
entropy) for the Shannon entropy.

The remaining part of this section will define Rényi- and Bhattacharyya-information
to highlight that they can be represented as an invertible transformation of Hellinger-
information. This will be used in Section 3.6 to transform the decomposition of Hellinger-
information to a decomposition of Rényi- and Bhattacharyya-information.

Remark 6. We could similarly choose to represent Rényi-divergence as a transformation of the
α-divergence. A liner scaling of the considered f -divergence will, however, not affect our later results
(see Section 3.6).

Definition 19 (Rényi divergence [25]). Let P and Q be two discrete probability distributions
over the event space X , then Rényi-divergence Ra is defined as shown in Equation (19) for
a ∈ (0, 1) ∪ (1, ∞), and extended to a ∈ {0, 1, ∞} by continuation.

Ra(P ∥ Q) :=
1

a − 1
log
(
EQ

[(
P(X)

Q(X)

)a])

=
1

a − 1
log

1 + (a − 1)EQ


(

P(X)
Q(X)

)a
− 1

a − 1




=
1

a − 1
log(1 + (a − 1)DHa(P ∥ Q))

(19)
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Notably, the continuation of Rényi-divergence for a = 1 also equals the
KL-divergence ([7], p. 116). Rényi-divergence can be expressed as an invertible transfor-
mation of the Hellinger-divergence (DHa ; see Equation (19)) [26].

Definition 20 (Rényi-information [7] ). Rényi-information is defined equivalent to f -information as
shown in Equation (20) and corresponds to an invertible transformation of Hellinger-
information (IHa).

IRa(S; T) := Ra

(
P(S;T) ∥ PS ⊗ PT

)
=

1
a − 1

log(1 + (a − 1)IHa(S; T))
(20)

Finally, we consider the Bhattacharyya distance (Definition 21), which is equiva-
lent to a linear scaling from a special case of Rényi-divergence (Equation (21)) [26]. It is
applied, among others, in signal processing [27] and coding theory [28]. The correspond-
ing information measure (Equation (22)) is like its distance, the scaling of a special case
of Rényi-information.

Definition 21 (Bhattacharyya distance [29] ). Let P and Q be two discrete probability distribu-
tions over the event space X , then the Bhattacharyya distance is defined as shown in Equation (21).

B(P ∥ Q) := − log

(
∑

x∈X

√
P(x)Q(x)

)

= − log

(
∑

x∈X
Q(x)

√
P(x)
Q(x)

)

= − log

1 − 0.5 ·EQ


(

P(X)
Q(X)

)0.5
− 1

0.5 − 1




= − log
(
1 − 0.5 · DH0.5(P ∥ Q)

)
= 0.5 · R0.5(P ∥ Q)

(21)

Definition 22 (Bhattacharyya-information). Bhattacharyya-information is defined equivalent to
f -information as shown in Equation (22).

IB(S; T) := B
(

P(S,T) ∥ PS ⊗ PT

)
= 0.5 · IR0.5(S; T) (22)

Example 2. Consider the channel T κ−→ S with T = {t1, t2} and S = {s1, s2}. While it will be
discussed in more detail in Section 3.1, Equation (23) already indicates that f -information can be
interpreted as the expected value of quantifying the boundary of the Neyman–Pearson region for an
indicator variable of each target state t ∈ T . Each state of a source variable s ∈ S corresponds to
one side/edge of this boundary as discussed in Section 2.1 and visualized in Figure 2. Therefore, the
sum over s ∈ S corresponds to the sum of quantifying each edge of the zonogon by some function,
which is only parameterized by the distribution of the indicator variable for t. This function satisfies
a triangle inequality (Corollary A1), and the total boundary is non-negative (Theorem 2 discussed
later). Therefore, we can vaguely think of pointwise f -information as quantifying the length of the
boundary of the Neyman–Pearson region or zonogon perimeter to give an oversimplified intuition.

I f (S; T) = ∑
t∈T

PT(t)

∑
s∈S

quantifies each zonogon edge︷ ︸︸ ︷
PS(s) · f

(
PS|T(s | t)

PS(s)

)
︸ ︷︷ ︸

pointwise information of an indicator variable T = t

(23)
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Below is a stepwise computation of χ2-information ( f (z) = (z − 1)2) on a small example from this
interpretation for the setting of Equation (24).

κ = PS|T =

[
p(S = s1 | T = t1) p(S = s2 | T = t1)
p(S = s1 | T = t2) p(S = s2 | T = t2)

]
=

[
0.8 0.2

0.35 0.65

]
(24a)

PT =
[
p(T = t1) p(T = t2)

]
=
[
0.4 0.6

]
(24b)

Since |T | = 2, we compute the pointwise information for two indicator variables as shown in
Figure 6. Since each state s ∈ S corresponds to one edge of the zonogon, we compute them
individually. Notice that the quantification of each vector vsi can be expressed as a function that
is only parameterized by the distribution of the indicator variable. The total zonogon perimeter is
quantified as the sum of each of its edges, which equals pointwise information. In this particular
case, we obtain 0.292653 for the total boundary on the indicator of t1 and 0.130068 for the total
boundary on the indicator of t2. The expected information corresponds to the expected value of these
pointwise quantifications and provides the final result (Equation (25)).

Iχ2(S; T) = p(T = t1) · 0.292653 + p(T = t2) · 0.130068 = 0.195102 (25)
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κ := (T = t1) → S =
[⃗
vs1 v⃗s2

]
=

[
0.80 0.20
0.35 0.65

]
indicator distribution t1:

[
0.4 0.6

]
PS(s1) =

[
0.4 0.6

]
· v⃗s1 = 0.53

quantification v⃗s1 : 0.53 ·
(

0.8
0.53 − 1

)2
= 0.137547

PS(s2) =
[
0.4 0.6

]
· v⃗s2 = 0.47

quantification v⃗s2 : 0.47 ·
(

0.2
0.47 − 1

)2
= 0.155106

total pointwise χ2-information of t1:

0.137547 + 0.155106 = 0.292653

(a) Pointwise information of indicator T = t1
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κ := (T = t2) → S =
[⃗
vs1 v⃗s2

]
=

[
0.35 0.65
0.80 0.20

]
indicator distribution t2:

[
0.6 0.4

]
PS(s1) =

[
0.6 0.4

]
· v⃗s1 = 0.53

quantification v⃗s1 : 0.53 ·
(

0.35
0.53 − 1

)2
= 0.061132

PS(s2) =
[
0.6 0.4

]
· v⃗s2 = 0.47

quantification v⃗s2 : 0.47 ·
(

0.65
0.47 − 1

)2
= 0.068936

total pointwise χ2-information of t2:

0.061132 + 0.068936 = 0.130068

(b) Pointwise information of indicator T = t2

Figure 6. This example visualizes the computation of χ2-information by indicating its results on
the representation of zonogons of an indicator variable. (a) For the pointwise information of t1,
both vectors of the zonogon perimeter are quantified to the sum 0.292653. (b) For the pointwise
information of t2, both vectors of the zonogon perimeter are quantified to the sum of 0.130068. The
final χ2-information is their expected value Iχ2 (S; T) = 0.4 · 0.292653 + 0.6 · 0.130068 = 0.195102.

3. Decomposition Methodology

To construct a partial information decomposition in the framework of Williams and
Beer [1], we only have to define a cumulative redundancy measure (I∩) or cumulative loss
measure (I∪). However, doing this requires a meaningful definition of when information
is the same. Therefore, Section 3.1 presents an interpretation of f -information that enables
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a representation of distinct information. Specifically, we demonstrate that pointwise f -
information for a target state t ∈ T corresponds to the Neyman–Pearson region of its
indicator variable, which is quantified by its boundary (zonogon perimeter). This allows
for the interpretation that each distinct (TPR,FPR)-pair for predicting a state of the target
variable provides a distinct notion of uncertainty. This interpretation of f -information
is used in Section 3.2 to construct a partial information decomposition on the synergy
lattice under the Blackwell order for each state t ∈ T individually. These individual
decompositions are then combined into the final result. Therefore, we decompose specific
information based on the Blackwell order rather than using its minimum, like Williams
and Beer [1]. The resulting operational interpretation is discussed in Section 3.3. Section 3.4
studies the relation between decomposition lattices to derive the dual-decomposition of
any f -information on the redundancy lattice in the following Section 3.5 and prove its
correctness. We use the obtained decomposition for any f -information in Section 3.6 to
transform a Hellinger-information decomposition into a Rényi-information decomposition
while maintaining its non-negativity and an inclusion–exclusion relation. To achieve the
desired axioms and properties, we combine different aspects of the existing literature:

• Like Bertschinger et al. [9] and Kolchinsky [16], we base the decomposition on the Black-
well order and use this to obtain the operational interpretation of the decomposition.

• Like Williams and Beer [1] and related to Lizier et al. [18], Finn and Lizier [13],
and Ince [14], we perform a decomposition from a pointwise perspective, but only for
the target variable.

• In a similar manner to how Finn and Lizier [13] used probability mass exclusion to
differentiate distinct information, we use Neyman–Pearson regions for each state of a
target variable to differentiate distinct information.

• We propose applying the concepts about lattice re-graduations discussed by Knuth [19]
to PIDs to transform the decomposition of one information measure to another while
maintaining its consistency.

We extend Axiom 3 of Williams and Beer [1] as shown below, to allow binding any
information measure to the decomposition.

Axiom 3* (Self-redundancy). For a single source, redundancy I∩,∗ and information loss I∪,∗
correspond to information measure I∗ as shown below:

I∩,∗({Si}; T) = I∗(Si; T) and I∪,∗({Si}; T) = I∗(V; T)− I∗(Si; T) (26)

3.1. Representing f-Information

We begin with an interpretation of f -information, for which we define a pointwise
(indicator) variable π(T, t) that represents one state of the target variable (Equation (27a))
and construct its pointwise information channel (Definition 23). Then, we define a function
r f based on the generator function of an f -divergence for quantifying (half) the zono-
gon perimeter of each pointwise information channel (see Figure 2). These perimeter
quantifications are pointwise f -information.

Definition 23 ([Target] pointwise binary input channel). We define a target pointwise binary
input channel κ(S, T, t) from one state of the target variable t ∈ T to an information source S with
event space S = {s1, . . . , sm} as shown in Equation (27b).

π(T, t) :=

{
1 if T = t
0 otherwise

(27a)

κ(S, T, t) := π(T, t) → S =

[
p(S = s1 | T = t) . . . p(S = sm | T = t)
p(S = s1 | T ̸= t) . . . p(S = sm | T ̸= t)

]
(27b)
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Definition 24 ([Target] pointwise f -information).

• We define a function r f as shown in Equation (28a) to quantify a vector, where 0 ≤ p, x, y ≤ 1.
• We define a target pointwise f -information function i f , as shown in Equation (28b), to quantify

half the zonogon perimeter for the corresponding pointwise channel Z(κ(S, T, t)).

r f
(

p,
[ x

y
])

:= (px + (1 − p)y) · f
(

x
px + (1 − p)y

)
(28a)

i f (p, κ) := ∑
v⃗∈κ

r f (p, v⃗) (28b)

Theorem 1 (Properties of r f ). For a constant 0 ≤ p ≤ 1, (1) the function r f (p, v⃗) is convex in v⃗,
(2) scales linearly in v⃗, (3) satisfies a triangle inequality in v⃗, (4) quantifies any vector of slope one
to zero, and (5) quantifies the zero vector to zero.

Proof.

1. The convexity of r f (p, v⃗) in v⃗ is shown separately in Lemma A1 of Appendix A.
2. That r f (p, ℓ⃗v) = ℓr f (p, v⃗) scales linearly in v⃗ can directly be seen from Equation (28a).
3. The triangle inequality of r f (p, v⃗) in v⃗ is shown separately in Corollary A1 of Appendix A.
4. A vector of slope one is quantified to zero r f (p,

[
ℓ
ℓ

]
) = ℓ · f (1) = 0, since f (1) = 0 is

a requirement on the generator function of an f -divergence (Definition 16).
5. The zero vector is quantified to zero r f (p,

[
0
0
]
) = 0 · f

( 0
0
)
= 0 by the convention of

generator functions for an f -divergence (Definition 16).

The function r f provides the following properties to the pointwise information mea-
sure i f .

Theorem 2 (Properties of i f ). The pointwise information measure i f (1) maintains the ordering
relation of the Blackwell order for binary input channels and (2) is non-negative.

Proof.

1. That the function r f maintains the ordering relation of the Blackwell order on binary
input channels is shown separately in Lemma A2 of Appendix A (Equation (29a)).

2. The bottom element ⊥BW =
[

1
1

]
consists of a single vector of slope one, which is quan-

tified to zero by Theorem 1 (Equation (29b)). The combination with Equation (29a)
ensures the non-negativity.

κ1 ⊑ κ2 =⇒ i f (p, κ1) ≤ i f (p, κ2), (29a)

i f (p,⊥BW) = 0. (29b)

An f -information corresponds to the expected value of the target pointwise f -information
function defined above (Equation (30)). As a result, we can interpret f -information as the
expected value of quantifying (half) the zonogon perimeters for the target pointwise
channels κ(S, T, t).

I f (S; T) = ∑
t∈T

PT(t) · i f (PT(t), κ(S, T, t))

= ∑
t∈T

PT(t) ·

 ∑
v⃗∈κ(S,T,t)

r f (PT(t), v⃗)


= ∑

t∈T
PT(t) ·

[
∑
s∈S

PS(s) · f

(
PS|T(s | t)

PS(s)

)] (30)
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3.2. Decomposing f-Information on the Synergy Lattice

With the representation of Section 3.1 in mind, we can define a non-negative partial
information decomposition for a set of visible variables V = {V1, . . . , Vn} about a target
variable T for any f -information. The decomposition is performed from a pointwise
perspective, which means that we decompose the pointwise measure i f on the synergy
lattice (A(V),⪯) for each t ∈ T . The pointwise synergy lattices are then combined using a
weighted sum to obtain the decomposition of I f .

We map each atom of the synergy lattice to the join of pointwise channels for its
contained sources.

Definition 25 (From atoms to channels). We define the channel corresponding to an atom
α ∈ A(V) as shown in Equation (31).

κ⊔(α, T, t) :=

{
⊥BW if α = ∅⊔

S∈α κ(S, T, t)) otherwise
(31)

Lemma 1. For any set of sources α, β ∈ P(P1(V)) and target variable T with state t ∈ T , the
function κ⊔ maintains the ordering of the synergy lattice under the Blackwell order as shown in
Equation (32).

α ⪯ β =⇒ κ⊔(β, T, t) ⊑ κ⊔(α, T, t) (32)

Lemma 1 is shown separately in Appendix C. The mapping from Definition 25 pro-
vides a lattice that can be quantified using pointwise f -information to construct a cumula-
tive loss measure for its decomposition using the Möbius inverse.

Definition 26 ([Target] pointwise cumulative and partial loss measures). We define the target
pointwise cumulative and partial loss functions as shown in Equations (33a) and (33b).

i∪, f (α, T, t) := i f (PT(t), κ(V, T, t))− i f (PT(t), κ⊔(α, T, t)) (33a)

∆i∪, f (α, T, t) := i∪, f (α, T, t)− ∑
β∈↓̇Sα

∆i∪, f (β, T, t) (33b)

The combined cumulative and partial measures are the expected value of their corre-
sponding pointwise measures. This corresponds to combining the pointwise decomposition
lattices by a weighted sum.

Definition 27 (Combined cumulative and partial loss measures). The cumulative loss measure
I∪, f is defined by Equation (34) and the decomposition result ∆I∪, f by Equation (35).

I∪, f (α; T) := ∑
t∈T

PT(t) · i∪, f (α, T, t) (34)

∆I∪, f (α; T) := ∑
t∈T

PT(t) · ∆i∪, f (α, T, t)

= I∪, f (α; T)− ∑
β∈↓̇Sα

∆I∪, f (β; T)
(35)

Theorem 3. The presented definitions for the pointwise and expected loss measures (i∪, f and I∪, f )
provide a non-negative PID on the synergy lattice with an inclusion–exclusion relation that satisfies
Axioms 1, 2, and 3* for any f -information measure.

Proof.

• Axiom 1: The measure i∪, f (Equation (33a)) is invariant to permuting the order of
sources in α, since the join operator of the zonogon order (

⊔
S∈α) is. Therefore, also

I∪, f satisfies Axiom 1.
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• Axiom 2: The monotonicity of both i∪, f and I∪, f on the synergy lattice is shown
separately as Corollary A2 in Appendix C.

• Axiom 3*: For a single source, i∪, f equals the pointwise information loss by definition
(see Equations (26), (28b), and (33a)). Therefore, I∪, f satisfies Axiom 3*.

• Non-negativity: The non-negativity of ∆i∪, f and ∆I∪, f is shown separately as Lemma A8
in Appendix C.

3.3. Operational Interpretation

From a pointwise perspective (|T | = 2), there always exists a dependency between the
sources for which the synergy of this state becomes zero. This dependence corresponds, by
definition, to the join of their channels. This is helpful for the operational interpretation in
the following paragraph since, individually, each pointwise synergy becomes fully volatile
to the dependence between the sources. There may not exist a dependency between the
sources for which the expected synergy becomes zero for |T | > 2. However, each decision
region that is quantified as synergetic becomes inaccessible at some dependence between
the sources.

The decomposition obtains the operational interpretation that, if a variable provides
pointwise unique information, then there exists a unique decision region for some t ∈ T
that this variable provides access to. Moreover, if a set of variables provides synergetic infor-
mation, then a decision region for some t ∈ T may become inaccessible if the dependence
between the variables changes. Due to the equivalence of the zonogon and Blackwell order
for binary input variables, these interpretations can also be transferred to a set of actions
a ∈ Ω and a pointwise reward function u(a, π(T, t)), which only depends on one state of
the target variable π(T, t) (see Section 2.1): If a variable provides unique information, then
it provides an advantage for some set of actions and pointwise reward function, while
synergy indicates that the advantage for some pointwise reward function is based on the
dependence between variables.

The implication of the interpretation does not hold in the other direction, which we
will also highlight in the example of I∪,TV in Section 4.1. Finally, the definition of the
Blackwell order through the chaining of channels (Equation (2)) highlights its suitability
for tracing the flows of information in Markov chains (see Section 4.2).

Remark 7. The operational interpretation can be strengthened further such that the implication
between accessible regions and partial information holds in both directions by revising Lemmas A1
and A2 with a strictly convex generator function to obtain κ1 ⊏ κ2 =⇒ i f (p, κ1) < i f (p, κ2).

3.4. Decomposition Duality

A non-negative decomposition on the synergy lattice raises the question about its dual-
decomposition on the redundancy lattice. Unfortunately, the definition of decomposition
duality (Definition 15 [23]) does not specify the mapping between atoms to easily construct
dual-decompositions. Therefore, this section discusses how the redundancy and synergy
lattice are related by identifying operators that transform one lattice into the other. This
transformation can then be used to refine the definition of decomposition duality and,
correspondingly, transforms the cumulative measure between lattices.

Definition 28. We define two functions: The function Ξ : P(P1(V)) → P(P1(V)) provides
the atom with complement sources, and the function Ψ : P(P1(V)) → P(P1(V)) is the n-ary
Cartesian product. We indicate the i-th source of an atom as α[i] and indicate some variable within
the i-th source as xi.
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Ξ(α) :=


∅ if α = {V}
{V} if α = ∅
{V \ {S} : S ∈ α} otherwise

Ψ(α) :=

{
{∅} if α = ∅
{{x1, . . . , xm} : x1 ∈ α[1], · · · , xm ∈ α[m]} otherwise, where m = |α|

(36)

Example 3. For an example of these functions, let V = {V1, V2, V3, V4} and α = {{V1}, {V2, V3}}:

Ξ(α) = {{{V2, V3, V4}, {V1, V4}}}
Ξ(Ξ(α)) = {{V1}, {V2, V3}} = α

Ψ(α) = {{V1, V2}, {V1, V3}}
Ψ(Ψ(α)) = {{V1}, {V1, V3}, {V2, V1}, {V2, V3}}

≃ {{V1}, {V2, V1}, {V2, V3}} (since {V1} ⊆ {V1, V3})

≃ {{V1}, {V2, V3}} ≃ α (since {V1} ⊆ {V2, V1})

Ξ(Ψ(Ψ(α))) = {{V2, V3, V4}, {V2, V4}, {V3, V4}, {V1, V4}}
∼= {{V2, V3, V4}, {V3, V4}, {V1, V4}} (since {V2, V4} ⊆ {V2, V3, V4})
∼= {{V2, V3, V4}, {V1, V4}} ∼= Ξ(α) (since {V3, V4} ⊆ {V2, V3, V4})

Lemma 2. The function Ψ(·) is a bijection on the redundancy lattice without the bottom element
(∅) that reverses its order. Let α, β ∈ A(V) \ {⊥RL}:

1. Ψ(Ψ(α)) ≃ α
2. α ≼ β ⇐⇒ Ψ(β) ≼ Ψ(α)

Lemma 3. The function Ξ(·) is a bijection that maintains the ordering of atoms between the
redundancy and synergy order. Let α, β ∈ A(V):

1. α = Ξ(Ξ(α))
2. α ≼ β ⇐⇒ Ξ(α) ⪯ Ξ(β)

The proofs of Lemmas 2 and 3 are given separately in Appendix D.

Corollary 1. Without bottom elements, the redundancy (A(V) \ {⊥RL},≼) and synergy lattice
(A(V) \ {⊥SL},⪯) are related, as shown below with α, β ∈ A(V) \ {⊥RL}:

α ≼ β ⇐⇒ Ξ(Ψ(β)) ⪯ Ξ(Ψ(α)) (37a)

Ξ(Ψ(α ⋏ β)) ∼= Ξ(Ψ(α)) ∨ Ξ(Ψ(β)) (37b)

Ξ(Ψ(α ⋎ β)) ∼= Ξ(Ψ(α)) ∧ Ξ(Ψ(β)) (37c)

{Ξ(Ψ(β)) : β ∈↓R α} {∼=} ↑S Ξ(Ψ(α)) (37d)

{Ξ(Ψ(β)) : β ∈↑R α} {∼=} ↓S Ξ(Ψ(α)) (37e)

Proof. Follows directly from Lemma 2 and 3.

Figure 7 visualizes the relations from the introduced operators to provide an intuition.
Applying the function Ψ to all atoms is equal to reversing the redundancy order, while
applying the function Ξ to all atoms is equal to swapping the ordering relation used
(synergy/redundancy order).
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α

β Ξ(β)

Ξ(α)

≽ ⪰

Ψ

Ξ

Ξ ◦ Ψ ◦ Ξ

Ξ

Figure 7. Visualization of the functions Ψ and Ξ: The application of function Ψ is equal to reversing
the redundancy order, and the application of function Ξ is equal to swapping the ordering relation
used between the redundancy and synergy lattice.

With these definitions in place, we can refine the definition of decomposition duality:

Lemma 4 (Decomposition duality). A redundancy- and synergy-based information decomposi-
tion is pointwise dual if, for all α ∈ A(V) \ {⊥RL}:

∆i∩, f (α, T, t) = ∆i∪, f (Ξ(Ψ(α)), T, t)

∆i∩, f (⊥RL, T, t) = 0 = ∆i∪, f (⊥SL, T, t)
(38)

A redundancy- and synergy-based information decomposition is dual if, for all α ∈ A(V) \ {⊥RL}:

∆I∩, f (α; T) = ∆I∪, f (Ξ(Ψ(α)); T)

∆I∩, f (⊥RL; T) = 0 = ∆I∪, f (⊥SL; T)
(39)

The proof of Lemma 4 is shown separately in Appendix D. To convert a decomposition
from the synergy lattice into its dual-decomposition on to the redundancy lattice, the
following relation is particularly useful. It states that, on the synergy lattice, all atoms
are either in the up-set of Ξ(Ψ(α)) or in the down-set of an atom that corresponds to an
individual source within α.

Lemma 5. For α ∈ A(V) \ {⊥RL}:

A(V)\ ↑S Ξ(Ψ(α)) =
⋃

Sa∈α

↓S {Sa} (40)

Proof. When expanding the definition of up- and down-sets, it can directly be seen from
Lemma A9 that both sets provide an exclusive partitioning of all atoms.

↑S Ξ(Ψ(α)) ={β ∈ A(V) : (Ξ(Ψ(α)) ⪯ β)}⋃
Sa∈α

↓S {Sa} ={β ∈ A(V) : (∃Sa ∈ α. β ⪯ {Sa})}

(Ξ(Ψ(α)) ⪯ β) ⇐⇒ ¬(∃Sa ∈ α. β ⪯ {Sa}) (by Lemma A9)

(41)

Figure 8 summarizes and visualizes the required relations for the following transforma-
tion of the cumulative measure: (i) The bottom elements of all lattices are mapped to each
other and quantified to zero. (ii) The function Ψ reverses the redundancy lattice (β ≃ Ψ(α)
such that α ≃ Ψ(β)) to relate the down-set of α to the up-set of β while ignoring the bottom
element. The function Ξ captures the relation between both orderings (α′ ∼= Ξ(β) such that
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β ≃ Ξ(α′)), to relate the up-set of β on the redundancy lattice to the up-set of α′ on the syn-
ergy lattice. This provides the desired mapping from the down-set of α on the redundancy
lattice to the up-set of α′ on the synergy lattice for duality. Alternatively, we could first
transform the down-set of α on the redundancy to the down-set of β′ = Ξ(α) on the synergy
lattice, then reverse the synergy order and obtain the same result. (iii) Lemma 5 states that
all atoms on the synergy lattice are either in the up-set of Ξ(Ψ(α)) or in the down-set of
{Sa} with Sa ∈ α. The example α = {S3, S12} is visualized in Figure 8, and we encourage

the reader to view another example such as α = {S13}
Ψ−→ {S1, S3}

Ξ−→ {S12, S23}.

{S123}

{S12} {S13} {S23}

{S12, S13} {S12, S23} {S13, S23}

{S1} {S2} {S3}{S12, S13, S23}

{S1, S23} {S2, S13} {S3, S12}

{S1, S2} {S1, S3} {S2, S3}

{S1, S2, S3}

∅

Redundancy
lattice

∅

{S1} {S2} {S3}

{S1, S2} {S1, S3} {S2, S3}

{S12} {S13} {S23} {S1, S2, S3}

{S3, S12} {S2, S13} {S1, S23}

{S12, S13} {S12, S23} {S13, S23}

{S12, S13, S23}

{S123}

Synergy
lattice

Ψ

Ξ

du
al

0

Figure 8. Visualization of lattice duality and Lemma 5. We abbreviate the notation of sources
within this figure by listing the contained visible variables as source index (S12 = {V1, V2}).
(i) All bottom elements are mapped to each other and quantified to zero. (ii) To identify the dual
for α = {S3, S12} from the redundancy lattice, we first apply the transformation Ψ(α) ≃ {S13, S23}
and, then, Ξ(Ψ(α)) ∼= {S1, S2}. (iii) Ignoring the bottom elements, the down-set of α on the redun-
dancy lattice corresponds to the up-set of Ξ(Ψ(α)) on the synergy lattice for duality (gray areas).
(iv) Lemma 5 states that, on the synergy lattice, exactly those atoms that are not in the up-set of
Ξ(Ψ({S3, S12})) must be in the down-set of either {S3} or {S12}.

With these relations in place, we can construct dual-decompositions and prove
their correctness.

Lemma 6. The pointwise dual-decomposition for the redundancy lattice of a loss measure on the
synergy lattice is defined by:

i∩, f (α, T, t) :=

{
0 if α = ∅
i∪, f (⊤SL, T, t)− ∑β∈P1(α)

(−1)|β|−1i∪, f (β, T, t) otherwise
(42)

The proof of Lemma 6 is shown separately in Appendix D. This section discussed the
relation between four decomposition lattices, which are the redundancy and synergy lattice,
as well as their reversed counterparts. Additionally, we demonstrated how this relation can
be used to transform a cumulative decomposition measure between them. Decomposition
duality enforces each lattice to be consistent with its set-theoretic interpretation. The
function Ψ corresponds to taking the set-theoretic complement on the redundancy lattice
and, thus, reflects on the cumulative measure by subtracting it from the top atom. The
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function Ξ corresponds to the relation between the union and intersection and, thus,
introduces an inclusion–exclusion principle between their cumulative measures.

3.5. Decomposing f-Information on the Redundancy Lattice

Using the results from Section 3.4, we can now convert the decomposition of Section 3.2
to the redundancy lattice. The conversion can be applied to both the expected or pointwise
measure. The partial contributions (∆i∩, f and ∆I∩, f ) are obtained from the Möbius inverse.

Lemma 7 (Dual-decomposition on the redundancy lattice). The definitions of Equation (43)
correspond to the dual-decomposition of Definition 26.

i∩, f (α, T, t) =

{
0 if α = ∅

∑β∈P1(α)
(−1)|β|−1i f (PT(t), κ⊔(β, T, t)) otherwise

(43a)

I∩, f (α; T) = ∑
t∈T

PT(t) · i∩, f (α, T, t) = I f (V; T)− ∑
β∈P1(α)

(−1)|β|−1 I∪, f (β; T) (43b)

Proof. The duality of the pointwise measure is obtained from Lemma 6 and Definition 26.
The duality of the pointwise measure implies the duality of the combined measure.

The function i f (PT(t), κ⊔(α, T, t)) quantifies the convex hull/blackwell join of the
Neyman–Pearson regions of its sources and represents a notion of pointwise union in-
formation about the target state t ∈ T . It is used in Equation (33a) to define a pointwise
loss measure for the synergy lattice by subtracting it from the total information. As ex-
pected, we can see that the corresponding dual-decomposition on the redundancy lattice
enforces an inclusion–exclusion relation between our notions of pointwise union informa-
tion (i f (PT(t), κ⊔(α, T, t))) and pointwise intersection information (i∩, f (α, T, t)).

Theorem 4. The dual-decomposition as defined by Equation (43) provides a non-negative PID,
which satisfies an inclusion–exclusion relation and the axioms of Williams and Beer [1] on the
redundancy lattice for any f -information.

Proof.

• Axiom 1: The measure i∩, f is invariant to permuting the order of sources in α, since the
join operator of the zonogon order (

⊔
S∈α) is. Therefore, also, I∩, f satisfies Axiom 1.

• Non-negativity: The non-negativity of ∆i∩, f is obtained from Lemma 7 and Theorem 3
as shown in Equation (44). The non-negativity of the pointwise measure implies the
non-negativity of the combined measure ∆I∩, f .

∀α ∈ A(V). ∆i∩, f (α, T, t) =

{
0 ≥ 0 if α = ⊥RL

∆i∪, f (Ξ(Φ(α)), T, t) ≥ 0 otherwise
(44)

• Axiom 2: Since the cumulative measures i∩, f and I∩, f correspond to the sum of partial
contributions in their down-set, the non-negativity of partial information implies the
monotonicity of the cumulative measures.

• Axiom 3*: For a single source, I∩, f equals f -information by definition (see Equation (30)).
Therefore, I∩, f satisfies Axiom 3*.

The operational interpretation of Section 3.3 is maintained since the partial contribu-
tions are identical between both lattices.

Remark 8. The definitions of Equations (34) and (43) satisfy the desired property of Bertschinger
et al. [9], who argued that any sensible measure for unique and redundant information should only
depend on the marginal distribution of sources.
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Remark 9. As discussed before [20], it is possible to further split redundancy into two components
for extracting the pointwise meet under the Blackwell order (zonogon intersection, first component).
The second component of redundancy as defined above contains decision regions that are part of
the convex hull, but not the individual channel zonogons (discussed as shared information in [20]).
By combining Equation (43) and Lemma A7, we obtain that both components of this split for
redundancy are non-negative.

3.6. Decomposing Rényi-Information

Since Rényi-information is an invertible transformation of Hellinger-information and
α-information, we argue that their decompositions should be consistent. We propose to
view the decomposition of Rényi-information as a transformation from an f -information
and demonstrate the approach by transferring the Hellinger-information decomposition
to a Rényi-information decomposition. Then, we demonstrate that the result is invariant
to a linear scaling of the considered f -information, such that the transformation from
α-information provides identical results. The obtained Rényi-information decomposition is
non-negative and satisfies the three axioms proposed by Williams and Beer [1] (see below).
However, its inclusion–exclusion relation is based on a transformed addition operator. For
transforming the decomposition, we consider Rényi-information to be a re-graduation of
Hellinger-information, as shown in Equation (45).

va(z) :=
1

a − 1
log(1 + (a − 1)z) (45a)

IRa(S; T) = va(IHa(S; T)) (45b)

To maintain consistency when transforming the measure, we also have to transform its
operators ([19], p. 6 ff.):

Definition 29 (Addition of Rényi-information). We define the addition of Rényi-information
⊕a with its corresponding inverse function ⊖a by Equation (46).

x ⊕a y := va(v−1
a (x) + v−1

a (y)) =
log
(

e(a−1)x + e(a−1)y − 1
)

a − 1
(46a)

x ⊖a y := va(v−1
a (x)− v−1

a (y)) =
log
(

e(a−1)x − e(a−1)y + 1
)

a − 1
(46b)

To transform a decomposition of the synergy lattice, we define the cumulative loss
measures as shown in Equation (47) and use the transformed operators when computing
the Möbius inverse (Equation (48a)) to maintain consistency in the results (Equation (48b)).

Definition 30. The cumulative and partial Rényi-information loss measures are defined as
transformations of the cumulative and partial Hellinger-information loss measures, as shown in
Equations (47) and (48).

I∪,Ra(α; T) := va(I∪,Ha(α; T)) (47)

∆I∪,Ra(α; T) := I∪,Ra(α; T) ⊖a ∑
β∈↓̇Sα

∆I∪,Ra(β; T) where: + := ⊕a (48a)

= va(∆I∪,Ha(α; T)) (48b)

Remark 10. We show in Lemma A11 of Appendix E that re-scaling the original f -information
does not affect the resulting decomposition or transformed operators. Therefore, transforming a
Hellinger-information decomposition or a α-information decomposition to a Rényi-information
decomposition provides identical results.
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The operational interpretation presented in Section 3.2 is similarly applicable to partial
Rényi-information (∆I∪,Ra , Equation (48b)), since the function va satisfies va(0) = 0 and
x ≤ 0 =⇒ 0 ≤ va(x).

Theorem 5. The presented definitions for the cumulative loss measure I∪,Ra provide a non-negative
PID on the synergy lattice with an inclusion–exclusion relation under the transformed addition
(Definition 29) that satisfies Axioms 1, 2, and 3* for any Rényi-information measure.

Proof.

• Axiom 1: I∪,Ra(α; T) is invariant to permuting the order of sources, since I∪,Ha(S; T)
satisfies Axiom 1 (see Section 3.2).

• Axiom 2: I∪,Ra(α; T) satisfies monotonicity, since I∪,Ha(S; T) satisfies Axiom 2 (see
Section 3.2) and the transformation function va is monotonically increasing for
a ∈ (0, 1) ∪ (1, ∞).

• Axiom 3*: Since I∪,Ha satisfies Axiom 3* (see Section 3.2, Equations (45) and (47)), I∪,Ra

satisfies the self-redundancy axiom by definition, however, at a transformed operator:
I∪,Ra({Si}; T) = IRa({V}; T)⊖a IRa({Si}; T).

• Non-negativity: The decomposition of I∪,Ra is non-negative, since ∆I∪,Ha is non-
negative (see Section 3.2), the Möbius inverse is computed with transformed operators
(Equation (48b)) and the function va satisfies x ≤ 0 =⇒ 0 ≤ va(x).

Remark 11. To obtain an equivalent decomposition of Rényi-information on the redundancy lattice,
we can correspondingly transform the dual-decomposition from the redundancy lattice of Hellinger-
information as shown in Equation (49). The resulting decomposition will satisfy the non-negativity,
the axioms of Williams and Beer [1], and an inclusion–exclusion relation under the transformed
operators (Definition 29) for the same reasons described above from Theorem 4.

I∩,Ra(α; T) := va(I∩,Ha(α; T)) (49a)

∆I∩,Ra(α; T) := va(∆I∩,Ha(α; T)) (49b)

Remark 12. The relation between the redundancy and synergy lattice can be used for the definition
of a bi-valuation [19] in calculations as discussed in [20]. This is also possible for Rényi-information
at transformed operators.

When taking the limit of Rényi-information for a → 1, we obtain mutual information
(IKL). Since mutual information is also an f -information, we expect its operators in the
Möbius inverse to be addition. This is indeed the case (Equation (50)), and the measures
will be consistent.

lim
a→1

x ⊕a y = x + y

lim
a→1

x ⊖a y = x − y
(50)

Finally, the decomposition of Bhattacharyya-information can be obtained by re-scaling the
decomposition of Rényi-information at a = 0.5, which causes another transform of the
addition operator for the inclusion–exclusion relation.

4. Evaluation

A comparison of the proposed decomposition with other methods of the literature can
be found in [20] for mutual information. Therefore, this section first compares different
f -information measures for typical decomposition examples and discusses the special case
of total variation (TV)-information to explain its distinct behavior. Since we can see larger
differences between measures in more complex scenarios, we compare the measures by
analyzing the information flows in a Markov chain. We provide the implementation used
for both dual-decompositions of f-information and the examples used in this work in [30].
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4.1. Partial Information Decomposition
4.1.1. Comparison of Different f-Information Measures

We use the examples discussed by Finn and Lizier [13] to compare different f -
information decompositions and add a generic example from [20]. All probability dis-
tributions used and their abbreviations can be found in Appendix F. We normalize the
decomposition results to the f -entropy of the target variable for the visualization in Figure 9.
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Figure 9. Comparison of different f -information measures normalized to the f -entropy of the target
variable. All distributions are shown in Appendix F and correspond to the examples of [13,20]. The
example name abbreviations are listed below in Table A1. The measures behave mostly similarly since
the decompositions follow an identical structure. However, it can be seen that total variation attributes
more information to being redundant than other measures and appears to behave differently in the
generic example since it does not attribute any partial information to the first variable or their synergy.

Since all results are based on the same framework, they behave similarly for examples
that analyze a specific aspect of the decomposition function (XOR, Unq, PwUnq, RdnErr,
Tbc, AND). However, it can be observed that the decomposition of total variation (TV)
appears to differ from others: (1) In all examples, total variation attributes more information
to being redundant than other measures. (2) In the generic example, total variation is
the only measure that does not attribute any information to being unique to variable
one or synergetic. We discuss the case of total variation in Section 4.1.2 to explain its
distinct behavior.

We visualize the zonogons for the generic example in Figure A2, which shall highlight
that the implication of the operational interpretation does not hold in the other direction: the
existence of partial information implies an advantage for the expected reward towards some
state of the target variable, but an advantage for the expected reward towards some state of
the target variable does not imply partial information in the example of total variation.

4.1.2. The Special Case of Total Variation

The behavior of total variation appears different compared to other f -information
measures (Figure 9). This is due to total variation measuring the perimeter of a zonogon
such that the result corresponds to a linear scaling of the maximal (Euclidean) height h∗

that the zonogon reaches above the diagonal, as visualized in Figure 10.
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Figure 10. Visualization of the maximal (Euclidean) height h∗ at point P∗ that a zonogon (blue)
reaches above the diagonal.

Remark 13. From a cost perspective, the height h∗ can be interpreted as the performance evaluation
of the optimal decision strategy (symmetric point to P∗ in the lower zonogon half) for a prediction T̂

with minimal expected cost at the cost ratio Cost(T=t,T̂ ̸=t)−Cost(T=t,T̂=t)
Cost(T ̸=t,T̂=t)−Cost(T ̸=t,T̂ ̸=t)

= 1−PT(t)
PT(t)

(see Equation
(8) of [31]) for each target state individually.

Lemma 8.

(a) The pointwise total variation (iTV) is a linear scaling of the maximal (Euclidean) height
h∗ that the corresponding zonogon reaches above the diagonal, as visualized in Figure 10
(Equation (51a)).

(b) For a non-empty set of pointwise channels A, pointwise total variation iTV quantifies the join
element to the maximum of its individual channels (Equation (51b)).

(c) The loss measure i∪,TV quantifies the meet for a set of sources on the synergy lattice to their
minimum (Equation (51c)).

iTV(p, κ) =
1 − p

2 ∑
v∈κ

|vx − vy| = (1 − p)
h∗√

2
(51a)

iTV(p,
⊔

κ∈A
κ) = max

κ∈A
iTV(p, κ) (51b)

i∪,TV(
∧

α∈A
α, T, t) = min

α∈A
i∪,TV(α, T, t) (51c)

Proof. The proof of the first two statements (Equations (51a) and (51b)) is provided sepa-
rately in Appendix G, which imply the third (Equation (51c)) by Definition 26.

Quantifying the meet element on the synergy lattice to the minimum has the following
consequences for total variation: (1) It attributes a minimum amount of synergy, and
therefore more information to redundancy than other measures. (2) For each state of the
target, at most one variable can provide unique information. In the case of |T | = 2, the
pointwise channels are symmetric (see Equation (6)), such that the same variable provides
the maximal zonogon height both times. This is the case in the generic example of Figure 9,
and the reason why at most one variable can provide unique information in this setting.
However, beyond binary targets (|T | > 2), both variables may provide unique information
at the same time since different sources can provide the maximal zonogon height for
different target states (see the later example in Figure 11).
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Figure 11. Analysis of the Markov chain information flow (Equation (A47)). Visualized results for the
information measures: KL, TV, and χ2. The remaining results (H2-, LC-, and JS-information) can be
found in Figure A3.

Remark 14. Using the pointwise minimum on the synergy lattice results in a similar struc-
ture to the proposed measure of Williams and Beer [1]. However, TV-information is based on
a different pointwise measure iTV , which displays the same behavior (Equation (51b)), unlike
pointwise KL-information.
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4.2. Information Flow Analysis

The differences between f -information measures in Section 4.1 appear more visible in
complex scenarios. Therefore, this section compares different measures in the information
flow analysis of a Markov chain.

Consider a Markov chain M1 → M2 → · · · → M5, where Mi = (Xi, Yi) is the joint
distribution of two variables. Assume that we are interested in state three, and thus, define
T = M3 as the target variable. Using the approach described in Section 3, we can compute
an information decomposition for each state Mi of the Markov chain with respect to the
target. Now, we are additionally interested in how the partial information decomposition
from stage Mi propagates into the next Mi+1, as visualized in Figure 11.

Definition 31 (Partial information flow). The partial information flow of an atom α ∈ A(Mi)
into the atom β ∈ A(Mi+1) quantifies the redundancy between the partial contributions of their
respective decomposition lattices.

Notation 8. We use the notation I◦, f with ◦ ∈ {∪,∩} to refer to either the loss measure I∪, f or
redundancy measure I∩, f . The same applies to the functions J◦→◦, f and J∆→◦, f of Equation (52).

Let α ∈ A(Mi) and β ∈ A(Mi+1), then we compute information flows equivalently
on the redundancy or synergy lattice as shown in Equation (52). When using a redun-
dancy measure ◦ = ∩, then the strict down-set of ↓̇◦α refers to the strict down-set on
its redundancy lattice (A(Mi),≼), and when using a loss measure ◦ = ∪, then the strict
down-set ↓̇◦α refers to the strict down-set on its synergy lattice (A(Mi),⪯). We obtain the
intersection of cumulative measures by quantifying their meet, which is on both lattice
equivalent to their union of sources (J◦→◦, f , Equation (52a)). To obtain how much of the
partial contribution of α can be found in the cumulative measure of β (J∆→◦, f ), we remove
the contributions of its down-set (↓̇◦α on the lattice for A(Mi), see Equation (52b)). To
finally obtain the flow from the partial contribution of α to the partial contribution of β
(J∆→∆, f ), we similarly remove the contributions of the down-set of β (↓̇◦β on the lattice for
A(Mi+1), see Equation (52c)). The approach can be extended for tracing information flows
over multiple steps; however, we will only trace one step in this example.

J◦→◦, f (α, β, T) := I◦, f (α ∪ β; T) (52a)

J∆→◦, f (α, β, T) := J◦→◦, f (α, β, T)− ∑
γ∈↓̇◦α

J∆→◦, f (γ, β, T) (52b)

J∆→∆, f (α, β, T) := J∆→◦, f (α, β, T)− ∑
γ∈↓̇◦β

J∆→∆, f (α, γ, T) (52c)

Remark 15. The resulting partial information flows are equivalent (dual) between the redundancy
and loss measure, except for the bottom element since their functionality differs: The flow from or to
the bottom element on the redundancy lattice is always zero. In contrast, the flow from or to the
bottom element on the synergy lattice quantifies the information gained or lost in the step.

Remark 16. The information flow analysis of Rényi- and Bhattacharyya-information can be
obtained as a transformation of the information flow from Hellinger-information. Alternatively, the
information flow can be computed directly using Equation (52) under the corresponding definition
of addition and subtraction for the information measure used.

We randomly generate an initial distribution and each row of a transition matrix under
the constraint that at least one value shall be above 0.8 to avoid an information decay
that is too rapid through the chain. The specific parameters of the example are shown in
Appendix H. The event spaces used are X = {0, 1, 2} and Y = {0, 1} such that |Mi| = 6.
We construct a Markov chain of five steps with the target T = M3 and trace each partial
information for one step using Equation (52). We visualized the results for KL-, TV-, and
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χ2-information in Figure 11, and the results for H2-, LC-, and JS-information in Figure A3
of Appendix H.

All results display the expected behavior that the information that Mi provides about
M3 increases for 1 ≤ i ≤ 3 and decreases for 3 ≤ i ≤ 5. The information flow results of KL-,
H2-, LC-, and JS-information are conceptually similar. Their main differences appear in the
rate at which the information decays and, therefore, how much of the total information
we can trace. In contrast, the results of TV- and χ2-information display different behavior,
as shown in Figure 11: TV-information indicates significantly more redundancy, and χ2-
information displays significantly more synergy than the other measures. Additionally,
the decomposition of TV-information contains fever information flows. For example, it
is the only analysis that does not show any information flow from M2 into the unique
contribution of Y3 or from M2 into the synergy of (X3, Y3). This demonstrates that the same
decomposition method can obtain different behaviors from different f -divergences.

5. Discussion

Using the Blackwell order to construct pointwise lattices and to decompose pointwise
information is motivated from the following three aspects:

• All information measures in Section 2.3 are the expected value of the pointwise informa-
tion (quantification of the Neyman–Pearson region boundary) for an indicator variable
of each target state. Therefore, we argue for acknowledging the “pointwise nature” [13]
of these information measures and to decompose them accordingly. A similar argument
was made previously by Finn and Lizier [13] for the case of mutual information and
motivated their proposed pointwise partial information decomposition.

• The Blackwell order does not form a lattice beyond indicator variables since it does not
provide a unique meet or join element for |T | > 2 [17]. However, from a pointwise
perspective, the informativity (Definition 2) provides a unique representation of
union information. This enables separating the definition of redundant, unique,
and synergetic information from a specific information measure, which then only
serves for its quantification. We interpret these observations as an indication that
the Blackwell order should be used to decompose pointwise information based on
indicator variables rather than decomposing the expected information based on the full
target distribution.

• We can consider where the alternative approach would lead, if we decomposed
the expected information from the full target distribution using the Blackwell
order: the decomposition would become identical to the method of Bertschinger
et al. [9] and Griffith and Koch [10]. For bivariate examples (|V| = 2), this de-
composition [9,10] is non-negative and satisfies an additional property (identity,
proposed by Harder et al. [5]). However, the identity property is inconsistent [32]
with the axioms of Williams and Beer [1] and non-negativity for |V| > 2. This causes
negative partial information when extending the approach to |V| > 2. The identity
property also contradicts the conclusion of Finn and Lizier [13] from studying Kelly
Gambling that, “information should be regarded as redundant information, regardless
of the independence of the information sources” ([13], p. 26). It also contradicts our in-
terpretation of distinct information through distinct decision regions when predicting
an indicator variable for some target state. We do not argue that this interpretation
should be applicable to the concept of information in general, but acknowledge that
this behavior seems present in the information measures studied in this work and
construct their decomposition accordingly.

Our critique for the decomposition measure of Williams and Beer [1] focuses on
the implication that a less informative variable (Definition 2) about t ∈ T provides less
pointwise information (I(S; T = t), Equation (15a)): κ(S1, T, t) ⊑ κ(S2, T, t) =⇒ I(S1; T =
t) ≤ I(S2; T = t). This implication does not hold in the other direction. Therefore,
equal pointwise information does not imply equal informativity and, thus, does not mean
being redundant.
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We chose to define a notion of pointwise union information based on the join of the
Blackwell order since it leads to a meaningful operational interpretation: the convex hull
of the pointwise Neyman–Pearson regions is always a subset of their joint distribution.
Moreover, it is possible to construct joint distributions for which each individual decision
region outside the convex hull becomes inaccessible, even if there may not exist one unique
joint distribution at which all synergetic regions are lost simultaneously. This volatility due
to the dependence between variables appears suitable for a notion of synergy. Similarly, the
resulting unique information appears suitable since it ensures that a variable with unique
information must provide access to some additional decision region. Finally, the obtained
unique and redundant information is sensible [9] since it only depends on the marginal
distributions with the target. The operational interpretation can be strengthened further
such that the implication between accessible regions and partial information holds in both
directions by revising Lemmas A1 and A2 with a strictly convex generator function.

We perform the decomposition on a pointwise lattice using the Blackwell join since it
is possible to represent f -information as the expected value of quantifying the Neyman–
Pearson region boundary (zonogon perimeter) for indicator variables (pointwise channels).
Since the pointwise measures satisfy a triangle inequality, we mentioned the oversimplified
intuition of pointwise f -information as the length of the zonogon perimeter. Correspond-
ingly, if we identified an information measure that behaved more like the area of the
zonogon (which could also maintain their ordering), then we would need to decompose it
on a pointwise lattice using the Blackwell meet to achieve non-negativity. We assume that
most information measures behave more similar to quantifying the boundary length rather
than its area, since the boundary segments can directly be obtained from the conditional
probability distribution and do not require an actual construction from the likelihood-
ratio test.

In the literature, PIDs have been defined based on different ordering relations [16],
the Blackwell order being only one of them. We think that this diversity is desirable since
each approach provides a different operational interpretation of redundancy and synergy.
For this reason, we wonder if obtaining a non-negative decomposition with the inclusion–
exclusion relation for other ordering relations was possible when transferring them to a
pointwise perspective or from mutual information to other information measures.

Studying the relations between different information measures for the same decompo-
sition method may provide further insights into their properties, as demonstrated by the
example of total variation in Section 4.2. The ability to decompose different information
measures is also a necessity to apply the method in a variety of areas, since each informa-
tion measure can then provide the operational meaning within its respective domains. To
ensure consistency between related information measures, we allowed the re-definition of
information addition, as demonstrated in the example of Rényi-information in Section 3.6,
which also opens new possibilities for satisfying the inclusion–exclusion relation.

There is currently no universally accepted definition of conditional Rényi information.
Assuming that IRa(T; Si | Sj) should capture the information that Si provides about T
when already knowing the information from Sj, then one could propose that this quantity
should correspond to the according partial information contributions (unique/synergetic)
and, thus, the definition of Equation (53).

With this in mind, it is also possible to define, model, decompose, and trace Transfer
Entropy [33], used in the analysis of complex systems, for each presented information
measure with the methodology of Section 4.2.

IRa(T; Si | Sj) := IRa(T; Si, Sj)⊖ IRa(T; Sj) (53)

Finally, studying the corresponding definitions for continuous random variables and
identifying suitable information measures for specific applications would be interesting
directions for future work.
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6. Conclusions

In this work, we demonstrated a non-negative PID in the framework of Williams and
Beer [1] for any f -information with practical operational interpretation and the conversion
of measures between decomposition lattices. We demonstrated that the decomposition of
f -information can be used to obtain a non-negative decomposition of Rényi-information,
for which we re-defined the addition to demonstrate that its results satisfy an inclusion–
exclusion relation. Finally, we demonstrated how the proposed decomposition method
can be used for tracing the flow of information through Markov chains and how the
decomposition obtains different properties depending on the chosen information measure.
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Appendix A. Quantifying Zonogon Perimeters

Lemma A1. If the function f is convex, then the function r f (p, v⃗) as defined in Equation (28a) is
convex in its second argument v⃗ ∈ [0, 1]2 for a constant p ∈ [0, 1].

Proof. We use the following definitions for abbreviating the notation. Let 0 ≤ t ≤ 1 and
v⃗i =

[ xi
yi

]
:

a1 := x1 p + y1(1 − p)

a2 := x2 p + y2(1 − p)

b1 :=
ta1

ta1 + (1 − t)a2

b2 :=
(1 − t)a2

ta1 + (1 − t)a2

The case of ai = 0 is handled by the convention that 0 · f
( 0

0
)
= 0. Therefore, we can assume

that ai ̸= 0 and use 0 ≤ b1 ≤ 1 with b2 = 1 − b1 to apply the definition of convexity on the
function f :

r f

(
p,
[

tx1+(1−t)x2
ty1+(1−t)y2

])
= (ta1 + (1 − t)a2) · f

(
tx1 + (1 − t)x2

ta1 + (1 − t)a2

)
= (ta1 + (1 − t)a2) · f

(
b1

x1

a1
+ b2

x2

a2

)
≤ (ta1 + (1 − t)a2) ·

(
b1 f
(

x1

a1

)
+ b2 f

(
x2

a2

))
(by convexity of f )

= ta1 · f
(

x1

a1

)
+ (1 − t)a2 · f

(
x2

a2

)
= t · r f

(
p,
[ x1

y1

])
+ (1 − t) · r f

(
p,
[ x2

y2

])

Corollary A1. For v⃗1, v⃗2, (⃗v1 + v⃗2) ∈ [0, 1]2 and a constant p ∈ [0, 1], the function r f (p, v⃗) as
defined in Equation (28a) satisfies a triangle inequality on its second argument: r f (p, v⃗1 + v⃗2) ≤
r f (p, v⃗1) + r f (p, v⃗2).
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Proof.

r f (p, ℓ⃗v1 + (1 − ℓ)⃗v2) ≤ ℓr f (p, v⃗1) + (1 − ℓ)r f (p, v⃗2) (be Lemma A1)

r f (p, 0.5(⃗v1 + v⃗2)) ≤ 0.5
(

r f (p, v⃗1) + r f (p, v⃗2)
)

(let ℓ = 0.5)

r f (p, v⃗1 + v⃗2) ≤ r f (p, v⃗1) + r f (p, v⃗2) (by r f (p, ℓ⃗v) = ℓr f (p, v⃗))

Lemma A2. For a constant p ∈ [0, 1], the function i f maintains the ordering relation from the
Blackwell order on binary input channels: κ1 ⊑ κ2 =⇒ i f (p, κ1) ≤ i f (p, κ2).

Proof. Let κ1 be represented by a 2 × n matrix and κ2 by a 2 × m matrix. By the definition
of the Blackwell order (κ1 ⊑ κ2, Equation (2)), there exists a stochastic matrix λ such that
κ1 = κ2 · λ. We use the notation κ2[:, i] to refer to the ith column of matrix κ2 and indicate
the element at row i ∈ {1..m} and column j ∈ {1..n} of λ by λ[i, j]. Since λ is a valid (row)
stochastic matrix of dimension m × n, its rows sum to one ∀i ∈ {1..m}. ∑n

j=1 λ[i, j] = 1.

i f (p, κ1) =
n

∑
j=1

r f (p, κ1[:, j]) (by Equation (28b))

=
n

∑
j=1

r f (p,
m

∑
i=1

κ2[:, i]λ[i, j]) (by Equation (2))

≤
n

∑
j=1

m

∑
i=1

r f (p, κ2[:, i]λ[i, j]) (by Corollary A1)

=
n

∑
j=1

m

∑
i=1

λ[i, j]r f (p, κ2[:, i]) (by r f (p, ℓ⃗v) = ℓr f (p, v⃗))

=
m

∑
i=1

r f (p, κ2[:, i]) (by
n

∑
j=1

λ[i, j] = 1)

= i f (p, κ2) (by Equation (28b))

Lemma A3. Consider two non-empty sets of binary input channels with equal cardinality (|A| = |B|)
and a constant p ∈ [0, 1]. If the Minkowski sum for the zonogons of channels in A is a subset of
the Minkowski sum for the zonogons of channels in B, then the sum of pointwise information for
the channels in A is less than the sum of pointwise information for the channels in B as shown in
Equation (A1).

∑
κ∈A

Z(κ) ⊆ ∑
κ∈B

Z(κ) =⇒ ∑
κ∈A

i f (p, κ) ≤ ∑
κ∈B

i f (p, κ) (A1)

Proof. Let n = |A| = |B|. We use the notation A[i] with 1 ≤ i ≤ n to indicate the channel
κi within the set A.
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n

∑
i=1

Z(A[i]) ⊆
n

∑
i=1

Z(B[i])

Z
([

A[1] . . . A[n]
])

⊆ Z
([

B[1] . . . B[n]
])

(by Equation (4))

Z
(

1
n
·
[
A[1] . . . A[n]

])
⊆ Z

(
1
n
·
[
B[1] . . . B[n]

])
(scale to sum (1, 1))

i f

(
p,

1
n
·
[
A[1] . . . A[n]

])
≤ i f

(
p,

1
n
·
[
B[1] . . . B[n]

])
(by Equation (5), Lemma A2)

n

∑
i=1

i f

(
p,

1
n

A[i]
)
≤

n

∑
i=1

i f

(
p,

1
n

B[i]
)

(by Equation (28b))

1
n

n

∑
i=1

i f (p, A[i]) ≤ 1
n

n

∑
i=1

i f (p, B[i]) (by r f (p, ℓ⃗v) = ℓr f (p, v⃗))

∑
κ∈A

i f (p, κ) ≤ ∑
κ∈B

i f (p, κ)

Appendix B. Inclusion-Exclusion Inequality of Zonogons

Let P(A) represent the power set of a non-empty set A ̸= ∅ and separate the subsets
of even (Le) and odd (Lo) cardinality as shown below. Additionally, let L≤1 represent all
subsets with cardinality less than or equal to one and L1 all subsets of cardinality equal
to one:

L≤1 := {B ∈ P(A) : |B| ≤ 1}
L1 := {B ∈ P(A) : |B| = 1}
Le := {B ∈ P(A) : |B| even}
Lo := {B ∈ P(A) : |B| odd}

P(A) = Le ∪ Lo and ∅ = Le ∩ Lo

(A2)

The number of subsets with even cardinality is equal to the number of subsets with odd
cardinality as shown in Equation (A3).

|Le| =

⌊
|A|
2

⌋
∑
i=0

(
|A|
2i

)
= 2|A|−1 =

⌊
|A|
2

⌋
∑
i=0

(
|A|

2i + 1

)
= |Lo| (A3)

Consider a function ge : Le → L≤1, which takes an even subset E ∈ Le and returns a subset
of cardinality |ge(E)| = min(|E|, 1) according to Equation (A4).

∀E ∈ Se :

{
ge(E) = ∅ if E = ∅
ge(E) = {e} s.t. e ∈ E otherwise

(A4)

Lemma A4. For any function ge ∈ Ge, there exists a function G : (Le,Ge) → Lo that satisfies the
following two properties:

(a) For any subset with even cardinality, the function ge(·) returns a subset of function G(·):

∀ge ∈ Ge, E ∈ Le : ge(E) ⊆ G(E, ge). (A5)

(b) The function G(·) that satisfies Equation (A5) has an inverse on its first argument G−1 :
(Lo,Ge) → Le.

∀ge ∈ Ge, E ∈ Le, ∃G−1 : G−1(G(E, ge), ge) = E. (A6)
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Proof. We construct a function G for an arbitrary ge and demonstrate that it satisfies both
properties (Equations (A5) and A6) by induction on the cardinality of A. We indicate the
cardinality of A with n = |A| as subscripts An, Le,n, Lo,n, and Gn:

1. In the base case A1 = {a}, the sets of subsets are Le,1 = {∅} and Lo,1 = {{a}}. We
define the function G1(∅, ge) := {a} for any ge to satisfy both required properties:

(a) The constraints of Equation (A4) ensure that ge(∅) = ∅. Since the empty set is
the only element in Se,1, the subset relation (requirement of Equation (A5)) is
satisfied ge(∅) = ∅ ⊆ {a} = G1(∅, ge).

(b) The function G1 : (Le,1,Ge) → Lo,1 is a bijection from Le,1 to Lo,1 and, therefore,
has an inverse on its first argument G−1

1 : (Lo,1,Ge) → Le,1 (requirement of
Equation (A6)).

2. Assume there exists a function Gn that satisfies both required properties
(Equations (A5) and (A6)) of sets of cardinality 1 ≤ n = |An|.

3. For the induction step, we show the definition of a function Gn+1 that satisfies both
required properties. For sets An+1 = An ∪{q}, the subsets of even and odd cardinality
can be expanded as shown in Equation (A7).

Le,n+1 = Le,n ∪ {O ∪ {q} : O ∈ Lo,n},

Lo,n+1 = Lo,n ∪ {E ∪ {q} : E ∈ Le,n}.
(A7)

We define Gn+1 for E ∈ Le,n and O ∈ Lo,n at any ge as shown in Equation (A8) using
the function Gn and its inverse G−1

n from the induction hypothesis. The function Gn+1
is defined for any subset in Le,n+1 as can be seen from Equation (A7).

Gn+1(E, ge) :=

{
E ∪ {q} if ge(Gn(E, ge) ∪ {q}) ̸= {q}
Gn(E, ge) if ge(Gn(E, ge) ∪ {q}) = {q}

Gn+1(O ∪ {q}, ge) :=

{
O if ge(O ∪ {q}) ̸= {q}
G−1

n (O, ge) ∪ {q} if ge(O ∪ {q}) = {q}

(A8)

Figure A1 provides an intuition for the definition of Gn+1: the outcome of ge(O ∪ {q})
determines if the function Gn+1 maintains or breaks the mapping of Gn.

P(An) {B ∪ {q} : B ∈ P(An)}

P(An+1)

Gn Gn+1Gn+1
Gn+1

Gn+1

E = G−1
n (O, ge)

O = Gn(E, ge)

E ∪ {q} = G−1
n (O, ge) ∪ {q}

O ∪ {q} = Gn(E, ge) ∪ {q}

if ge(O ∪ {q}) = {q}:

if ge(O ∪ {q}) ̸= {q}:

Figure A1. Intuition for the definition of Equation (A8). We can divide the set P(An+1) into P(An)

and {B ∪ {q} : B ∈ P(An)}. The definition of function Gn+1 mirrors Gn if ge(O ∪ {q}) = {q} (blue)
and otherwise breaks its mapping (orange).

The function F as defined in Equation (A8) satisfies both requirements
(Equations (A5) and (A6)) for any ge:

(a) To demonstrate that the function satisfies the subset relation of Equation (A5), we
analyze the four cases for the return value of Gn+1 as defined in Equation (A8)
individually:
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– ge(E) ⊆ E ∪ {q} holds, since the function ge always returns a subset of its
input (Equation (A4)).

– ge(E) ⊆ Gn(E, ge) holds by the induction hypothesis.
– If ge(O ∪ {q}) ̸= {q}, then ge(O ∪ {q}) ⊆ O: Since the input to function ge

is not the empty set, the function ge(O ∪ {q}) returns a singleton subset of
its input (Equation (A4)). If the element in the singleton subset is unequal to
q, then it is a subset of O.

– If ge(O ∪ {q}) = {q}, then ge(O ∪ {q}) ⊆ {q} ∪ G−1
n (O, ge) holds trivially.

(b) To demonstrate that the function Gn+1 has an inverse (Equation (A6)), we show
that the function Gn+1 is a bijection from Le,n+1 to Lo,n+1. Since the function
Gn+1 is defined for all elements in Le,n+1 and both sets have the same cardinality
(|Le,n+1| = |Lo,n+1|, Equation (A3)), it is sufficient to show that the function Gn+1
is distinct for all inputs.
The return value of Gn+1 has four cases, two of which return a set containing
q (cases 1 and 4 in Equation (A8)), while the two others do not (cases 2 and 3
in Equation (A8)). Therefore, we have to show that both of these cases cannot
coincide for any input:

– Cases 2 and 3 in Equation (A8): If the return value of both cases was
equal, then O = Gn(E, ge), and therefore, ge(O ∪ {q}) = ge(Gn(E, ge) ∪
{q}). This leads to a contradiction, since the condition of case 3 ensures
ge(O ∪ {q}) ̸= {q}, while the condition of case 2 ensures ge(Gn(E, ge) ∪
{q}) = {q}. Hence, the return values of cases 2 and 3 are distinct.

– Cases 1 and 4 in Equation (A8): If the return value of both cases was equal,
then E = G−1

n (O, ge), and therefore, ge(O ∪ {q}) = ge(Gn(E, ge) ∪ {q}).
This leads to a contradiction, since the condition of case 4 ensures ge(O ∪
{q}) = {q}, while the condition of case 1 ensures ge(Gn(E, ge)∪ {q}) ̸= {q}.
Hence, the return values of cases 1 and 4 are distinct.

Since the function Gn+1 is a bijection, there exists an inverse G−1
n+1.

Lemma A5. For a non-empty set of 2 × x row stochastic matrices A ̸= ∅:

Z

(
l

κ∈A

κ

)
+ ∑

∅ ̸=B⊆A
|B| even

Z

(⊔
λ∈B

λ

)
⊆ ∑

B⊆A
|B| odd

Z

(⊔
ν∈B

ν

)
(A9)

Proof. Consider a function go : Lo → L1, where go(O) ⊆ O such that the function returns
a singleton subset for a set of odd cardinality. Equation (A10) can be obtained from the
constraints on ge (Equation (A4)) and Lemma A4.

∀ge ∈ Ge, E ∈ Le, ∃go ∈ Go, G :

{
ge(∅) ⊆ go(G(∅)) if E = ∅
ge(E) = go(G(E)) otherwise

(A10)

Equation (A11a) holds since we can replace ge(∅) with go(G(∅)), meaning there exists
a κ ∈ A for creating a (Minkowski) sum over the same set of channel zonogons on both
sides of the quality. Equation (A11b) holds since Lemma A4 ensured that the existing
function G is a bijection. Equation (A11c) holds since the intersection is a subset of each
individual zonogon.
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∀ge ∈ Ge, ∃go ∈ Go, κ ∈ A, G : Z(κ) + ∑
E∈Le\∅

Z(ge(E)) = ∑
E∈Le

Z(go(G(E))) (A11a)

∀ge ∈ Ge, ∃go ∈ Go, κ ∈ A : Z(κ) + ∑
E∈Le\∅

Z(ge(E)) = ∑
O∈Lo

Z(go(O)) (A11b)

∀ge ∈ Ge, ∃go ∈ Go :
⋂

κ∈A
Z(κ) + ∑

E∈Le\∅
Z(ge(E)) ⊆ ∑

O∈Lo

Z(go(O)) (A11c)

Equation (A11c) is parameterized by ge, and the subsets are closed under set union. There-
fore, we can combine all choices for ge and go using the set-theoretic union as shown below.
For the notation, let m = 2|A|−1, and we indicate subsets of A with even cardinality as
Ei ∈ Le, where 1 ≤ i ≤ m. We use the last index for the empty set Em = ∅. The subsets of
A with odd cardinality are correspondingly noted as Oi ∈ Lo. For clarity, we note binary
input channels from an even subset as λ ∈ E and binary input channels from an odd subset
as ν ∈ O.

⋃
λ1∈E1
λ2∈E2...

λm−1∈Em−1

(⋂
κ∈A

Z(κ) +
m−1

∑
i=1

Z(λi)

)
⊆

⋃
ν1∈O1
ν2∈O2...
νm∈Om

(
m

∑
j=1

Z(νj)

)

⋂
κ∈A

Z(κ) +
m−1

∑
i=1

⋃
λ∈Ei

Z(λ) ⊆
m

∑
j=1

⋃
ν∈Oj

Z(ν)
(

Minkowski sum dis
tributes over set union

)

Conv

⋂
κ∈A

Z(κ) +
m−1

∑
i=1

⋃
λ∈Ei

Z(λ)

 ⊆ Conv

 m

∑
j=1

⋃
ν∈Oj

Z(ν)

 (
if X ⊆ Y then

Conv(X) ⊆ Conv(Y)

)
⋂

κ∈A
Z(κ) +

m−1

∑
i=1

Conv

 ⋃
λ∈Ei

Z(λ)

 ⊆
m

∑
j=1

Conv

 ⋃
ν∈Oj

Z(ν)

 (
Convex hull distributes
over Minkowski sum

)

Z

(
l

κ∈A

κ

)
+

m−1

∑
i=1

Z

 ⊔
λ∈Ei

λ

 ⊆
m

∑
j=1

Z

 ⊔
ν∈Oj

ν

 (by Equation (7))

Z

(
l

κ∈A

κ

)
+ ∑

∅ ̸=Ei⊆A
|Ei | even

Z

 ⊔
λ∈Ei

λ

 ⊆ ∑
Oj⊆A

|Oj | odd

Z

 ⊔
ν∈Oj

ν

 (replace notation)

Z

(
l

κ∈A

κ

)
+ ∑

∅ ̸=B⊆A
|B| even

Z

(⊔
λ∈B

λ

)
⊆ ∑

B⊆A
|B| odd

Z

(⊔
ν∈B

ν

)

Appendix C. Non-Negativity of Partial f-Information on the Synergy Lattice

The proof of non-negativity can be divided into three parts. First, we show that the loss
measure maintains the ordering relation of the synergy lattice and how the quantification
of a meet element i∪, f (α ∧ β, T, t) can be computed. Second, we demonstrate how the
inclusion–exclusion inequality of zonogons under the Minkowski sum from Appendix B
leads to relating pointwise information measures with respect to the Blackwell order. Finally,
we combine these two results to demonstrate that an inclusion–exclusion relation using the
convex hull of zonogons is greater than their intersection and obtain the non-negativity of
the decomposition by transitivity.



Entropy 2024, 26, 424 38 of 50

Appendix C.1. Properties of the Loss Measure on the Synergy Lattice

Lemma A6. Any set of sources α ∈ P(P1(V)) is equivalent (∼=) to some atom of the synergy
lattice γ ∈ A(V).

∀α ∈ P(P1(V)). ∃γ ∈ A(V). γ ∼= α

The union for two sets of sources is equivalent to the meet of their corresponding atoms on the
synergy lattice. Let α, β ∈ P(P1(V)) and γ, δ ∈ A(V):

γ ∼= α and δ ∼= β =⇒ (γ ∧ δ) ∼= (α ∪ β)

Proof. The used filter in the definition of an atom (A(V) ⊆ P(P1(V)), Equation (8)) only
removes sets of cardinality 2 ≤ |α|, and for any removed set of sources, we can construct
an equivalent set that contains one less source by removing the subset Sa ⊂ Sb as shown in
Equation (A12a). Therefore, all sets of sources α ∈ P(P1(V)) are equivalent to some atom
γ ∈ A(V) within the lattice (Equation (A12b)).

Sa ⊂ Sb =⇒ α ∼= (α \ Sa) where: Sa, Sb ∈ α (A12a)

∀α ∈ P(P1(V)), ∃γ ∈ A(V). α ∼= γ (A12b)

The union of two sets of sources α ∈ P(P1(V)) is inferior to each individual set α and β:

(α ∪ β) ⪯ α (by Equation (10))

(α ∪ β) ⪯ β (by Equation (10))

All sets of sources ε ∈ P(P1(V)) that are inferior to both α and β (ε ⪯ α and ε ⪯ β) are also
inferior to their union.

ε ⪯ α and ε ⪯ β =⇒ ε ⪯ (α ∪ β) (by Equation (10))

Therefore, the union of α and β is equivalent to the meet of their corresponding atoms on
the synergy lattice.

Proof of Lemma 1 from Section 3.2.
For any set of sources α, β ∈ P(P1(V)) and target variable T with state t ∈ T , the func-
tion κ⊔ (Equation (31)) maintains the ordering from the synergy lattice under the Black-
well order.

α ⪯ β =⇒ κ⊔(β, T, t) ⊑ κ⊔(α, T, t) (A13)

Proof. We consider two cases for β:

1. If β = ∅, then the implication holds for any α since the bottom element κ⊔(∅, T, t) = ⊥BW
is inferior (⊑) to any other channel.

2. If β ̸= ∅, then α is also a non-empty set since α ⪯ β ≺ ⊤SL = ∅.

α ⪯ β

∀Sb ∈ β, ∃Sa ∈ α. Sb ⊆ Sa (by Equation (10))

∀Sb ∈ β, ∃Sa ∈ α. κ(Sb, T, t) ⊑ κ(Sa, T, t) (by Equation (2))⊔
Sb∈β

κ(Sb, T, t) ⊑
⊔

Sa∈α

κ(Sa, T, t)

κ⊔(β, T, t) ⊑ κ⊔(α, T, t)

Since the implication holds for both cases, the ordering is maintained.
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Corollary A2. The defined cumulative loss measures (i∪, f of Equation (33a) and I∪, f of Equation (34))
maintain the ordering relation of the synergy lattice for any set of sources α, β ∈ P(P1(V)) and
target variable T with state t ∈ T :

α ⪯ β =⇒ i∪, f (α, T, t) ≤ i∪, f (β, T, t)

α ⪯ β =⇒ I∪, f (α; T) ≤ I∪, f (β; T)

Proof. The pointwise monotonicity of the cumulative loss measure (α ⪯ β =⇒ i∪, f (α, T, t) ≤
i∪, f (β, T, t)) is obtained from Lemmas 1 and A2 with Equation (33a). Sine all cumulative
pointwise losses i∪, f are smaller for α than β, so will be their weighted sum (α ⪯ β =⇒
I∪, f (α; T) ≤ I∪, f (β; T), see Equation (34)).

Corollary A3. The cumulative pointwise loss of the meet from two atoms is equivalent to the
cumulative pointwise loss of their union for any target variable T with state t ∈ T :
i∪, f (α ∧ β, T, t) = i∪, f (α ∪ β, T, t).

Proof. The result follows from Lemma A6 and Corollary A2.

Appendix C.2. The Non-Negativity of the Decomposition

Lemma A7. Consider a non-empty set of of binary input channel A ̸= ∅ and 0 ≤ p ≤ 1.
Quantifying an inclusion–exclusion principle on the pointwise information of their Blackwell join is
larger than the pointwise information of their Blackwell meet as shown in Equation (A14).

i f

(
p,

l

κ∈A

κ

)
≤ ∑

∅ ̸=B⊆A
(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)
(A14)

Proof.

Z

(
l

κ∈A

κ

)
+ ∑

∅ ̸=B⊆A
|B| even

Z

(⊔
λ∈B

λ

)
⊆ ∑

B⊆A
|B| odd

Z

(⊔
ν∈B

ν

)
(by Lemma A5)

i f

(
p,

l

κ∈A

κ

)
+ ∑

∅ ̸=B⊆A
|B| even

i f

(
p,
⊔

κ∈B
κ

)
≤ ∑

∅ ̸=B⊆A
|B| odd

i f

(
p,
⊔

κ∈B
κ

)
(by Lemma A3)

i f

(
p,

l

κ∈A

κ

)
≤ ∑

∅ ̸=B⊆A
(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)

Lemma A8 (Non-negativity on the synergy lattice). The decomposition of f -information is
non-negative on the pointwise and combined synergy lattice for any target variable T with state
t ∈ T :

∀α ∈ A(V). 0 ≤ ∆i∪, f (α, T, t),

∀α ∈ A(V). 0 ≤ ∆I∪, f (α; T).

Proof. We show the non-negativity of pointwise partial information (∆i∪, f (α, T, t)) in two
cases. We write α−S to represent the cover set of α on the synergy lattice and use p = PT(t)
as the abbreviation:

1. Let α = ⊥SL = {V}. The bottom element of the synergy lattice is quantified to zero
(by Equation (33a), i∪, f (⊥SL, T, t) = 0), and therefore, also its partial contribution will
be zero (∆i∪, f (⊥SL, T, t) = 0), which implies Equation (A15).

α = ⊥SL =⇒ 0 ≤ ∆i∪, f (α, T, t) (A15)
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2. Let α ∈ A(V) \ {⊥SL}, then its cover set is non-empty (α−S ̸= ∅). Additionally, we
know that no atom in the cover set is the empty set (∀β ∈ α−S . β ̸= ∅), since the
empty atom is the top element (⊤SL = ∅).
Since it will be required later, note that the inclusion–exclusion principle of a constant is
the constant itself as shown in Equation (A16) since, without the empty set, there exists
one more subset of odd cardinality than with even cardinality (see Equation (A3)).

i f (p, κ(V, T, t)) = ∑
∅ ̸=B⊆α−S

(−1)|B|−1i f (p, κ(V, T, t)) (A16)

We can re-write the Möbius inverse as shown in Equation (A17), where Equation (A17b)
is obtained from ([23], p. 15)).

∆i∪, f (α, T, t) = i∪, f (α, T, t)− ∑
β∈↓̇Sα

∆i∪, f (β, T, t) (by Equation (33b)) (A17a)

= i∪, f (α, T, t)− ∑
∅ ̸=B⊆α−S

(−1)|B|−1 · i∪, f

∧
β∈B

β, T, t

 (A17b)

= i∪, f (α, T, t)− ∑
∅ ̸=B⊆α−S

(−1)|B|−1 · i∪, f

⋃
β∈B

β, T, t

 (by Corollary A3) (A17c)

=− i f (p, κ⊔(α, T, t)) + ∑
∅ ̸=B⊆α−S

(−1)|B|−1 · i f (p, κ⊔(
⋃

β∈B

β, T, t)) (by Equations (33a), (A16)) (A17d)

=− i f (p, κ⊔(α, T, t)) + ∑
∅ ̸=B⊆α−S

(−1)|B|−1 · i f (p,
⊔

S∈(⋃β∈B β)

κ(S, T, t)) (by ∀β ∈ α−S .β ̸= ∅) (A17e)

=− i f (p, κ⊔(α, T, t)) + ∑
∅ ̸=B⊆α−S

(−1)|B|−1 · i f (p,
⊔

β∈B

⊔
S∈β

κ(S, T, t)) (A17f)

=− i f (p, κ⊔(α, T, t)) + ∑
∅ ̸=B⊆{κ⊔(β,T,t) : β∈α−S }

(−1)|B|−1 · i f (p,
⊔

κ∈B
κ) (A17g)

Consider the non-empty set of channels D = {κ⊔(β, T, t) : β ∈ α−S}, then we obtain
Equation (A18b) from Lemma A7.

i f

p,
l

κ∈{κ⊔(β,T,t) : β∈α−S}

κ

 ≤ ∑
∅ ̸=B⊆{κ⊔(β,T,t) : β∈α−S}

(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)
(A18a)

i f

p,
l

β∈α−S

κ⊔(β, T, t)

 ≤ ∑
∅ ̸=B⊆{κ⊔(β,T,t) : β∈α−S}

(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)
(A18b)

We can construct an upper bound on i f (p, κ⊔(α, T, t)) based on the cover set α−S as
shown in Equation (A19).

∀β ∈ α−S . β ⪯ α (A19a)

∀β ∈ α−S . κ⊔(α, T, t) ⊑ κ⊔(β, T, t) (by Lemma 1) (A19b)

κ⊔(α, T, t) ⊑
l

β∈α−S

κ⊔(β, T, t) (A19c)

i f (p, κ⊔(α, T, t)) ≤ i f

p,
l

β∈α−S

κ⊔(β, T, t)

 (by Lemma A2) (A19d)
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By the transitivity of Equations (A18b) and (A19d), we obtain Equation (A20).

i f (p, κ⊔(α, T, t)) ≤ ∑
∅ ̸=B⊆{κ⊔(β,T,t) : β∈α−S}

(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)
(A20)

By Equations (A17) and (A20), we obtain the non-negativity of pointwise partial
information as shown in Equation (A21).

α ∈ A(V) \ {⊥SL}. 0 ≤ ∆i∪, f (α, T, t) (A21)

From Equations (A15) and (A21), we obtain that pointwise partial information is non-
negative for all atoms of the lattice:

∀α ∈ A(V). 0 ≤ ∆i∪, f (α, T) (A22)

If all pointwise partial components are non-negative, then their expected value will also be
non-negative (see Equation (35)):

∀α ∈ A(V). 0 ≤ ∆I∪, f (α; T) (A23)

Appendix D. Mappings between Decomposition Lattices and Their Duality

Proof of Lemma 2 from Section 3.4
The function Ψ(·) is a bijection on the redundancy lattice without the bottom element (∅)
that reverses its order. Let α, β ∈ A(V) \ {⊥RL}:

1. Ψ(Ψ(α)) ≃ α;
2. α ≼ β ⇐⇒ Ψ(β) ≼ Ψ(α).

Proof.

• Property 1: the n-ary Cartesian product (Ψ) provides all combinations of one variable
from each source (Definition 28). Let γ = Ψ(α), then by Definition 11 (≃) of equiva-
lence Ψ(γ) ≃ α, we have to show that both elements are inferior to each other under
the redundancy order:

– Ψ(γ) ≼ α: We begin by expanding the definition of the redundancy order as
shown in Equation (A24) to highlight that it is sufficient to show that α ⊆ Ψ(γ).

α ⊆ Ψ(γ) =⇒ ∀Sa ∈ α, ∃Sb ∈ Ψ(γ), Sb ⊆ Sa =⇒ Ψ(γ) ≼ α (A24)

To show α ⊆ Ψ(γ), we have to demonstrate that is is possible to select one
variable from each source in γ to reconstruct each source in α:

* By definition γ = Ψ(α), each source in γ contains one variable from each
source in α, and all variables from each source in α can be found in some
source of γ.

* By selecting the variable in each source of γ that originated from the same
source in α, we can exactly reconstruct each source in α.

* Therefore, α ⊆ Ψ(Ψ(α)), which implies Ψ(Ψ(α)) ≼ α.

– α ≼ Ψ(γ): We begin by expanding the definition of the redundancy order
(Equation (9)) as shown in Equation (A25) to highlight that we have to show
that all sources in Ψ(γ) are a super-set of some source in α.

α ≼ Ψ(γ) ⇐⇒ ∀Sb ∈ Ψ(γ). ∃Sa ∈ α. Sa ⊆ Sb (A25)

For a proof by induction, the recursive definition Ψ′(α) as shown in Equation (A26)
highlights the relation of interest more clearly. We use the notation S[i] to indicate
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the i-th variable in source S. That both functions are equivalent Ψ′(α) = Ψ(α) can
directly be seen, since Ψ′(α) recursively combines all possible choices of selecting
one variable from each source in α, which is the definition of Ψ(α).

Ψ′(α) :=

{
{∅} if α = ∅⋃

i∈1..|S|{x ∪ {S[i]} : x ∈ Ψ′(α \ {S})} otherwise, where S ∈ α
(A26)

Induction on the cardinality of α:

* Hypothesis: It is impossible to choose one variable from each source in Ψ′(α)
without selecting all variables of some source Sa ∈ α:

∀Sb ∈ Ψ(Ψ′(α)). ∃Sa ∈ α. Sa ⊆ Sb (A27)

* Base case |α| = 1: The condition is satisfied as shown in Equation (A28), since
Ψ′({S}) turns each variable in S into its own source. The second application
Ψ(Ψ′({S})) recombines them.

Ψ′({S}) = {{V} : V ∈ S}
Ψ(Ψ′({S})) = {S}

(A28)

* Assume the induction hypothesis holds for |α| = m.
* For the induction step, let α′ = α∪ {S′}: From the recursive definition shown

in Equation (A29), we can directly see all relevant options of choosing one
element from each resulting source.

Ψ′(α′) =
⋃

i∈1..|S′ |
{x ∪ {S′[i]} : x ∈ Ψ′(α)} (A29)

· Case 1: From every source in Ψ′(α′), we choose the variable S′[i] that
was contributed by the new source S′. The resulting set contains all
variables of S′.

· Case 2: To avoid choosing all variables from S′, we have to select the
variables contributed by x ∈ Ψ′(α) instead for some S′[i]. By the induc-
tion hypothesis, choosing one variable from each set in Ψ′(α) leads to
choosing all variables of some source Sa ∈ α.

· Choosing one variable from each set in α′ = α ∪ {S′} leads to choosing
all variables of S′ or all variables of some source Sa ∈ α.

· Thus, the induction hypothesis holds for |α′| = |α|+ 1.

– As shown above, Ψ(Ψ(α)) ≼ α and α ≼ Ψ(Ψ(α)), which implies α ≃ Ψ(Ψ(α)).

• Property 2: We first expand the definitions:

α ≼ β ⇐⇒ Ψ(β) ≼ Ψ(α)

∀Sb ∈ β. ∃Sa ∈ α. Sa ⊆ Sb ⇐⇒ ∀Sc ∈ Ψ(α). ∃Sd ∈ Ψ(β). Sd ⊆ Sc (by Definition 9)

Then, we view both implications separately:

1. Assume ∀Sb ∈ β. ∃Sa ∈ α. Sa ⊆ Sb. Then, there exists a function w : P(P1(V)) →
P(P1(V)) that associates each source in β with a source in α.

∀Sb ∈ β. w(Sb) ⊆ Sb and w(Sb) ∈ α. (A30)

All sets Sc ∈ Ψ(α) contain one variable of each source in α. Let the function
vc : P1(V) → V indicate this selection:

Sc = {vc(Sx) : Sx ∈ α} where: vc(Sx) ∈ Sx (A31)
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Define the set Sd ∈ Ψ(β) using the defined functions above as shown in
Equation (A32). The function w is defined for all sources in β, and the selected
element is in the original source (vc(w(Sx)) ∈ Sx) by Equation (A30).

Sd = {vc(w(Sx)) : Sx ∈ β} (A32)

The constructed set Sd ∈ Ψ(β) is a subset of Sc ∈ Ψ(α), and it can be constructed
for each Sc ∈ Ψ(α). This proves Equation (A33):

∀Sb ∈ β. ∃Sa ∈ α. Sa ⊆ Sb =⇒ ∀Sc ∈ Ψ(α). ∃Sd ∈ Ψ(β). Sd ⊆ Sc (A33)

2. For the other direction, we show Equation (A34) and start with its simplification:

¬(∀Sb ∈ β. ∃Sa ∈ α. Sa ⊆ Sb) =⇒ ¬(∀Sc ∈ Ψ(α). ∃Sd ∈ Ψ(β). Sd ⊆ Sc)

∃Sb ∈ β. ∀Sa ∈ α. ¬(Sa ⊆ Sb) =⇒ ∃Sc ∈ Ψ(α). ∀Sd ∈ Ψ(β). ¬(Sd ⊆ Sc)

∃Sb ∈ β. ∀Sa ∈ α. ∃x ∈ Sa. x /∈ Sb =⇒ ∃Sc ∈ Ψ(α). ∀Sd ∈ Ψ(β). ∃x ∈ Sd. x /∈ Sc

(A34)

The left-hand side states that, for some Sb ∈ β, all sources Sa ∈ α contain an
element that is not in Sb. Let us fix a particular Sb and define a function returning
this element v : P1(V) → V:

∀Sa ∈ α. v(Sa) ∈ Sa and v(Sa) /∈ Sb (A35)

Then, we can define the set Sc = {v(Sa) : Sa ∈ α}. The source Sc selects one
variable from each source; thus, Sc ∈ Ψ(α), and by definition, Sc ∩ Sb = ∅. All
sets Sd ∈ Ψ(β) must select one element from Sb and, thus, contain one element
that is not in Sc. This provides the required implication of Equation (A34).

Proof of Lemma 3 from Section 3.4
The function Ξ(·) is a bijection that maintains the ordering of atoms between the redundancy
and synergy order. Let α, β ∈ A(V):

1. α = Ξ(Ξ(α));
2. α ≼ β ⇐⇒ Ξ(α) ⪯ Ξ(β).

Proof.

• Property 1 is obtained from Definition 28: the first two cases revert each other, and the
third case (α ̸= ∅ and α ̸= {V}) holds since ∀S ∈ α : S = V \ (V \ S).

• Property 2:

– Case 1: If α = ∅ = ⊥RL, then Ξ(α) = {V} = ⊥SL. Therefore, ∀β ∈ A(V). ⊥RL ≼
β ⇐⇒ ⊥SL ⪯ β.

– Case 2: If α = {V} = ⊤RL, then Ξ(α) = ∅ = ⊤SL. Therefore, ∀α ∈ A(V). α ≼
⊤RL ⇐⇒ α ⪯ ⊤SL.

– Case 3: If α ̸= ∅, then β ̸= ∅:

α ≼ β = ∀Sb ∈ β, ∃Sa ∈ α, Sa ⊆ Sb (by Definition 9)

= ∀Sb ∈ β, ∃Sa ∈ α, (V \ Sb) ⊆ (V \ Sa)

= {V \ Sa : Sa ∈ α} ⪯ {V \ Sb : Sb ∈ β} (by Definition 10)

= Ξ(α) ⪯ Ξ(β) (by Definition 28)
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Proof of Lemma 4 from Section 3.4
A redundancy- and synergy-based information decomposition is pointwise dual if, for all
α ∈ A(V) \ {⊥RL}:

∆i∩, f (α, T, t) = ∆i∪, f (Ξ(Ψ(α)), T, t)

∆i∩, f (⊥RL, T, t) = 0 = ∆i∪, f (⊥SL, T, t)
(A36)

A redundancy- and synergy-based information decomposition is dual if, for all α ∈ A(V) \
{⊥RL}:

∆I∩, f (α, T) = ∆I∪, f (Ξ(Ψ(α)), T)

∆I∩, f (⊥RL, T) = 0 = ∆I∪, f (⊥SL, T)
(A37)

Proof.

∑
β∈↓Rα

∆i∩, f (β, T, t) = ∑
β∈(↓Rα)\{⊥RL}

∆i∩, f (β, T, t) (∆i∩, f (⊥RL, T, t) = i∪, f (⊥SL, T, t) = 0)

= ∑
β∈↑SΞ(Ψ(α))

∆i∩, f (Ψ(Ξ(β)), T, t) (by Corollary 1)

= ∑
β∈↑SΞ(Ψ(α))

∆i∪, f (Ξ(Ψ(Ψ(Ξ(β)))), T, t) (by Equation (38))

= ∑
β∈↑SΞ(Ψ(α))

∆i∪, f (β, T, t)

The duality of the pointwise measure (i∩, f , i∪, f ) implies the duality of the combined
measure (I∩, f , I∪, f ).

Lemma A9. For α ∈ A(V) \ {⊥RL} and β ∈ A(V):

¬(∃Sa ∈ α. β ⪯ {Sa}) ⇐⇒ (Ξ(Ψ(α)) ⪯ β) (A38)

Proof.

• Case β = ⊤SL = ∅: The condition holds since it implies α to be the minimal element
in A(V) \ {⊥RL}.

• Case β ̸= ⊤SL: We start by simplifying the expression.

¬(∃Sa ∈ α. β ⪯ {Sa}) ⇐⇒ (Ξ(Ψ(α)) ⪯ β)

(∀Sa ∈ α. ¬(β ⪯ {Sa})) ⇐⇒ (Ξ(Ψ(α)) ⪯ β)

(∀Sa ∈ α. ¬(∃Sb ∈ β. Sa ⊆ Sb)) ⇐⇒ (Ξ(Ψ(α)) ⪯ β) (by Definition 10)

(∀Sa ∈ α. ∀Sb ∈ β. ¬(Sa ⊆ Sb)) ⇐⇒ (Ξ(Ψ(α)) ⪯ β)

(∀Sa ∈ α. ∀Sb ∈ β. ¬(Sa ⊆ Sb)) ⇐⇒ (Ψ(α) ≼ Ξ(β)) (by Lemma 3)

(∀Sa ∈ α. ∀Sb ∈ β. ¬(Sa ⊆ Sb)) ⇐⇒ (∀Sb ∈ Ξ(β). ∃Sc ∈ Ψ(α). Sc ⊆ Sb) (by Definition 9)

(∀Sb ∈ β. ∀Sa ∈ α. ¬(Sa ⊆ Sb)) ⇐⇒ (∀Sb ∈ β. ∃Sc ∈ Ψ(α). Sc ⊆ V \ Sb) (by Definition 28)

(∀Sb ∈ β. ∀Sa ∈ α. ¬(Sa ⊆ Sb)) ⇐⇒ (∀Sb ∈ β. ∃Sc ∈ Ψ(α). Sc ∩ Sb = ∅)

(∀Sb ∈ β. ∀Sa ∈ α. ∃x ∈ Sa. x /∈ Sb) ⇐⇒ (∀Sb ∈ β. ∃Sc ∈ Ψ(α). ∀x ∈ Sc. x /∈ Sb)

(A39)

– The left-hand side states that, for all Sb ∈ β, all Sa ∈ α must have at least one
element that is not in Sb.

– The right-hand side states that, for all Sb ∈ β, there exists a combination of one
variable per source in α such that no element of the resulting collection is in Sb.
This is possible if and only if all sources Sa ∈ α have at least one element that is
not in Sb.

Therefore, both statements imply each other.
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Lemma A10. For α ∈ A(V) \ {⊥RL}:

P1(α) {∼=}

∧
β∈B

β : ∅ ̸= B ⊆ {{S} : S ∈ α}

 (A40)

Proof.
= P1(α)

= {B : ∅ ̸= B ⊆ α}

=

⋃
β∈B

β : ∅ ̸= B ⊆ {{S} : S ∈ α}


{∼=}

∧
β∈B

β : ∅ ̸= B ⊆ {{S} : S ∈ α}

 (by Lemma A6)

(A41)

Proof of Lemma 6 from Section 3.4
The pointwise dual-decomposition for the redundancy lattice of a loss measure on the
synergy lattice is defined by:

i∩, f (α, T, t) :=

{
0 if α = ∅
i∪, f (⊤SL, T, t)− ∑β∈P1(α)

(−1)|β|−1i∪, f (β, T, t) otherwise
(A42)

Proof. The case α = ∅ is satisfied by definition. Therefore, we proceed assuming α ̸= ∅:

i∩, f (α, T, t) = ∑
γ∈↓Rα

∆i∩, f (γ, T, t)

= ∑
γ∈↑SΞ(Ψ(α))

∆i∪, f (γ, T, t) (by Lemma 4)

= i∪, f (⊤SL, T, t)− i∪, f (⊤SL, T, t) + ∑
γ∈↑SΞ(Ψ(α))

∆i∪, f (γ, T, t)

= i∪, f (⊤SL, T, t)−

 ∑
γ∈A(V)

∆i∪, f (γ, T, t)− ∑
γ∈↑SΞ(Ψ(α))

∆i∪, f (γ, T, t)


= i∪, f (⊤SL, T, t)− ∑

γ∈A(V)\↑SΞ(Ψ(α))

∆i∪, f (γ, T, t)

= i∪, f (⊤SL, T, t)− ∑
γ∈⋃Sa∈α↓S{Sa}

∆i∪, f (γ, T, t) (by Lemma 5)

= i∪, f (⊤SL, T, t)− ∑
γ∈⋃β∈{{Sa} : Sa∈α}↓S β

∆i∪, f (γ, T, t)

= i∪, f (⊤SL, T, t)− ∑
∅ ̸=B⊆{{Sa} : Sa∈α}

(−1)|β|−1i∪, f (
∧

β∈B

β, T, t) (by inclusion–exclusion)

= i∪, f (⊤SL, T, t)− ∑
γ∈{∧β∈B β: ∅ ̸=B⊆{{Sa} : Sa∈α}}

(−1)|β|−1i∪, f (γ, T, t)

= i∪, f (⊤SL, T, t)− ∑
γ∈P1(α)

(−1)|β|−1i∪, f (γ, T, t) (by Lemma A10)

(A43)
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Appendix E. Scaling f-Information Does Not Affect Its Transformation

Lemma A11. The linear scaling of an f -information does not affect the transformation result and
operator: Consider scaling an f-information measure Ia2(S; T) = k · Ia1(S; T) with k ∈ (0, ∞),
then their decomposition transformation to another measure Ib(S; T) will be equivalent.

Proof. Based on the definitions of Section 3.2, the loss measures scale linearly with the
scaling of their f -divergence. Therefore, we obtain two cumulative loss measures, where
I∪,a1 and I∪,a2 are a linear scaling of each other (Equation (A44a)). They can be transformed
into another measure I∪,b, as shown in Equation (A44b).

I∪,a2(α; T) = k · I∪,a1(α; T) (A44a)

I∪,b(α; T) = v1(I∪,a1(α; T)) = v2(I∪,a2(α; T)) (A44b)

Equation (A44b) already demonstrates that their transformation results will be equivalent
and that v1(z) = v2(k · z) and k · v−1

1 (z) = v−1
2 (z). Therefore, their operators will also be

equivalent as shown below:

x ⃝± 2 y := v2

(
v−1

2 (x)± v−1
2 (y)

)
x ⃝± 1 y := v1

(
v−1

1 (x)± v−1
1 (y)

)
= v2

(
kv−1

1 (x)± kv−1
1 (y)

)
= v2

(
v−1

2 (x)± v−1
2 (y)

)
= x ⃝± 2 y

Appendix F. Decomposition Example Distributions

The probability distributions used in Figure 9 can be found in Table A1. For providing
an intuition of the decomposition result for I∪,TV in the generic example, we visualize its
corresponding zonogons in Figure A2. It can be seen that the maximal zonogon height is
obtained from V1 (blue), which equals the maximal zonogon height of their joint distribution
(V1, V2) (red). Therefore, I∪,TV does not attribute partial information uniquely to V2 or their
synergy by Lemma 8.

Table A1. The distributions used from [13] and the generic example from [20]. The example names
are abbreviations for: XOR-gate (XOR), Unique (Unq), Pointwise Unique (PwUnq), Redundant-Error
(RdnErr), Two-Bit-copy (Tbc), and the AND-gate (AND) [13].

State Probability
V1 V2 T XOR Unq PwUnq RdnErr Tbc AND Generic
0 0 0 1/4 1/4 0 3/8 1/4 1/4 0.0625
0 0 1 - - - - - - 0.3000
0 1 0 - 1/4 1/4 1/8 - 1/4 0.1875
0 1 1 1/4 - - - 1/4 - 0.1500
0 2 1 - - 1/4 - - - -
1 0 0 - - 1/4 - - 1/4 0.0375
1 0 1 1/4 1/4 - 1/8 - - 0.0500
1 0 2 - - - - 1/4 - -
1 1 0 1/4 - - - - - 0.2125
1 1 1 - 1/4 - 3/8 - 1/4 -
1 1 3 - - - - 1/4 - -
2 0 1 - - 1/4 - - - -
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Figure A2. Visualization of the zonogons from the generic example of [20] in state t = 0. The target
variable T has two states. Therefore, the zonogons of its second state are symmetric (second column
of Equation (6)) and have identical heights.

Appendix G. The Relation of Total Variation to the Zonogon Height

Proof of Lemma 8(a) from Section 4.1.2
The pointwise total variation (iTV) is a linear scaling of the maximal (Euclidean) height h∗

that the corresponding zonogon Z(κ) reaches above the diagonal, as visualized in Figure 10
for any 0 ≤ p ≤ 1.

iTV(p, κ) =
1 − p

2 ∑
v∈κ

|vx − vy| = (1 − p)
h∗√

2

Proof. The point of maximal height P∗ that a zonogon Z(κ) reaches above the diagonal
is visualized in Figure 10 and can be obtained as shown in Equation (A45), where ∆v⃗
represents the slope of vector v⃗.

P∗ = ∑
v⃗∈{v⃗∈κ : ∆v⃗>1}

v⃗ (A45)

The maximal height (Euclidean distance) above the diagonal is calculated as shown in
Equation (A46), where P∗ = (P∗

x , P∗
y ).

h∗ =
1
2

∥∥∥( P∗
x −P∗

y
P∗

y −P∗
x

)∥∥∥
2
=
√
(P∗

x − P∗
y )

2 + (P∗
y − P∗

x )
2 =

√
2(P∗

y − P∗
x ) (A46)

The pointwise total variation iTV can be expressed as the invertible transformation of the
maximal euclidean zonogon height above the diagonal as shown below, where v⃗ = (⃗vx, v⃗y).

iTV(p, κ) = ∑
v⃗∈κ

1
2

∣∣∣∣ v⃗x

pv⃗x + (1 − p)⃗vy
− 1
∣∣∣∣(pv⃗x + (1 − p)⃗vy)

=
1 − p

2 ∑
v⃗∈κ

∣∣⃗vx − v⃗y
∣∣

=
1 − p

2

 ∑
v⃗∈{v⃗∈κ : ∆v⃗>1}

(⃗vy − v⃗x) + ∑
v⃗∈{v⃗∈κ : ∆v⃗≤1}

(⃗vx − v⃗y)


=

1 − p
2

(
(P∗

y − P∗
x ) +

(
(1 − P∗

x )− (1 − P∗
y )
))

(by Equation (A45))

= (1 − p)(P∗
y − P∗

x )

= (1 − p)
h∗√

2
(by Equation (A46))
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Proof of Lemma 8(b) from Section 4.1.2
For a non-empty set of pointwise channel A and 0 ≤ p ≤ 1, pointwise total variation iTV
quantifies the join element to the maximum of its individual channels:

iTV(p,
⊔

κ∈A
κ) = max

κ∈A
iTV(p, κ)

Proof. The join element Z(
⊔

κ∈A κ) corresponds to the convex hull of all individual zono-
gons (see Equation (7)). The maximal height that the convex hull reaches above the diagonal
is equal to the maximum of the maximal height that each individual zonogon reaches. Since
pointwise total variation is a linear scaling of the (Euclidean) zonogon height above the
diagonal (Lemma 8(a) shown above), the join element is valuated to the maximum of its
individual channels.

Appendix H. Information Flow Example Parameters and Visualization

The parameters for the Markov chain used in Section 4.2 are shown in Equation (A47),
where Mn = (Xn, Yn), Xi = {0, 1, 2}, Yi = {0, 1}, PM1 is the initial distribution, and
PMn+1|Mn is the transition matrix. The visualized results for the information flow of KL-,
TV-, and χ2-information can be found in Figure 11, and the visualized results of H2-, LC-,
and JS-information in Figure A3.
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Figure A3. Analysis of the Markov chain information flow (Equation (A47)). Visualized results for
the information measures: H2, LC, and JS. The remaining results (KL, TV, and χ2) can be found in
Figure 11.
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States (X1, Y1) : (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)

PM1 =
[
0.01 0.81 0.00 0.02 0.09 0.07

] (A47a)

PMn+1|Mn =



0.05 0.01 0.04 0.82 0.02 0.06
0.05 0.82 0.00 0.01 0.06 0.06
0.04 0.01 0.82 0.05 0.04 0.04
0.03 0.84 0.02 0.06 0.04 0.01
0.04 0.03 0.03 0.02 0.06 0.82
0.07 0.04 0.01 0.03 0.81 0.04

 (A47b)
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