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Abstract: Addressing the challenges posed by the complexity of the structure and the multitude of
sensor types installed in space application fluid loop systems, this paper proposes a fault diagnosis
method based on an improved D-S evidence theory. The method first employs the Gaussian affiliation
function to convert the information acquired by sensors into BPA functions. Subsequently, it utilizes
a pignistic probability transformation to convert the multiple subset focal elements into single subset
focal elements. Finally, it comprehensively evaluates the credibility and uncertainty factors between
evidences, introducing Bray–Curtis dissimilarity and belief entropy to achieve the fusion of conflicting
evidence. The proposed method is initially validated on the classic Iris dataset, demonstrating its
reliability. Furthermore, when applied to fault diagnosis in space application fluid circuit loop pumps,
the results indicate that the method can effectively fuse multiple sensors and accurately identify faults.

Keywords: fluid loop system for space applications; fault diagnosis; D-S evidence theory; Gaussian
distribution; information fusion

1. Introduction

With the comprehensive completion of the Chinese Space Station in 2022, the sta-
tion has entered a phase of application and development lasting more than ten years.
During this phase, astronauts will reside continuously on the Space Station, utilizing the
currently equipped space application system payloads to conduct nearly a thousand sci-
entific research and application projects across multiple professional fields. Additionally,
large-scale space science experiments and technological trials will be conducted, including
research in space life sciences and human physiology, microgravity physics, astronomy, and
earth sciences, as well as space new technologies and applications, aiming to promote the
comprehensive development of China’s space science, technology, and applications [1–6].

The fluid loop system for space applications serves as a crucial mechanism within a
space station for controlling and regulating the temperature of application system payloads.
It primarily comprises a fluid loop host and key payload elements such as single-unit cold
plate branches and thermal control drawer branches for scientific experiment cabinets. By
employing a variety of active and passive thermal control measures, this system fulfills two
primary functions. Firstly, it collects the heat generated by scientific payload equipment
and associated support systems, transporting this thermal energy through the system’s
fluid loop to the space station’s thermal control system. Ultimately, the heat is dissipated
into the external environment via the station’s external radiator through radiative heat
exchange. Secondly, through the operation of internal pumps and valve adjustments,
the system maintains the temperatures of scientific payload equipment and support sys-
tems within permissible ranges, ensuring the normal operation and functionality of space
application payloads.
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The thermal control loop of the space station, serving as the thermal management
system for space station application systems, holds significant importance for the success or
failure of space scientific experiments and even the safety of spacecraft and astronauts [7].
The complex structure of the thermal control loop system, along with its diverse types of
state-characteristic parameters, presents challenges. Among the core components of the
thermal control fluid loop system, the circulation pump plays a critical role by providing
pressure to the working medium. Any cessation of the circulation pump’s operation results
in the stagnation of the working medium within the circulation pipeline, leading to a
loss of temperature control capability within the fluid loop. Hence, there exists an urgent
demand for enhanced fault diagnosis capabilities concerning the circulation pump within
the thermal control loop. In the field of fault detection, compared to the limitations of single
sensors, multi-sensor data fusion techniques [8–14] comprehensively consider information
collected from multiple sensors. By analyzing the correlated decisions made by different
sensors, comprehensive and reliable information can be obtained to accurately diagnose
equipment faults. Therefore, it has been favored by experts and scholars both domestically
and internationally. A related adaptive weighting method is proposed in reference [15],
utilizing 1D-CNN for feature extraction, feature layer fusion, and fault classification of
motor heterogeneous sensor information to achieve motor fault diagnosis. Reference [16]
proposes a MICN, which processes signals from the same or different types of sensors,
performs data fusion, and is used for bearing fault diagnosis. A multi-sensor data fusion
method based on the D-S evidence theory is proposed in reference [17] for diagnosing
faults in railway tracks.

In space application fluid circuit systems, temperature sensors, pressure sensors, and
flow sensors are distributed in key areas, enabling real-time monitoring of temperature,
pressure, and flow of applied fluid circuits. Through multi-sensor information fusion
technology, equipment condition monitoring and fault diagnosis are achieved. As one of
the methods of multi-sensor data fusion, the D-S evidence theory can effectively describe
and express uncertain information without prior probabilities, making it widely applied
in fault diagnosis [18–24], state assessment [25–27], and classification [28,29]. However,
the evidence theory tends to fail when fusing conflicting evidence [30], and numerous
studies have proposed improvements. Reference [31] proposes a conflict evidence fusion
method based on evidence averaging weighting, but it assigns the same weight to each
piece of evidence without considering their correlation, leading to poor accuracy of fusion
results. Reference [32] proposes an evidence fusion method based on Mahalanobis distance;
however, the calculation process of Mahalanobis distance is complex and not suitable for
handling large-scale data. Reference [33] proposes a conflict evidence fusion method based
on Jousselme distance, but Jousselme distance is influenced by the dispersion of evidence’s
basic belief assignment functions, resulting in contradictory results when measuring evi-
dence conflicts. Therefore, this paper proposes a conflict evidence fusion method based on
Bray–Curtis dissimilarity and belief entropy [34], which weights evidence based on both
the degree of evidence conflict and the amount of information, fully considering factors
such as evidence credibility and uncertainty, thus better handling evidence conflicts and
quickly and effectively identifying faults.

Furthermore, when reasoning based on the D-S evidence theory, the representation
of uncertain information is a crucial issue to address. Specifically, converting the mea-
sured information from sensors into Basic Probability Assignment (BPA) functions poses
a significant challenge in the practical application of the DS evidence theory. Currently,
there is no universal rule for constructing BPA, and methods for their construction are
mainly determined based on specific circumstances. Scholars have proposed various BPA
generation methods from different perspectives. One approach, proposed in reference [35],
is based on clustering principles, utilizing the K-means method to construct a model for
generating basic probability assignments and subsequently determining the BPA function
based on this model. Another method, presented in reference [36], utilizes the distance
between triangular membership functions and test data to obtain BPA functions, defining
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a distance formula between two triangular membership functions. Additionally, refer-
ence [37] suggests a method for obtaining BPA functions based on normal distributions,
where the evidence’s normal distribution model is established using training data and the
relationship between test data and the normal distribution model is used to obtain the
evidence’s BPA function. In a different approach, reference [38] proposes a BPA acquisition
method based on the Adaboost algorithm, where multiple strong classifiers are generated
for each attribute model using training data to determine the BPA of a single subset of focal
elements. Lastly, reference [39] introduces a method to obtain basic probability assignments
by constructing a BP neural network, leveraging the powerful self-learning and nonlinear
mapping capabilities of BP neural networks to normalize output values and derive basic
probability assignments.

Therefore, this paper proposes a fault detection method for spatially applied fluid
circuits based on an improved D-S evidence theory. The method initially transforms
sensor-acquired parameters into BPA functions using Gaussian affiliation functions. Sub-
sequently, the BPA functions of multi-subset focal elements are converted into those of
single-subset focal elements through pignistic probabilistic functions. Additionally, Bray–
Curtis dissimilarity and belief entropy are employed to weigh and adjust the acquired BPA
functions, effectively mitigating the influence of conflicting evidence. Finally, the fusion
and identification of evidence are executed.

2. Preliminaries

Definition 1. The Frame of Discernment: In the D-S evidence theory [40–43], the totality of
the research object is called identification frame Θ, and the elements in Θ are mutually exclu-
sive. Θ = {A1, A2, · · · , Ai} denotes the set of all possible events, in which denotes the set of all
possible events, in which Ai is a subset of the identification frame Θ.2Θ denotes the set consisting of
all subsets.

2Θ = {∅, {A1}, · · · , {An}, {A1, A2}, · · · , {A1, A2, A3}, · · · , Θ} (1)

Here,∅ signifies the empty set,{A1, A2} represents{A1 ∩ A2}.

Definition 2. Basic Probability Assignment: For any proposition A in 2Θ, define the map-
ping m:2Θ → [0, 1] to be a BPA function,m satisfying the following conditions.

m(∅) = 0
0 ≤ m(A) ≤ 1
∑

A⊆2Θ
m(A) = 1

(2)

m(A) is the BPA function of proposition A, also known as the mass function. Proposition A is
said to be a focal element if m(A) > 0. When the focal elements are all singleton sets, such a focal
element is called single-subset focal element evidence. Correspondingly, when the focal elements are
multi-subsets, it is denoted as multi-subset focal element evidence.

Definition 3. D-S Theory Synthesis Rules: For the identification frame Θ, there are two indepen-
dent sources of evidence, and the BPA functions are m1 and m2. The combination rule for the D-S
theory of evidence is follows:

m(A) = m1(Ai)⊕m2
(

Aj
)
=

{
0, A = ∅

∑Ai∩Aj=A m1(Ai)m2(Aj)
1−k , A ̸= ∅

(3)

where k = ∑Ai∩Aj=∅ m1(Ai)m2
(

Aj
)
, called the conflict coefficient, indicates the degree of conflict

between two pieces of evidence, and k ∈ [0, 1].
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3. Materials and Methods

In order to gain a better understanding of fault diagnosis on space application fluid
loop circulation pumps using an improved evidence theory, this section will introduce the
method of BPA generation based on Gaussian affiliation function, pignistic transformation,
and the evidence weighting method based on Bray–Curtis dissimilarity and belief entropy.
These methodologies serve as theoretical foundations for subsequent applications in fluid
loop systems.

3.1. Method for BPA Generation Based on Gaussian Affiliation Function

In practical applications, the sensor measurement environment undergoes real-time
changes, leading to a degree of fuzziness in the measurement data. Therefore, the fuzzy
set affiliation function is chosen to construct the BPA function. The Gaussian distribution
offers several advantages, such as stability, symmetry, universality, and positive function
value. Based on the Gaussian distribution, the Gaussian affiliation function directly reflects
the relative probability that the sample belongs to the Gaussian function, thus retaining
the many advantages of the Gaussian distribution. Consequently, this paper proposes a
method based on the Gaussian affiliation function to obtain the BPA function.

In constructing the model utilizing Gaussian distributions [44], the raw dataset col-
lected from multiple sensor measurements needs to be divided into training datasets and
testing datasets. Within the training dataset, Gaussian models corresponding to different
attributes’ data distributions can be obtained by computing the Gaussian affiliation func-
tion for each attribute. Subsequently, by matching the testing samples with the Gaussian
models, the degree of match for each attribute can be determined, accurately depicting the
sample’s characteristics across various attributes. Following this, normalization is applied
to all match values, transforming them into BPA functions.

Assuming there are a total of n categories in the original dataset, forming the recog-
nition framework θ, where θ = { A1, A2, · · · , An}, each category contains samples with
k attributes.

(1) Selection of training and testing samples:
Initially, extract m samples from the original dataset as training samples and use

these samples to construct models based on the membership distribution of each attribute.
Subsequently, designate the remaining data as testing samples, match them with the
established models, and ultimately compute the samples’ BPA values.

(2) Construction of Gaussian models on each attribute:
During the data processing stage, Gaussian affiliation functions are employed to estab-

lish Gaussian models for the training samples across different attributes. This approach
enables a more precise description of the range of attribute feature values, thereby en-
hancing the accuracy and reliability of the model. The Gaussian membership function
expression is as follows:

µ(x) : X → [0, 1], xϵX (4)

The mean Xij and sample standard deviation σij of different categories i on different
attributes j are calculated as follows:

Xij =
1
q

q

∑
l=1

xl
ij (5)

σij =

√√√√ 1
q− 1

q

∑
l=1

(
xl

ij − Xıj

)2
(6)

where i = 1, 2, · · · n; j = 1, 2, · · · , k; xl
ij denotes the value of the lth training sample in

category i on the jth attribute.
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The Gaussian-type membership function for category i on the jth attribute is given by:

uj
i(x) = e

−(x−Xij)
2

2σij
2

(7)

where −3σij ≤ x ≤ 3σij, i = 1, 2, · · · , n, j = 1, 2, · · · , k.
Thus, the membership distribution of samples across different attributes can be obtained.
(3) Matching testing samples with Gaussian models
By matching the samples in the test set with Gaussian models, the degree of similarity

between them and different categories can be computed, thereby obtaining the matching
values between samples and models. Normalize the matching values to obtain the BPA for
each sample. Assuming Q is a proposition in the recognition framework, the formula for
matching samples with Q is as follows:

H(Q← t) = uQ(X)
∣∣
x=t (8)

where t represents the value of the test sample on a specific attribute. The magnitude of
H(Q← t) determines the degree of matching between the test sample and the Gaussian
model, thus reflecting the accuracy of proposition Q.

After matching, the required BPA can be obtained from the models. Arrange the
values of the test sample in different categories in descending order as H1, H2,· · · , Hn, then
the calculation of its BPA is as follows:

m1,2,··· ,n =
Hn

∑n
i=1 Hi

(9)

3.2. Pignistic Probability Function

When dealing with the BPA function of multi-subset focal elements, the fusion outcome
might indicate multiple focal elements, leading to less precise fault identification results.
Hence, this paper employs the pignistic probabilistic transformation method [45] to quantify
the multi-subset focal elements. This involves converting the BPA function of multi-subset
focal elements into the probability distribution function of single-subset focal elements,
thereby facilitating the ultimate fault identification process. The definition of the pignistic
probabilistic transformation method is described as follows:

BtPm(Ai) = ∑
Ai⊆Θ

|Ai ∩ A|
|A|

m(A)

1−m(∅)
(10)

where A is the subset of the identification frame Θ, |·| denotes the number of focal elements
contained in the subset.

3.3. Weight Determination Based on Credibility and Uncertainty
3.3.1. Evidence Similarity Based on the Bray–Curtis Dissimilarity

The Bray–Curtis dissimilarity was proposed by J. Roger Bray and John T. Curtis in
1957 to measure the relative abundance of different species in ecology [46–48]. It serves to
quantify the relative abundance among different species in ecology. This dissimilarity metric
satisfies nonnegativity, symmetry, and normality criteria. As a nonparametric measure,
it does not necessitate assumptions about probability distributions or parameterization,
rendering it suitable for various types of uncertainty distributions. Furthermore, the
Bray–Curtis dissimilarity is relatively simple to compute and is well-suited for large-scale
data processing tasks, making it a viable option for calculating the degree of support
between evidences.
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Suppose there are two pieces of evidence in the identification frame Θ, the Bray–Curtis
dissimilarity between the two pieces of evidence is:

b
(
mi, mj

)
=

∑M
k=1

∣∣∣BetPmi (Ak)− BetPmj(Ak)
∣∣∣

∑M
k=1 BetPmi (Ak) + ∑M

k=1 BetPmj(Ak)
(11)

where i, j = 1, 2, · · · , N.
The Bray–Curtis dissimilarity between the evidence mi and mj can be represented by

the matrix B, which is an N-dimensional matrix:

B =



b11 b12 . . .
b21 b22 . . .

...
...

. . .

b1j . . . b1N
b2j . . . b2N
...

. . .
...

bi1 bi2 . . .
...

...
. . .

bN1 bN2 . . .

bij . . . biN
...

. . .
...

bNj . . . bNN


(12)

where bij is b
(
mi, mj

)
, represents the Bray–Curtis dissimilarity between evidences mi and

mj. When i = j, bij = 0. The range of Bray–Curtis dissimilarity is between 0 and 1, which
is negatively correlated with the degree of similarity of the evidence. Thus, the system’s
support for evidence is defined as follows:

SUP(mi) =
1

N − 1

N

∑
j=1,j ̸=i

1
bij

(13)

The weight of evidence mi can be obtained after normalization as WR_B(mi)
:

WR_B(mi)
=

SUP(mi)

∑N
j=1 SUP

(
mj

) (14)

where i = 1, 2, · · · , N.

3.3.2. Evidence Uncertainty Based on Entropy

Shannon entropy, proposed by Shannon [49], is a classic method for measuring infor-
mation uncertainty, commonly used to describe the amount of information contained in
the states of a random variable. At the same time, Deng [50] introduced the concept of
belief entropy as a universal improvement of Shannon entropy and applied it to the D-S
evidence theory. A lower belief entropy indicates lower uncertainty and higher credibility
of evidence, while a higher belief entropy signifies greater uncertainty and lower credibility
of evidence. In this paper, belief entropy was introduced to measure the uncertainty and
credibility of evidence. Hypothesis mi is a mass function defined in the identification frame
Θ, the belief entropy corresponding to evidence is denoted as H(mi).

H(mi) = − ∑
An⊆Θ

mi(An)log2
mi(An)

2|An | − 1
(15)

where An(n = 1, 2, · · · , N) is a proposition in mass function mi, and |An| is the cardinality
of An.

To prevent the assignment of zero weight to evidence mi in certain circumstances, the
magnitude of evidence weight is determined by computing the exponential form of belief
entropy.

Ei(mi) = eH(mi) = e−∑An∈Θ mi(An)log2mi(An) (16)
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After normalization, the uncertainty of evidence mi is:

WR_E(mi)
=

Ei(mi)

∑N
i=1 Ei(mi)

(17)

3.3.3. Evidence Fusion Based on the Dempster Rule

By computing the Bray–Curtis dissimilarity and belief entropy between evidences, the
information effect between evidences can be amplified. For evidence with higher credibility,
higher weights are assigned. Therefore, by cascading the weighting coefficients based
on Bray–Curtis dissimilarity and belief entropy, the weighted correction coefficients for
evidence are determined as follows:

Wi(mi)
= WR_B(mi)

×WR_E(mi)
(18)

The weighted correction coefficients Wi(mi)
are normalized to obtain evidence fusion

coefficients WFUS(mi)
:

WFUS(mi)
=

Wi(mi)

∑N
i=1 Wi(mi)

(19)

The mass function values of evidence mi are each assigned a corresponding weighted
correction factor to obtain the corrected evidence m′i:

m′i =
N

∑
i=1

WFUS(mi)
×mi (20)

where i = 1, 2, · · · , n.
N− 1 fusion of m′i by the Dempster rule produces evidence fusion results in the following:

mFUS =
(((

m′i ⊕m′i
)

1 · · ·
)

i ⊕m′i
)

N−1
(21)

3.4. The Proposed Fault Diagnosis Method

The paper proposes a fault diagnosis method based on improved D-S evidence theory.
Firstly, it introduces a BPA generation method based on the Gaussian affiliation function,
leveraging fuzzy set theory and Gaussian distribution models, which exhibit good reli-
ability and practicality, effectively transforming parameters obtained from sensors into
BPA functions. Subsequently, it utilizes pignistic probability transformation to convert
multi-subset focal elements into single-subset focal elements. Moreover, it fully consid-
ers factors of evidence credibility and uncertainty, presenting a conflict evidence fusion
method based on Bray–Curtis dissimilarity and belief entropy. This method measures
evidence from both dissimilarity and information content aspects, determining the final
weighted correction coefficients for evidence and facilitating effective data fusion and
ultimate decision-making. The detailed steps of this method include the following eight
steps, with the method flowchart depicted in Figure 1.

(1) Partition the original dataset into training and testing datasets. Select a portion of
the original dataset as training samples and utilize them for constructing Gaussian models.

(2) Compute the mean and standard deviation of the training samples, conduct Gaussian
model construction, and obtain Gaussian models for each category across different attributes.

(3) Match the testing samples with Gaussian models to derive the corresponding
BPA functions.

(4) Employ pignistic probability transformation to convert multi-subset focal elements
into single-subset focal elements, facilitating accurate fault diagnosis outcomes.

(5) After obtaining the BPA for each attribute, compute the Bray–Curtis dissimilarity
between evidences and determine the system’s support and weights for evidence.
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(6) Calculate the belief entropy for each piece of evidence, as well as obtain their
respective weights.

(7) Determine the weighted correction coefficients for each piece of evidence from the
perspectives of evidence dissimilarity and uncertainty and conduct weighted correction on
the evidence.

(8) Utilize the Dempster combination rule to fuse the corrected BPA functions and
obtain the final fault diagnosis result.
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4. Experiments

To validate the effectiveness of the proposed fault diagnosis method in this paper,
two sets of cases were selected for validation and analysis. The first set of data is the
publicly available Iris flower dataset from UCI [51], while the second set involves real-world
applications in the space application fluid loop. Through these two case studies, the BPA
function generation method based on Gaussian affiliation function and the conflict evidence
fusion method based on Bray–Curtis dissimilarity and belief entropy are demonstrated in
detail, validating the effectiveness of the proposed method in this paper.

4.1. Iris Data Set Classification

In this section, the classical dataset Iris dataset in the UCI Machine Learning Library is
taken as an example, and the computational process of the BPA generation method based
on the Gaussian model is given in detail, as well as the process of weighting and fusion of
the evidence. The validity of the proposed method in this chapter is verified through the
classification experiments on the Iris dataset.

The Iris dataset contains three categories of iris flowers: Setosa (S), Versicolor (E), and
Virginica (V), which constitute a recognition framework θ, where θ = {S, E, V}. Each
category comprises 50 samples, totaling 150 samples. Each sample consists of four feature
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attributes: sepal length (SL/cm), sepal width (SW/cm), petal length (PL/cm), and petal
width (PW/cm).

From each of the three iris categories (S, E, and V), 30 random samples are selected to
form the training set, with the remaining 20 samples forming the test set. The mean and
standard deviation of the 30 training samples on the four attributes SL, SW, PL, and PW
are calculated, respectively, using Equations (5) and (6). The specific calculation results are
presented in Table 1.

Table 1. Mean value and standard deviation of the training samples.

Category
( ____

XSL, σSL

) ( ____
XSW, σSW

) ( ____
XPL, σPL

) ( ____
XPW, σPW

)
S (5.0267, 0.3660) (3.4500, 0.3442) (1.4733, 0.1825) (0.2467, 0.0991)
E (6.0700, 0.5367) (2.7900, 0.3229) (4.3333, 0.4519) (1.3533, 0.2077)
V (6.5833, 0.6773) (2.9333, 0.3290) (5.6033, 0.6162) (2.0067, 0.2516)

Based on the mean and standard deviation, the Gaussian models are constructed for
the training samples of each category on each attribute. The Gaussian models are shown in
Figure 2 below.

Entropy 2024, 26, x FOR PEER REVIEW 9 of 18 
 

 

attributes: sepal length (SL/cm), sepal width (SW/cm), petal length (PL/cm), and petal 

width (PW/cm). 

From each of the three iris categories (S, E, and V), 30 random samples are selected 

to form the training set, with the remaining 20 samples forming the test set. The mean and 

standard deviation of the 30 training samples on the four attributes SL, SW, PL, and PW 

are calculated, respectively, using Equations (5) and (6). The specific calculation results 

are presented in Table 1. 

Table 1. Mean value and standard deviation of the training samples. 

Category  (𝑿𝑺𝑳,̅̅ ̅̅ ̅  𝝈𝑺𝑳) (𝑿𝑺𝑾,̅̅ ̅̅ ̅̅  𝝈𝑺𝑾) (𝑿𝑷𝑳,̅̅ ̅̅ ̅̅  𝝈𝑷𝑳) (𝑿𝑷𝑾,̅̅ ̅̅ ̅̅ ̅  𝝈𝑷𝑾) 

S (5.0267, 0.3660) (3.4500, 0.3442) (1.4733, 0.1825) (0.2467, 0.0991) 

E (6.0700, 0.5367) (2.7900, 0.3229) (4.3333, 0.4519) (1.3533, 0.2077) 

V (6.5833, 0.6773) (2.9333, 0.3290) (5.6033, 0.6162) (2.0067, 0.2516) 

Based on the mean and standard deviation, the Gaussian models are constructed for 

the training samples of each category on each attribute. The Gaussian models are shown 

in Figure 2 below. 

  
(a) Gaussian Model for Attribute SL (b) Gaussian Model for Attribute SW 

  
(c) Gaussian Model for Attribute PL (d) Gaussian Model for Attribute PW 

Figure 2. Gaussian models for four attributes. 

For the attribute SL, the membership functions 𝑢𝑆(𝑥), 𝑢𝐸(𝑥), 𝑢𝑉(𝑥)  represent the 

categories S, E, and V, respectively. The membership function 𝑢𝑆𝐸(𝑥) represents that the 

attribute model can be classified as both category S and category E. The membership func-

tion 𝑢𝑆𝐸𝑉(𝑥) represents that the attribute model can be classified as category S, category 

E, and category V. Their mathematical expressions are as follows: 

𝑢𝑆𝐸(𝑥) = 𝑚𝑖𝑛[𝑢𝑆(𝑥), 𝑢𝐸(𝑥)]  

Figure 2. Gaussian models for four attributes.

For the attribute SL, the membership functions uS(x), uE(x), uV(x) represent the
categories S, E, and V, respectively. The membership function uSE(x) represents that
the attribute model can be classified as both category S and category E. The membership
function uSEV(x) represents that the attribute model can be classified as category S, category
E, and category V. Their mathematical expressions are as follows:

uSE(x) = min[uS(x), uE(x)]

uSEV(x) = min[uS(x), uE(x), uV(x)]
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By matching the testing samples with the Gaussian models corresponding to each
category, we obtain the degree of match between the testing samples and each category.
Then, by normalization, we obtain the BPA.

Taking class S as an example, randomly select a sample x = [x1, x2, x3, x4] = [4.8, 3.1,
1.6, 0.2], from the test set, where x1, x2, x3, x4 represent the feature values of this sample
on the four attributes SL, SW, PL, and PW. By matching the sample x with the Gaussian
models of each category, we obtain the degree of match between the sample x and each
Gaussian model, as shown in Figure 3 below.
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Finally, we obtained four sets of BPA values for the testing sample based on the four
attributes SL, SW, PL, and PW. The specific numerical values are shown in Table 2 below.

Table 2. BPA Functions for the testing sample on each attribute.

Category m({S}) m({E}) m({V}) m({S,E}) m({S,V}) m({E,V}) m({S,E,V})
m1(BPASL) 0.9320 0.0000 0.0000 0.2219 0.0000 0.0000 0.0950
m2(BPASW) 0.0000 0.0000 0.9606 0.0000 0.0000 0.8596 0.8391
m3(BPAPL) 0.9569 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003
m4(BPAPW) 0.9887 0.0000 0.0000 0.0412 0.0000 0.0000 0.0003

The current BPA functions belong to high-conflict evidence with multiple subset focal
elements. Directly fusing the BPA functions at this stage will yield incorrect identification
information. Firstly, utilize pignistic probability transformation to convert the current
BPA functions into single-subset focal elements. The transformation results are shown in
Table 3 below.
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Table 3. BPA functions after pignistic probability transformation.

Category m({S}) m({E}) m({V})
m′1(BPASL) 0.8601 0.1145 0.0254
m′2(BPASW) 0.1052 0.2668 0.6280
m′3(BPAPL) 0.9998 0.0001 0.0001
m′4(BPAPW) 0.9798 0.0201 0.0001

The Bray–Curtis dissimilarity matrix is derived from Equations (11) and (12) as follows:

B =


0 0.7549

0.7549 0
0.1397 0.1197
0.8946 0.8746

0.1397 0.8946
0.1197 0.8746

0 0.0200
0.0200 0


Applying Equation (13), the evidence support based on the Bray–Curtis dissimilarity

matrix is determined as follows:

SUP
(
m′i

)
= {4.2093, 0.8965, 14.5690, 14.8744}

Utilizing Equation (14) for normalization, the support coefficients become as follows:

WR_B(m′i)
= {0.1218, 0.0259, 0.4217, 0.4305}

Applying Equations (15) and (16), the entropy of each piece of evidence is calculated
as follows:

Ei
(
m′i

)
= {1.9731, 3.5674, 1.0030, 1.1543}

Normalization of the evidence uncertainty coefficient according to Equation (17) yields
the following:

WR_E(m′i)
= {0.2563, 0.4634, 0.1303, 0.1500}

According to Equations (18) and (19), the normalized evidence weighted correction
coefficient is calculated as follows:

WFUS(m′i)
= {0.1918, 0.0737, 0.3376, 0.3968}

Applying Equation (20), a corresponding correction coefficient is assigned to each
piece of evidence, resulting in the final mass function value:

m′i = {0.8991, 0.0496, 0.0512}

Evidence fusion is executed according to Equation (21), and the final fusion results are
presented in Table 4. The fusion result successfully identifies the sample category as class S.

Table 4. Final fusion results.

Fusion Results m({S}) m({E}) m({V})
m′1 ⊕m′2 0.9938 0.0030 0.0032

m′1 ⊕m′2 ⊕m′3 0.9996 0.0002 0.0002
m′1 ⊕m′2 ⊕m′3 ⊕m′4 1.0000 0.0000 0.0000

Testing on the remaining 59 training samples from classes S, E, and V yielded an
overall recognition rate of 98.45%, confirming the effectiveness of the proposed method.
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4.2. Application in Fault Diagnosis of Fluid Circuit Loop Pumps

In this section, the computational process of the BPA generation method based on the
Gaussian affiliation function is given in detail by applying the telemetry data of fluid loop
circulation pumps as an example, and the improved DS evidence theory method proposed
in this paper is used for fault diagnosis, which verifies the practical application effect of the
method proposed in this paper.

The application fluid circuit system consists of essential components such as a circula-
tion pump, measuring sensors, energy storage unit, filter, gas-liquid separator, self-locking
valve, filling and draining valve, one-way valve, electric flow control valve, and so on. The
system configuration and sensor positioning are illustrated in Figure 4 below.
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The application fluid circuit loop pump serves as the core power equipment for space
application fluid circuits. Its main functions include providing pressure to the working
medium of the driving components, driving the medium circulation, and achieving self-
sealing functionality. Once the circulation pump fails, the medium in the circulation
pipeline ceases to flow, resulting in the loss of the fluid circuit’s temperature control
capability, potentially causing localized temperatures to rise in some loads. A standby
design is implemented for the circulation pump to guarantee system reliability.

The energy storage unit, as a stabilizing element within the system, ensuring the
circulation pump operates within normal pressure parameters. The primary role of the
filter is to eliminate impurities from the working medium, thereby enhancing the efficiency
of the fluid circuit. At the same time, the gas-liquid separator is pivotal in isolating and
expelling air bubbles entrapped within the circulating medium, thereby maintaining the
normal operation of the application fluid circuit. Additionally, various types of valve
components are strategically positioned throughout the main circuit of the fluid circuit
system to ensure unhindered flow of the working medium, encompassing self-locking
valves, two electric flow control valves (electric flow control valve A and electric flow
control valve B), two check valves (check valve A and check valve B), and two injection
discharge valves (injection discharge valve A and injection discharge valve B).

Various types of sensors are strategically deployed at critical junctures within the
application fluid circuit system, including three temperature sensors (temperature sensor A,
temperature sensor B, and temperature sensor C), three pressure sensors (pressure sensor
A, pressure sensor B, and pressure sensor C), three flow sensors (flow sensor A, flow sensor
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B, and flow sensor C), and a differential pressure sensor. These sensors facilitate real-
time measurement and display of the system’s temperature, pressure, flow rate, pressure
differential, and liquid level within the accumulator. During normal operation of the
application fluid circuit system, sensor readings remain within a dynamic range. Any
deviation from this range indicates system malfunction, with the degree of fault directly
correlated with the extent of deviation in sensor readings. Leveraging the embedded
sensors within the system enables effective state monitoring.

Analyzing the telemetry parameters of the circulation pump and the monitoring
parameters related to the health status of the circulation pump, an analysis is conducted on
the sensor types and telemetry parameters of the circulation pump. Based on the layout of
internal sensors in the circulation pump, four factors are selected to assess the likelihood of
faults occurring: the rotational speed value of circulation pump A, the pressure value of
pressure sensor A, the pressure value of pressure sensor C, and the level value of the energy
storage tank gauge. From the perspective of evidence theory, the information obtained
from each sensor can be regarded as evidence, and fault diagnosis based on multi-sensor
information is essentially an evidence fusion problem. The corresponding relationship
between fault modes and relevant monitoring parameters is presented in Table 5. The fault
modes A1, A2 and A3 are all random static faults.

Table 5. Correspondence between circulation pump fault modes and relevant monitoring parameters.

Project Name Fault Mode Fault Diagnosis Method Telemetry Available for
Fault Diagnosis

Space Application
Fluid Circuit
Loop Pump

A1
(Circulation Pump
speed reduction)

Decrease in Circulation Pump
Speed, decrease in Internal
Pressure Circulation pump

A rotational speed value,
Pressure sensor A pressure value,
Pressure sensor C pressure value,
Energy storage tank gauge value

A2
(Circulation Pump Shutdown)

Gradual decrease in circulation
pump speed to zero, decrease in

internal pressure

A3
(Circulation Pump Leakage)

Decrease in circulation pump speed,
decrease in internal pressure,
decrease in system flow rate

Through fault simulation of the space application fluid circuit loop pump, 50 fault
data samples are collected for each fault mode. Each fault mode records four feature
attributes, namely the rotational speed value of circulation pump A (X1), the pressure value
of pressure sensor A (X2), the pressure value of pressure sensor C (X3), and the level value
of the energy storage tank gauge (X4).

From the three categories of fault data samples, A1, A2, A3, 30 samples are randomly
selected as training models, while the remaining 20 samples are used as testing samples for
model validation.

The mean and standard deviation of the 30 training samples on attributes X1, X2, X3,
and X4 are calculated, respectively, and then the Gaussian models for each category of
training samples on each attribute are constructed. The Gaussian models corresponding to
the four attributes are shown in Figure 5 below.

Taking class A1 as an example, a sample x = [x1, x2, x3, x4] = [0.5241, 11.1642, 1.2547,
6.6462], is randomly selected from the test set, where x1, x2, x3, x4 denote the eigenvalues of
this sample on four attributes, namely, X1, X2, X3 and X4. By matching the sample x with
the Gaussian models of each category, we obtain the degree of match between the sample x
and each Gaussian model, as shown in Figure 6 below.
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Finally, we obtained four sets of BPA values for the testing sample based on the four
attributes SL, SW, PL, and PW. The specific numerical values are shown in Table 6 below.

Table 6. BPA Functions for the testing sample on each attribute.

Category m({A1}) m({A2}) m({A3}) m({A1,A2}) m({A1,A3}) m({A2,A3}) m({A1,A2,A3})
m1(BPAX1) 0.978 0.0000 0.0000 0.538 0.0000 0.0000 0.0000
m2(BPAX2) 0.972 0.0000 0.0000 0.0000 0.052 0.0000 0.0000
m3(BPAX3) 0.932 0.0000 0.0000 0.0000 0.783 0.0000 0.1928
m4(BPAX4) 0.845 0.0000 0.0000 0.0000 0.0395 0.0000 0.0015

The current BPA function was converted to a single subset of focal elements using a
pignistic probability transformation, and the converted BPA function is shown in Table 7 below.

Table 7. BPA functions after pignistic probability transformation.

Category m({A1}) m({A2}) m({A3})
m1(BPAX1) 0.8226 0.1774 0.0000
m2(BPAX2) 0.9746 0.0000 0.0254
m3(BPAX3) 0.7274 0.0337 0.2389
m4(BPAX4) 0.9766 0.0006 0.0228

The Bray–Curtis dissimilarity matrix is obtained by applying Equations (11) and (12)
as follows:

B =


0 0.1774

0.1774 0
0.2389 0.1768
0.2472 0.0026

0.2389 0.2472
0.1768 0.0026

0 0.2492
0.2492 0


Applying Equation (13), the evidence support based on the Bray–Curtis dissimilarity

matrix is determined as follows:

SUP
(
m′i

)
= {3.8697, 98.5744, 3.0610, 98.5711}

Utilizing Equation (14) for normalization, the support coefficients become as follows:

WR_B(m′i)
= {0.0190, 0.4830, 0.0150, 0.4830}

Applying Equations (15) and (16), the entropy of each piece of evidence is calculated
as follows:

Ei
(
m′i

)
= {1.9628, 1.1862, 2.6974, 1.1784}

Normalization of the evidence uncertainty coefficient according to Equation (17) yields
the following:

WR_E(m′i)
= {0.2794, 0.1689, 0.3840, 0.1677}

According to Equations (18) and (19), the normalized evidence weighted correction
coefficient is calculated as follows:

WFUS(m′i)
= {0.0306, 0.4698, 0.0332, 0.4664}

Applying Equation (20), a corresponding correction coefficient is assigned to each
piece of evidence, resulting in the final mass function value:

m′i = {0.9627, 0.0068, 0.0305}

Evidence fusion is executed according to Equation (21), and the final fusion results are
presented in Table 8.



Entropy 2024, 26, 427 16 of 18

Table 8. Final fusion results.

Fusion Results m({A1}) m({A2}) m({A3})
m′1 ⊕m′2 0.9989 0.0001 0.0010

m′1 ⊕m′2 ⊕m′3 0.9999 0.0000 0.0001
m′1 ⊕m′2 ⊕m′3 ⊕m′4 1.0000 0.0000 0.0000

Testing on the remaining 59 training samples from classes A1, A2 and A3 yielded an
overall recognition rate of 98%, validating the effectiveness of the method. This confirms
the potential applicability of the method for practical fault detection in space application
fluid circuit loop pumps.

5. Conclusions

This paper proposes a fault diagnosis method for space fluid circuit loop pumps
based on an improved D-S evidence theory. Initially, Gaussian membership functions
are employed to obtain the corresponding BPA functions for the evidence acquired from
sensors, facilitating the quantitative representation of sensor signals. Subsequently, multi-
subset focal element evidence is converted to single-subset focal element evidence using the
pignistic probability function, enhancing the accuracy of fault identification. Furthermore,
to address conflicting evidence fusion in D-S evidence theory, a conflict evidence fusion
method based on Bray–Curtis dissimilarity, and belief entropy is introduced. This method
comprehensively evaluates evidence similarity and information content, determining the
credibility of evidence using Bray–Curtis dissimilarity and assessing evidence uncertainty
using belief entropy. Weighting correction coefficients for evidence are then determined
based on a comprehensive assessment of the credibility and uncertainty of the evidence.
Finally, the fusion of corrected evidence using D-S evidence theory yields the ultimate fault
diagnosis. The main contributions of this paper are as follows:

(1) Addressing the ambiguity of sensor signals in the practical working environment of
spatially applied fluid circuit loop pumps by introducing Gaussian models to deter-
mine BPA functions for each attribute. This enables the quantitative representation of
sensor signals and facilitates more accurate fault identification through the conversion
of multi-subset focal element evidence to single-subset focal element evidence using
the pignistic probability function.

(2) Proposing a conflict evidence fusion method based on Bray–Curtis dissimilarity and
belief entropy for handling conflicting evidence in D-S evidence theory. This method
integrates the assessment of evidence similarity and information content to determine
evidence credibility and uncertainty, respectively. Weighting correction coefficients for
evidence are then determined based on this comprehensive assessment, leading to the
final fault diagnosis using D-S evidence theory.

(3) The fault diagnosis method for space fluid circuit loop pumps based on the improved
D-S evidence theory effectively addresses the ambiguity of sensor signals and the
conflict after signal interference in the equipment environment, thus aligning well
with the actual operating conditions of spatially applied fluid circuit loop pumps and
demonstrating strong robustness.
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