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Abstract: We compared the effects of two different high-caloric diets administered to 4-week-old
rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat
foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic
system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and
the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density
of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-
dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression.
The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as
NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA
levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an
increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic
varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant
changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length
of the astrocyte processes. These data highlight the significance of determining the mechanisms
mediating the observed effects of these diets and imply that the cognitive impairments previously
found might be related to both the neuroinflammation process and the reduction in PV, NPY, and
RELN expression in the hippocampal formation.

Keywords: gamma-aminobutyric acid (GABA); high-caloric diet; high-fat; high-sugar; Western diet;
hippocampus; neurogenesis; astrocytes; interneurons

1. Introduction

Obesity and overweight are well-known problems in contemporary society. The
World Health Organization (WHO) reported that in 2016, there were over 340 million obese
or overweight children and adolescents (aged 5–19) [1]. Western diets based on refined
sugars, highly fatty foods, and refined grains, typical of Occidental societies, have severe
consequences for general health, such as obesity, insulin resistance, and cardiovascular
complications [2–7], as well as deleterious effects on the central nervous system [8]. Indeed,
even short periods of Western diet consumption may compromise cognitive function [9,10],
and cognitive impairments may emerge even before changes in body weight and obesity
development [10–14]. Another determinant factor is the age at which high-caloric diets
begin, particularly for the brain, since crucial events in brain development, neurogenic
processes, and maturation occur during early life [15,16]. High-caloric diets affect learning
and memory performance in an age-dependent manner and are more deleterious in young
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rats [17,18]. In the present study, we focused on analyzing the effects of high-caloric diets
in the hippocampus, particularly in the gamma-aminobutyric acid (GABA)ergic system,
and its relationship with the cholinergic system, neurogenesis, and neuroinflammation.

The hippocampus is one of the areas most susceptible to nutritional imbalances, with
impairment of spatial learning [19,20] and memory [21–23] and changes in anxiety [24–26]
after high-caloric diet treatment. In the hippocampus, a considerable proportion of the
neuronal population comprises GABAergic interneurons, including neurons containing
parvalbumin (PV), calretinin (CR), calbindin (CB), neuropeptide Y (NPY), and somato-
statin (SST). Even though previous studies have shown the importance of the GABAergic
interneuronal population in cognition and emotional processes [27], information on how
high-caloric diets affect the GABAergic system is still scarce.

Given that the activity of cortical GABAergic neurons is intimately related to the
cholinergic system [28–30] and that diet composition interferes with the cholinergic system
in the hippocampus [31–34], we aimed to investigate the effects of high-caloric diets on
cholinergic fibers in the hippocampus by targeting vesicular acetylcholine transporter
(VAChT) varicosities.

Furthermore, it is known that diet composition could induce alterations in the neurogenic
process and that high-caloric diets decrease neurogenesis in the hippocampus [11,15,18,35].
Adult neurogenesis is a complex process with several well-defined steps that include the
regulation of stem cell niches, cell proliferation, differentiation and de novo formation
of axons and dendrites, and finally, the integration of these new neurons in pre-existing
neuronal circuits [35,36]. Recent studies have identified many key factors essential for the
regulation and proliferation of neuroprogenitor cells [36]. However, less is known about the
factors that control the migration and functional recruitment of adult-generated neurons,
and even less about how high-calorie diets affect these processes of adult neurogenesis. In
this way, we selected a series of genes encoding proteins that may be altered by the con-
sumption of high-calorie diets, including brain-derived neurotrophic factor (BDNF) [4,37],
reelin (RELN) [38,39], and cyclin-dependent kinase-5 (CDK5) [40,41].

Astrocytes are non-neuronal cells with a star-shaped morphology that are responsible
for ensuring neuronal survival, formation, and maintenance of synapses, as well as for
maintaining the blood-brain barrier [42]. It is known that the consumption of dietary
fats and high-caloric diets increases hippocampal neuroinflammation [43]. Furthermore,
recent studies have shown that consumption of high-caloric diets, even for short periods,
can change the morphology and plasticity of astrocytes, impairing their function [44–46].
Neuroinflammation can influence the metabolic condition of the brain and change the
extracellular neurotransmitter levels, which precede brain dysfunction [45]. Therefore, we
investigated the effects of both high-caloric diets on astrocytes, using glial fibrillary acidic
protein (GFAP), and analyzed their relationship with the GABAergic system.

Most obesity-related studies have focused on high-fat diets or high-sugar diets sepa-
rately, but because Western diets have both components [47], it is important to investigate
them together for comparative purposes. We started from a previous study, where we found
that cafeteria diet-induced alterations in spatial learning and memory were associated with
a decrease in neurogenesis [18]. In the present study, using the same animals, we aimed to
better understand the possible mechanisms underlying these alterations. To this end, we
compared the effects of two different high-caloric diets administered for 12 weeks, one rich
in sugar (HS, 30% sucrose liquid solution) and another inspired by a cafeteria diet (CAF)
rich in refined sugar and saturated fat. We focused on the GABAergic system, looking for
the calcium-binding proteins (CBPs) PV, CR, and CB, as well as the neuropeptides SST
and NPY in the key regions of the hippocampal formation (HF), as well as overall GABA
levels, using glutamate decarboxylase 1 (GAD1), an enzyme involved in the synthesis of
the majority of GABA content [48]. As the expression of neuropeptides may be dependent
on the cholinergic system, we also analyzed the levels of VAChT. To better understand the
alterations in neurogenesis, we analyzed the effects of these diets on the mRNA levels of
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BDNF, RELN, and CDK-5. Finally, we analyzed astrocyte morphology and its relationship
with the GABAergic system and neurogenesis.

2. Results
2.1. Body Weight, Caloric Consumption, and Fat Mass

The body weights of the animals (g ± (SEM)), caloric consumption (Kcal ± (SEM)),
and total fat mass body (% body weight (BW) ± (SEM)) across the experiment were already
published in our previous work [18]. In summary, after treatment with the different diets for
12 weeks, the body weights increased to 435 g (9) in control (CT) rats, 410 g (15) in high-sugar
(HS) rats, and 460 g (14) in cafeteria (CAF) rats. On average, CAF-treated rats were 47 g
heavier than HS rats (p < 0.05), and there was a slight reduction in the weight of HS-treated
rats compared to controls (not significant). Relative to caloric consumption, it was observed
that the intake per cage (two rats per cage) during the whole treatment (12 weeks) was
14,453 kcal (220) for control rats, 15,223 kcal (155.8) for HS rats, and 20,120 kcal (60.8) for
CAF rats. HS rats consumed more calories than controls (p < 0.05), and CAF rats consumed
more calories than control and HS rats (p < 0.001). Relative to the fat mass body, the results
were 4.12%BW (0.24) in controls, 6.28%BW (0.55) in HS, and 8.54%BW (0.31) in CAF animals.
CAF-fed animals had more adipose tissue than the control (p < 0.0001) and HS-treated rats
(p < 0.001), and HS-fed rats had more adipose tissue than the controls (p < 0.001). For more
detailed results, please see Ferreira et al., 2018 [18].

2.2. Neuronal Density
2.2.1. PV-Positive Neurons Areal Density in the Dentate Gyrus (DG), CA3, and
CA1 Regions

The areal density estimates of PV-IR neurons in the molecular and granular layers and
hilus subregions of the DG, as well as in the CA3 and CA1 regions, are shown in Figure 1.
ANOVA revealed a significant effect of treatment on the areal density of PV-IR cells in
the granular layer (F(2,15) = 5.74, p < 0.05) and hilus (F(2,15) = 11.91, p < 0.001) but not
in the molecular layer (F(2,15) = 0.44, n.s.) of the DG. For the CA3 and CA1 regions, we
found a significant effect of treatment in the areal density of PV-IR neurons in the CA3
(F(2,15) = 4.94, p < 0.05) and CA1 areas (F(2,15) = 9.44, p < 0.01). CAF treatment significantly
reduced the number of PV-IR cells in the granular layer (p < 0.05), hilus (p < 0.01), and CA1
(p < 0.05, versus HS) compared to controls and HS-treated rats, but no differences were
found between HS and controls. In the CA3 region, only the HS diet induced a reduction
in the number of PV-IR neurons compared with that in control animals (p < 0.05).

2.2.2. CR-Positive Neurons Areal Density in the DG, CA3, and CA1 Regions

The areal density estimates of CR-IR neurons in the DG, CA3, and CA1 are shown in
Figure 2. ANOVA revealed that there was no significant effect of diet in the molecular layer
(F(2,15) = 0.022 n.s.), granular layer (F(2,15) = 1.164, n.s.), hilar region (F(2,15) = 0.637, n.s.),
CA3 region (F(2,15) = 0.223, n.s.), or CA1 region (F(2,15) = 1.734, n.s.).

2.2.3. CB-Positive Neurons Areal Density in the DG, CA3, and CA1 Regions

The areal density estimates of the CB-IR neurons in the DG, CA3, and CA1 regions
are shown in Figure 3. ANOVA showed that there was no significant effect of treatment
on the molecular layer (F(2,15) = 0.45, n.s.), granular layer (F(2,15) = 6.95, n.s.), hilus
(F(2,15) = 1.14, n.s.) and CA3 region (F(2,15) = 3.32, n.s.). Conversely, ANOVA revealed a
significant effect of treatment on the number of CB-IR cells in the CA1 region (F(2,15) = 8.97,
p < 0.05). Post hoc analysis showed that the number of CB-IR cells in the CA1 region was
significantly higher in rats fed the HS diet than in the control (p < 0.05) and CAF-treated
(p < 0.01) rats. No significant differences were found for the other HF regions.
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Figure 1. Histogram (A) showing the mean ± SD areal density of PV-immunoreactive (PV-IR) cells 
in the molecular layer, granular layer, and hilus of the DG, CA3, and CA1 regions, with 6 animals 
per group. The circles represent the value for each animal in the control group, squares represent 
the value for each animal in the HS-treated group, and triangles represent the value for each animal 
in the CAF-treated group. Note that CAF-treated animals showed a significant reduction in the 
number of PV-IR cells in the granular layer and hilus of the DG when compared to control and HS-
treated rats. HS treatment induced a significant reduction in the areal density of PV-IR cells in the 
CA3 region compared with that in the controls. In the CA1 region, the areal density of PV-IR cells 
was significantly reduced in CAF-treated rats relative to that of HS-treated rats. * p < 0.05 and ** p < 
0.01, CAF-treated rats versus controls; + p < 0.05 and ++ p < 0.01, CAF-treated rats versus HS-treated 
rats; ^ p< 0.05, HS-treated rats vs. controls. CT, control; HS, high-sugar; CAF, cafeteria. Representa-
tive photomicrographs of coronal sections through the HF of control (B,E), HS- (C,F), and CAF-
treated (D,G) rats immunostained for PV. The boxes drawn in (B), (C), and (D) approximately deli-
neate the regions of the DG area shown at higher magnification in (E), (F), and (G), respectively. 
High-power photomicrographs of the DG of control (E), HS- (F), and CAF-treated (G) rats. ML, 
molecular layer; GL, granule cell layer; H, dentate hilus; CA3, pyramidal cell layer of CA3 hippo-
campal field; and CA1, pyramidal cell layer of CA1 hippocampal field. Scale bar: 200 µm in (B–D) 
and 100 µm (E–G). 

2.2.2. CR-Positive Neurons Areal Density in the DG, CA3, and CA1 Regions 
The areal density estimates of CR-IR neurons in the DG, CA3, and CA1 are shown in 
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Figure 1. Histogram (A) showing the mean ± SD areal density of PV-immunoreactive (PV-IR) cells in
the molecular layer, granular layer, and hilus of the DG, CA3, and CA1 regions, with 6 animals per
group. The circles represent the value for each animal in the control group, squares represent the
value for each animal in the HS-treated group, and triangles represent the value for each animal in
the CAF-treated group. Note that CAF-treated animals showed a significant reduction in the number
of PV-IR cells in the granular layer and hilus of the DG when compared to control and HS-treated
rats. HS treatment induced a significant reduction in the areal density of PV-IR cells in the CA3
region compared with that in the controls. In the CA1 region, the areal density of PV-IR cells was
significantly reduced in CAF-treated rats relative to that of HS-treated rats. * p < 0.05 and ** p < 0.01,
CAF-treated rats versus controls; + p < 0.05 and ++ p < 0.01, CAF-treated rats versus HS-treated rats;
ˆ p< 0.05, HS-treated rats vs. controls. CT, control; HS, high-sugar; CAF, cafeteria. Representative
photomicrographs of coronal sections through the HF of control (B,E), HS- (C,F), and CAF-treated
(D,G) rats immunostained for PV. The boxes drawn in (B), (C), and (D) approximately delineate the
regions of the DG area shown at higher magnification in (E), (F), and (G), respectively. High-power
photomicrographs of the DG of control (E), HS- (F), and CAF-treated (G) rats. ML, molecular layer;
GL, granule cell layer; H, dentate hilus; CA3, pyramidal cell layer of CA3 hippocampal field; and
CA1, pyramidal cell layer of CA1 hippocampal field. Scale bar: 200 µm in (B–D) and 100 µm (E–G).
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Figure 2. Histogram (A) showing the mean ± SD areal density of CR-IR cells in the DG, CA3, and 
CA1 regions, with 6 animals per group. Circles represent the value for each animal in the control 
group, squares represent the value for each animal in the HS-treated group, and triangles represent 
the value for each animal in the CAF-treated group. No significant effects of diet were observed in 
any region. CT, Control; HS, High-Sugar; CAF, Cafeteria. Representative photomicrographs of co-
ronal sections through the HF of control (B,E), HS- (C,F), and CAF-treated (D,G) rats immunostai-
ned for CR. The boxes drawn in (B), (C), and (D) approximately delineate the regions of the DG area 
shown at higher magnification in (E), (F), and (G), respectively. High-power photomicrographs of 
DG of control (E), HS- (F), and SCAF-treated (G) rats. ML, molecular layer; GL, granule cell layer; 
H, dentate hilus; CA3, pyramidal cell layer of CA3 hippocampal field; and CA1, pyramidal cell layer 
of CA1 hippocampal field. Scale bar: 200 µm in (B–D) and 100 µm (E–G). 
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Figure 2. Histogram (A) showing the mean ± SD areal density of CR-IR cells in the DG, CA3, and
CA1 regions, with 6 animals per group. Circles represent the value for each animal in the control
group, squares represent the value for each animal in the HS-treated group, and triangles represent
the value for each animal in the CAF-treated group. No significant effects of diet were observed in any
region. CT, Control; HS, High-Sugar; CAF, Cafeteria. Representative photomicrographs of coronal
sections through the HF of control (B,E), HS- (C,F), and CAF-treated (D,G) rats immunostained for
CR. The boxes drawn in (B), (C), and (D) approximately delineate the regions of the DG area shown
at higher magnification in (E), (F), and (G), respectively. High-power photomicrographs of DG of
control (E), HS- (F), and SCAF-treated (G) rats. ML, molecular layer; GL, granule cell layer; H, dentate
hilus; CA3, pyramidal cell layer of CA3 hippocampal field; and CA1, pyramidal cell layer of CA1
hippocampal field. Scale bar: 200 µm in (B–D) and 100 µm (E–G).

2.2.4. SST-Positive Neurons Areal Density in the DG, CA3, and CA1 Regions

The estimates of the number of SST-IR neurons in the DG, CA3, and CA1 regions are
shown in Figure 4. ANOVA showed no significant effects of treatment on the areal density of
SST-IR cells in the molecular layer (F(2,15) = 0.557, n.s.), granular layer (F(2,15) = 1.230, n.s.),
hilus (F(2,15) = 0.283, n.s.), CA3 region (F(2,15) = 0.699, n.s.), and CA1 region (F(2,15) = 0.725, n.s.).
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sugar; CAF, cafeteria. Representative photomicrographs of coronal sections through the HF of con-
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A

Figure 3. Histogram (A) showing the mean ± SD areal density of CB-IR cells in the DG, CA3, and
CA1, with 6 animals per group. Circles represent the value for each animal in the control group,
squares represent the value for each animal in the HS-treated group, and triangles represent the
value for each animal in the CAF-treated group. The HS diet induced a significant increase in the
areal density of CB-IR cells in the CA1 region compared to control and CAF-treated rats. ˆ p < 0.05,
HS-treated versus control rats; ++ p < 0.01, HS-treated versus CAF-treated rats. CT, control; HS,
high-sugar; CAF, cafeteria. Representative photomicrographs of coronal sections through the HF of
control (B,E), HS- (C,F), and CAF-treated (D,G) rats immunostained for CB. The boxes drawn in (B),
(C), and (D) delineate approximately the regions of the CA1 area shown at higher magnification in
(E), (F), and (G), respectively. High-power photomicrographs of the CA1 of control (E), HS- (F), and
CAF-treated (G) rats. ML, molecular layer; GL, granule cell layer; H, dentate hilus; CA3, pyramidal
cell layer of CA3 hippocampal field; and CA1, pyramidal cell layer of CA1 hippocampal field. Scale
bar: 200 µm in (B–D) and 100 µm (E–G).
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the value for each animal in the CAF-treated group. No significant changes in the number of SST-
IR cells were observed. CT, control; HS, high-sugar; CAF, cafeteria. Representative photomicro-
graphs of coronal sections through the HF of control (B,E), HS- (C,F), and CAF-treated (D,G) rats 
immunostained for SST. The boxes drawn in (B), (C), and (D) delineate approximately the regions 
of the DG area shown at higher magnification in (E), (F), and (G), respectively. High-power photo-
micrographs of the DG of control (E), HS- (F), and CAF-treated (G) rats. ML, molecular layer; GL, 
granule cell layer; H, dentate hilus; CA3, pyramidal cell layer of CA3 hippocampal field; and CA1, 
pyramidal cell layer of CA1 hippocampal field. Scale bar: 200 µm in (B–D) and 100 µm (E–G). 
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= 0.42, n.s.) layers. In the hilus, post hoc analysis revealed that the CAF diet caused a sig-
nificant reduction in the number of NPY-IR neurons compared to the control (p < 0.001) 
and HS-treated (p < 0.05) groups. No significant differences were observed between the 
HS-treated and the control groups. Regarding the CA3 and CA1 regions, we found no 
significant effects of diet in the CA3 region (F(2,15) = 0.87, n.s.) or the CA1 region (F(2,15) 
= 3.51, n.s.). 

Figure 4. Histogram (A) showing the mean ± SD areal density of SST-IR cells in the DG, CA3, and CA1
regions, with 6 animals per group. The circles represent the value for each animal in the control group,
squares represent the value for each animal in the HS-treated group, and triangles represent the value
for each animal in the CAF-treated group. No significant changes in the number of SST-IR cells were
observed. CT, control; HS, high-sugar; CAF, cafeteria. Representative photomicrographs of coronal
sections through the HF of control (B,E), HS- (C,F), and CAF-treated (D,G) rats immunostained for
SST. The boxes drawn in (B), (C), and (D) delineate approximately the regions of the DG area shown
at higher magnification in (E), (F), and (G), respectively. High-power photomicrographs of the DG of
control (E), HS- (F), and CAF-treated (G) rats. ML, molecular layer; GL, granule cell layer; H, dentate
hilus; CA3, pyramidal cell layer of CA3 hippocampal field; and CA1, pyramidal cell layer of CA1
hippocampal field. Scale bar: 200 µm in (B–D) and 100 µm (E–G).

2.2.5. NPY-Positive Neurons Areal Density in the DG, CA3, and CA1 Regions

Estimates of the areal densities of NPY-IR neurons in the DG, CA3, and CA1 re-
gions are shown in Figure 5. ANOVA showed a significant effect of treatment in the
hilus (F(2,15) = 11.43, p < 0.01), but not in the molecular (F(2,15) = 1.52, n.s.) or granu-
lar (F(2,15) = 0.42, n.s.) layers. In the hilus, post hoc analysis revealed that the CAF diet
caused a significant reduction in the number of NPY-IR neurons compared to the control
(p < 0.001) and HS-treated (p < 0.05) groups. No significant differences were observed
between the HS-treated and the control groups. Regarding the CA3 and CA1 regions, we
found no significant effects of diet in the CA3 region (F(2,15) = 0.87, n.s.) or the CA1 region
(F(2,15) = 3.51, n.s.).
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Figure 5. Histogram (A) showing the mean ± SD areal density of NPY-IR cells in the DG, CA3, and
CA1 regions, with 6 animals per group. The circles represent the value for each animal in the control
group, squares represent the value for each animal in the HS-treated group, and triangles represent
the value for each animal in the CAF-treated group. There was a significant reduction in the number
of NPY-IR cells in the hilus of CAF-treated rats compared to HS-treated and control rats. There were
no significant effects of diet on any of the other HF regions. *** p < 0.001, CAF-treated rats versus
control rats; + p < 0.05, CAF-treated rats versus HS-treated rats. CT, control; HS, high-sugar; CAF,
cafeteria. Representative photomicrographs of coronal sections through the HF of control (B,E), HS-
(C,F), and CAF-treated (D,G) rats immunostained for NPY. The boxes drawn in (B), (C), and (D)
delineate approximately the regions of the DG area shown at higher magnification in (E), (F), and (G),
respectively. High-power photomicrographs of the DG of control (E), HS- (F), and CAF-treated (G)
rats. ML, molecular layer; GL, granule cell layer; H, dentate hilus; CA3, pyramidal cell layer of CA3
hippocampal field; and CA1, pyramidal cell layer of CA1 hippocampal field. Scale bar: 200 µm in
(B–D) and 100 µm (E–G).

2.2.6. VAChT-Positive Varicosities Areal Density in the Hilus

The estimates of the areal density of VAChT-IR varicosities in the hilar region of the DG
are shown in Figure 6. ANOVA showed that there were no significant effects of treatment
on the density of cholinergic varicosities marked by the VAChT (F(2,15) = 2.09, n.s.).
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Figure 6. Histogram (A) showing the mean ± SD areal density of VAChT-IR varicosities in the hilar
region of the HF with 6 animals per group. The circles represent the value for each animal in the
control group, squares represent the value for each animal in the HS group, and triangles represent
the value for each animal in the CAF group. There were no significant differences between groups in
the density of the VAChT-IR varicosities. CT, control; HS, high-sugar; CAF, cafeteria. Representative
photomicrographs of level-matched coronal sections of the dentate hilus from control (B), HS- (C),
and CAF-treated (D) rats immunostained for VAChT. Scale bar: 10 µm in (B–D).

2.3. mRNA Relative Expressions in the HF
2.3.1. GAD1

In Figure 7, we present the relative mRNA expression of GAD1 in the HF. ANOVA
showed that there was no significant effect of treatment (F(2,9) = 0.11, n.s.) on GAD1 levels
in the HF.
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Figure 7. Hippocampal GAD1 mRNA expression relative to the mean of the housekeeping gene
GAPDH/β-actin. Data are expressed as the mean ± SD, with 4 animals per group. The circles represent
the value for each animal in the control group, squares represent the value for each animal in the
HS-treated group, and triangles represent the value for each animal in the CAF-treated group. CT,
control; HS, high-sugar; CAF, cafeteria.
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2.3.2. BDNF

The estimates of the relative mRNA expression of BDNF, a gene related to cell prolifer-
ation in HF, are shown in Figure 8. ANOVA showed no significant effect of treatment on
the expression of this gene (F(2,9) = 0.88, n.s.).
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Figure 8. Hippocampal BDNF mRNA expression relative to the mean of the housekeeping gene
GAPDH/β-actin. Data are expressed as the mean ± SD, with 4 animals per group. The circles represent
the value for each animal in the control group, squares represent the value for each animal in the
HS-treated group, and triangles represent the value for each animal in the CAF-treated group. CT,
control; HS, high-sugar; CAF, cafeteria.

2.3.3. RELN

The estimates of the relative mRNA expression of RELN in HF are shown in Figure 9.
ANOVA showed a significant effect of treatment on RELN expression in the CAF group
(F(2,9) = 5.16, p < 0.05). Post hoc tests revealed that animals fed the CAF diet had a
significant decrease in RELN mRNA relative expression compared to control animals
(p < 0.05). There were no significant differences between HS-treated and control rats or
between HS- and CAF-treated rats.
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Figure 9. Hippocampal RELN mRNA expression relative to the mean of the housekeeping genes
GAPDH/β-actin. Data are expressed as the mean ± SD, with 4 animals per group. The circles represent
the value for each animal in the control group, squares represent the value for each animal in the
HS-treated group, and triangles represent the value for each animal in the CAF-treated group. There
was a significant reduction in RELN mRNA levels in CAF-treated rats compared to control animals.
* p < 0.05, CAF-treated rats versus controls. CT, control; HS, high-sugar; CAF, cafeteria.
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2.3.4. CDK5

Estimates of the relative mRNA expression of CDK5 in HF are shown in Figure 10.
ANOVA showed no significant effect of diet on the expression of CDK5 (F(2,9) = 2.368, n.s.).
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Figure 10. Hippocampal CDK5 mRNA expression relative to the mean of the housekeeping genes
GAPDH/β-actin. Data are expressed as the mean ± SD, with 4 animals per group. The circles represent
the value for each animal in the control group, squares represent the value for each animal in the
HS-treated group, and triangles represent the value for each animal in the CAF-treated group. CT,
control; HS, high-sugar; CAF, cafeteria.

2.4. Astrocytes

The effects of consuming a high-caloric diet on the length distribution of astrocyte
processes are shown in Figures 11 and 12. ANOVA revealed a significant effect of di-
etary treatment on hilus (F(2,15) = 11.87, p = 0.0008) but not on the CA3–CA1 region
(F(2,15) = 0.5939, p = 0.5647). Post hoc analysis revealed that the CAF-treated animals
had more processes with a smaller branch length in the hilus region (p < 0.01, between
0.1–2.5 µm; and p < 0.05, between 2.5–4.5 µm and 4.5–6.5 µm) than in controls. The results
also revealed that in the CA3–CA1 region, the HS-treated animals had fewer processes
with a smaller branch length (between 0.1 and 2.5 µm) than the CAF-treated rats (p < 0.01)
and controls (p < 0.01). For the higher length intervals, there were no differences between
groups, both for the hilus and CA3–CA1 regions.

Since we observed statistical differences in the length of astrocyte processes in both
regions examined, we decided to analyze the morphology of astrocytes, as shown in
Figure 14, by counting the number of processes per astrocyte. ANOVA revealed a significant
effect of dietary treatment on the hilus (F(2,15) = 11.05, p = 0.001) but not in the CA3–CA1
region (F(2,15) = 0.756, p = 0.486). Post hoc analysis revealed that, in the hilus, there was
a significant increase in the number of processes per astrocyte in CAF-treated animals
compared to HS-treated (p < 0.01) and control rats (p < 0.01). The number of processes per
astrocyte remained unchanged in the CA3–CA1 region.
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treated and control animals. In the CA3–CA1 region, HS-treated rats displayed a significant reduc-
tion in processes with a minor length distribution when compared to controls and CAF-treated an-
imals. * p < 0.05; ** p < 0.01, CAF-treated rats versus controls; ++ p < 0.01, HS-treated versus CAF-
treated rats; ^^ p < 0.01 HS-treated vs. controls rat. CT, control; HS, high-sugar; CAF, cafeteria. Rep-
resentative photomicrographs of coronal sections through the HF of control (B,E), HS- (C,F), and 
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Figure 11. Histograms (A) showing the mean ± SD length distribution of astrocyte processes in the
two different regions of the hippocampus. The circles represent the value for each animal in the
control group, squares represent the value for each animal in the HS-treated group, and triangles
represent the value for each animal in the CAF-treated group. In the hilus region, CAF-treated rats
showed a significant increase in processes with a minor length distribution compared to the HS-
treated and control animals. In the CA3–CA1 region, HS-treated rats displayed a significant reduction
in processes with a minor length distribution when compared to controls and CAF-treated animals.
* p < 0.05; ** p < 0.01, CAF-treated rats versus controls; ++ p < 0.01, HS-treated versus CAF-treated
rats; ˆˆ p < 0.01 HS-treated vs. controls rat. CT, control; HS, high-sugar; CAF, cafeteria. Representative
photomicrographs of coronal sections through the HF of control (B,E), HS- (C,F), and CAF-treated
(D,G) rats immunostained for GFAP. The boxes drawn in (B), (C), and (D) approximately delineate the
regions of the DG area shown at higher magnification in (E), (F), and (G), respectively. High-power
photomicrographs of the DG of control (E), HS- (F), and CAF-treated (G) rats. ML, molecular layer;
GL, granule cell layer; H, dentate hilus; CA3, pyramidal cell layer of CA3 hippocampal field; and
CA1, pyramidal cell layer of CA1 hippocampal field. Scale bar: 200 µm in (B–D) and 100 µm (E–G).
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Figure 12. Representative GFAP-IR photomicrographs from the hippocampus (A) with a detailed
inset of a single astrocyte (B) and the skeletonized detail of the inset (C). The black square highlights
the pointed single astrocyte used in the skeletonized version to achieve the number and length of the
branches, as fully detailed in [49]. Scale bar = 50 µm (A) and 10 µm (B).

Beyond the length distributions, we examined the number of astrocytes per area, as
shown in Figure 13, for the same regions. ANOVA revealed that there were no significant
effects of dietary treatment on the hilus region (F(2,15) = 1.581, p = 0.238) or the CA3–CA1
region (F(2,15) = 2.986, p = 0.081). We found no difference in the number of astrocytes per
unit area between the groups in the two regions.
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Figure 13. Histograms showing the mean ± SD number of astrocytes per area in the hilus and
CA3-CA1 region. The circles represent the value for each animal in the control group, squares
represent the value for each animal in the HS group, and triangles represent the value for each
animal in the CAF group. There were no significant differences between the two regions. CT, control;
HS, high-sugar; CAF, cafeteria.
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Figure 14. Histograms showing the mean ± SD number of processes per astrocyte in the hilus and
CA3–CA1 regions of the HF. The circles represent the value for each animal in the control group,
squares represent the value for each animal in the HS group, and triangles represent the value for
each animal in the CAF group. There was a significant increase in the number of processes per
astrocyte in the hilus region of CAF-treated animals compared to the control and HS-treated animals.
** p < 0.01, CAF-treated versus controls; ++ p < 0.01, CAF- versus HS-treated animals. CT, control; HS,
high-sugar; CAF, cafeteria.



Int. J. Mol. Sci. 2024, 25, 5524 14 of 25

3. Discussion

Knowing that cafeteria diets, rich in both fat and sugar, induce changes in anxiety levels
and learning and memory [18], we decided to analyze potential neuronal alterations in the
hippocampus, a fundamental region for these behaviors and functions. Therefore, in this
study, we compared two distinct high-caloric diets, CAF and HS, that were administered
to juvenile rats for 12 weeks and focused on the analysis of the GABAergic system and its
relationship with the cholinergic system, neurogenesis, and astrocyte morphology.

Interestingly, when we looked at the body weight evolution during the 12-week
experimental period, we realized that the increase in weight was similar in all groups (for
details, please see Ferreira et al., 2018 [18]). This means that, although the high-caloric diets
had more calories than the standard chow, there was no significant difference in weight gain
between rats fed with these diets and controls, i.e., at the end of the treatments, there were
no significant differences in weight between CAF and control or between HS and control
rats. Indeed, the weight gain of CAF-treated rats was more evident than that of HS-fed
rats and, at the end of the experiment, CAF-treated rats were significantly heavier than
HS-fed rats. It has already been verified that high-caloric diets do not necessarily induce
weight gain in juveniles [11], given their high activity. Naturally, if the treatments were
extended for more weeks, we would probably find a significant difference in weight gain in
both groups relative to controls, not only because of the longer time of treatment but also
because the administration of the high-caloric diets would achieve the adult phase when
animals are less active. It is important to note that there was an increase in body fat mass
in both CAF- and HS-fed animals, which is in line with data from previous works [50–52]
showing that the CAF and HS diets are capable of inducing a significant increase in body
fat mass, even in juveniles. However, in fact, there were no significant differences in weight
between the control and HS animals, at the end of the treatments, despite HS animals
having significantly more adipose tissue. However, an increase in adipose tissue does
also not necessarily imply an increase in weight. In fact, several studies have proven
that HS diets may not cause an increase in weight [53–55], even with an increase in fat
mass [53,54,56]. Although the HS diet does not increase weight or cause obesity, as already
described before [55], we cannot ignore its potential deleterious effects and, therefore, it is
also important to understand its effects on the brain and compare it with the diets rich in
fat and sugar.

Despite the widespread distribution of the GABAergic system throughout the HF, the
impact of high-caloric diets on interneurons is not yet completely known. Previous studies
have shown that high-fat diets induce a decrease in vesicular GABA transporter [57] and
GABA concentration [58] in several brain regions, including HF [57,58]. To analyze the
GABA levels, we used GAD1 mRNA (encoding the GAD67 enzyme) since GAD1 accounts
for 80–90% of overall brain GABA [48] and because GAD1 expression is a reliable proxy
of altered GABAergic transmission [59]. However, in the present study, none of the high-
caloric diets induced significant changes in GAD1 mRNA levels in the hippocampus. The
discrepancy among existing studies may be explained using different diet protocols that
use distinct fat/sugar ratios and/or duration of diet exposure. In this way, the 12 weeks
of high-caloric diet treatments may not have been sufficient to induce changes in GABA
levels in the hippocampus using our protocol. Although the present high-caloric diets
induced alterations in specific GABAergic populations (as we will discuss in the following
paragraphs), they do not severely impact the global GABAergic level. Moreover, we
cannot rule out the hypothesis that the methodology used to measure GABA content in
the hippocampus did not have enough sensitivity to detect possible differences. In other
words, the high-sugar and high-sugar-high-fat diets may induce changes in GABA levels
that we were unable to detect using GAD1 mRNA.

To analyze the effects of high-caloric diets on GABAergic neurons, we focused on
the interneurons expressing CBPs. Interestingly, we found that the CAF diet induced a
significant reduction in the density of PV-IR neurons in the hilus and granular layer of the
DG as well as in the CA1 region, whereas the high-sugar diet only induced a significant
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decrease in the CA3 region. This reduction in PV-IR cell density may be due to cell death,
a decrease in activity, or an alteration in protein content; however, to fully understand
this issue, future studies using nutritional rehabilitation, aiming to estimate total cell
numbers, should be performed. Our results corroborate previous studies, where it was
found that high-fat–high-sugar diets induce a reduction in PV-IR neuronal expression in
the prefrontal cortex [60] and CA1 region [61] of rodents. However, in our study, we found
that the CAF diet caused a reduction in PV not only in CA1 but also in the hilus and
granular layer. Moreover, the reduction in PV in the CA3 region of HS-treated rats is also
in line with a previous study in which an HS diet fed to juvenile rats induced a reduction
in PV in the DG, CA3, and CA1 regions of the HF [39]. Taken together, these results
clearly show that interneurons expressing PV are particularly vulnerable to high-caloric
diets, at least during the juvenile period. It is important to note that PV expression in the
hippocampus is residual in the first ten postnatal days and then increases to mature levels
between P12 and P30 [62]. The majority of PV-IR interneurons in the HF belong to the
GABAergic perisomatic inhibitory neuronal group and are positioned for the fine-tuning
and control of the principal efferent neurons of the HF [63]. Thus, our results suggest that
high-caloric diets will damage the perisomatic inhibitory circuitry of the hippocampus,
which will change the excitatory/inhibitory balance in this region. Consequently, the
deleterious impact of high-caloric diets in the hippocampal PV-expressing interneurons of
the hippocampus might account for the spatial learning and memory deficits [64–66] and
the increased anxiety [67] levels that we previously reported [18].

Conversely, we did not find a significant effect of high-caloric diets on the density of
CR-IR cells in the HF. Studies that have analyzed the effects of high-caloric diets on CR
expression are scarce [68,69] and the present work is the first one to examine CR expression
in the HF. While PV-IR neurons act primordially on principal neurons, CR is a special
GABAergic population because they synchronize [70] and target other GABAergic cells
almost exclusively, including vasoactive intestinal polypeptide-, CB-, SST-, and other CR-IR
neurons, but avoid PV-IR neurons [71,72]. Thus, the present results show that none of
the high-caloric diets impair the fine-tune synchronization of the inhibitory drive upon
principal neurons made by CR-IR interneurons. In addition, it is clear that the high-caloric
diets differentially impact the PV- and CR-IR cells of the hippocampus during the juvenile
period, apparently driving the GABAergic system to a more immature state since it is
known that PV-mediated plasticity in the hippocampus may continue into early adulthood.

Regarding CB, we did not find a major impact of the high-caloric diets on the density
of CB-IR cells in the HF, although there was an increase in the density of CB-positive
cells in the hilus that, however, it did not achieve a significant level. Moreover, we found
a slight increase in CB-IR in the HS-treated rats that were confined to the CA1 region.
This was not completely unexpected since there is some co-localization between CB and
CR [73] and because the levels of GAD1 in HF were unchanged. Related to high-caloric
diet consumption, we were not able to find any studies that have analyzed its effects on
CB expression. CB acts as a transporter of intracellular Ca2+, promotes synaptic plasticity,
and differs from other CBPs since it shows cell-specific subtype expression patterns in
the hippocampus [74]. In addition, CB is known to have a role in learning and memory,
and its overexpression in DG neurons disrupts spatial memory [74]. In line with this,
the suggestive increased density of CB-IR neurons in the hippocampus could lead, or at
least contribute, to the spatial memory impairment described in the same animals in our
previous work [18].

Except for the reduction in the density of PV-IR cells, it seems that high-caloric diets
do not severely impact CBPs levels. However, we cannot discard the hypothesis that a
reduction in the density of PV-IR cells could lead to changes in calcium homeostasis, par-
ticularly calcium reuptake, and consequently contribute to the deleterious alterations [75]
observed in high-caloric diets.

In the present study, we found that the CAF diet induced a significant decrease in
the density of NPY-positive neurons in the HF, but only in the dentate hilus. Interestingly,
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this effect of the CAF diet seems to be specific to NPY, as the density of interneurons
immunoreactive to SST, a neuropeptide known to be co-expressed by most hilar GABAer-
gic interneurons, including those that produce NPY, did not change. This reduction in
the density of NPY-immunoreactive cells may be related to several mechanisms, includ-
ing cell death or reduction of expression or decreased activity, or alterations in protein
content [76,77]. To clarify the underlying cause of such variation, future studies are needed,
including studies with nutritional rehabilitation. Even though earlier studies have already
reported a decrease in the expression of NPY in the hippocampus in rats fed a high-fat
diet [77], our study is the first one to show that a CAF diet reduces neuropeptides in the
hippocampus, namely the NPY-IR neuronal population and that this reduction occurs
only in the dentate hilus, where the NPY-positive interneurons are more concentrated [78].
Knowing that NPY-positive cell subpopulations can also inhibit other subpopulations of
interneurons [78], it is conceivable that such decrease may interfere with the activity of
the other local interneuronal populations, leading or contributing to spatial learning and
memory impairment in CAF-fed rats, as we have shown in a previous study [18].

Considering that the activity of NPY- and SST-ergic neuronal subpopulations could be
dependent on cholinergic innervation in the cerebral cortex [29,30] and that HF interneurons
are directly related to the cholinergic system since this system is involved in the recruitment
of interneurons [79], we decided to analyze the effects of these high-caloric diets on the
cholinergic system of the HF. Interestingly, we did not find significant changes in VAChT
levels in the dentate hilus, suggesting that the incorporation of acetylcholine into synaptic
vesicles in the hippocampus is not affected by the high-caloric diet treatments and that
the reduction in the density of NPY-IR neurons in the dentate hilus observed in CAF-fed
animals is unlikely to be due to alterations in expression of VAChT levels. These results are
supported by a previous study that found that the cholinergic system was not affected by a
high-fat diet or by consuming a Western diet [21]. Furthermore, the cognitive impairment
that we previously found using the CAF diet [18] is probably not directly related to the
cholinergic system [21]. Notably, an earlier study found a decrease in acetylcholinesterase
in the hippocampus of rats after treatment with high-caloric diets [80]. However, in the
aforementioned study [78], the diet was extended for six months, and the methodology
used to evaluate the cholinergic system was different from that used in the present study,
which could explain the discrepancy between the results.

Neurogenesis is a mechanism that likely underlies the cognitive alterations found in
CAF-fed rats. To evaluate possible alterations in neurogenesis we chose BDNF because it is
involved in the proliferation and/or survival of cells [35] and is a neurotrophin essential
for neurite outgrowth and synaptic strengthening [81]. Moreover, BDNF regulates the
expression of PV and other CBPs [82]. Interestingly, we found that none of the high-caloric
diets induced significant alterations in BDNF mRNA levels in the HF. These results are
at odds with those obtained using other high-caloric diets, where it was shown that in
rats, there is a reduction in BDNF expression that correlated with memory deficits [83],
and in mice, there is both an increased BDNF expression [25] in the hippocampus and a
decreased expression [84]. Indeed, our results are in agreement with other studies in which
high-caloric diets did not induce alterations in BDNF levels [14,85,86], even in the presence
of cognitive impairment [14,39,87]. However, based on the work of Molteni et al. [81],
it is plausible to assume that feeding a high-caloric diet for longer periods might affect
the levels of BDNF. Nevertheless, the present results show that the spatial learning and
memory alterations and the decreased doublecortin (DCX) levels previously reported [18]
are probably not directly related to alterations in BDNF levels in the HF.

The present study is a pioneer in showing that both CAF and HS diets do not cause
significant alterations in the levels of CDK5 in HF. It is known, however, from other studies,
that CDK5 ablation in hippocampal neural progenitor cells leads to a decrease in DCX-IR
neurons [88] that CDK5 acts upon DCX during adult neurogenesis, and that when CDK5 is
inactivated, it results in aberrant formation of newborn cells [41]. Taken together, it seems
that the reduction in DCX that we previously observed in CAF-fed rats [18] can be mainly
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related to alterations in the proliferation or migration of progenitor cells and not to changes
in their survival or maturation, although we cannot exclude this possibility because other
factors, that we did not analyze, could be involved.

In previously reported data [39], we found that the mRNA expression levels of RELN
were significantly decreased in the hippocampus of rats fed the CAF diet. RELN is an
extracellular matrix protein that is crucial for neuronal migration during the development
of different brain regions [89,90] and is expressed during adulthood in hippocampal and
cortical interneurons [90,91]. RELN is also known to be preferentially synthesized by
GABAergic neurons in the adult rodent brain [91,92]. This inactivation of the RELN sig-
naling pathway, specifically in adult neuroprogenitor cells, induces aberrant migration,
formation of ectopic dendrites in the dentate hilus, establishment of aberrant circuits,
and decreased dendrite development [90]. Furthermore, it was previously shown that
in the adult brain, RELN regulates neurogenesis and migration, as well as the structural
and functional properties of synapses [93]. Thus, the finding that the CAF diet leads to
a reduction in DCX expression [18] may be related to a reduction in reelin levels in the
hippocampus. Some studies demonstrate that reelin is an important factor in the regu-
lation of neurogenesis in adults, regulating dendritic migration and development [90,93].
Furthermore, some works demonstrate that adult neurogenesis is fundamental for spatial
learning and memory [94,95]. For this reason, we suggest that the changes in learning
and memory observed in animals treated with a cafeteria diet [18] may be related to the
decrease in the expression of DCX and reelin. Finally, because RELN is also fundamental
for the modulation of the structural and functional plastic properties of adult synapses,
including the induction and maintenance of long-term potentiation (LTP) [93], it is plausible
to assume that the learning and memory impairment detected in CAF-treated rats [18]
could be attributed to potential alterations in the HF synapses consequent to the reduction
in RELN levels.

As mentioned before, impairment in the expression of CBPs in specific regions of the
hippocampus could, ultimately, lead to an increase in circulating Ca2+ levels since it was
not taken up [75]. In addition, non-neuronal cells have the capacity to uptake calcium [96].
Regarding the non-neuronal populations, astrocytes are glial cells that interact with neurons
and ensure that they receive and propagate information [42]. However, after brain insults,
such as the consumption of high-caloric diets, astrocytes can become activated, shifting
their function, and leading to an inflammatory process known as neuroinflammation [5].
The consumption of high-caloric diets [46] and the uptake of circulating Ca2+ [97] have been
shown to induce morphological alterations in astrocytes. Actually, the majority of astrocytic
regulatory functions rely on their processes [45]. In addition, our results show that the
CAF diet alters the astrocyte morphology through the increased number of processes in the
hilus region, as has already been described in other studies [46,98,99]. Indeed, we found
that the astrocytes of CAF-treated rats had more processes but their lengths were reduced
when compared to controls and HS-treated rats. These results are not in line with classical
astrocytosis morphology, where the projections become longer and less abundant [100].
However, other studies have shown that the astrocytic processes undergo plastic changes
according to nutritional states in the hypothalamus [44,45,101]. Our study is the first
to show the same alteration in the hippocampus of young animals, as we had already
described for high-fat-high-sugar diets in old animals [46]. It is important to note that the
altered morphology of astrocytes is region-dependent, only occurring in the same regions
where we detected the decreased activity of CBPs, as was the case of the hilus in CAF-fed
rats, where we observed a decreased density of PV-IR neurons and altered morphology of
astrocyte processes.

4. Methods and Materials
4.1. Animals and Diets

Thirty male Wistar rats bred at the animal facility of the Faculty of Medicine of the
University of Porto, Portugal, were kept under standard laboratory conditions (20–22 ◦C
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and a 12 h light/dark cycle) with food and water ad libitum. Rats were housed twice per
cage to avoid social isolation and to allow for the daily quantification of liquid and food
consumption. They were weighed weekly, and the bedding was changed simultaneously
to minimize the stress caused by handling. At 4 weeks of age, the rats were randomly
assigned to one of the following three groups: the control group (CT, n = 10) had free access
to tap water and was fed standard rat chow (Mucedola, 4RF1, Italy) containing proteins
(17%), lysine (0.7%), methionine (0.3%), cysteine (0.5%), carbohydrates (57%), fat (4%), and
salts (7%) (Table 1). The standard chow provided approximately 3.9 Kcal/g, 20% of energy
as protein, 12% as fat, and 68% as carbohydrates; the high-sugar (HS)-treated group (HS,
n = 10) drank a solution of 30% sucrose (Sigma-Aldrich Company Ltd., Madrid, Spain;
1.2 Kcal/mL) instead of water, and were fed with the same standard laboratory chow
(Table 1); the cafeteria (CAF)-treated rats (CAF, n = 10) drank a solution of 15% sucrose
(Sigma; 0.6 Kcal/mL) and were fed with assorted food composed of standard rat chow,
chocolate cake, biscuits, dog roll and a high-fat rat chow (40% fat), providing an average of
4.5 Kcal/g, approximately 12% of energy as protein, 45% as fat and 43% as carbohydrates,
in addition to that provided by the standard chow and the sucrose solution (Table 1). All
diets were supplemented with a vitamin fortification mixture (MP Biomedicals, Santa Ana,
CA, USA). Food and liquids were available ad libitum throughout the experimental period
(12 weeks) and replaced daily. The handling and care of the animals followed the guidelines
of the European Communities Council Directives of 22 September 2010 (2010/63/EU) and
Portuguese Act nº113/13, and was approved by ORBEA, the internal committee of the
Faculty of Medicine of the University of Porto, Portugal. Possible alternatives of refinement,
reduction, and replacement were all considered in the present study, and as such, efforts
were made to minimize the number of animals used and their suffering.

Table 1. Composition of the experimental diets.

Diet Composition Mucedola 4RF1 High-Sugar Cafeteria

Chow (%/100 g)

Proteins 20 20 12

Carbohydrates 68 68 45

Fats 12 12 43

Liquid Solution (%/100 g) Sucrose 0 30 15

Total Energy (Kcal/100 g) 390 510 510

After receiving the diets for 12 weeks, for the immunohistochemical studies, six
animals from each group were randomly selected, anesthetized with sevoflurane (SevoFlo,
Abbott Laboratories Ltd., Maidenhead, UK), and transcardially perfused with 150 mL of
0.1 M phosphate buffer (PB), followed by fixation with 4% paraformaldehyde in PB at pH
7.6. For mRNA studies, the remaining animals in each group (n = 4) were decapitated, and
the brains were quickly removed in a cold base and stored at −80 ◦C until further use.

4.2. Immunohistochemistry

For immunohistochemistry, the brains were collected, coded for blind processing, and
separated by a median cut into the right and left hemispheres. The frontal and occipital
poles were removed, and the blocks containing the HF were separated and processed. As
there is evidence that the HF of rodents displays right/left asymmetries [102], blocks were
alternately sampled from the right and left hemispheres. The same blocks were immersed
for 1 h in the same fixative used for perfusion and maintained overnight in a solution of
10% sucrose in PB at 4 ◦C. Using a vibratome, the brains were serially sectioned in the
coronal plane at 40 µm through the HF, and sections were collected in phosphate-buffered
saline (PBS). Sections of each animal were selected using a systematic, random sampling
procedure in a fraction of 1:12 for each of the following sets: PV, CR, CB, NPY, SST, VAChT,
and GFAP. Selected sections were washed twice in PBS and treated with 3% H2O2 solution
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for 7 min to inactivate endogenous peroxidase. To increase tissue penetration, 0.5% Triton
X-100 was added to PBS for all immunoreactions and washing steps. The selected sections
were then incubated at 4 ◦C for 72 h with primary antibodies against PV (Swant, Burgdorf,
Switzerland, 1:5000 dilution in PBS 0.5% T), CR (Swant, 1:5000 dilution in PBS 0.5% T), CB
(Swant, 1:5000 dilution in PBS 0.5% T), VAChT (Millipore, MA, USA, 1:2000 dilution in PBS
0.5% T), and GFAP (Dako, CA, USA, 1:4000 dilution in PBS 0.5% T), or overnight at 4 ◦C for
SST (Peninsula Laboratories, Augst, Switzerland, 1:10,000 dilution in PBS 0.5% T), and NPY
(Peninsula Laboratories, 1:10,000 dilution in PBS 0.5% T). The sections were then washed
thrice in PBS containing 0.5%T and incubated with the respective biotinylated secondary
antibodies. Afterward, the sections were treated with an avidin-biotin-peroxidase complex
(Vectastain Elite ABC kit, Vector Laboratories, Newark, CA, USA, 1:800 dilution in PBS 0.5%
T). The last two incubations were conducted at room temperature for 1 h. After treatment
with the peroxidase complex, sections were incubated for 10 min in 0.05% diaminobenzidine
(DAB, Sigma-Aldrich, Wien, Austria), to which 30 µL of 0.01% H2O2 solution was added.
The sections were rinsed with PBS for at least 15 min between steps. The specificity of the
immune reactions was controlled by omitting the incubation stage with primary antiserum.
All immunohistochemical reactions and washings were performed in 12-well tissue culture
plates to ensure that staining of sections from all groups was performed in parallel and
under identical conditions. The sections were mounted on gelatin-coated slides, air-dried,
dehydrated, and coverslipped using Histomount (National Diagnostics, Atlanta, GA, USA).

4.3. Morphometric Analysis
4.3.1. Estimation of the Areal Density of PV-, CR-, CB-, NPY- and SST-Immunoreactive Cells

Immunostained brain sections were analyzed and drawn using a light microscope
equipped with a camera lucida at a final magnification of 160×. The layer boundaries of
the DG, CA3, and CA1 regions of the HF were consistently defined at all levels along the
septotemporal axis of the HF, based on cytoarchitectonic criteria [103] and using a rat brain
atlas [104]. Neurons belonging to the CA2 hippocampal field were included in the CA3
region. Immunoreactive neurons were identified as darkly stained perikarya. The number
of neurons in each layer of the DG or pyramidal strata of the hippocampal CA1 and CA3
subfields was counted from the drawings. The estimation for each cell type was obtained
from an average of 12 immunostained sections per rat, which were sampled as previously
described. The same camera lucida drawings were used to calculate the areas of the layers.
A transparent sheet bearing a test system consisting of a set of regularly spaced points was
superimposed on the drawings, and the number of points falling within the boundaries of
the molecular layers (MLs), granular layer (GL), hilus, CA3, and CA1 were counted. The
area of each layer was estimated by multiplying the number of points within the limits by
the value of the area per point of the test system (0.0096 mm2). The cell numbers obtained
were divided by the values of the corresponding laminar areas to yield the areal density
values (number of cells/mm2).

4.3.2. Estimation of the Areal Density of VAChT-Positive Varicosities in the Dentate Hilus

Cholinergic varicosities stained with VAChT were counted using a computer-assisted
image analyzer (Leica Qwin, v3.3.1) connected to a Leica DMR microscope and a Leica
DC 300 F video camera (Leica Microsystems, Wetzlar GmbH, Wetzlar, Germany). For each
animal, an average of 12 VAChT-stained sections was used and assessed as previously
described [30]. The measurements were performed at a final magnification of 1000×.
The varicosities were defined as darkly stained axonal dilations with a size greater than
0.25 µm2 [105]. A sample frame (3.86 × 103 µm2) was laid over each field of view, and
the number of varicosities falling within it was counted. To obtain the mean count of
the dentate hilus, four different frame positions within each region were used, each at a
randomly selected position. The results are presented as area densities (number/mm2).
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4.4. Quantification of GFAP-Positive Astrocytes

Immunostained brain sections were photographed using a light microscope (Zeiss
Scope A.1, Zeiss, Jena, Germany) equipped with an AxioCam MRc5 (Zeiss) camera at a final
magnification of 20×. The layer boundaries of the DG, CA3, and CA1 were consistently
defined at all levels along the septotemporal axis of the HF based on cytoarchitectonic
criteria [103] and using a rat brain atlas [104]. Astrocytes from the CA2 hippocampal area
were included in the CA3 region. The images obtained from the AxioVision Rel 4.8 (Zeiss)
program were used in the ImageJ (1.50i, National Institute of Health, Bethesda, MD, USA)
program and ran on a macro [106] modified to count astrocytes [49] to assess the number
of GFAP-immunoreactive astrocytes and the length and number of their processes.

4.5. RNA Extraction, Reverse Transcription, and Quantitative Real-Time Polymerase Chain
Reaction (RT-qPCR)

After dissecting and homogenizing the HF from one of the brain hemispheres, total
RNA was extracted using the NZYOL reagent (NZYTech, Lisbon, Portugal), followed by
chloroform extraction and isopropanol precipitation. Total RNA was quantified using a
NanoDrop 2000 instrument (Thermo Scientific, Fisher Scientific, Oeiras, Portugal), and the
quality was controlled using a 2100 Bioanalyzer Instrument (Agilent, Santa Clara, CA, USA).
Before reverse transcription, total RNA was DNase-treated with RQ1 DNase (Promega,
Fitchburg, WI, USA) to remove contaminating genomic DNA. Reverse transcription was
performed using the NZY First-strand cDNA Synthesis Kit (combined oligo-dT and ran-
dom hexamers) (NZYTech, Lisbon, Portugal). Quantitative real-time PCR (RT-qPCR) was
performed in a StepOnePlus qPCR system (Applied Biosystems, Woburn, MA, USA) using
the SensiFAST SYBR Hi-Rox Kit (Bioline, London, UK) and the standard curve method. The
samples were assayed in triplicate. The qPCR reaction efficiencies for all the primer sets
ranged from 92% to 100%. Gene expression was normalized to the expression levels of two
endogenous housekeeping genes: glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
and β-actin. Table 2 lists the gene-specific primers used.

Table 2. Specific forward and reverse primers for the studied genes are presented. Additionally, we
used the annealing temperature for each primer pair.

Gene Forward Reverse Annealing Temperature

GAD1 CCTAAAGTACGGGGTTCGCA CAGCCATTCGCCAGCTAAAC 60 ◦C

BDNF GGCCCAACGAAGAAAACCAT TTCCTCCAGCAGAAAGAGCA 60 ◦C

RELN TCAAAGACGCCTTAGCCCAG TTCAGCGAGGTGCGAGTAAG 60 ◦C

CDK5 GTGACCTGGACCCTGAGATTG ACGTTACGGCTGTGACAGAA 57 ◦C

4.6. Statistical Analysis

Body weight, caloric consumption, and fat mass data are presented as the mean ± SEM.
Morphological and mRNA expression data are presented as mean ± SD. Statistical analyses
and graphics were performed using GraphPad Prism (GraphPad Software v8.0.2., Boston,
CA, USA). One-way ANOVA was used to analyze body weight, caloric consumption, fat
mass, areal densities, relative expression of mRNAs, and GFAP expression in astrocytes,
using treatment as the independent variable. Whenever appropriate, analysis of variance
(ANOVAs) was performed, followed by Tukey’s HSD post hoc comparisons. Differences
were considered statistically significant at p < 0.05.

5. Conclusions

Our results show that the CAF diet administered to juveniles affects the GABAergic
system of the HF more severely than the HS diet. We found that the CAF diet reduces
the density of PV- and NPY-positive neurons without significantly changing the majority
of the GABAergic population and overall GABA levels. Furthermore, whereas BDNF
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and CDK5 expression remained unchanged, the CAF diet led to a significant decrease in
RELN mRNA levels and induced morphological shortening of astrocyte processes in HF.
In addition, the CAF diet also induces morphological shortening of astrocyte processes
in HF. Taken together, we hypothesize that the reduction in neurons expressing PV and
NPY in the HF, induced by the consumption of CAF diets, may induce overexcitation
and change the excitatory/inhibitory balance, leading to alterations in neurogenesis and
astrocyte morphology. These findings also suggest that altered astrocytes and a reduction
in the levels of PV, NPY, and RELN in the HF may contribute to the cognitive impairments
observed in juveniles who consume cafeteria diets. These data also consolidate evidence
that early life is an extremely vulnerable period to dietary challenges and emphasize the
importance of identifying the subtle molecular mechanisms that mediate the effects of
diets rich in saturated fats and refined sugar on the GABAergic system, neurogenesis, and
astrocyte morphology in the maturing brain.
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