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Abstract: The reaction of sodium 2,2-dicyanoethene-1,1-bis(thiolate) with bromine (2 equiv.) in CCl4
gave 3,5-dibromoisothiazole-3-carbonitrile and 5,5′-thiobis(3-bromoisothiazole-4-carbonitrile) in 7%
and 18% yields, respectively. The latter novel compound was fully characterized.
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1. Introduction

Heterocycle sulfides are a particularly important group of compounds with numerous
examples of biologically useful compounds such as the immunosuppressant Azathioprine
1 [1–3], the antibacterial drug meropenem 2 [4–6] and the herbicide pyriftalid 3 [7–9]
(Figure 1). Focusing on isothiazole sulfides, there are several examples of biologically
useful compounds such as the 4-cyanoisothiazole 4 that has shown antiviral activity against
polio [10–12] and dithiine 5 which is active as an antifungal agent [13] (Figure 1).
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1. Introduction 
Heterocycle sulfides are a particularly important group of compounds with numer-

ous examples of biologically useful compounds such as the immunosuppressant Azathi-
oprine 1 [1–3], the antibacterial drug meropenem 2 [4–6] and the herbicide pyriftalid 3 [7–
9] (Figure 1). Focusing on isothiazole sulfides, there are several examples of biologically 
useful compounds such as the 4-cyanoisothiazole 4 that has shown antiviral activity 
against polio [10–12] and dithiine 5 which is active as an antifungal agent [13] (Figure 1). 
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Figure 1. Biologically active isothiazole carbonitriles. 

Isothiazoles are five-membered heterocycles that have found uses as agrochemicals 
[14], pharmaceuticals [15] and dyes [16]. Their applications, chemistry and synthesis have 
been reviewed [17–19]. Examples of biologically useful isothiazoles are the fungicide iso-
tianil (Stout®) [20,21], active against rice blast, and the antibacterial drug sulfasomizole 
[22,23]. 

Our interest in isothiazoles focuses on their preparation from 1,2,3-dithiazoles 6 by 
treatment with gaseous HCl or HBr [24,25] (Scheme 1), halide or alkylamines [26]. More-
over, we were interested in the investigation of the chemistry of halo and cyano-substi-
tuted isothiazoles. Halogen atoms in the C-5 position were substituted by carbon nucleo-
philes in Suzuki [27], Stille and Sonogashira couplings [28] (Scheme 1), while the coupling 
chemistry of the C-3 [28] and later the C-4 positions [29] was also investigated. Interest-
ingly, the isothiazole C-4 cyano group has been converted to a bromo group via a 
Hunsdiecker strategy or to an iodo group via a Hoffmann and Sandmeyer strategy [29]. 

An important isothiazole scaffold that we required in the course of our investigations 
is 3,5-dibromoisothiazole-3-carbonitrile (8b) (Scheme 1). The synthesis of this highly 
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Figure 1. Biologically active isothiazole carbonitriles.

Isothiazoles are five-membered heterocycles that have found uses as agrochemi-
cals [14], pharmaceuticals [15] and dyes [16]. Their applications, chemistry and synthesis
have been reviewed [17–19]. Examples of biologically useful isothiazoles are the fungicide
isotianil (Stout®) [20,21], active against rice blast, and the antibacterial drug sulfasomi-
zole [22,23].

Our interest in isothiazoles focuses on their preparation from 1,2,3-dithiazoles 6 by
treatment with gaseous HCl or HBr [24,25] (Scheme 1), halide or alkylamines [26]. Moreover,
we were interested in the investigation of the chemistry of halo and cyano-substituted
isothiazoles. Halogen atoms in the C-5 position were substituted by carbon nucleophiles in
Suzuki [27], Stille and Sonogashira couplings [28] (Scheme 1), while the coupling chemistry
of the C-3 [28] and later the C-4 positions [29] was also investigated. Interestingly, the
isothiazole C-4 cyano group has been converted to a bromo group via a Hunsdiecker
strategy or to an iodo group via a Hoffmann and Sandmeyer strategy [29].

An important isothiazole scaffold that we required in the course of our investigations
is 3,5-dibromoisothiazole-3-carbonitrile (8b) (Scheme 1). The synthesis of this highly
functionalized isothiazole that offers many options for functional group modifications is
reported in the literature [30,31].
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Herein, we report our findings in performing this reaction that led to the isolation of 
5,5′-thiobis(3-bromoisothiazole-4-carbonitrile) (10). The formation of this compound 
through the treatment of 3,5-dibromoisothiazole-4-carbonitrile with sodium thiocyanate 
is mentioned in the patent literature [31], but no yield or characterization data are de-
scribed. 

The preparation of sulfide 10 differs from most reported methods of preparation of 
isothiazole sulfides that commonly involve the nucleophilic aromatic substitution of halo-
isothiazoles with thiols [32] or palladium-catalyzed C-S coupling [33]. 

2. Results and Discussion 
The reaction of sodium 2,2-dicyanoethene-1,1-bis(thiolate) (11) with bromine (2 

equiv.) in CCl4 at ca. 55 °C, by a modification of the reported method [30,31] gave, after 
workup and chromatography, 3,5-dibromoisothiazole-4-carbonitrile (8b) and 5,5′-thi-
obis(3-bromoisothiazole-4-carbonitrile) (10) in 7% and 18% yields, respectively (Scheme 
2). 
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Product 10 was isolated as yellow plates, mp 141–142 °C (from PhH). UV-vis spec-
troscopy in dichloromethane supported an intact isothiazole ring [λmax(DCM) 279 nm, log 
ε 4.18], while FTIR spectroscopy showed the presence of a ν(C≡N) stretch at 2334 cm−1. 
Mass spectrometry revealed a molecular ion (MH+) peak of m/z 407 (38%) along with a 
MH+ + 2 isotope peak at 408 (85%) and a MH+ + 4 at 411 (54%) that supported the presence 
of two bromine atoms. 13C NMR spectroscopy showed the presence of four quaternary 
carbon resonances (see Supplementary Information), while a correct elemental analysis 
(CHN) was obtained for the molecular formula C8Br2N4S3. The multifunctional nature of 
isothiazole 10 makes it a potentially useful synthetic scaffold. 

Mechanistically, we attribute the formation of sulfide 10 to a reaction of product 8b 
with a source of nucleophilic sulfur. The initial displacement of the 5-bromide should lead 

Scheme 1. Route to isothiazole-5-carbonitriles 7 from dithiazoles 6 and coupling chemistry of
3-haloisothiazoles 8.

Herein, we report our findings in performing this reaction that led to the isolation
of 5,5′-thiobis(3-bromoisothiazole-4-carbonitrile) (10). The formation of this compound
through the treatment of 3,5-dibromoisothiazole-4-carbonitrile with sodium thiocyanate is
mentioned in the patent literature [31], but no yield or characterization data are described.

The preparation of sulfide 10 differs from most reported methods of preparation
of isothiazole sulfides that commonly involve the nucleophilic aromatic substitution of
halo-isothiazoles with thiols [32] or palladium-catalyzed C-S coupling [33].

2. Results and Discussion

The reaction of sodium 2,2-dicyanoethene-1,1-bis(thiolate) (11) with bromine (2 equiv.) in
CCl4 at ca. 55 ◦C, by a modification of the reported method [30,31] gave, after workup and chro-
matography, 3,5-dibromoisothiazole-4-carbonitrile (8b) and 5,5′-thiobis(3-bromoisothiazole-4-
carbonitrile) (10) in 7% and 18% yields, respectively (Scheme 2).
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Scheme 2. Synthesis of 5,5′-thiobis(3-bromoisothiazole-4-carbonitrile) (10).

Product 10 was isolated as yellow plates, mp 141–142 ◦C (from PhH). UV-vis spec-
troscopy in dichloromethane supported an intact isothiazole ring [λmax(DCM) 279 nm, log
ε 4.18], while FTIR spectroscopy showed the presence of a ν(C≡N) stretch at 2334 cm−1.
Mass spectrometry revealed a molecular ion (MH+) peak of m/z 407 (38%) along with a
MH+ + 2 isotope peak at 408 (85%) and a MH+ + 4 at 411 (54%) that supported the presence
of two bromine atoms. 13C NMR spectroscopy showed the presence of four quaternary
carbon resonances (see Supplementary Information), while a correct elemental analysis
(CHN) was obtained for the molecular formula C8Br2N4S3. The multifunctional nature of
isothiazole 10 makes it a potentially useful synthetic scaffold.

Mechanistically, we attribute the formation of sulfide 10 to a reaction of product 8b
with a source of nucleophilic sulfur. The initial displacement of the 5-bromide should lead
to 3-bromo-5-mercaptoisothiazole-4-carbonitrile 12, which could condense with another
molecule of isothiazole 8b to yield product 10 (Scheme 3). Interestingly, sulfide 13, which is
the chloro analogue of sulfide 10, can be prepared by the reaction of 3,5-dichloroisothiazole-
4-carbonitrile 8a with either CuCN (1 equiv.), NaSCN (1 equiv.) or Na2S (0.5 equiv.) [34]
(Scheme 3). In the latter two methods, it is clear that nucleophilic sulfur is involved similarly
to our proposal for the formation of sulfide 10.
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Scheme 3. Origins of sulfide 10 and reported syntheses of 5,5′-thiobis(3-chloroisothiazole-4-
carbonitrile) (13).

3. Materials and Methods

The reaction mixture was monitored by TLC using commercial glass-backed thin
layer chromatography (TLC) plates (Merck Kieselgel 60 F254). The plates were observed
under UV light at 254 and 365 nm. The melting point was determined using a PolyTherm-
A, Wagner & Munz, Kofler—Hotstage Microscope apparatus (Wagner & Munz, Munich,
Germany). The solvent used for recrystallization is indicated after the melting point. The
UV-vis spectrum was obtained using a Perkin-Elmer Lambda-25 UV-vis spectrophotometer
(Perkin-Elmer, Waltham, MA, USA) and inflections are identified by the abbreviation
“inf”. The IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer
(Shimadzu, Kyoto, Japan) with Pike Miracle Ge ATR accessory (Pike Miracle, Madison, WI,
USA), and strong, medium and weak peaks are represented by s, m and w, respectively. 1H
and 13C NMR spectra were recorded on a Bruker Avance 500 machine [at 500 and 125 MHz,
respectively, (Bruker, Billerica, MA, USA)]. Deuterated solvents were used for homonuclear
lock and the signals were referred to with the deuterated solvent peaks. Attached proton
test (APT) NMR studies were used for the assignment of the 13C peaks as CH3, CH2, CH
and Cq (quaternary). MALDI-TOF mass spectra were recorded on a Bruker Autoflex III
Smartbeam instrument. Sodium 2,2-dicyanoethene-1,1-bis(thiolate) (11) [30] was prepared
according to the literature procedure.

5,5′-Thiobis(3-bromoisothiazole-4-carbonitrile) (10)

A suspension of sodium 2,2-dicyanoethene-1,1-bis(thiolate) (11) (223.3 g, 1.20 mol) in
CCl4 (2.4 L) in a 5 L round bottom flask fitted with a mechanical stirrer, thermometer and
condenser was added dropwise to bromine (123 mL, 2.40 mol) under stirring over 30 min.
The temperature of the mixture rose to ca. 30 ◦C during the addition. The mixture was then
heated in a heating mantle to ca. 55 ◦C and stirred for a further 1.25 h. The mixture was then
filtered through a pad of silica to remove insoluble matter and washed with DCM (a total
of 2 L); the filtrate was then adsorbed onto silica and chromatographed (n-hexane/DCM,
80:20) to give 3,5-dibromoisothiazole-4-carbonitrile (8b) (23.16 g, 7%) as colorless needles,
mp 98–99 ◦C (sublimed, lit. [28] 98–98.5 ◦C); Rf 0.28 (n-hexane/DCM, 80:20); vmax/cm−1

2232m (C≡N), 1488s, 1369m, 1351w, 1313s, 1207w, 1071m, 965m, 955m, 935w, 912w, 803s,
766m, identical to the one reported [30]. A further elution (n-hexane/DCM, 50:50) gave
the title compound 10 (44.87 g, 18%) as yellow plates, mp 141–142 ◦C, (from PhH); Rf 0.33
(n-hexane/DCM, 50:50); (found: C, 23.31; H, 0; N, 13.58. C8Br2N4S3 requires C, 23.54; H, 0;
N, 13.73%); λmax(DCM)/nm 230 (4.01), 279 (4.18), 319 inf (3.41); vmax/cm−1 2234m (C≡N),
1478m, 1346w, 1319s, 1086m, 949m, 937m, 824m, 812s; δC(125 MHz; CDCl3) 163.3 (Cq),
140.2 (Cq), 116.7 (Cq), 109.8 (Cq); m/z (MALDI-TOF) 411 (MH+ + 4, 54%), 409 (MH+ + 2,
85), 407 (MH+, 38), 402 (64), 329 (M-Br + 2, 100), 327 (M-Br, 63).

Supplementary Materials: The following supporting information can be downloaded online: mol
file, 13C NMR and IR spectra.
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