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Abstract: Assessing mobility in daily life can provide significant insights into several clinical con-
ditions, such as Chronic Obstructive Pulmonary Disease (COPD). In this paper, we present a com-
prehensive analysis of wearable devices” performance in gait speed estimation and explore optimal
device combinations for everyday use. Using data collected from smartphones, smartwatches, and
smart shoes, we evaluated the individual capabilities of each device and explored their synergistic
effects when combined, thereby accommodating the preferences and possibilities of individuals
for wearing different types of devices. Our study involved 20 healthy subjects performing a mod-
ified Six-Minute Walking Test (6MWT) under various conditions. The results revealed only little
performance differences among devices, with the combination of smartwatches and smart shoes ex-
hibiting superior estimation accuracy. Particularly, smartwatches captured additional health-related
information and demonstrated enhanced accuracy when paired with other devices. Surprisingly,
wearing all devices concurrently did not yield optimal results, suggesting a potential redundancy in
feature extraction. Feature importance analysis highlighted key variables contributing to gait speed
estimation, providing valuable insights for model refinement.

Keywords: daily life monitoring; gait speed estimation; machine learning; mobility analysis; smart
sensors; smartphone; smartwatch; smart shoes; telemedicine; wearable devices

1. Introduction

The assessment of mobility loss in real-world settings and in the long term could
have a profound effect on medical practice, much like how cardiac Holter monitoring
revolutionized the evaluation of cardiac pathologies in the past. Indeed, the decline in
mobility is a morbidity factor in various pathophysiological conditions, including heart
failure, Chronic Obstructive Pulmonary Disease (COPD), and neurodegenerative diseases.
In the medical field, mobility analysis holds significance for various purposes. For example,
in patients with Parkinson’s disease, both to clarify gait abnormalities [1] and to investigate
the effects of different therapies [2,3], in mental disorders, where mobility alterations are a
sign of disease (depression, schizophrenia, anxiety disorders, etc.) to predict relapses or
exacerbations [4], and in various chronic lung conditions to assess disease severity [5,6]. In
particular, walking speed is a valid, reliable, and sensitive measure for assessing health in a
wide range of populations [7]. The gait speed (GS) has been identified as the “sixth vital
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sign” [8]; it is a simple measure for predicting health status with very important clinical
applications for a wide range of pathological conditions [9].

Over past years, the estimation of gait speed has been conducted through several
validation studies using various tools (e.g., wrist sensors [10], lower-back-worn inertial
sensors [11], smartphone sensors [12], smartwatch sensors [13], or a combination of three
accelerometers, on the thigh, on the sacrum, and on the shanks [14]). Despite the signifi-
cance of previous research, real-world mobility assessment has not yet been integrated into
current clinical practices.

The aim of this work is to propose a new method for estimating gait speed (GS) from a
heterogeneous set of wearable devices, which can be employed one by one, collectively, or
in any combination. For each combination of wearable devices, we assessed the estimation
accuracy and explained the features that contribute most significantly to the estimation.
To increase the generalization of our approach, we combined two common commercial
wearable devices (a smartphone and a smartwatch) with a gait-analysis-dedicated wearable
system (a smart shoe integrating inertial and pressure sensors). These devices can capture
gait dynamic information through different modalities. Our focus is on describing the
device’s performance and identifying optimal combinations that individuals may utilize in
their daily lives.

This work is part of the European Union-funded TOLIFE project [15], in which the
focus is on COPD. The goal is to collect data from the daily lives of COPD patients using
non-invasive smart sensors to be used for the development and clinical validation of an
artificial intelligence (AI) solution to optimize and personalize treatment and improve
the quality of life of COPD patients [16]. Indeed, a recent systematic review and meta-
analyses [17] have shown several associations between mobility parameters detected by
non-invasive sensor devices and COPD outcomes, such that a loss of mobility is associated
with an increased mortality risk. Moreover, slow GS is associated with increased healthcare
utilization. Since these results demonstrate that a loss of mobility is one of the most
important prognostic factors for COPD outcomes, studying the mobility of COPD patients
is pivotal to the process of acquiring daily life parameters to be used for the creation of
predictive algorithms underlying Al.

To estimate gait speed, we built a multiple linear regression model for each of the
seven possible combinations of devices (i.e., phone, watch, shoes, “phone + watch”, “phone
+ shoes”, “watch + shoes”, and “all devices”). To train and assess our model, we used
data collected in a protocol in which sensor data from the three wearable devices were
associated with data collected by a reference system during controlled walking tasks. For
the experimental phase, we enrolled 20 healthy subjects, each wearing a set of wearable
devices (smartphone, smartwatch, and smart shoes) and the reference system used to
obtain the gait speed. The reference system was the Awinda inertial motion tracker coupled
with the MVN Analyse software (version 2023.0), both supplied by Xsens [18] (Enschede,
Netherlands). We asked each subject to perform a modified version of the Six-Minute
Walking Test (6MWT) [19] three times at three different paces, medium, slow, and fast, in
order to cover a wider range of speeds.

The results obtained showed a reasonably accurate performance in estimating walking
speed with root mean square errors consistent with the relevant literature studies [10-12,14],
which, however, focused on methods applied to single device combinations. To the best
of our knowledge, this is the first time that the impact of using any combination of three
wearable devices to assess walking speed has been quantified, aiming to provide more
ecological real-world monitoring of health conditions. Indeed, our method automatically
selects the best feature sets given the combination of devices, and it is always able to
provide the best estimation. By applying this approach to the daily life condition of COPD
patients, the use of multiple data sources allows us to obtain data throughout the day
without interruption, as these can be used simultaneously (a robust measurement to obtain
better performance from the estimation algorithms) or separately (when, for example, one
device runs out of power or stops working). Furthermore, they allow the patient to have
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greater compliance since having a set of three different devices enables them to choose the
most suitable device for the daily activity he/she wishes to carry out.

The organization of this paper is as follows. In Section 2, we introduce the experimental
acquisition protocol and the devices under investigation. We also illustrate how the data
were processed and the approach adopted for the implementation and validation of the
machine learning models. In Section 3, we display the results obtained by reporting the
performance of the algorithms under different conditions. Finally, in Section 4, we discuss
the results to conclude in Section 5.

2. Materials and Methods
2.1. Instrumentation
2.1.1. Wearable Devices

In this study, we used the wearable device set of the TOLIFE sensor platform, specif-
ically developed for the home monitoring of COPD patients [15,20]. The device set was
selected to fulfill the needs established by the EU-funded TOLIFE project, which requires
the collection of raw data related to modulating factors, performance, and symptoms of
patients with Chronic Obstructive Pulmonary Disease (COPD). These data are necessary
to construct algorithms based on artificial intelligence for (1) the early detection of COPD
exacerbations and (2) the estimation of the evolution of health-related quality of life, func-
tional exercise capacity, and dyspnea in COPD patients. The TOLIFE sensor set employs
non-invasive wearable and non-wearable sensors, consisting of the following sub-devices:
(1) a smart mattress cover and bedroom box case, (2) smart shoes, (3) a smartphone, (4) a
smartwatch, and (5) a spirometer. The devices used in this study comprise the wearable set
of TOLIFE devices and will be specifically employed to extract the mobility parameters of
COPD patients. The set comprises a smartphone (the Samsung Galaxy A14, Figure 1 left),
a smartwatch (the Samsung Galaxy Watch 5, Figure 1 center), and a pair of smart shoes
(Figure 1 right). From both the smartphone and smartwatch, we collected inertial sensor
data (accelerometer and gyroscopes for the smartwatch; accelerometers and orientation for
the smartphone). Smart shoes are a research prototype developed as an integrated solution
to record and transmit gait analysis information to mobile phones. They are adapted from
the prototypes described in our previous research [21,22] and are specifically tailored to
the TOLIFE project [15]. The smart shoes are battery-powered and have an electronic unit
integrated into the heel region of the insole. The electronic unit includes a digital inertial
measurement unit (3-axis accelerometer and gyroscope, LSM6DSL by STMicroelectronics)
and a Bluetooth low-energy connection. In addition, the smart shoes have three pressure
sensors integrated under the insole (two in the forefoot and one in the heel region) to
monitor the mechanical interaction of the foot with the ground (FSR 402 by Interlink).
We developed two custom Android applications to collect data from the smartphone and
smartwatch sensors. The smartphone application was also used to collect data from the
smart shoes. Table 1 reports the acquired signals for these devices and their respective
sampling frequencies. Figure 2 shows the reference system and wearable devices on a
subject. The reference system includes the inertial units of the AWINDA motion tracker
(orange units), the smart shoes, the smartwatch on the wrist, and the smartphone in the
front pocket.

Table 1. Signals acquired per device.

Sensor Units Sampling Phone Watch Shoes
Frequency (Hz)
Accelerometer m/s? 50 XY Z XY Z XY Z
Gyroscope rad/s 50 - XY Z XY, Z
. . Azimuth-
Orientation deg 50 Pitch-Roll - -

Pressure mV 50 - - XY Z
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Figure 1. Smartphone (left), smartwatch (center), and smart shoe (right). Local reference frames
associated with the inertial sensors are reported.

Figure 2. Subject wearing the reference system and the wearable devices.

2.1.2. Reference System

To obtain a reference measurement for the GS, we employed the AWINDA inertial
motion tracker coupled with the MVN Analyze software, both provided by Xsens [23]. The
Xsens Awinda system is composed of 17 wireless inertial measurement units. The MVN
Analyze software provides tools for visualizing and interpreting movement data captured
by Xsens sensors, including the Center of Mass (CoM) velocity. We used the horizontal
component of the CoM velocity extracted by MVN Analyze as a reference for gait speed.

2.2. Experimental Protocol

This study was composed of twenty healthy subjects, 11 females and 9 males, aged
27.6 & 1.6 years. Each subject wore the reference system and the wearable devices, with
the smartwatch on the left arm and the smartphone placed in the trouser’s front pocket.
Each participant was asked to perform a modified version of the Six-Minute-Walking-
Test (6MWT), a widely recognized and standardized assessment tool to assess functional
autonomy, especially in subjects with compromised lung function [19]. The original clinical
version of the test consists of measuring the distance walked by a person in six minutes
along a 30 m flat path, walking as fast as possible [24]. Our modified version took place
along a 10 m flat path, with a turning radius of about 50 cm available to make directional
changes. Each participant was asked to perform the test three times at three different
paces, medium, slow, and fast, to cover a wider range of speeds. They were encouraged to
self-select the pace during each trial. While performing the test, the devices were always
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worn in the same position. In particular, the watch was placed on the left wrist, and the
phone was in the left pocket, with the screen facing the thigh and the Y-axis facing upward.

2.3. Algorithm for Gait Speed Estimation

As previously introduced, we aimed to build and assess a gait speed estimation
algorithm capable of providing the best estimation for each possible wearable device
combination. Therefore, we trained seven machine learning models on the following
combinations of wearable devices: (i) phone, (ii) watch, (iii) shoes, (iv) phone + watch, (v)
phone + shoes, (vi) watch + shoes, or (vii) all the devices.

The model chosen for each combination-specific GS estimation algorithm was a multi-
ple linear regression with 11 terms (intercept and 10 regressors) as follows:

7= Po+ By *f1+ .+ P1ro* fro 1

where 7 is the estimated GS, B; are the regression coefficients, and f; are the features. Note
that the features (f;) vary across the different models according to the feature selection
stage described later in this section.

The workflow reported in Figure 3 describes the steps needed to train the machine
learning-based models capable of estimating walking speed from the data collected by
different combinations of wearable devices. After pre-processing the raw signals of the
wearable devices, a set of features was extracted and selected. These features were used to
train a linear regressor for each of the seven possible combinations of wearable devices. The
operations described in Figure 3 (i.e., feature selection, z-normalization, and GS estimation
model training and validating) were carried out, validating one subject at a time, thus
performing a leave-one-subject-out cross-validation to separately evaluate the performance
of the models.

Raw Data Preprocessing Feature Extraction

For every subject Train Validation

For every combination of devices

1. Phone 19 subjects 1 subject
2. Watch

3. Shoes learned

4. Phone+Watch normalization

Z-normalization
i
3. Phone+Shoes and Features ket 7 7 aization
6. Watch+Shoes selection

7. All devices

Learn Gait Speed R Gait Speed
algorithm estimation

Figure 3. Workflow for gait speed estimation. The blocks within the blue box are repeated for every
combination of devices. Meanwhile, the blocks inside the red box, which encompassed the blue box

as well, are carried out for each subject in the cross-validation process.

In the first stage of the proposed workflow, we preprocessed the raw sensor data to
derive two datasets. To preserve information about gravity direction from the accelerometer
signals, the first dataset included low-frequency components, which were obtained by
filtering the signals with a low-pass filter (ft = 10 Hz). The second dataset excluded



Sensors 2024, 24, 3205

6 of 22

low-frequency components and was obtained by using a band-pass filter (ft1 = 0.1 Hz,
ft2 = 10 Hz). Afterward, we extracted features from this dataset to train the models.

To extract the features, all signals were first segmented, adopting 5 s sliding windows
with 80% overlap. For every derived time window, the following features were extracted
for each of the components of the acquired signals and their modulus: (i) Mean, (ii) STD
(Standard Deviation), (iii) CV (Coefficient of Variation), (iv) RMS (Root Mean Square),
(v) Range, (vi) Max value, (vii) MCR (Mean Crossing Rate), (viii) PF (Peak Frequency),
(ix) SMA (Signal Magnitude Area, computed once per sensor), and (x) Shannon Entropy.
Therefore, for every sensor, we obtained 4 values for each of the features, except for the
SMA, from which we obtained only 1. Combining the two datasets, we obtained 74 features
for each sensor. The phone and watch, which acquire signals from accelerometers and
gyroscopes, have 148 features, while shoes, which also acquire data from pressure sensors,
have 222 features. Furthermore, the obtained features were z-normalized to prevent the
estimation from being biased by different scales and to obtain comparable coefficients,
which will improve the explainability of the model.

The features used to train the model were selected independently for every device. The
adopted criterion to add terms was the Bayesian information criterion (BIC). The scoring
was based on the likelihood function but also considered the complexity of the model,
introducing a penalty for the number of parameters of the model. The model admitted
only an intercept term and linear terms for each predictor, improving the explainability of
the model. Every model was built starting with the intercept, and the stepwise was free
to add terms based on the BIC criterion. For each model, we set a maximum of 10 terms;
stepwise, we never stopped at a lower number of features, obtaining Equation (1). We also
investigated the performances by varying the size of the time windows. Windows of 2.5, 5,
10, and 20 s were tested. We chose the overlapping between the windows to always ensure
1 sample per second.

2.4. Algorithm Evaluation
2.4.1. Error Metrics

To evaluate the agreement between the GS measured by the reference system and
the estimated one, we utilized the Bland—Altman and correlation plots, reporting the
limits of agreement, the bias, and the coefficient of determination (R2). We performed the
Bland—-Altman and correlation plots also for the six-minute walking distance (6MWD),
obtained by GS estimation by using the following formula:

— 1& .
6MWD = (nZ%) * 360s )
i=1
where §; is the estimated GS for every time window and # is the number of the time
windows extracted from the 6MWT under consideration.
We calculated the root mean square error (RMSE) of the GS estimation as follows:

RMSE = @ — i) (3)

S|
-MS

i=1

where y; is the speed provided by the Xsens and f; is the speed estimated by the regression
algorithm.
We then calculated the relative percentage error (e;) on the 6MWD estimation

as follows:
6 MWD — 6MWD

6MWD

& = ‘ ’ * 100 4)
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2.4.2. Feature Interpretability

We performed the analysis described in this section to identify the most important
features of each combination of devices. Each (3 coefficient of the regression was lin-
early associated with one predictor. Due to the z-normalization, the coefficients will be
directly comparable.

To find the most important features, we investigated the training data following these
steps:

1. Selection of significant features: we select features found to have been chosen in at

least one model and found to be significant (p-value < 0.001);

2. First drop-out stage: for each combination, we drop out the features selected in less
than half of the folds of the validation, i.e., 10 folds;
3. Second drop-out stage: through observing that each device can appear in 4 of the

7 combinations, we will select, for each device, those that appear in more than half of

the possible combinations, i.e., 2 combinations.

The dataset is available on Zenodo (https://doi.org/10.5281/zenodo.11091279, ac-
cessed on 29 April 2024).

3. Results
3.1. Error Metrics

Table 2 reports the RMSE and Bland-Altman’s indices (limits of agreement, bias,
and R2) for GS estimation obtained using features from different device combinations.
The first column of Table 2 displays the RMSE for GS across different combinations of
devices. The subsequent columns show the lower and the upper limits of agreement of
the Bland—-Altman analysis, along with the bias. The last column reports the coefficient of
determination derived from the correlation plot.

Table 2. RMSE and Bland-Altman indices for GS estimation across different device combinations.

Lower Limit of Upper Limit of

Coﬁi‘gilc:tsion IEI/IIE]E Agreement Agreement Bias R2
[-1.96 SD] [+1.96 SD]

Phone 0.114 £ 0.055 —0.24 0.25 0.01 0.83
Watch 0.135 4 0.033 -0.27 0.27 0.00 0.79
Shoes 0.141 £ 0.05 -0.3 0.29 —-0.01 0.76
Phone + Watch ~ 0.113 £ 0.051 -0.25 0.24 —0.00 0.84
Phone + Shoes 0.11 = 0.04 -0.23 0.23 0.00 0.85
Watch + Shoes 0.109 +£ 0.029 —0.22 0.22 0.00 0.86
All Devices 0.111 £ 0.043 —0.24 0.23 —0.00 0.85

As shown in Table 2, the best performance in terms of RMSE is achieved for the
combination “Watch + Shoes”. On the other hand, the worst performance is obtained when
the “Shoes” device is used alone.

Figures 4 and 5 show the correlation and the Bland—Altman plots of the GS estimation
for the configuration with the best RMSE (i.e., “Watch + Shoes”). These plots aggregate the
estimations of all 20 subjects in the cross-validation. In Appendix A, in Figures A1-A12,
we report the correlation and Bland—-Altman plots for the combinations “Phone”, “Watch”,
“Shoes”, “Phone + Watch”, “Phone + Shoes”, and “All Devices”.
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y=0.89x+0.11
r?=0.86
SSE=250
n=21,800

RN
(@)}

Estimate

0.5

0 0.5 1 1.5 2
Reference

Figure 4. GS estimation using a correlation plot for the “Watch + Shoes” combination.

RPC: 0.22 (26%)

CV: 11%
0.22 (+1.96SD)
0.00 [p=0.00]

-0.22 (—1.96SD)

Estimate - Reference

0 0.5 1 1.5 2
Mean Reference & Estimate

Figure 5. GS estimation using a Bland—-Altman plot for the “Watch + Shoes” combination.

The first column of Table 3 reports the ¢, for the 6 MWD estimation. The subsequent
columns show the lower and the upper Bland-Altman’s limits of agreement and the bias.
The last one reports the coefficient of determination of the correlation plot.

Considering the percentage error, the best performance for GS estimation was obtained
from the combination “Watch + Shoes”, while the worst performance was obtained from
the “Shoes” device used alone.

Figures 6 and 7 show the correlation and the Bland-Altman plots of the 6 MWD
estimation for the configuration with the best percentage error (i.e., “Watch + Shoes”). These
plots aggregate the estimations of all 20 subjects in the cross-validation. In Appendix A, in
Figures A13-A24, we report the correlation and Bland—Altman plots for the combinations,
“Phone”, “Watch”, “Shoes”, “Phone + Watch”, “Phone + Shoes”, and “All Devices”.
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Table 3. ¢; and Bland—Altman’s indices for the 6MWD estimation for different device combinations.

Devices Lower Limit of Upper Limit of

. &r Agreement Agreement Bias R2
Combination [~1.96SD] [+1.96SD]
Phone 72+7.1 72 75 1.6 0.85
Watch 8.6 £6.7 -75 75 0.24 0.85
Shoes 93+ 8.1 —92 86 —2.7 0.78
Phone + Watch 7.8 + 6.6 -73 70 —1.6 0.86
Phone + Shoes 7.6+55 —69 68 -0.72 0.87
Watch + Shoes 6.6 +5.1 —63 59 —1.7 0.9
All Devices 84+6 77 74 —-15 0.85
600
y=0.91x+31.5
r?=0.90
° 500 SSE=52,000
S n=60
S
© 400
o
ho)
2
© 300
£
»
L

100 ‘ ‘ ‘ ‘
100 200 300 400 500 600

Real Distance

Figure 6. 6MWD estimation using a correlation plot for the “Watch + Shoes” combination.

RPC: 61 (16%)

200 CV: 8.5%
g, 190 . 59 (+1.96SD)
T8 0 EERLt N 17 [p=0.67]
E & R TR L
g _100. —63 (—1.96SD)
—200
100 200 300 400 500 600
Mean
Real Distance
&

Estimated Distance

Figure 7. 6MWD estimation using a Bland-Altman plot for the “Watch + Shoes” combination.

Table 4 reports the GS and 6MWD estimation performances in terms of estimation
errors (RMSE for GS and ¢, for 6MWD) for different sizes of the analysis window and
for different device combinations. In general, the trend of GS estimation suggests an
inverse relationship between the analysis window size and the estimation error, whereas
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an increase in the window size corresponds to a decrease in estimation error. However,
the trend showed one exception. For the “phone” combination, increasing the window
size from 5 to 10 s resulted in an increase in the estimation error of the GS. Regarding the
estimation of the 6 MWD, the trend was less defined, without a clear pattern between the
estimation error and the analysis window size.

Table 4. GS and 6MWD performance by varying the analysis window size and device combinations.

25s 5s 10s 20s
Devices GS GS GS GS
e (RMSE 6MWD (&,) (RMSE 6MWD (¢,) (RMSE 6MWD (&,) (RMSE 6MWD (¢,)
Combination
[m/s]) [m/s]) [m/s]) [m/s])

Phone 0.145 + 0.053 8+76 0.114 4+ 0.055 72+71 0.108 £ 0.06 82471 0.101 4+ 0.064 8.6 £6.7

Watch 0.179 £ 0.042 9.3+82 0.135 £+ 0.033 8.6 £6.7 0.122 £ 0.036 94470 0.116 + 0.036 9.1+6.5

Shoes 0.17 £ 0.038 9.6 +6.7 0.141 + 0.05 93 +8.1 0.112 £ 0.047 75+ 6.5 0.112 + 0.05 85+6.7
Phone + Watch 0.135 + 0.038 72+6.1 0.113 4+ 0.051 7.8 £6.6 0.109 + 0.058 85+7 0.094 £+ 0.051 76 £59
Phone + Shoes 0.134 + 0.043 83 +6.5 0.11 + 0.04 7.6 £55 0.095 + 0.046 72451 0.1 +0.044 85+6.2
Watch + Shoes 0.152 £ 0.035 85+6.7 0.109 + 0.029 6.6 5.1 0.093 £ 0.041 6.4+54 0.091 £ 0.043 69 +58

All Devices 0.124 £ 0.031 79 +54 0.111 £ 0.043 84+6 0.098 £ 0.036 7.8 £49 0.088 + 0.041 72+6

3.2. Feature Interpretability

The selection process for the most significant features, following the steps described in
section E of the methods, yielded the following results:

1.  Significant features: starting from 518 (148 from phones, 148 from watches, 222 from
shoes), we obtained 123 features;

2. First drop-out stage: from 123, we dropped to 32;

3. Second drop-out stage: out of the thirty-two, only six were retained.

We outlined the features that emerged for every device. The mean =+ std was computed
considering the occurrences that successfully passed through the selection process:

A. Smartphone:

e  The Shannon entropy of the modulus of the accelerometer when low-pass filtered
(B =0.0527 £ 0.0162, tStat = 45.57 £ 12.57);

e The mean crossing rate of the modulus of the orientation sensor when low-pass
filtered (3 = 0.0279 £ 0.0048, tStat = 36.70 & 7.37);

e The range of the y (vertical) component of the accelerometer when low-pass
filtered (p = —0.1469 + 0.0234, tStat = —54.20 £ 11.21);

e  The standard deviation of the y (vertical) component of the accelerometer when
low-pass filtered (3 = 0.255 & 0.1159, tStat = 77.38 & 40.48).

B. Smartwatch:

e  The root mean square of the modulus of the accelerometer when low-pass filtered
(B = —0.279 £ 0.4715, tStat = 29.19 + 47.73).

C. Smart shoes:

e  The mean of the z (vertical) component of the accelerometer of the left shoe when
low-pass filtered (3 = —0.0487 £ 0.0163, tStat = —39.58 £ 11.81).

Table 5 summarizes the features selected by learning the models of all 20 subjects. The
feature names reported in the table are constructed in this way: “STATISTIC”_"SENSOR”_"
FILTER MODE”_"COMPONENT”_"DEVICE”. STATISTIC: ENT->Shannon Entropy, RNG-
>Range, STD->Standard Deviation, MCR->Mean Crossing Rate, PF->Peak Frequency,
SMA->Signal Magnitude Area, CV->Coefficient of Variation, MAX->max value, MEAN-
>mean value, RMS->Root Mean Square; SENSOR: acc->accelerometer, gyr->gyroscope,
ori->orientation sensor, press->pressure sensor; FILTER MOD: Ip->low-pass filtered, Ip-
hp->band-pass filtered; COMPONENT: x->x axis, y->y-axis, z->z-axis, mod->modulus;
DEVICE: dev_1->phone, dev_2->watch, dev_3->left shoe, dev_4->right shoe.
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Table 5. Estimate + SE, (all p-values < 0.001).

Phone Watch Shoes Phone + Watch Phone + Shoes Watch + Shoes All Devices
Intercept 0.951 +/— 0.001 0.945 +/— 0.001 0.971 +/~— 0.001 0.954 +/— 0.001 1375 +/—0.011 0.963 +/— 0.001 0.955 +/— 0.001
Feat. 1 ENT_acc_lp_mod_dev_1: RNG_acc_lp_mod_dev_2: MEAN_acc_lp_mod_dev_3: STD_acc_lp_mod_dev_1: ENT_acc_lp_mod_dev_1: RMS_acc_lp_mod_dev_2: MCR_acc_lp_mod_dev_1:
’ 0.062 +/—0.001 —0.114 +/— 0.004 0.14 +/—0.002 0.373 +/— 0.006 0.032 +/— 0.001 0.079 +/— 0.001 —0.03 +/—0.001
Feat. 2 RNG_acc_lp_y_dev_1: RMS_acc_lp_mod_dev_2: MEAN_acc_lp_z_dev_3: MCR_acc_lp_mod_dev_1: RNG_acc_lp_y_dev_1: STD_acc_lp_mod_dev_2: ENT_acc_lp_mod_dev_1:
’ —0.143 +/— 0.003 —0.9 +/—0.028 —0.02 +/— 0.002 —0.035 +/— 0.001 —0.122 +/— 0.003 0.086 +/— 0.001 0.03 +/— 0.001
Feat. 3 MEAN_acc_lp_y_dev_1: MEAN_acc_lp_mod_dev_2: ENT_acc_lp-hp_y_dev_3: ENT_acc_lp_mod_dev_1: STD_acc_lp_y_dev_1: 0.291 ENT_acc_lp_mod_dev_2: RNG_acc_lp_y_dev_1:
’ —0.021 +/— 0.001 0.908 +/— 0.025 0.048 +/— 0.001 0.065 +/— 0.001 +/—0.003 0.037 +/— 0.001 —0.128 +/— 0.003
Feat. 4 STD_acc_lp_y_dev_1: 0.374 STD_acc_lp_mod_dev_2: MCR_pre_lp_mod_dev_3: MAX_acc_lp_y_dev_1: MCR_gyr_lp_x_dev_1: 0.031 hp mo dcgg\%yzr,—})p{)% . STD_acc_lp_y_dev_1: 0.292
’ +/—0.004 0.437 +/— 0.008 0.043 +/— 0.001 —0.09 +/— 0.002 +/—0.001 P-mod 0.001 +/—0.003
Feat. 5 MCR_acc_lp_y_dev_1: ENT_acc_lp_mod_dev_2: PF_pre_lp_z_dev_3: 0.053 STD_acc_lp_y_dev_1: PF_gyr_lp_y_dev_1: 0.022 MEAN_acc_lp_z_dev_3: MCR_gyr_lp_mod_dev_1:
' —0.035 +/— 0.001 0.028 +/— 0.002 +/—0.001 0.019 +/— 0.006 +/—0.001 —0.063 +/— 0.001 0.03 +/—0.001
Feat. 6 MCR_acc_lp-hp_mod_dev_1: MEAN_acc_lp_y_dev_2: MAX_pre_lp-hp_x_dev_3: PF_acc_lp_z_dev_1: 0.028 PF_gyr_lp-hp_z_dev_1: 0.019 ENT_gyr_lp_z_dev_3: SMA_gyr_lp-hp_dev_2:
’ 0.039 +/— 0.001 0.028 +/— 0.001 0.032 +/— 0.001 +/—0.001 +/—0.001 0.044 +/— 0.001 0.058 +/— 0.001
Feat. 7 PF_acc_lp-hp_mod_dev_1: SMA _acc_lp-hp_dev_2: ENT_acc_lp_x_dev_4: 0.025 SMA _acc_lp-hp_dev_1: MEAN_acc_lp_z_dev_3: RMS_acc_lp_z_dev_4: MEAN_acc_lp_z_dev_3:
’ 0.02 +/—0.001 0.054 +/— 0.003 +/—0.001 0.068 +/— 0.003 —0.047 +/~— 0.001 0.071 +/~—0.00 —0.045 +/— 0.001
Feat. 8 PF_acc_lp-hp_z_dev_1: 0.028 h molc\l/[gll:;a;-cf)lgél . RMS_acc_lp_z_dev_4: 0.117 h mgng—:‘fcfpi 0165 CV_gyr_lp_mod_dev_3: RMS_gyr_lp_z_dev_4: MEAN_acc_lp_z_dev_4:
’ +/—0.001 p-mod_ 0.002 +/—0.002 p_mod_dev_.: =0 1.922 +/—0.051 —0.047 +/ - 0.001 —0.045 +/— 0.001
. +/—0.004
X . . X MEAN_gyr_lp- .
Feat. 9 MCR_gyr_lp_mod_dev_1: CV_gyr_lp_mod_dev_2: MCR_gyr_lp-hp_z_dev_4: MCR_gyr_lp_mod_dev_1: MAX _pre_lp_z_dev_3: 0.023 hp_mod._dev. 4: 0.05 +/— RMS_gyr_lp_x_dev_4: 0.032
’ 0.025 +/— 0.001 0.039 +/— 0.001 0.041 +/— 0.001 0.032 +/—0.001 +/—0.001 P 0 062' : +/—0.001
Feat. 10 PF_gyr_lp-hp_z_dev_1: 0.024 RNG_gyr_lp_y_dev_2: ENT_pre_lp-hp_y_dev_4: RMS_acc_lp_mod_dev_2: MEAN _acc_lp_z_dev_4: ENT_pre_lp_z_dev_4: ENT_gyr_lp-hp_x_dev_4:

+/—0.001

—0.046 +/— 0.002

0.036 +/— 0.001

0.074 +/— 0.001

—0.069 +/— 0.001

0.031 +/— 0.001

0.032 +/—0.001
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4. Discussion

The results indicated that the models had reasonably accurate performance in estimat-
ing walking speed (mean RMSE: 0.119 £ 0.0132 m/s; minimum RMSE of 0.109 =+ 0.029 m/s
in the “watch + shoes” combination; maximum RMSE of 0.141 4+ 0.05 m/s for the “watch”).
We also used the extracted gait speed to estimate the 6MWD, i.e., the distance traveled
in each six-minute walking trial. For the estimation of the 6 MWD, we obtained a mean
percentage error of 7.9 £ 0.9. We obtained the minimum percentage error of 6.6 £ 5.1 in
the “watch + shoes” combination and the maximum percentage error of 9.3 £ 7.5 in the
“shoes” combination.

Our results on GS estimation appear to be aligned with the previous literature,
which, however, focused on methods applied to single device combinations. Soltani and
Aminian [11], using a single inertial sensor worn on the lower back, obtained the best RMSE
of 0.1 m/s across different contexts. Shresta and Won [12] used a smartphone placed in the
trouser pocket and achieved an RMSE of 0.16 m/s, while McGinnis and colleagues [14]
used three identical accelerometers placed on the sacrum, thigh, and shank, reaching a
mean RMSE of 0.136 m/s. Interestingly, Soltani and colleagues [10], using only a wrist
sensor, obtained an RMSE of 0.1 m/s, which improved up to 0.05 m/s when employing a
personalized approach that took into account subject-specific gait characteristics obtained
through a calibration phase utilizing the global navigation satellite system.

We observed that each single wearable device exhibited good performance in predict-
ing gait speed, with small differences among them. Notably, the standalone smartphone
outperformed other devices in GS prediction. However, the smartphone was consistently
and artificially positioned in a controlled manner on the body. This represents a limitation,
as this scenario is not always replicable in real life. Moreover, the controlled placement
may influence the smartphone’s superior performance and raise questions about the gener-
alizability of these findings to real living conditions, where device placement may vary.

The smartwatch showed a worse ability to predict GS compared to the smartphone,
even if it presented a good accuracy of distance estimation with a very low bias. However,
the smartwatch came with important advantages. Indeed, it has less intrinsic variability
in wear placement across individuals, suggesting a better generalizability of the results.
Moreover, when the smartwatch was paired with other devices, a good improvement in
accuracy was observed, leading to the highest mean performance among all combinations.
This synergistic effect suggests the potential for integrating multiple wearables to enhance
overall predictive capabilities. It was worthwhile noting that the smartwatch also captures
additional physiological information, such as heart rate (HR), that could potentially further
enhance prediction accuracy. Indeed, as suggested by the work from Schubert et al. [25],
HR-based features are predictors of 6 MWD outcomes.

Quite surprisingly, wearing all devices simultaneously did not yield optimal perfor-
mance. This counterintuitive result may be due to the redundancy in features extracted
from different devices, leading to a complex and potentially conflicting input for the pre-
diction models. The intricacies of combining data from different sensors may introduce
noise and hinder the model’s ability to discern meaningful patterns, thereby decreasing
predictive accuracy.

The analysis of the “best” features identified at the end of the validation (see section
A.1in III. Results section) highlights a noteworthy observation: the feature exerting the
most significant influence on walking speed was the “root mean square of the modulus of
the accelerometer when low-pass filtered”. This parameter exhibits considerable variability
among subjects, indicative of the diverse walking styles within the study cohort. Notably,
three of the six selected features pertained to the vertical component, underscoring the
rich information vertical movement offers regarding walking speed. Additionally, it was
intriguing to observe that five of the six identified features derived from accelerometer data,
with the remaining feature sourced from the phone’s orientation sensor. This underscores
the prominence of accelerometer-derived metrics in gauging walking speed.
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Considering all combinations of wearable devices, it was possible to estimate GS with
performances comparable to those in the literature (on average, the RMSE = 0.119 £ 0.0132 m/s,
calculated with time windows of 5 s, considering all paces together) [10-12,14,26,27].
Moreover, the RMSE average seemed to improve with the size of time windows; the larger
the size, the lower the RMSE. In fact, the performance, considering all paces together,
changed from an average RMSE of 0.148 &+ 0.02 m/s with a 2.5 s window to an RMSE
of 0.1 £ 0.01 m/s with a 20 s window. Taking into account all the paces together, the
best-performing device considered individually, as we expected, was the smartphone
(RMSE = 0.114 + 0.055), since it was placed in the trouser pocket and was the closest to the
center of mass, whose speed was used as the reference system. If the devices were used in
combination, the performance improved compared to the three individual devices, except
for the combination “Phone + Watch”. It is interesting to note that “Watch” and “Shoes”
taken singularly performed much worse than their combination, “Watch + Shoes”, which
emerged as the overall best among all seven available (RMSE = 0.109 £ 0.029).

Our findings indicate that using multiple devices together could result in the reduced
performance of GS estimation, possibly due to redundant features and complexity of
the model. To improve accuracy and minimize the impact of redundant data, a feasible
approach could be to employ dimensionality reduction techniques. Additionally, an alter-
native strategy could involve implementing a weighted Model Ensemble approach, which
combines predictions from different devices used as separate and independent data sources.
In this scenario, weights could be assigned to predictions derived from individual devices
based on their relevance, applicability, and robustness.

The other parameter, the estimation of the 6 MWD, which is derived from GS, was
stable in all combinations of wearable devices in the trials at different paces with an average
percentage error of 7.9 & 0.9%. The best combination of devices considering the three paces
together, even in this case, was the one that combined watch and shoes (¢, = 6.6 + 5.1). It
is important to note that, in all the seven combinations available, the standard deviations
were very wide, showing considerable intra-subject variability in the 6MWD estimation.

The results we obtained highlight that it is possible to estimate mobility parameters,
such as gait speed or walking distance, with good accuracy using various combinations
of wearable devices without any effort required from the user. The flexibility to use a
standalone device or any combination tailored to the subject’s preferences has the potential
to increase patient acceptance and enable the continuous daily life collection of mobility
data. Indeed, this approach allows for greater compliance, as patients are not forced to use
the same device all the time but can choose the one most suitable for their daily activities.
This capability potentially enables day-by-day estimation of mobility parameters and their
changes over time. For the COPD population, this implies a proactive assessment of physi-
cal capacity, leading to timely indications of worsening or improving conditions [28-30].
This supports the personalization of treatment plans and early intervention in case of sud-
den worsening, with the potential to reduce acute complications and improve the quality
of life. Similar consideration could be used for other pathological conditions [31-33].

5. Conclusions

In conclusion, our study highlights the robust performance of various wearable de-
vices, including smartphones, smartwatches, and smart shoes, in accurately estimating gait
speed and distance traveled, which are crucial metrics in assessing mobility, especially in
clinical contexts such as COPD. While individual devices exhibit good predictive capabili-
ties, our findings highlight the potential for enhanced accuracy and generalizability when
these devices are strategically combined. Notably, the smartwatch demonstrates promising
capabilities, particularly when paired with other devices. Our results also shed light on the
complex interplay between data fusion and predictive performance, with simultaneous
device usage demonstrating diminishing returns likely due to feature redundancy and
increased noise. These results suggest the importance of thoughtful integration strategies
to maximize predictive accuracy while minimizing complexity. The implications of our
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findings extend beyond clinical settings to broader applications in personalized healthcare
and remote monitoring. Indeed, combining different devices tailored to specific situa-
tions or patient preferences while maintaining good estimation performance enhances the
potential for continuous monitoring and estimation of mobility parameters in daily life.
This approach holds significant promise for enhancing the management and treatment
of chronic diseases like COPD. It enables the continuous, non-invasive monitoring of a
patient’s mobility and activity levels, considering the different needs of patients who may
prefer one device over another based on the moment of the day and their health conditions.
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Figure A1. GS estimation using a correlation plot for “Phone” configuration.
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Figure A2. GS estimation using a Bland—Altman plot for “Phone” configuration.
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Figure A3. GS estimation using a correlation plot for “Watch” configuration.
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Figure A4. GS estimation using a Bland-Altman plot for “Watch” configuration.
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Figure A5. GS estimation using a correlation plot for “Shoes” configuration.
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Figure A6. GS estimation using a Bland—Altman plot for “Shoes” configuration.
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Figure A7. GS estimation using a correlation plot for the “Phone + Watch” configuration.
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Figure A8. GS estimation using a Bland—Altman plot for “Phone + Watch” configuration.
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Figure A9. GS estimation using a correlation plot for the “Phone + Shoes” configuration.
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Figure A10. GS estimation using a Bland—Altman plot for “Phone + Shoes” configuration.
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Figure A11. GS estimation using a correlation plot for “All Devices” configuration.
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Figure A12. GS estimation using a Bland—Altman plot for “All Devices” configuration.
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Figure A13. GS estimation using a correlation plot for “Phone” configuration.
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Figure A14. GS estimation using a Bland—Altman plot for “Phone” configuration.
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Figure A15. GS estimation using a correlation plot for “Watch” configuration.

RPC: 75 (21%)

200 CV: 10%
5 100 75 (+1.96SD)
$E o 0.24 [p=0.96]
& “-100 ~75 (~1.96SD)
~200
200 400 600

Mean
Real Distance

&
Estimated Distance

Figure A16. GS estimation using a Bland—Altman plot for “Watch” configuration.
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Figure A17. GS estimation using a correlation plot for “Shoes” configuration.
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Figure A18. GS estimation using a Bland—Altman plot for “Shoes” configuration.
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Figure A19. GS estimation using a correlation plot for the “Phone + Watch” configuration.
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Figure A20. GS estimation using a Bland—Altman plot for “Phone + Watch” configuration.
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Figure A21. GS estimation using a correlation plot for the “Phone + Shoes” configuration.
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Figure A22. GS estimation using a Bland—Altman plot for “Phone + Shoes” configuration.

600

y=0.94x+22.3
?=0.85 e
500 SSE=84,000 -

Q = "
g n=60 R
© -
» 400 L
o L
i o
E .- Fu -
2300 A

100
100 200 300 400 500 600

Real Distance

Figure A23. GS estimation using a correlation plot for “All Devices” configuration.
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Figure A24. GS estimation using a Bland—Altman plot for “All Devices” configuration.
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