
Citation: Komadina, A.; Kovačević, I.;

Štengl, B.; Groš, S. Comparative

Analysis of Anomaly Detection

Approaches in Firewall Logs:

Integrating Light-Weight Synthesis of

Security Logs and Artificially

Generated Attack Detection. Sensors

2024, 24, 2636. https://doi.org/

10.3390/s24082636

Academic Editors: Wilfried Gappmair,

Erich Leitgeb, Maja Matijašević and

Mario Kusek

Received: 10 March 2024

Revised: 7 April 2024

Accepted: 15 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Comparative Analysis of Anomaly Detection Approaches in
Firewall Logs: Integrating Light-Weight Synthesis of Security
Logs and Artificially Generated Attack Detection †

Adrian Komadina * , Ivan Kovačević ‡ , Bruno Štengl and Stjepan Groš

Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia;
ivan.kovacevic@cyberarrange.com (I.K.); bruno.stengl@fer.hr (B.Š.); stjepan.gros@fer.hr (S.G.)
* Correspondence: adrian.komadina@fer.hr
† This paper is an extended version of our paper published in 17th International Conference on

Telecommunications (ConTEL), Graz, Austria, 11–13 July 2023 © 2023 IEEE and the 16th European Workshop
on System Security, Rome, Italy, 8–12 May 2023.

‡ Current address: CyberArrange Security Solutions, 51511 Gabonjin, Croatia

Abstract: Detecting anomalies in large networks is a major challenge. Nowadays, many studies rely
on machine learning techniques to solve this problem. However, much of this research depends on
synthetic or limited datasets and tends to use specialized machine learning methods to achieve good
detection results. This study focuses on analyzing firewall logs from a large industrial control network
and presents a novel method for generating anomalies that simulate real attacker actions within
the network without the need for a dedicated testbed or installed security controls. To demonstrate
that the proposed method is feasible and that the constructed logs behave as one would expect real-
world logs to behave, different supervised and unsupervised learning models were compared using
different feature subsets, feature construction methods, scaling methods, and aggregation levels.
The experimental results show that unsupervised learning methods have difficulty in detecting
the injected anomalies, suggesting that they can be seamlessly integrated into existing firewall
logs. Conversely, the use of supervised learning methods showed significantly better performance
compared to unsupervised approaches and a better suitability for use in real systems.

Keywords: cybersecurity; datasets; security logs; firewall logs; artificially generated attacks; machine
learning; anomaly detection

1. Introduction

This paper is an extension of two papers originally presented at the 17th International
Conference on Telecommunications (ConTEL) © 2023 IEEE [1] and the 16th European
Workshop on System Security [2]. Parts of this paper appeared in Proceedings of the
17th International Conference on Telecommunications (ConTEL) © 2023 IEEE [1] and
Proceedings of the 16th European Workshop on System Security [2].

In many large networks, detecting anomalies in traffic patterns is an important task.
However, the definition of what counts as an anomaly remains difficult, with different
researchers proposing their own interpretations [3–6]. An anomaly is usually defined as
points in certain time steps where the system’s behaviour is significantly different from
the previous normal status [7]. These anomalies in the network can come from a variety
of sources, from expected deviations in network traffic manifesting as statistical outliers
within normal network behavior to deliberate actions taken by malicious actors operating
on the network. Particularly sophisticated attacks attempt to conceal their actions and
presence. To avoid detection, attackers attempt to disguise themselves and evade easy
identification through simple network traffic statistics or attribute value distributions.

Sensors 2024, 24, 2636. https://doi.org/10.3390/s24082636 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24082636
https://doi.org/10.3390/s24082636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1243-7149
https://orcid.org/0000-0003-1090-9018
https://orcid.org/0009-0009-9785-2069
https://orcid.org/0000-0001-6619-2859
https://doi.org/10.3390/s24082636
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24082636?type=check_update&version=2


Sensors 2024, 24, 2636 2 of 30

To overcome this challenge, anomaly detection systems have proven to be an important
solution [8]. These systems are designed to detect whether the test data match the expected
distributions of normal data and flag anomalies as non-conforming points [7]. They are
capable of detecting both known and previously unknown attacks or malicious behaviors.

Logs serve as one of the most important sources of information in the search for
anomalies. In today’s technology landscape, systems routinely generate various logs
resulting from their use. Firewall logs in particular contain important insights into the
network structure of the network and the typical flow of network traffic. Thorough analysis
of these logs is essential to extract as much relevant network-related information as possible,
especially in large networks where many traffic patterns remain unknown.

When developing intrusion detection methods, the validation and evaluation of
log analysis methods is of utmost importance. These methods aim to detect signs of
cyberattacks, distinguish benign events from false positives, and categorize events and
alerts based on their underlying causes. An overview of strategies to achieve the latter goal
can be found in the comprehensive work of Kovačević et al. [9].

After an extensive review of the existing literature, it was found that most methods for
analyzing logs and correlating alerts rely heavily on very detailed datasets for validation
purposes [2]. These datasets typically consist of raw network traffic or event data, often
referred to as low-level data. Essentially, the above approaches use one of three methods to
generate logs, shown in Figure 1:

1. Use of a controlled testbed equipped with security controls to generate logs [10,11].
2. Integrating pre-captured artifacts from a testbed environment with recorded net-

work traffic [12,13] and inputting this combined dataset into a security control to
generate logs.

3. Inputting previously recorded network traffic from a dataset into a security control to
generate logs [14]. It can be noted that similar methods have also seen frequent use in
the evaluation of various alert correlation approaches. For instance, Ning et al. [15]
used the RealSecure Network Sensor to generate IDS alert logs based on an existing
public dataset.

Testbed 
simulation

Security 
controls

Raw data

Logs

Testbed 
simulation*

Data 
integration

Raw pre-
captured data

Integrated 
raw data

Data 
capture

Raw 
captured data

Security 
controls

Logs

Publicly 
available 
dataset

Security 
controls

Logs

(i)

(ii)

(iii)

Firefox file:///C:/Users/MDPI/Desktop/2024-04-15/latex-sensors-...

1 of 1 4/15/2024, 5:56 PM

Figure 1. Methods of log synthesis used in previous research. Rounded rectangles represent processes
whose inputs and outputs are represented by document symbols and connected by arrows. Method
(i) uses a testbed, method (ii) integrates pre-captured artifacts, which could have been created using
a testbed, into a set of captured network traffic, and method (iii) loads captured network traffic from
an available dataset. All methods input raw data into security controls to obtain logs. * The step of
creating artifacts in the testbed is optional if they are obtained by other methods.

All three methods have considerable limitations. The first method requires set-
ting up a special testbed capable of generating network traffic. As shown in the work



Sensors 2024, 24, 2636 3 of 30

of Sharafaldin et al. [10], such testbeds must accurately simulate user interaction, making
this method difficult to implement in practice [11]. Not only is this approach costly, but it
also increases the likelihood of artifacts being introduced and does not necessarily provide
a dataset that is realistic or relevant to the target organization. It also raises the question
of how such an approach can be generalized based on a constructed testbed. Another
important issue is that network traffic patterns change over time [10], so testbeds need to
be updated frequently to maintain accuracy.

The second method involves integrating attack artifacts into recorded events or net-
work traffic. These artifacts are usually captured with a dedicated testbed or loaded from
a previous recording. The integration of these two datasets requires considerable man-
ual effort, as both datasets contain numerous technical details. Neglecting these details
could lead to unintended anomalies, such as protocol-specific counters or unexpected IP
addresses or ports for the target network. Salazar et al. [12] used such an approach by
developing 5greplay, a system that allows pre-recorded traffic to be integrated with actual
5G network traffic according to user-defined rules. The combined traffic can then be used
for various tasks, such as security testing of a system.

The third method inherits most of the disadvantages of the first two methods. In addi-
tion, publicly available datasets have their own drawbacks. These drawbacks include the
presence of outdated attacks and network traffic patterns [11], as well as unrepresentative
statistical properties [14].

This paper presents a novel method for creating logs containing attack-related records.
This approach utilizes real-world logs from the organization and domain knowledge and
eliminates the need for a dedicated testbed or installed security controls. A key advantage
of this method is that it should produce logs that are very similar to those that would be
generated in the original environment, making it more representative compared to the
previously mentioned methods. To demonstrate the application of the proposed method,
we have used real-world internal firewall logs from a national electricity transmission
system operator. Since these logs did not contain any anomalies in their original form, we
applied the proposed method to create attack-related records and integrate them with the
pre-existing logs. These attacks were primarily network scans tailored to the target envi-
ronment and involved multiple attempts to establish connections that would be detectable
in the firewall logs. Various anomaly detection methods are then applied to the generated
logs, including both unsupervised and supervised approaches.

Detecting anomalies based solely on firewall logs raises several questions. First,
how to effectively represent firewall log data, i.e., how to construct features from available
attributes. Second, whether to use supervised or unsupervised machine learning techniques
and which specific algorithm to select from the wide range of possibilities. This dilemma
also extends to the question of how to integrate self-generated anomalies into existing
firewall logs. In order to answer these questions, a series of experiments were carried out to
provide insights and answers. Unlike much of the previous research, which often focused
on improving and analyzing a limited number of algorithms, in our research, multiple
algorithms were tested that include both unsupervised and supervised techniques.

The contributions of this work are as follows:

• A novel method for generating logs containing attack-related records that eliminates
the need for a dedicated testbed or installed security controls.

• The ability to generate anomalies that closely resemble real-world attacker behavior,
enabling seamless integration with existing firewall logs for realistic testing.

• A comparative evaluation of unsupervised and supervised machine learning algo-
rithms in detecting injected anomalies using various feature construction, scaling, and
aggregation techniques.

The structure of this paper is as follows. Section 2 presents related work that addresses
the problem of anomaly detection and synthetic attack log generation. Then, Section 3
describes the firewall logs that serve as data for anomaly detection, i.e., what attributes
they contain and what these attributes look like. This is followed by Section 4, which



Sensors 2024, 24, 2636 4 of 30

presents the proposed method for integrating attack logs into a security log and the process
of generating anomalies and integrating them into our pre-existing firewall logs based on
the proposed method. Section 5 describes the process of constructing relevant features
from firewall log attributes for use in machine learning models. The implementation of
unsupervised learning, the algorithms and performance metrics used, and the results
obtained are explained in Section 6 and for supervised learning, the details are explained in
Section 7. Subsequently, the limitations of the proposed method for generating anomalies
and the significance of the obtained results are discussed in Section 8. Finally, in Section 9,
conclusions are drawn based on the results of the experiments and ideas for future work
are presented.

2. Related Work

Several papers have created custom, publicly available datasets for specific attack
categories, including APT attack patterns [16], a variety of attacks such as DDoS, botnets,
and infiltrations [10], attacks generated using the IXIA tool [17], etc.

Most methodologies propose a testbed architecture and evaluation metrics for creating
valid and realistic intrusion detection system (IDS) logs [18–24]. What unites these studies
is the common practice of artificially generating network data and logs, often involving
virtual users to increase the realism of the data.

Some research proposes techniques for generating datasets, including log line clustering [25],
generating network flows at fragment level [26], using Generative Adversarial Networks
(GANs) to generate datasets [27], dynamically generating datasets [28], and using fuzzy
association rules to integrate device logs with traffic data [29].

In contrast to the previously mentioned studies, our proposed approach to creating
security logs relies on actual logs originating from the organization itself and, therefore,
does not require access to a dedicated testbed or an installed security control. It is worth
noting that we found only two approaches [30,31] that use authentic data from a target
organization, while, in most cases, the lack of such data reduces the representativeness
from the perspective of these organizations.

Roschke et al. [30] integrated IDS alert logs collected from a university network with
a dataset of IDS alert logs they created by recording manually performed attacks inside
vulnerable subnets. They integrated the logs in an ad hoc manner, solely to evaluate the
proposed IDS alert correlation approach, without explaining or discussing the details of
the method used for integrating these logs.

Maciá-Fernández et al. [31] relied on a bespoke testbed to create NetFlow logs, which
they then integrated with anonymized traffic for IDS evaluation. Similarly to several
previously mentioned works which also rely on specialized testbeds, this results in signifi-
cantly higher resource requirements and more complex technical details that are difficult to
integrate with existing traffic or event logs.

In the field of anomaly detection, numerous papers provide insight into current
anomaly detection methods, highlight their respective strengths and weaknesses, and ad-
dress the prevailing challenges and research gaps in this field [8,32–35]. The recent study
by Nassif et al. [8] stands out as a comprehensive Systematic Literature Review (SLR) in
the field of anomaly detection, aiming to summarize, clarify, and investigate the ML tech-
niques and implementations applied in anomaly detection from 2000 to 2020. Among the
290 articles identified, 43 different applications of anomaly detection, 29 different ML
models and 22 different datasets used in anomaly detection experiments were identi-
fied. The study shows that intrusion detection and network anomaly detection dominate
among the other anomaly detection applications, and, among the methods, unsuper-
vised anomaly detection methods are the predominant choice for anomaly detection.
Our research has shown that the most commonly used techniques include One-Class
Support Vector Machines [36], recurrent neural networks [37,38], Convolutional Neural
Networks [38], Generative Adversarial Networks [7,39], Autoencoders [40], and clustering



Sensors 2024, 24, 2636 5 of 30

techniques [41,42]. These techniques found in the literature are in close agreement with the
research of Nassif et al. [8].

Tuor et al. [43] presented a novel online unsupervised deep learning approach based
on deep and recurrent neural networks to detect anomalies in the network activity from
system logs in real-time. They decomposed the anomaly scores into the contributions
of individual features of user behavior to increase interpretability and demonstrated the
approach using the CERT Insider Threat Dataset. Some of the research in this area specif-
ically addresses the challenge of adaptive threshold selection in unsupervised anomaly
detection [44,45], while others explore ways to circumvent the need for such thresholds
altogether [46].

Although unsupervised approaches have dominated the field of anomaly detection
in recent years, supervised learning methods, especially when it comes to classification
tasks, are still a popular research topic [8]. Two different classification tasks can be found
in the literature: binary classification, where logs are classified as normal or anomalous,
and multiclass classification, where logs are classified based on an action attribute that can
take multiple values.

As an example of a binary classification task, Allagi and Rachh [47] applied the Self-
Organizing Feature Map algorithm and K-means to identify anomalies in the access patterns
with supervised ML techniques based on the publicly available dataset in the UCI ML
repository, while As-Suhbani and Khamitkar [48] proposed a meta-classifier model with
four binary classifiers: K-Nearest Neighbor, Naive Bayes, J48, and One R using the network
log dataset.

On the other hand, Aljabri et al. [49] have classified the firewall data based on the
actions allow, drop, deny, or reset-both using the different algorithms in a comparative study:
K-Nearest Neighbor, Naive Bayes, J48, Random Forest, and Artificial Neural Network.
Ucar and Ozhan [50] used different classification methods to detect anomalies in a firewall
rule repository using the firewall logs as the data source. Shetty et al. [51] used Neural
Network, Random Forest, Decision Tree, and SVM classifier to accomplish the task of
intrusion detection, while Al-Haijaa and Ishtaiwia [52] used Shallow Neural Network and
Optimizable Decision Tree to classify firewall data based on three action classes, allow, deny,
and drop/reset. Lu et al. [29] integrated network device logs with network traffic data and
introduced four different types of attacks to reconstruct the actions of attackers within the
network, and used supervised classification learning to accomplish the task.

With the growing popularity of deep learning methods, they have also been success-
fully applied to the problem of classifying network data. One such example is the work
of Fotiadou et al. [53], which uses Convolutional Neural Networks and Long Short-Term
Memory Networks to create robust multiclass classifiers for event types based on the
network logs collected by pfSense as a data source.

Furthermore, there is also an example of the combination of unsupervised anomaly
detection and supervised machine learning methods [54]. Le and Zincir-Heywood [54]
proposed a system that can learn from unlabeled data and a very small amount of la-
beled data and generalize to larger datasets to detect anomalous behaviors and unnoticed
malicious actions.

In addition to traditional unsupervised and supervised machine learning techniques,
the use of graphs for anomaly detection is a noteworthy topic. Harshaw et al. [55] used
graphlets for anomaly detection and assumed that unusual events within the network
would lead to changes in the number of graphlets. In contrast, Chae et al. [45] developed an
adaptive approach for threshold selection in detection systems by representing the network
as a bipartite graph. In addition, the research of Zhang et al. [56] is of interest because it
uses pre-trained hidden Markov models for multistage attack detection.

There are a number of works that do not directly use machine learning in a supervised
or unsupervised form, but use some sort of statistical processing or data mining techniques.
Hommes et al. [57] used approaches from statistical process control and information theory
to track potential incidents and detect suspicious network activity based on firewall logs



Sensors 2024, 24, 2636 6 of 30

provided by the ISP. Gutierrez et al. [58] employed statistical tools such as Mahalanobis
distance, factor analysis, and histogram matrices to detect anomalies. They also proposed
a tabular vector approach to create meaningful state vectors from time-oriented blocks,
which are then analyzed with multivariate and graphical analyses.

As for the works that use data mining techniques, many of them use the WEKA data
platform [59,60]. Khamitkar and As-Suhbani [60] even use a hybrid approach combining
data mining and classifiers. As-Suhbani and Khamitkar [61] focused on anomaly detection
in firewall policy rules. Ceci et al. [62] used a multirelational data mining approach to
detect anomalies in firewall logs, which allowed data scattered in multiple relational tables
to be analyzed and used to discover multivariate relational patterns. Rather than explicitly
detecting anomalies, Caruso and Malerba [63] first created an adaptive model of normal
daily network traffic and then detected anomalies based on the degree of deviation from
the model.

Of the papers listed in the existing literature review [8] we examined those where it
was stated that both unsupervised and supervised ML techniques were used and those
where the type of ML technique used was not specified. Among those papers, we were
able to identify three categories based on the type of task they address. The first group of
papers presents a novel hybrid method for network anomaly detection by incorporating
both supervised and unsupervised methods in their work [64–66], while the second group
also presents a novel hybrid method, but also a more in-depth evaluation compared to
some other methods [67]. In the third group, which focuses exclusively on the comparison
between different ML techniques, a total of six papers were identified. Half of these papers
compare only a small specific subset of models [68–70], while the other half present a larger
comparative study similar to ours [71–73].

Van et al. [68] conducted a study comparing only two deep learning models (Stacked
Autoencoder and Stacked RBM) for intrusion detection and attack classification. Similarly,
Liu et al. [69] evaluated only four different clustering techniques, while Mulinka and Casas [70]
compared the performance of four popular stream-based machine learning algorithms with
their batch-based versions. Abdulhammed et al. [71] present the comparison of five algo-
rithms: Deep Neural Networks (DNNs), Random Forest, voting technique (OneR, Naive
Bayes, and ExtraTree), stacking technique (with Linear Discriminant Analysis, Naive Bayes,
and OneR) and Variational Autoencoder. They used the imbalanced dataset CIDDS-001,
which contains unidirectional NetFlow data generated in a cloud environment with Open-
Stack and includes 146,500 instances simulating a small business network. Normal traffic,
reflecting realistic user behavior, accounts for 91.6% of network traffic. Meng [72] presents
the comparison of the three models: RBFNetwork (Neural Network), SMO (Support Vec-
tor Machine) and J48 (Decision Tree). To evaluate these models, randomly selected data
from the 10% KDD dataset were used, resulting in 98,804 instances, of which only 19,268
were considered normal (19.5%). The most comprehensive comparison was performed by
He et al. [73], where they provided an overview of six state-of-the-art log-based anomaly
detection methods, including three supervised methods: Logistic Regression, Decision
Tree, and SVM, and three unsupervised methods: Log Clustering, PCA, and Invariants
Mining. The selected methods were evaluated using two datasets, both from production
systems and manually labeled by experts. The first HDFP dataset contains approximately
11 million log messages collected from the Amazon EC2 platform, with 0.15% labeled as
anomalies. The second BGL dataset contains nearly 5 million log messages recorded by the
BlueGene/L supercomputer system at Lawrence Livermore National Labs, with 7.3% of
the log messages labeled as anomalous.

Nowadays, there are many toolkits that allow easier implementation of machine
learning techniques. The most notable in the field of anomaly detection is PyOD, a Python
toolbox for scalable outlier detection. Since its debut, PyOD has been used in various
academic and commercial projects. Some examples of the use of PyOD include the detection
of anomalies in a large-scale online pricing system at Walmart [74] and the development of



Sensors 2024, 24, 2636 7 of 30

an unsupervised outlier detection framework called DCSO, which has been demonstrated
and evaluated for dynamically selecting the most competent base detectors [46].

In contrast to the previously mentioned studies, different machine learning models
were used here, including both unsupervised and supervised approaches, to evaluate
the advantages and disadvantages of these techniques for anomaly detection; while most
previous research has used logs or network traffic data with pre-existing anomalies, this
research used pre-existing firewall logs without anomalies and entries representing real
attacker actions in the network as anomalies.

3. Firewall Logs

Firewall logs were used as the source dataset for our study. These logs are from a Check
Point firewall deployed in the industrial control network of an electricity transmission
system operator. The collected logs are structured on a daily basis, with each daily log file
containing approximately twelve million records.

Log files from four different days were used for our experiments. Each log file
contains communication records for a single day, and the information in each record refers
exclusively to SYN segments involved in TCP protocol communication. It is worth noting
that in addition to the TCP protocol, the dataset also includes the UDP and ICMP protocols.

The data originally received were already structured as a comma-separated form with
19 different fields. Due to the sensitive nature of these logs, the operator had previously
anonymized them by replacing IP address ranges and identifiers in a deterministic way.
Since most of these fields consist mainly of anonymized values related to the identifiers of
the objects or geographical areas associated with the source and destination IP addresses
and are not relevant for anomaly detection, we selected the following attributes for this
investigation: connection timestamp, source and destination IP address, source and des-
tination port, protocol attribute, and firewall action, all of which are commonly used in
similar anomaly detection experiments [49].

Two days of firewall logs were used for the unsupervised learning phase. When these
logs were loaded, the data records were first filtered by the firewall action attribute. This
attribute can have one of four values: accept, drop, bypass, and monitor. Remarkably, accept
was the predominant value and accounted for over 70% of cases, while drop occurred in
about 29% of cases. The other two values had a negligible share and accounted for a total of
around 170 data records. Only the data records with the action value accept were retained.
The reason for this choice is that all rejected connections were classified as suspicious by
the firewall and could be easily analyzed. Furthermore, as they were already blocked,
they posed no real threat to the network. Even if numerous rejected connections indicate
a potential attack, they can be easily identified by simple statistical observations, leading
to the generation of alerts. Therefore, the use of machine learning techniques in these
scenarios is considered unnecessary. Furthermore, it is important to point out that our
analysis was performed under the assumption that the pre-existing logs represented the
normal state of the network and thus did not contain any anomalies.

In the first phase of data analysis, one of the most important steps was to calculate
descriptive statistics for the dataset. Table 1 provides an overview of the descriptive statis-
tics for the two datasets representing two days of firewall logs used for the unsupervised
learning process. Each column in the table corresponds to one of the five observed cat-
egorical attributes: source IP, source port, destination IP, destination port, and protocol.
For each attribute, the following statistics are presented: the number of values (Count),
the number of unique attribute values (Unique), the most frequent attribute value (Top),
and the frequency of occurrence of the most frequent attribute value (Freq). It is worth
noting that the statistics for the timestamp attribute are not shown in this table, as the
values for this attribute were usually evenly distributed throughout the day.

In addition to the basic descriptive statistics, a comprehensive analysis of the values
within each attribute and their respective distributions was carried out. For the timestamp
attribute, which indicates when the connection was established, the values were usually



Sensors 2024, 24, 2636 8 of 30

evenly distributed throughout the day. However, there were cases where usage was subject
to slight fluctuations, resulting in slightly higher or lower activity.

Table 1. Descriptive statistics of the two days of firewall logs used.

Source IP Source Port Destination IP Destination Port Protocol

Day 1 Count 7,972,381 7,972,381 7,972,381 7,972,381 7,972,381

Day 1 Unique 1931 63,629 987 1578 3

Day 1 Top 143.198.132.18 99,999 143.239.7.57 53 tcp

Day 1 Freq 1,403,074 586,498 629,729 1,694,203 4,639,076

Day 2 Count 8,422,174 8,422,174 8,422,174 8,422,174 8,422,174

Day 2 Unique 1991 64,167 1308 1606 3

Day 2 Top 143.198.132.18 99,999 143.239.7.58 53 tcp

Day 2 Freq 1,660,695 579,462 758,855 1,756,672 5,035,476

An examination of IP address attributes revealed that there were around 2000 to
2500 different IP addresses every day. This range of IP addresses is to be expected for a
large industrial network. The distribution of destination IP addresses appeared to be fairly
uniform. In contrast, the distribution of source IP addresses showed remarkable variation.
One particular IP address, 143.198.132.18, was responsible for about 15% to 20% of all
connections, depending on the day. Other source IP addresses rarely exceeded a 5% share
of connections.

The values in the source and destination port attributes appear numeric, but are
actually categorical because of the limited relationship between the numbers. The source
port attribute included over 63,000 different values. The most common values were 99,999
(about 7%, a consequence of the ICMP protocol) and 123 (about 3% of all connections).
Of the other source port values, only 2304, 2305, and 60,076 occurred in more than 0.1%
of connections each. In contrast, the destination port attribute contained a manageable
set of about 1600 unique values. The most common destination ports included 53 (about
21%), 443 (about 13%), 80 (about 10%), 123 (7%), 99,999 (7%), 88 (5%), 2404 (4%), 8080 (3%),
and 389 (3%). All other destination ports accounted for less than 2% of connections each.

The protocol attribute offers three different values: tcp, udp, and icmp. Most connections
were categorized as tcp (about 59%), followed by udp (about 34%), with icmp making up
the smallest percentage (about 7%).

4. Generating Synthetic Logs

This section presents an approach for developing customized methods to integrate
different types of artifacts into logs. The process of generating logs to represent anomalies
in our existing logs is described in detail, along with an explanation of how these anomalies
were integrated into the pre-existing logs.

4.1. Methodology

In Figure 2, the proposed method is presented, which can serve as a basic frame-
work for developing tailored methods for incorporating various types of artifacts into
logs, including those related to cyberattack techniques [2]. Rounded rectangles represent
the processes of the method, while its inputs and outputs are represented by the docu-
ment symbols and connected by arrows. The required inputs for this method include
the following:

• Domain knowledge describing target attacks and security controls. This input includes vari-
ous information, including: (i) reports of attacks and their consequences, such as threat
or malware reports and pre-recorded network traffic samples, (ii) knowledge of the
security control for which the logs are synthesized, and (iii) knowledge of the medium



Sensors 2024, 24, 2636 9 of 30

through which the artifacts are manifested. For example, when creating artifacts
originating from network scans for firewall logs, knowledge of the network scanning
tools used, such as nmap [75], knowledge of the firewalls used, and familiarity with
network protocols are required.

• Security control configuration information. This information can be obtained in a variety
of ways, such as by consulting documentation, talking to the relevant security adminis-
trators, or directly accessing the configuration of the security control in question. This
paper assumes that the security control is configured according to the reports provided
and its equivalence is not questioned. For example, in the case of a network firewall,
this information could include policy descriptions in unstructured text obtained from
discussions with administrators, firewall policy documentation, or a set of configured
firewall rules. Depending on the level of detail desired, this information can even be
gathered verbally through interviews with the appropriate personnel.

• Pre-existing logs. These logs represent authentic data collected by security controls
within the organization. Most organizations already maintain logs for audit purposes,
so they are readily available in practice.

Lab 
simulation*

Integrated 
logs

Pre-existing 
logs

Log 
integration

Artifact/attack 
logs

Simulated 
log 

creation

Raw data

Domain 
knowledge

Security 
control 

config. info

*Branch depends on 
the type of artifacts to 
be inserted

(A)

(B)

Firefox file:///C:/Users/MDPI/Desktop/2024-04-15/latex-sensors-...

1 of 1 4/15/2024, 5:57 PM

Figure 2. The proposed method for log synthesis. Based on the type of attack artifacts to be created,
domain knowledge is used to create logs that contain artifacts to be inserted, which are then combined
with the organization’s existing logs to create the final synthetic logs, as explained in Section 4.

Once the input data had been collected, the first step was to determine whether the
domain knowledge collected was suitable for log generation. If the input data proved to be
insufficient, they could be used to perform a laboratory simulation, as shown by branch (B)
in Figure 2. This simulation aimed to obtain additional information that included all inputs
used by the security control in question for log generation. In cases where the input data
were already comprehensive, this step was bypassed and the method proceeded with the
creation of simulated logs, as shown by branch (A).

Readers might notice that parts of the method as shown in Figure 2 are not strictly
formally defined, with only the fundamental requirements of its components described.
This is intentional. Due to the inherent differences between logs of various security controls
and attacks, the method aims to define the approach using high-level guidelines rather than
formal definitions and implementation details. Implementations for concrete security con-
trol logs may introduce additional specific formal and technical considerations; but, based
on our research, we expect such additions to be refinements of the method specific to those
security control logs, not necessarily applicable to other types of logs.

To illustrate, let us consider the goal of creating network firewall logs in the context
of the malware M. Identifying the necessary information begins with an analysis of
how firewalls create logs. Firewalls create logs based on network traffic and process
elements such as IP addresses, protocols, and ports. Stateful firewalls can also track
communication sequences.

In cases where a sample of the malware M is available and it can be isolated and
executed in a controlled environment (sandbox), its characteristic network traffic can be
recorded and used as a source of domain knowledge. If no sample of the malware M is
available, its behavior can be reconstructed from reports describing the inner workings



Sensors 2024, 24, 2636 10 of 30

of the malware M, especially if these reports contain descriptions of its command and
control (C2) communications and exploitation mechanisms. However, if no such reports
or samples exist, you will need to obtain data about the malware through a laboratory
experiment. This may involve activities such as malware reverse engineering or running
the malware M in a sandbox.

The second step involves the creation of attack logs through simulation. This is the
stage where the specific methods derived from the proposed method may differ depending
on the type of artifacts and the level of detail required. Some types of artifacts and attack
logs can be created manually, while others require code development to simulate more
complex behaviors. In this step, it is important to analyze the pre-existing logs to under-
stand what needs to be tracked when creating the artifact/attack logs. This analysis also
helps determine the format and conventions that need to be followed to ensure that these
logs have common fields and can be integrated seamlessly.

The final step is to integrate the created artifact/attack logs with the organization’s
pre-existing logs to obtain the final integrated logs. This step depends heavily on the
semantics of the logs and can include tasks such as setting correct sequence numbers,
assigning meaningful timestamps, and ensuring that the data make sense from a domain
perspective. For example, if the goal is to create a log that includes a malware installation,
it is important to configure timestamps, IP addresses, and ports to accurately reflect the
attacker’s actions, including lateral movement and malware installation on workstations.
Realistic sequences and timing should be maintained.

4.2. Generated Anomalies

In this study, as described in Section 3, the firewall logs only captured connections
that complied with the configured policies and did not violate them. To overcome this
limitation, the proposed method was validated by creating multiple sets of attack logs and
seamlessly integrating them with the pre-existing logs from the real network of a critical
infrastructure operator. In addition to the pre-existing logs, a comprehensive description
of the network’s topology and firewall configuration was obtained through a series of
interviews with an administrator. Furthermore, a list of potentially interesting attacks was
compiled by considering the possible attacker targets and attack techniques manifested in
the logs, the detection of which would have the potential to block subsequent attacks. It is
important to clarify that the purpose of this paper is not to create a threat model for the
target system or a comprehensive catalog of attack techniques, as these aspects are beyond
the scope of this paper.

Logs with different types of network scans and command and control (C2) commu-
nication were selected for demonstration purposes. Some of these techniques required
simulation to generate data, while others required manual data generation. The following
is a comprehensive list of all the techniques for which logs were created:

1. SYN scans of a machine and a target range of machines using nmap. These network
scans were created by scanning our local network server and local IP range with
the nmap [75] tool installed on a Kali Linux [76] virtual machine (VM). Both tests
were run with the nmap flags −sS. Since the firewall only logged initial packets for
individual ports and did not log return packets, it was not necessary to set up listeners
for real applications.

2. Connect scans of a machine and a target range of machines using nmap. This was done
similarly to the first scan, except that the −sT flags were used.

3. UDP scans of a machine and a target range of machines using nmap. This was done similarly
to the first scan, except that the −sU flags were used.

4. SYN scan for characteristic VPN services using nmap. This scan was performed in a
similar way as the first scan, but only with the entire IP range and ports 102, 6001,
and 13,777.

5. Connect scan for characteristic VPN services using nmap. This was done similarly to the
fourth scan, except that the flags −sT were used.



Sensors 2024, 24, 2636 11 of 30

6. Establishment of an RDP session, with several unsucessful atempts. This was simulated
by setting up a Windows 10 VM and making several attempts to establish an RDP
connection. The first connections were made with an incorrect password, the last with
the correct password.

The network traffic resulting from the above scans was recorded using Wireshark
on the Kali Linux VM. We deliberately chose to run these scans instead of creating the
logs manually to capture the realistic timing of the packets. A script available in [77]
was developed and used to convert the packet logs into logs compatible with the target
firewall logs. The lab environment in which the network scans were collected consisted of
a virtual machine running Kali Linux and several specified scan targets. Both individual
targets and the entire subnet were scanned using the nmap tool [75]. Then, network traffic
generated during these scans was recorded using Wireshark. Various combinations of ports
common to the target network were scanned using different nmap scan types, including
SYN, TCP connect, and UDP scan. Since our firewall logs provide significantly less detailed
information compared to full packet captures (PCAPs), a thorough manual inspection of
all attributes was performed in the generated anomalous logs. This careful inspection was
critical to ensure that these logs accurately reflected what would be expected in the event
of an actual attack on the target network.

The integration process began with the selection of IP addresses from the pre-existing
logs. The attack logs were then seamlessly inserted between these addresses at specific
timestamps to ensure that the timing of the packets remained realistic. When selecting IP
addresses, it is important to consider the context of the applications and services associated
with those addresses, as well as the number of mutual connections. The level of stealthiness
desired by the attacker is directly related to the contextualization of the logs. For exam-
ple, if an attacker wants to perform a stealthy network scan from an infected device, he
would carefully send packets to devices and subnets that the infected device normally
communicates with. Any unusual behavior, such as connecting to a service for the first
time or connecting outside of working hours, would generate a suspicious log entry. This
contextualization is a key factor in creating logs that closely resemble real attack scenarios.

The described integration process was performed using a developed script. After cap-
turing the raw network traffic, it was converted to the format of the target firewall logs
using a script that mimics the data captured by the target firewall control to create attack
logs. The script filtered out irrelevant parts of the traffic, identified the first packets ex-
changed between two endpoints, assigned the corresponding date and time to the first
event, and replaced individual addresses or IP address ranges with the specified targeted
addresses. It is worth noting that this step can vary greatly depending on the configuration
of the target security control. The result of this conversion was a set of attack logs fully
prepared for integration with the pre-existing logs.

To integrate these attack logs with the pre-existing logs, they were simply inserted
and the entire dataset was organized based on the timestamp. To distinguish between the
records from the pre-existing firewall logs and the generated attack logs, a label attribute
was introduced. The value of this attribute was set to zero for records from the pre-existing
logs and to one for the attack logs that are considered anomalies.

The final integrated logs were now ready to serve as a dataset for various tasks.
The generated anomalies could be used in two ways as part of anomaly detection.
One approach involved an evaluation step in unsupervised learning, where an unsuper-
vised machine learning model was applied to an unlabeled dataset consisting of a mixture
of pre-existing logs and generated anomalies. This model assigns each record a score
indicating the extent to which it is anomalous according to the model. The performance of
the model could then be evaluated based on its ability to effectively distinguish between
pre-existing logs and the generated anomalies. Alternatively, it was possible to use super-
vised learning, in which a supervised machine learning model was trained on a labeled
dataset that combines pre-existing logs and generated anomalies. The model was then



Sensors 2024, 24, 2636 12 of 30

used to predict labels for an unlabeled dataset that is a mixture of pre-existing logs and
generated anomalies.

5. Feature Construction

In order to use most machine learning algorithms, it is essential to create a dataset
that consists solely of numerical values. However, our current dataset, which consisted
mostly of categorical string values obtained from firewall logs, had to be converted to
numeric representations.

There are two main methods for converting strings to numeric values, each with its
own advantages and disadvantages. The first method involves a direct conversion when
the string already represents a numeric value. However, this approach may not account
for cases where the values are categorical, potentially introducing unintended rank and
distance information that was not present in the original data.

The second method, on the other hand, uses one-hot coding, which is widely used for
categorical data. However, it has the disadvantage of driving up computational costs, since
one-hot coding generates a set of new attributes equal to the number of distinct values
within an attribute.

Considering the aforementioned factors, this study explored different attribute trans-
formation options. For the timestamp attribute, the strategy of direct conversion to a large
integer and further division into two additional features, namely hour and time, was used.
The hour feature represents the hour of the day the connection was initiated in integer
format, while time corresponds to an integer value of the timestamp without a date.

For the IP address attributes, different transformation methods were investigated.
First, direct conversion to integers using the Python package ipaddress was considered.
Alternatively, an attempt was made to divide the IP address into four integers and create
four different features based on this segmentation. The third approach was to convert each
of these four integers into 8-bit binary numbers, resulting in a total of 32 newly constructed
binary features.

Given our data analysis, which revealed that IP address attributes can include up to
2500 different values, traditional one-hot encoding was deemed impractical. Therefore, our
last strategy for IP address transformation was a hybrid approach. First, the IP address was
split into four integers and, then, one-hot encoding was applied to each of these four new
attributes, resulting in a comprehensive zero–one vector.

For attributes describing source and destination ports, it was easiest to retain their
original integer representation. It is important to note that all connections running over the
ICMP protocol had the port value unknown, and, for these, the value 99,999 was assigned.
One-hot encoding was another viable option that, according to our preliminary analysis,
was particularly suitable for the destination port attribute due to the number of distinct
values. Two hybrid approaches were implemented in this context:

• The first method used one-hot encoding exclusively for “important ports”, which are
defined as ports that occur in more than 1% of all connections. For all other ports,
an additional feature called other was introduced, resulting in a significantly reduced
zero–one vector.

• The second approach categorized ports into ephemeral and non-ephemeral categories.
Ports with numbers lower than 1024 were encoded with the one-hot encoding, while
ports with higher numbers were represented with the other feature. This approach
resulted in a 1024-bit zero-one vector.

Finally, one-hot encoding was used for the protocol attribute, as it only contained
three different values.

After the construction of the features, the features were scaled using three different
methods: standard scaling, min–max scaling and robust scaling. In standard scaling,
the mean value of the feature is subtracted from its value and the result is divided by
the standard deviation. In min–max scaling, the feature values are transformed to fit the



Sensors 2024, 24, 2636 13 of 30

range [0, 1]. In the robust scaling method, each feature value is adjusted by subtracting the
median and the data are scaled based on the interquartile range.

In addition to using raw firewall logs, aggregated logs were also used to test anomaly
detection models. Aggregation was performed at three different levels. At the first level,
connections were grouped based on attributes: hour, IP addresses, ports, and protocol.
At the second level, the grouping was done based on the same attributes, but without the
source port. Finally, at the third level, both source and destination ports were omitted from
the grouping.

Several new features were introduced for each aggregation level. The first level
contained the feature hits, which indicates the number of connections within each group.
At the second level, in addition to the features added at the first aggregation level, features
indicating the standard deviation of source ports, the most frequent source port, and the
number of unique source ports in each group were added. Finally, at the third level,
the same features as at the second level of aggregation were added, in addition to features
for the standard deviation of the destination port, the most frequent destination port,
and the number of unique destination ports in each group. This approach resulted in a
significant reduction in the number of records by a factor of about 3, 60, or 75, depending
on the level of aggregation chosen.

Since we initially received the data in the form of comma-separated values, it was not
possible to use additional data mining or deep learning techniques to extract additional
features from the obtained firewall log data. Furthermore, since the number of available
features was relatively small, we went through and tested each subset of features individu-
ally, which is presented later in Section 6.3.3. For this reason, the use of advanced feature
extraction and feature selection methods is beyond the scope of this paper.

6. Unsupervised Learning

This section provides the definitions for each performance measure used in this paper.
It also describes the methodology for performing unsupervised learning and presents the
results obtained using this methodology to detect anomalies in different configurations of
our dataset.

6.1. Performance Measures

The anomaly detection problem can be seen as a classical binary classification problem.
Here there are two classes 0 and 1. Class 0 stands for normal data and class 1 for anomalous
data. Two crucial metrics in classification discussions are precision and recall values.
Precision represents the proportion of positive samples that were correctly classified relative
to the total number of positive predicted samples, while recall represents the ratio of
positive, correctly classified samples to the total number of positive samples [78]. The main
problem here is that the results of anomaly detection usually depend on the threshold used.
If the threshold value is increased, the precision increases, but the recall metric decreases.
Recall should be optimized if it is more important to detect all true positives (anomalies)
than to generate a low number of false alarms. On the other hand, precision should be
optimized if the detection of false alarms is costly and it is, therefore, worth considering all
positive predictions.

Since optimization by precision or recall alone can lead to the selection of a suboptimal
model, many papers in this area use metrics that combine precision and recall. One of
the best-known measures that combines precision and recall in one measure is the F-beta
measure, from which a variety of measures can be derived depending on the desired
importance of precision and recall. One of the best-known measures is the F1-score, which is
often used in classification problems. This measure represents the harmonic mean between
precision and recall, i.e., it attaches equal importance to precision and recall and can be
calculated using the following formula:

F1-score =
2 × precision × recall

precision + recall
(1)



Sensors 2024, 24, 2636 14 of 30

Another measure from the family of F-beta measures that is also frequently used is the
F2-score. Here, recall is weighted more heavily than precision. This is particularly useful
when detecting anomalies in network data, as it is most important in critical systems to
detect all anomalous events and then reduce the number of false positives as much as
possible. The F2-score is defined as follows:

F2-score =
5 × precision × recall
4 × precision + recall

(2)

All the above measures depend on the chosen threshold. Sometimes it is difficult to
find a good method to select the threshold, especially if this is to be done in an unsupervised
way. For this reason, there are some measures that are independent of the chosen threshold
and can be used to compare different models for unsupervised anomaly detection. The first
approach is to use the Receiver Operating Characteristic (ROC) curve. The ROC curve
visualizes the trade-off between recall and false positive rate (FPR). In other words, it is
a plot of the true positive rate (TPR) as a function of the false positive rate (FPR) for each
possible threshold [79]. To determine which ROC curve is better than another, the area
under the ROC curve (AUC ROC value) can be calculated. The larger the AUC ROC value,
the better the model, regardless of the selected threshold value [80]. The values of the AUC
ROC range from 0, if the model always predicts incorrectly, to 1, if the model is perfect and
predicts everything correctly. The base value here is 0.5, which can be used to determine
how well the model predicts [81]. The second commonly used approach is the one that
uses the precision-recall (PR) curve. The PR curve is a plot of precision as a function of
recall [82]. Similar to the ROC curve approach, the area under the PR curve (AUC PR score)
can be calculated to obtain a number that describes the performance of the model and also
ranges from 0 to 1. In contrast to the baseline of the AUC ROC score, the baseline here
is based on the number of samples in each class and is not fixed as with the AUC ROC.
The baseline of the AUC PRC is determined by the ratio of positives (Np) and negatives
(Nn) as Np/(Np + Nn) [81].

When comparing the two approaches described, it is important to note that the AUC
ROC score is only suitable if the data classes are balanced and if positive and negative
classes are equally important. The AUC PR score, on the other hand, is more suitable if
the data are very unbalanced and the positive class is more important than the negative
one. When detecting anomalies in network data, there are many more normal data than
anomalous data, so the classes are often very unbalanced. Furthermore, it is more important
to detect all anomalies first and then minimize the number of false positives. Therefore,
optimization of the AUC PR score should be preferred to optimization of the AUC ROC
score when detecting anomalies.

6.2. Methodology

Our anomaly detection system was parameterized with two inputs: a model (algo-
rithm) and a subset of features used. On the first day of the firewall logs, the system
initialized the unsupervised learning model, retrieved the anomaly score for each record
in the dataset, and set the threshold for anomalies based on these scores. On the second
day of the firewall logs, the anomaly score was calculated for each record using the already
initialized model from the previous step. Based on these scores, the predicted label was
zero if it was below the threshold and one if it was above the threshold. The classification
metrics were then calculated based on the predicted values and the values of the label
feature. It is important to note that the feature label was extracted at the beginning and
was only used to calculate the classification metrics.

We implemented two different methods to calculate the threshold for anomaly scores.
The first method was based on the PR curve. First, pairs of precision-recall values were
calculated for each possible threshold, leading to different classifications. Then, the F1-
score was calculated for each pair, effectively giving us an F1-score for different thresholds.
The appropriate threshold value for which the F1-score was maximum was then selected.



Sensors 2024, 24, 2636 15 of 30

The second method was based on the fact that when detecting anomalies, it was most
important for us to detect all or almost all anomalous connections while minimizing the
number of false positives. For this reason, a customized threshold selection method based
on the PR curve was developed to achieve a very high recall value. Here, too, the threshold
value was calculated on the basis of the PR curve, but only threshold values for which
the recall was greater than 0.95 were taken into account. The threshold value with the
best precision measure was selected from this group of threshold values. Essentially,
the threshold was selected where the recall value was greater than 0.95 and the precision
value was maximized.

As already mentioned, the test method used two days of firewall logs in which
anomalies had been inserted. In Table 2, you will find basic statistics on the number of
records for each of the two days of logs used and for each level of aggregation implemented.
The table shows the total number of records in each dataset, as well as the number of
records that came from pre-existing firewall logs (normal data) and the number of records
that were injected (anomalous data). From Table 2, it can be seen that the percentage
of anomalies is very low, which is to be expected when detecting anomalies in network
data. For unaggregated data, there are, on average, only about 0.028% anomalies in the
datasets. At the first aggregation level, this percentage increases to 0.063% and, at the
second aggregation level, to 1.21%, while at the third aggregation level, the percentage of
anomalies is about 0.55%.

Table 2. Statistics of the number of normal, anomalous, and total records in each dataset used in the
unsupervised test method for each aggregation level.

Day 1 Day 2

Aggregation Level Normal Anomalous Total Normal Anomalous Total

Unaggregated 7,972,381 2327 7,974,708 8,422,174 2327 8,424,501

First level 3,141,435 2054 3,143,489 3,372,934 2054 3,374,988

Second level 114,104 1411 115,515 116,395 1411 117,806

Third level 90,091 513 90,604 91,617 513 92,130

For unsupervised anomaly detection, many algorithms were originally considered
for testing, many of which are commonly used in anomaly detection applications [8].
Although unsupervised algorithms such as the Connectivity-Based Outlier Factor [83],
fast outlier detection using the Local Correlation Integral [84], and Stochastic Outlier
Selection [85] were originally considered, they were not included in our experiments due
to their space (memory) complexity. The initial study showed that their use with our
dataset required the allocation of more than half a terabyte of memory, depending on the
algorithm, which was not feasible. Due to the large dataset used in this study, algorithms
such as One-Class Support Vector Machines [86], Fully connected Autoencoder [87], and
Variational Autoencoder [88] could also not be used in our experiments due to the very long
training time. On the other hand, algorithms such as Deep One-Class Classification [89] and
Single-Objective Generative Adversarial Active Learning [90] were found to be unusable in
a smaller analysis presented in [2], as they yielded much lower F1-score on the test dataset
based on the same firewall logs as in this study, which is why their results are not discussed
in this study.

In the end, a total of 13 different unsupervised machine learning models were tested,
namely Unsupervised Outlier Detection Using Empirical Cumulative Distribution Func-
tions (ECOD) [91], Copula-Based Outlier Detection (COPOD) [92], Rapid distance-based
outlier detection via sampling (Sampling) [93], Principal Component Analysis (PCA) [94],
Minimum Covariance Determinant (MCD) [95], Clustering-Based Local Outlier Factor
(CBLOF) [96], k Nearest Neighbors (kNN) [97], Histogram-Based Outlier Score (HBOS) [98],
Isolation Forest [99], Lightweight On-line Detector of Anomalies (LODA) [100], Local Out-
lier Factor (LOF) [101], Outlier Detection with Kernel Density Functions (KDE) [102],



Sensors 2024, 24, 2636 16 of 30

and Feature Bagging [103]. The implementation of the above unsupervised learning was
supported by the open-source Python toolbox PyOD, which is used to detect anomalies in
multivariate data [104].

6.3. Results

To test unsupervised learning for anomaly detection using firewall logs, four different
types of experiments were conducted, namely what results were obtained when using
different unsupervised models for anomaly detection, what results were obtained when
selecting different feature construction methods, what results were obtained when select-
ing different subsets of features, and what results were obtained when using different
scaling methods.

6.3.1. Comparison of Unsupervised Models

The first question was which of the unsupervised models provided the best results
for our dataset. A complete subset of features was selected for this purpose, including
timestamp, hour, time, source and destination IP address, source and destination port
and protocol, the simplest feature construction method, and the min–max scaling method.
The simplest feature construction method was the one in which each attribute was directly
converted into a numeric format, except for the protocol attribute, for which one-hot
encoding was used.

First, the results are presented independently of the threshold, i.e., without selecting
the threshold, which is possible by calculating the AUC ROC and AUC PR values. The AUC
PR value was chosen as the measure because, as already explained, it is more suitable
for datasets with unbalanced classes. A total of 13 different unsupervised models were
tested at four different aggregation levels. Since some of the models did not produce the
same result every time they were run, each model was run five times and the average
performance values were collected over these runs. Figure 3 shows the average AUC PR
value averaged over five executions for two days of firewall logs. Some of the models could
not be run at a certain aggregation level in a reasonable amount of time, so their results
were not included. Of the selected models, Isolation Forest provides the best result, with
an average AUC PR of 0.11 without any type of aggregation, while all other models fall
below the 0.05 value. At the first level of aggregation, only the kNN model achieves a value
above 0.05, with an average AUC PR of 0.06. At the second level of aggregation, the models
perform slightly better overall, but only the HBOS model comes close to the average AUC
PR of 0.1. At the third level of aggregation, the models perform best overall, and the best is
HBOS again, with an average AUC PR of around 0.25, while CBLOF and Feature Bagging
also achieve an AUC PR of over 0.2.

0

0.05

0.1

0.15

0.2

0.25

0.3

CB
LO

F

CO
PO

D

EC
OD

HB
OS

Iso
la

on
 Fo

re
st

kN
N

LO
DA LO

F

M
CD PC

A

Sa
m

pl
in

g

CB
LO

F

CO
PO

D

EC
OD

Fe
at

ur
e 

Ba
gg

in
g

HB
OS

Iso
la

on
 Fo

re
st

kN
N

LO
DA LO

F

M
CD PC

A

Sa
m

pl
in

g

CB
LO

F

CO
PO

D

EC
OD

Fe
at

ur
e 

Ba
gg

in
g

HB
OS

Iso
la

on
 Fo

re
st

KD
E

kN
N

LO
DA LO

F

M
CD PC

A

Sa
m

pl
in

g

CB
LO

F

CO
PO

D

EC
OD

Fe
at

ur
e 

Ba
gg

in
g

HB
OS

Iso
la

on
 Fo

re
st

KD
E

kN
N

LO
DA LO

F

M
CD PC

A

Sa
m

pl
in

g

No aggrega on Aggrega on level 1 Aggrega on level 2 Aggrega on level 3

AU
C 

PR
 va

lu
e

Firefox file:///C:/Users/MDPI/Desktop/2024-04-15/latex-sensors-2933327/sensors-2933327/F...

1 of 1 4/15/2024, 5:58 PM

Figure 3. Comparison of the average AUC PR value over two days of firewall logs obtained with
13 different unsupervised machine learning models at four different aggregation levels.

After identifying the best performing model regardless of the chosen threshold,
the next step is to present the average F1-score and F2-score values from five execution



Sensors 2024, 24, 2636 17 of 30

runs, focusing specifically on the second day of the firewall logs. These results can be seen
in Figure 4. As before, the results of the models that could not be executed at a certain
aggregation level in a reasonable time are not shown. Isolation Forest provides both the
best F1-score and the best F2-score, with values of 0.15 and 0.13, respectively. At the first
aggregation level, the results are worse and no model achieves an F1-score or F2-score
close to 0.1. At the second aggregation level, HBOS and Isolation Forest provide the best
results, with F1-score of 0.24 and 0.16, respectively. At the same time, these models also
achieve F2-score of 0.29 and 0.18. At the third aggregation level, almost all models achieve
significantly higher F1-score and F2-score. CBLOF and Feature Bagging stand out from the
others at this aggregation level. CBLOF achieves a value of around 0.5 for both the F1-score
and F2-score, while the Feature Bagging model achieves a value of around 0.36.

0

0.1

0.2

0.3

0.4

0.5

0.6

CB
LO

F

CO
PO

D

EC
OD

HB
OS

Iso
la

on
 Fo

re
st

kN
N

LO
DA LO

F

M
CD PC

A

Sa
m

pl
in

g

CB
LO

F

CO
PO

D

EC
OD

HB
OS

Iso
la

on
 Fo

re
st

KD
E

kN
N

LO
DA LO

F

M
CD PC

A

Sa
m

pl
in

g

CB
LO

F

CO
PO

D

EC
OD

Fe
at

ur
e 

Ba
gg

in
g

HB
OS

Iso
la

on
 Fo

re
st

KD
E

kN
N

LO
DA LO

F

M
CD PC

A

Sa
m

pl
in

g

CB
LO

F

CO
PO

D

EC
OD

Fe
at

ur
e 

Ba
gg

in
g

HB
OS

Iso
la

on
 Fo

re
st

KD
E

kN
N

LO
DA LO

F

M
CD PC

A

Sa
m

pl
in

g

No aggrega on Aggrega on level 1 Aggrega on level 2 Aggrega on level 3

F1-score F2-score

Firefox file:///C:/Users/MDPI/Desktop/2024-04-15/latex-sensors-2933327/sensors-2933327/F...

1 of 1 4/15/2024, 5:59 PM

Figure 4. Comparison of the average F1-score and F2-score on the second day of firewall logs obtained
with 13 different unsupervised machine learning models at four different aggregation levels.

The previously presented results were obtained by calculating a threshold to maximize
the F1-score. In addition, performance was considered based on the threshold obtained by
optimizing precision, with a recall value of at least 0.95. Again, all selected models were
tested at four aggregation levels. This time, it was not the F1-score or F2-score that were
compared, but the percentage of false positives out of the total number of connections,
defined as FP

TP+FP+TN+FN × 100%. This measure was chosen to get a sense of how much
additional manual work is required for a security analyst to detect anomalies. The measure
averaged over two days for selected models is shown in Figure 5. The figure shows that, on
average, the best results are achieved without aggregation, with about 38% false positives.
Of the selected models, the COPOD model without aggregation gives the best results, with
about 3% false positives, which does not sound like much, but in absolute numbers, this
is close to the 300,000 connections in a single day of firewall logs that would need to be
manually checked. At the first level of aggregation, the ECOD model performs best, with
around 4% false positives. At the second aggregation level, all tested models perform
poorly, while at the third aggregation level, the HBOS model performs best, with around
8% false positives.

An important aspect when comparing the models for detecting anomalies is the
execution time of the individual model. The time required by the entire process described
in Section 6.2 was measured. Only the execution times for the data without aggregation are
shown here, as the relative difference between the execution times of the models remains
approximately the same. Figure 6 shows the execution times in seconds of 11 unsupervised
models. The Feature Bagging and KDE models are not listed here, as they could not be
executed in a reasonable time at this level of aggregation. The execution times shown
indicate that the LOF and kNN models require 880 and 790 s, respectively, and are therefore
the slowest. Only two other models take more than 200 s to execute, namely the Isolation



Sensors 2024, 24, 2636 18 of 30

Forest model and MCD. On the other hand, the PCA, HBOS, and Sampling models are the
fastest, performing the test methodology in just one minute.

0%

20%

40%

60%

80%

100%

CB
LO

F
CO

PO
D

EC
OD

HB
OS

Iso
la

on
 Fo

re
st

kN
N

LO
DA LO

F
M

CD PC
A

Sa
m

pl
in

g
CB

LO
F

CO
PO

D
EC

OD
HB

OS
Iso

la
on

 Fo
re

st
kN

N
LO

DA LO
F

M
CD PC

A
Sa

m
pl

in
g

CB
LO

F
CO

PO
D

EC
OD

Fe
at

ur
e 

Ba
gg

in
g

HB
OS

Iso
la

on
 Fo

re
st

KD
E

kN
N

LO
DA LO

F
M

CD PC
A

Sa
m

pl
in

g
CB

LO
F

CO
PO

D
EC

OD
Fe

at
ur

e 
Ba

gg
in

g
HB

OS
Iso

la
on

 Fo
re

st
KD

E
kN

N
LO

DA LO
F

M
CD PC

A
Sa

m
pl

in
g

No aggrega on Aggrega on level 1 Aggrega on level 2 Aggrega on level 3

Pe
rc

en
ta

ge
 o

f f
al

se
 p

os
i

ve
s

Firefox file:///C:/Users/MDPI/Desktop/2024-04-15/latex-sensors-2933327/sensors-2933327/F...

1 of 1 4/15/2024, 5:59 PM

Figure 5. Comparison of the average percentage of false positives over two days of firewall logs
obtained with 13 different unsupervised machine learning models at four different aggregation levels.

0

200

400

600

800

1000

CBLOF COPOD ECOD HBOS Isola on
Forest

kNN LODA LOF MCD PCA Sampling

Ex
ec

u
on

 
m

e 
(s

eo
cn

ds
)

Firefox file:///C:/Users/MDPI/Desktop/2024-04-15/latex-sensors-...

1 of 1 4/15/2024, 5:59 PM

Figure 6. Comparison of the average execution time of the test methodology in seconds obtained
with 11 different unsupervised machine learning models with no aggregation applied.

When comparing the execution times between the aggregation levels, a reduction of
around 60% was observed when switching to the first aggregation level. When moving to
the second aggregation level, the execution time was reduced even more, namely by almost
100% compared to the execution time of the first aggregation level. When choosing the
third aggregation level, on the other hand, the execution time was not significantly reduced,
only by around 1–2% on average compared to the second aggregation level.

6.3.2. Comparison of Feature Construction Methods

The next experiment consisted of comparing different feature construction methods
on the same model. For this purpose, the ECOD model was chosen for its deterministic
behavior, stability, and very fast performance. Min–max scaling was again chosen as the
scaling method and the following subset of attributes were selected: timestamp, source
and destination IP address, source and destination port, and protocol. From the results of
our tests, it was concluded that the direct conversion of the IP address into a numeric form
provided a better result than the division of the IP address into four numbers, while the
other two conversion methods could not be performed due to an excessive increase in the
occupied memory. When converting the ports, a comparison was made between keeping
the ports in numeric form and using one-hot encoding for non-ephemeral and important
ports, while pure one-hot encoding was no longer feasible due to the increase in occupied
memory. In the end, leaving the ports in purely numerical form provided the best results.



Sensors 2024, 24, 2636 19 of 30

Since the number of different protocol values was very small, one-hot encoding was easy
to implement and only this conversion was considered for the protocol attribute.

6.3.3. Comparison of Feature Subsets

In the subsequent experiment, the focus was on investigating how the selection of
different subsets of features influenced the results obtained. The ECOD model was chosen
as the reference model. As with the model comparison experiment, the simplest method
was used for the feature construction and the min–max method for the scaling method.
This experiment was conducted using only the raw firewall logs, without any aggregation.

In this phase, all available subsets of features were thoroughly tested and evaluated.
There were a total of eight features to choose from, namely: timestamp, hour, time, source_ip,
source_port, destination_ip, destination_port, and three features from the zero–hot encoding
of the protocol attribute, which were observed as a group called protocols. In addition
to these features, the label feature was always present in all subsets. This experimental
setup resulted in 255 different subsets. All these subsets were evaluated using the average
F1-score obtained for the firewall logs of two days.

Since there are a large number of different subsets to be presented here, only the
10 best subsets are shown in Figure 7. The results show that the best subset is the one
that contains the features timestamp, hour, source_port, destination_port, and protocols.
The given feature group results in an average F1-score of 0.075.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

[' me', 'des na on_port', 'protocols']

[' mestamp', 'des na on_port', 'protocols']

[' mestamp', ' me', 'source_ip', 'source_port', 'des na on_ip',
'des na on_port', 'protocols']

[' mestamp', 'hour', ' me', 'source_ip', 'source_port', 'des na on_ip',
'des na on_port', 'protocols']

[' mestamp', 'hour', 'des na on_port', 'protocols']

[' mestamp', 'hour', 'source_ip', 'source_port', 'des na on_port',
'protocols']

[' me', 'source_port', 'des na on_port', 'protocols']

[' mestamp', 'source_port', 'des na on_port', 'protocols']

['hour', ' me', 'source_port', 'des na on_port', 'protocols']

[' mestamp', 'hour', 'source_port', 'des na on_port', 'protocols']

F1-score

Su
bs

et
 o

f f
ea

tu
re

s

Firefox file:///C:/Users/MDPI/Desktop/2024-04-15/latex-sensors-2933327/sensors-2933327/F...

1 of 1 4/15/2024, 6:00 PM

Figure 7. Comparison of the 10 best average F1-scores over two days of firewall logs obtained by using
255 different subsets of features, together with the ECOD unsupervised machine learning model
without aggregation.

To find out which features were most important, the average rank of the subsets
containing each feature was calculated (with the best subset having a rank of 1 and the
worst a rank of 255). Accordingly, the features timestamp, time, and protocols had the
lowest average rank and were, therefore, considered the most informative. The feature
destinationi p, on the other hand, had by far the highest average rank and was, therefore,
considered the least important feature based on this experiment.

To further analyze the relationship between the individual features, the Pearson
correlation coefficient between each pair of features was calculated. The Pearson corre-
lation coefficient is a correlation coefficient that measures the linear correlation between
two variables and is calculated as the ratio between the covariance of two variables and the
product of their standard deviations [105]. This coefficient is defined as a number between
−1 and 1 and is interpreted as a measure of the strength and direction of the relationship
between two variables.



Sensors 2024, 24, 2636 20 of 30

The heatmap of the calculated correlation coefficients is shown in Figure 8. The
heatmap shows that the correlation between the features timestamp, hour, and time has
a value of 1, which means that they are perfectly positively correlated. There is also
an almost perfect positive correlation between the feature destination_ip and the feature
protocol_icmp (part of the zero–one vector). A strong positive correlation is observed be-
tween protocol_tcp and protocol_udp, with a coefficient of 0.68. There is a moderate positive
correlation between the features source_port and destination_port, as well as protocol_tcp
and protocol_icmp. The correlation between all other pairs of features is weakly positive or
almost non-existent.

Firefox file:///C:/Users/MDPI/Desktop/2024-04-15/latex-sensors-...

1 of 1 4/15/2024, 5:58 PM

Figure 8. The heatmap of the Pearson correlation coefficients for each selected pair of features.

We used the calculated Pearson correlation coefficients to reduce the number of fea-
tures with the aim of removing all highly correlated features. This was done in an iterative
procedure, so that one feature was removed in each iteration. In each iteration, the Pearson
correlation coefficient was calculated for each remaining pair of features. The pair with
the highest correlation coefficient and a value greater than 0.8 was selected for elimination
and one feature from this pair was removed. The procedure was repeated until no more
features are removed.

Based on the implemented procedure, the reduced set of features included the follow-
ing features: timestamp, source_ip, source_port, destination_ip, destionation_port, protocol_tcp,
and protocol_udp (including the feature label). This set of features was used according
to the same methodology as before in the evaluation of the different subsets. The results
obtained with this subset of features yielded an average F1-score of 0.012. When adding
this result to the already existing results for the subsets of features, a rank of 186 was
obtained out of 256 different subsets. This shows that the subset obtained by removing the
correlation provided a result that was close to the average results of all the different subsets
of features.

6.3.4. Comparison of Scaling Methods

Finally, we examined how a change in the scaling method used affected the results.
In the experiments conducted, it was found that the scaling method only affected the
results for the second day of the firewall logs. Of the three scaling methods tested, min–max
scaling proved to be the best, followed by robust scaling, while the standard scaling method
was the worst.



Sensors 2024, 24, 2636 21 of 30

7. Supervised Learning

From the related work presented in Section 2, two different types of classification tasks
have emerged: one is binary classification, in which firewall logs are classified as normal or
anomalous, and the other is multiclass classification, in which firewall logs are classified
based on a firewall action attribute. As we explained in Section 3, the firewall logs were
first filtered by the firewall action attribute, so that only connections with the value accept
were retained. Therefore, the task in this study was not multiclass classification. Instead,
we integrated the anomalous records into the pre-existing firewall logs and introduced a
feature label that distinguishes between normal and anomalous records. In this way, we
have transformed the problem of unsupervised anomaly detection into the task of binary
classification, where we can apply supervised machine learning methods. The following
section describes the methodology we used for our supervised learning experiments and
presents the results obtained.

7.1. Methodology

In supervised learning experiments, the following approach was used to transform
features: IP addresses were directly converted to large numeric representations and one-hot
encoding was applied to the protocol attribute, while the other attributes were left in their
original numeric form.

During the training phase, two days of pre-existing logs were merged with one day
of logs with integrated anomalies. Six-fold cross-validation was used to find the optimal
model for the training dataset. In k-fold cross-validation, the set of observations is randomly
divided into approximately equal k groups (folds). The first fold is treated as the validation
set, and the supervised model is fit on the remaining k − 1 folds [106].

After training the model, the trained model was used to make predictions for an
unlabeled day of firewall logs with anomalies inserted. The evaluation of the performance
of our model was based on the comparison of the predicted labels with the actual labels,
and the F1-score was used as the primary performance measure.

7.2. Results

The procedure described above was used in the test phase. A total of 13 different
supervised learning models were evaluated, including Naive Bayes, Kernel Naive Bayes,
Linear Discriminant Analysis, Quadratic Discriminant Analysis, Regularized Discriminant
Analysis, Rule Induction, Logistic Regression, Random Forest, Decision Tree, Decision
Stump, Random Tree, Gradient Boosted Trees, and Perceptron. In these tests, it was found
that the inclusion of IP addresses in the training of the models led to overfitting. Therefore,
features describing IP addresses were not included in the supervised learning experiments.

When reviewing the test results, some models were found to have an unknown F1-score,
which was due to the fact that these models predicted all given records as normal. These
models were not included in further analysis. To analyze the performance of the selected
models, the following performance measures are presented: recall, precision, F1-score,
and F2-score. The above measures for the six selected supervised models at the second and
third levels of aggregation are presented in Table 3. The first level of aggregation and the
unaggregated data were not included in this analysis due to the high resource requirements

Based on the F1-scores and F2-scores from Table 3, it can be seen that all models perform
better at the second aggregation level, with the exception of the Naive Bayes model. When
moving from the second to the third level of aggregation, there is a shift in the recall and
precision values, so that the recall values generally decrease, while the precision values
increase, which is due to an increasing percentage of false negatives. At the second level of
aggregation, all models except Naive Bayes perform excellently, achieving an F1-score of
about 0.9. Of the models tested, the Kernel Naive Bayes performs best at the second level
of aggregation, with an F1-score of 0.965.



Sensors 2024, 24, 2636 22 of 30

Table 3. Comparison of performance measures for the test set using the best six supervised learning
models at the second and third levels of aggregation.

Second Level of Aggregation Third Level of Aggregation

Model Name Recall Precision F1-Score F2-Score Recall Precision F1-Score F2-Score

Naive Bayes 0.9986 0.0052 0.0104 0.0256 1 0.0206 0.0403 0.0950

Kernel Naive Bayes 1 0.9331 0.9654 0.9859 1 0.6905 0.8169 0.9177

Logistic Regression 0.9008 0.8826 0.8916 0.8971 0.61 0.9973 0.757 0.6614

Random Forest 0.8689 0.9983 0.9291 0.8920 0.6413 1.0000 0.7815 0.6909

Decision Tree 0.8696 0.9943 0.9278 0.8920 0.1423 0.9985 0.2491 0.1718

Gradient Boosted Trees 0.8696 0.9895 0.9257 0.8912 0.6608 1.0000 0.7958 0.7089

The values of the F2-score again show the same pattern as the F1-score, as both methods
are derived from the precision and recall values. Since the F2-score gives more weight
to recall when calculating its value, the results are slightly different. As with the F1-
score, the Kernel Naive Bayes model produces the best result, with an F2-score of 0.986
at the second level of aggregation. This result correlates with the achieved recall value,
since the Kernel Naive Bayes is the only model that has a recall value of 1 on the second
aggregation level.

Since our main goal is to detect anomalies, it is crucial that our solution detects all
attacks, even if this means accepting some false positives, as long as they are not excessive.
In this context, it is important to give more weight to the recall metric than to precision. It
can be concluded that Kernel Naive Bayes delivers impressive results at the second level
of aggregation: 100% recall with only 101 false positives, which is well below 0.1% of all
records in the dataset, and a precision of 0.933.

8. Discussion
8.1. Log Generation

Our main goal in developing a custom method for integrating different types of
artifacts into logs was to efficiently create log datasets without the need for extensive
computational resources, such as dedicated testbeds, and to improve the relevance of the
dataset to a given organization by extending real-world logs from their environment. It is
true that our method requires a lot of manual work, but, at the same time, it also requires a
lot of effort in creating logs with a dedicated testbed. In comparison, the modules that are
created once with our method and used to simulate different tools can be reused. With our
method, any organization can seamlessly insert attack logs into their own dataset, enabling
comprehensive testing of security information systems in their specific environment and
facilitating the training of security personnel.

However, there are limitations and underlying assumptions to consider. First, our
approach requires well-documented firewall policies. Otherwise, the log records would
have to be generated directly by the firewall and not simulated by the policy documentation.
Second, it assumes that the network is stable, i.e., that it is not near congestion, since adding
network traffic near congestion could generate additional log artifacts. The third assump-
tion refers to consistent network properties within the modified log sections, assuming
that no significant changes have been made to the architecture or services. Finally, it is
assumed that the simulated attacks do not cause significant side effects that would cause
similar changes in the logs as those mentioned in assumption three. It can be argued that
attacks that cause significant changes in the network have already reached an advanced
stage where detection is trivial and the use of anomaly detection no longer provides any
additional benefit.

An exception to the fourth assumption is the theoretical simulation of highly determin-
istic network-altering attacks, such as a wiper attack that renders workstations inoperable.
These attacks could theoretically be mimicked by introducing certain C2 communication



Sensors 2024, 24, 2636 23 of 30

functions and removing subsequent log entries associated with the affected workstations,
thereby mimicking their shutdown.

There is also the problem that, in the firewall logs, only the part of the communication
that goes through the firewall is logged. This is the limitation of the data source that is also
to be expected for other datasets where part of the communication is not visible. With this
in mind, it is to be expected that the people managing the target company’s IT system will
set the security controls correctly.

Experiments conducted for demonstrating the feasibility of the proposed method for
generating and injecting anomalies are not sufficient to validate the quality of the logs
produced. As a next step, we propose an experiment in which multiple log datasets with
identical attacks are created using a subset of the methods from Figure 1, as well as the
proposed method from Figure 2 [2]. If the generated datasets contain the same attacks
and common anomaly detection algorithms achieve almost identical results, one could
claim that the logs generated using the proposed method are of high quality and do not
differ from logs generated using conventional approaches. If the quality of the generated
logs can be validated, they could also be used for many other purposes, e.g., for the alert
correlation approaches studied in [9]. Moreover, one of the main purposes we would like
to explore in the future is a real-world scenario where the presented approach is used for
training Security Operations Center (SOC) analysts, which could be done by generating
and injecting logs in real-time.

8.2. Anomaly Detection

When comparing the unsupervised results without choosing the threshold, the average
AUC PR values were the best at the second level of aggregation, and the HBOS model
provided both the best average results at all levels of aggregation and the best individual
result of 0.25 AUC PR at the third level of aggregation. Saito and Rehmsmeier [81] provided
the baseline value for this measure, which is determined as Np/(Np + Nn), where Np is
the number of records in the positive class (anomalous records in our context) and Nn is
the number of records in the negative class (records from the existing firewall logs in our
case). Using this information, as well as Table 2, the AUC PR baseline values were set to
0.0003, 0.0006, 0.0121, and 0.0056 depending on the aggregation level. Given these baseline
values, almost all tested models outperformed the baseline value at all aggregation levels,
indicating their superiority over a random model based on this criterion. On average,
the largest difference was observed in the unaggregated data, while the smallest deviation
occurred at the second aggregation level.

In experiments consisting of threshold selection with F1-score optimization, a consistent
improvement in both F1-score and F2-score was observed for almost all models when a
higher aggregation level was chosen. On the other hand, a higher level of aggregation
resulted in a larger standard deviation for these performance measures between models.
The most remarkable performance in our testing methodology was obtained by using
the CBLOF model at the third aggregation level, resulting in F1-score and F2-score of
approximately 0.5.

Experiments with the optimization of the precision value alongside the high recall
value showed that, on average, the results with the lowest false positive rate were obtained
without any aggregation. Of the models examined, the COPOD model provided the best
result with a false positive rate of 3%. According to the study conducted by Axelsson [107],
it is suggested that one false alarm in 100,000 events is the minimum requirement for an
effective intrusion detection system, which corresponds to a percentage of false alarms
of 0.001%. As observed in the experiment, none of the models even came close to this
percentage. It can therefore be concluded that they are significantly ineffective in adequately
implementing intrusion detection.

Based on the results obtained using the unsupervised models, it can be concluded that
none of the tested unsupervised models are suitable for our task of detecting anomalies
and cannot be used in the real world. For this reason, supervised learning was also used to



Sensors 2024, 24, 2636 24 of 30

generate test results. This has the advantage that these algorithms are usually less complex
and provide better results than unsupervised algorithms, but carries the risk of overfitting
to the given data. The problem of overfitting was mitigated by using 6-fold cross-validation.
The results obtained were promising, especially at the second level of aggregation, where
all supervised models except Naive Bayes achieved good F1-score and F2-score. The best
model was Naive Bayes Kernel, with F-scores above 0.96.

The result of the Naive Bayes Kernel model can now be directly compared to the
unsupervised models with optimized precision and high recall. For the unsupervised
models, the best precision value was just below 0.1, while the supervised Naive Bayes
Kernel model achieved a perfect recall value with a precision of 0.93. These results clearly
show the superiority of the supervised models. Finally, the Naive Bayes Kernel model also
fulfilled the criterion proposed by Axelsson [107] and achieved a false positive percentage
of about 0.0009%.

Of all the results provided, three models stood out the most, namely CBLOF, HBOS,
and Isolation Forest. This is based on the criteria that these models provided the best
results, on average, across all aggregation levels in terms of AUC PR score, F1-score, and
F2-score, and also performed the test methodology in reasonable time.

In contrast to the three similar comparative studies [71–73] identified in the literature
review [8], which compared, at most, six different ML methods [73], our study examined
many more ML methods, both supervised and unsupervised. In addition to the ML
methods used, there are two other important aspects to consider in a comparative study:
the dataset and the performance measures used in the evaluation. We believe that the
dataset used for the evaluation must fulfill the following criteria in order to be used in the
real world:

• The dataset used should not come from the simulated network environment, but should
be generated from real network activities.

• The size of the dataset must be large enough to replicate real-world scenarios (of-
ten more than one million connections per day), as the size of the dataset strongly
influences the selection of machine learning algorithms to be used.

• The proportion of anomalous records in the dataset is an important factor and should
be very low (less than 1%), as anomalies in real network traffic are very rare and
well hidden.

Based on these criteria, we can conclude that neither the work of Abdulhammed et al. [71]
nor that of He et al. [73] fulfill the above criteria. However, He et al. [73] met all of the above
criteria by using the HDFP dataset for the evaluation.

When comparing different unsupervised anomaly detection methods, it is best to use
a performance measure that is independent of threshold selection. Due to the expected
scarcity of anomalies compared to the prevalence of normal records in a dataset, we suggest
using the AUC PR score when comparing unsupervised methods. On the other hand, when
comparing supervised methods, we recommend using the F1-score or even the F2-score
if you are more concerned with detecting all anomalies, rather that a lower number of
false positives. We also emphasize the importance of considering the percentage of false
positives relative to the total number of connections as a key indicator of the quality of
the model. Of the papers analyzed, only He et al. [73] used the F1-score for supervised
evaluation, while the other two papers mainly relied on the Accuracy and Detection Rate
measures. Although He et al. [73] used the F1-score for the comparison, both unsupervised
and supervised methods were compared, so the AUC PR score should be used for the
comparison of the unsupervised methods.

9. Conclusions

This paper focuses on the use of a novel method to create logs containing attack-
related records [2] and their use in combination with different anomaly detection methods
to validate this approach [1]. The log generation method presented relies on real-world
logs from the organization, augmented by domain knowledge, and eliminates the need for



Sensors 2024, 24, 2636 25 of 30

a dedicated testbed or installed security controls. A key advantage of this method is the
ability to create logs that closely resemble the original environment. With this method, any
organization can seamlessly insert attack logs into its own dataset, enabling comprehensive
testing of security information systems in its specific environment and facilitating the
training of security personnel.

The anomalies generated with the innovative method simulate real attacker behavior
and were integrated into the existing firewall logs of a large industrial control network.
To validate this approach, a comparative evaluation using different anomaly detection
algorithms was performed. The integration of the injected anomalies enabled the evaluation
of unsupervised anomaly detection algorithms, ensuring a comprehensive assessment of
their effectiveness in detecting specific attack sequences. Furthermore, the integration of
anomalies facilitated the application of supervised learning methods. As a result, both
unsupervised anomaly detection models and supervised methods were thoroughly tested
to assess their respective performance.

The results of this study show that none of the investigated unsupervised learning
algorithms performed satisfactorily in detecting anomalies. This result confirms that
the injected anomalies represent attack steps that are disguised and well integrated into
the pre-existing firewall logs. However, the use of supervised learning methods provided
significantly better and satisfactory results and shows the potential of the presented method
to generate and integrate anomalies for anomaly detection.

With the use of the presented method, a system with a variety of potentially danger-
ous attack sequences can be constructed. For each of these sequences, anomalies can be
generated and classifiers can be trained. Classifiers can then test the new logs received from
the firewall and provide us with the probability that the specific attack sequence occurs in
these logs. Based on this probability, potentially anomalous behavior can be identified and
the individual steps of the attackers in the network in question can be shown.

Although the experiments demonstrated the feasibility of the proposed method for
generating and injecting anomalies into logs, more research is needed to evaluate the
quality of the results. For a qualitative evaluation, we proposed an experiment in which
two datasets are created, one using a conventional method such as a testbed, and the
other using the proposed method to inject logs. Evaluation would then be performed by
comparing the results of using the two datasets for anomaly detection experiments.

Author Contributions: Conceptualization, A.K., I.K., B.Š. and S.G.; methodology, A.K., I.K., B.Š. and
S.G.; software, A.K., I.K. and B.Š.; validation, A.K., I.K., B.Š. and S.G.; formal analysis, A.K., I.K. and
B.Š.; investigation, A.K., I.K., B.Š. and S.G.; resources, A.K., I.K., B.Š. and S.G.; data curation, A.K., I.K.
and B.Š.; writing—original draft preparation, A.K., I.K. and S.G.; writing—review and editing, A.K.,
I.K. and S.G.; visualization, A.K. and I.K.; supervision, S.G.; project administration, S.G.; funding
acquisition, S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the European Union’s European Regional Develop-
ment Fund, Operational Programme Competitiveness and Cohesion 2014–2020 for Croatia, through
the project Center of competencies for cyber-security of control systems (CEKOM SUS), grant
KK.01.2.2.03.0019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2024, 24, 2636 26 of 30

References
1. Komadina, A.; Kovačević, I.; Štengl, B.; Groš, S. Detecting Anomalies in Firewall Logs Using Artificially Generated Attacks. In

Proceedings of the 2023 17th International Conference on Telecommunications (ConTEL), Graz, Austria, 11–13 July 2023; pp. 1–8.
2. Kovačević, I.; Komadina, A.; Štengl, B.; Groš, S. Light-Weight Synthesis of Security Logs for Evaluation of Anomaly Detection

and Security Related Experiments. In Proceedings of the 16th European Workshop on System Security, Rome, Italy, 8–12 May
2023; pp. 30–36.

3. Ferragut, E.M.; Laska, J.; Bridges, R.A. A new, principled approach to anomaly detection. In Proceedings of the 2012 11th
International Conference on Machine Learning and Applications, Boca Raton, FL, USA, 12–15 December 2012; Volume 2,
pp. 210–215.

4. Bezerra, F.; Wainer, J.; van der Aalst, W.M. Anomaly detection using process mining. In Enterprise, Business-Process and Information
Systems Modeling, Proceedings of the 10th International Workshop, BPMDS 2009, and 14th International Conference, EMMSAD 2009,
Amsterdam, The Netherlands, 8–9 June 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 149–161.

5. Wu, H.S. A survey of research on anomaly detection for time series. In Proceedings of the 2016 13th International Computer
Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 16–18 December
2016; pp. 426–431.

6. Hawkins, D.M. Identification of Outliers; Springer: Berlin/Heidelberg, Germany, 1980; Volume 11.
7. Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; Ng, S.K. MAD-GAN: Multivariate anomaly detection for time series data with generative

adversarial networks. In Proceedings of the International Conference on Artificial Neural Networks, Munich, Germany, 17–19
September 2019; Springer: Cham, Switzerland, 2019; pp. 703–716.

8. Nassif, A.B.; Talib, M.A.; Nasir, Q.; Dakalbab, F.M. Machine learning for anomaly detection: A systematic review. IEEE Access
2021, 9, 78658–78700. [CrossRef]

9. Kovačević, I.; Groš, S.; Slovenec, K. Systematic review and quantitative comparison of cyberattack scenario detection and
projection. Electronics 2020, 9, 1722. [CrossRef]

10. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

11. Gharib, A.; Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. An evaluation framework for intrusion detection dataset. In
Proceedings of the 2016 International Conference on Information Science and Security (ICISS), Pattaya, Thailand, 19–22 December
2016; pp. 1–6.

12. Salazar, Z.; Nguyen, H.N.; Mallouli, W.; Cavalli, A.R.; Montes de Oca, E. 5greplay: A 5g network traffic fuzzer-application to
attack injection. In Proceedings of the 16th International Conference on Availability, Reliability and Security, Vienna, Austria,
17–20 August 2021; pp. 1–8.

13. Cordero, C.G.; Vasilomanolakis, E.; Wainakh, A.; Mühlhäuser, M.; Nadjm-Tehrani, S. On generating network traffic datasets with
synthetic attacks for intrusion detection. ACM Trans. Priv. Secur. (TOPS) 2021, 24, 8. [CrossRef]

14. Brown, C.; Cowperthwaite, A.; Hijazi, A.; Somayaji, A. Analysis of the 1999 darpa/lincoln laboratory ids evaluation data with
netadhict. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications,
Ottawa, ON, Canada, 8–10 July 2009; pp. 1–7.

15. Ning, P.; Cui, Y.; Reeves, D.S. Constructing attack scenarios through correlation of intrusion alerts. In Proceedings of the 9th ACM
Conference on Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 245–254.

16. Myneni, S.; Chowdhary, A.; Sabur, A.; Sengupta, S.; Agrawal, G.; Huang, D.; Kang, M. DAPT 2020-constructing a benchmark
dataset for advanced persistent threats. In Proceedings of the International Workshop on Deployable Machine Learning for
Security Defense, San Diego, CA, USA, 24 August 2020; Springer: Cham, Switzerland, 2020; pp. 138–163.

17. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015; pp. 1–6.

18. Skopik, F.; Settanni, G.; Fiedler, R.; Friedberg, I. Semi-synthetic data set generation for security software evaluation. In Proceedings
of the 2014 Twelfth Annual International Conference on Privacy, Security and Trust, Toronto, ON, Canada, 23–24 July 2014;
pp. 156–163.

19. Haider, W.; Hu, J.; Slay, J.; Turnbull, B.P.; Xie, Y. Generating realistic intrusion detection system dataset based on fuzzy qualitative
modeling. J. Netw. Comput. Appl. 2017, 87, 185–192. [CrossRef]

20. Zuech, R.; Khoshgoftaar, T.M.; Seliya, N.; Najafabadi, M.M.; Kemp, C. A new intrusion detection benchmarking system. In
Proceedings of the The Twenty-Eighth International Flairs Conference, Hollywood, FL, USA, 18–20 May 2015.

21. O’Shaughnessy, S.; Gray, G. Development and evaluation of a dataset generator tool for generating synthetic log files containing
computer attack signatures. Int. J. Ambient Comput. Intell. (IJACI) 2011, 3, 64–76. [CrossRef]

22. Göbel, T.; Schäfer, T.; Hachenberger, J.; Türr, J.; Baier, H. A Novel approach for generating synthetic datasets for digital forensics.
In Proceedings of the IFIP International Conference on Digital Forensics, New Delhi, India, 6–8 January 2020; Springer: Cham,
Switzerland, 2020; pp. 73–93.

23. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Towards Generating Real-life Datasets for Network Intrusion Detection. Int. J.
Netw. Secur. 2015, 17, 683–701.

http://doi.org/10.1109/ACCESS.2021.3083060
http://dx.doi.org/10.3390/electronics9101722
http://dx.doi.org/10.1145/3424155
http://dx.doi.org/10.1016/j.jnca.2017.03.018
http://dx.doi.org/10.4018/jaci.2011040105


Sensors 2024, 24, 2636 27 of 30

24. Boggs, N.; Zhao, H.; Du, S.; Stolfo, S.J. Synthetic data generation and defense in depth measurement of web applications. In
Proceedings of the International Workshop on Recent Advances in Intrusion Detection, Gothenburg, Sweden, 17–19 September
2014; Springer: Cham, Switzerland, 2014; pp. 234–254.

25. Wurzenberger, M.; Skopik, F.; Settanni, G.; Scherrer, W. Complex log file synthesis for rapid sandbox-benchmarking of security-and
computer network analysis tools. Inf. Syst. 2016, 60, 13–33. [CrossRef]

26. Rao, C.M.; Naidu, M. A model for generating synthetic network flows and accuracy index for evaluation of anomaly network
intrusion detection systems. Indian J. Sci. Technol. 2017, 10, 1–16. [CrossRef]

27. Mozo, A.; González-Prieto, Á.; Pastor, A.; Gómez-Canaval, S.; Talavera, E. Synthetic flow-based cryptomining attack generation
through Generative Adversarial Networks. Sci. Rep. 2022, 12, 2091. [CrossRef]

28. Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark datasets
for intrusion detection. Comput. Secur. 2012, 31, 357–374. [CrossRef]

29. Lu, J.; Lv, F.; Zhuo, Z.; Zhang, X.; Liu, X.; Hu, T.; Deng, W. Integrating traffics with network device logs for anomaly detection.
Secur. Commun. Netw. 2019, 2019, 5695021. [CrossRef]

30. Roschke, S.; Cheng, F.; Meinel, C. A new alert correlation algorithm based on attack graph. In Proceedings of the Computational
Intelligence in Security for Information Systems: 4th International Conference, CISIS 2011, Torremolinos-Málaga, Spain, 8–10
June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 58–67.

31. Maciá-Fernández, G.; Camacho, J.; Magán-Carrión, R.; García-Teodoro, P.; Therón, R. UGR ‘16: A new dataset for the evaluation
of cyclostationarity-based network IDSs. Comput. Secur. 2018, 73, 411–424. [CrossRef]

32. Wang, H.; Bah, M.J.; Hammad, M. Progress in outlier detection techniques: A survey. IEEE Access 2019, 7, 107964–108000. [CrossRef]
33. Sawant, A.A.; Game, P.S. Approaches for Anomaly Detection in Network: A Survey. In Proceedings of the 2018 Fourth

International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018;
pp. 1–6.

34. Patcha, A.; Park, J.M. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput.
Netw. 2007, 51, 3448–3470. [CrossRef]

35. Gogoi, P.; Bhattacharyya, D.K.; Borah, B.; Kalita, J.K. A survey of outlier detection methods in network anomaly identification.
Comput. J. 2011, 54, 570–588. [CrossRef]

36. White, J.; Legg, P. Unsupervised one-class learning for anomaly detection on home IoT network devices. In Proceedings of the
2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland,
14–18 June 2021; pp. 1–8.

37. Radford, B.J.; Apolonio, L.M.; Trias, A.J.; Simpson, J.A. Network traffic anomaly detection using recurrent neural networks. arXiv
2018, arXiv:1803.10769.

38. Idrissi, I.; Boukabous, M.; Azizi, M.; Moussaoui, O.; El Fadili, H. Toward a deep learning-based intrusion detection system for IoT
against botnet attacks. IAES Int. J. Artif. Intell. 2021, 10, 110. [CrossRef]

39. Kulyadi, S.P.; Mohandas, P.; Kumar, S.K.S.; Raman, M.S.; Vasan, V. Anomaly Detection using Generative Adversarial Networks
on Firewall Log Message Data. In Proceedings of the 2021 13th International Conference on Electronics, Computers and Artificial
Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; pp. 1–6.

40. Vartouni, A.M.; Kashi, S.S.; Teshnehlab, M. An anomaly detection method to detect web attacks using stacked auto-encoder. In
Proceedings of the 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Kerman, Iran, 28 February–2 March
2018; pp. 131–134.

41. Chapple, M.J.; Chawla, N.; Striegel, A. Authentication anomaly detection: A case study on a virtual private network. In
Proceedings of the 3rd Annual ACM Workshop on Mining Network Data, San Diego, CA, USA, 12 June 2007; pp. 17–22.

42. Nguyen, T.Q.; Laborde, R.; Benzekri, A.; Qu’hen, B. Detecting abnormal DNS traffic using unsupervised machine learning. In
Proceedings of the 2020 4th Cyber Security in Networking Conference (CSNet), Lausanne, Switzerland, 21–23 October 2020;
pp. 1–8.

43. Tuor, A.; Kaplan, S.; Hutchinson, B.; Nichols, N.; Robinson, S. Deep learning for unsupervised insider threat detection in
structured cybersecurity data streams. arXiv 2017, arXiv:1710.00811.

44. Clark, J.; Liu, Z.; Japkowicz, N. Adaptive threshold for outlier detection on data streams. In Proceedings of the 2018 IEEE 5th
International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 41–49.

45. Chae, Y.; Katenka, N.; Dipippo, L. Adaptive threshold selection for trust-based detection systems. In Proceedings of the 2016
IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 281–287.

46. Zhao, Y.; Hryniewicki, M.K. DCSO: Dynamic combination of detector scores for outlier ensembles. arXiv 2019, arXiv:1911.10418.
47. Allagi, S.; Rachh, R. Analysis of Network log data using Machine Learning. In Proceedings of the 2019 IEEE 5th International

Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–3.
48. As-Suhbani, H.E.; Khamitkar, S. Classification of firewall logs using supervised machine learning algorithms. Int. J. Comput. Sci.

Eng. 2019, 7, 301–304. [CrossRef]
49. Aljabri, M.; Alahmadi, A.A.; Mohammad, R.M.A.; Aboulnour, M.; Alomari, D.M.; Almotiri, S.H. Classification of firewall log data

using multiclass machine learning models. Electronics 2022, 11, 1851. [CrossRef]
50. Ucar, E.; Ozhan, E. The analysis of firewall policy through machine learning and data mining. Wirel. Pers. Commun. 2017,

96, 2891–2909. [CrossRef]

http://dx.doi.org/10.1016/j.is.2016.02.006
http://dx.doi.org/10.17485/ijst/2017/v10i29/109053
http://dx.doi.org/10.1038/s41598-022-06057-2
http://dx.doi.org/10.1016/j.cose.2011.12.012
http://dx.doi.org/10.1155/2019/5695021
http://dx.doi.org/10.1016/j.cose.2017.11.004
http://dx.doi.org/10.1109/ACCESS.2019.2932769
http://dx.doi.org/10.1016/j.comnet.2007.02.001
http://dx.doi.org/10.1093/comjnl/bxr026
http://dx.doi.org/10.11591/ijai.v10.i1.pp110-120
http://dx.doi.org/10.26438/ijcse/v7i8.301304
http://dx.doi.org/10.3390/electronics11121851
http://dx.doi.org/10.1007/s11277-017-4330-0


Sensors 2024, 24, 2636 28 of 30

51. Shetty, N.P.; Shetty, J.; Narula, R.; Tandona, K. Comparison study of machine learning classifiers to detect anomalies. Int. J. Electr.
Comput. Eng. 2020, 10, 5445. [CrossRef]

52. Al-Haijaa, Q.A.; Ishtaiwia, A. Machine learning based model to identify firewall decisions to improve cyber-defense. Int. J. Adv.
Sci. Eng. Inf. Technol. 2021, 11, 1688–1695. [CrossRef]

53. Fotiadou, K.; Velivassaki, T.H.; Voulkidis, A.; Skias, D.; Tsekeridou, S.; Zahariadis, T. Network traffic anomaly detection via deep
learning. Information 2021, 12, 215. [CrossRef]

54. Le, D.C.; Zincir-Heywood, N. Exploring anomalous behaviour detection and classification for insider threat identification. Int. J.
Netw. Manag. 2021, 31, e2109. [CrossRef]

55. Harshaw, C.R.; Bridges, R.A.; Iannacone, M.D.; Reed, J.W.; Goodall, J.R. Graphprints: Towards a graph analytic method for
network anomaly detection. In Proceedings of the 11th Annual Cyber and Information Security Research Conference, Oak Ridge,
TN, USA, 5–7 April 2016; pp. 1–4.

56. Zhang, X.; Wu, T.; Zheng, Q.; Zhai, L.; Hu, H.; Yin, W.; Zeng, Y.; Cheng, C. Multi-Step Attack Detection Based on Pre-Trained
Hidden Markov Models. Sensors 2022, 22, 2874. [CrossRef] [PubMed]

57. Hommes, S.; State, R.; Engel, T. A distance-based method to detect anomalous attributes in log files. In Proceedings of the 2012
IEEE Network Operations and Management Symposium, Maui, HI, USA, 16–20 April 2012; pp. 498–501.

58. Gutierrez, R.J.; Bauer, K.W.; Boehmke, B.C.; Saie, C.M.; Bihl, T.J. Cyber anomaly detection: Using tabulated vectors and embedded
analytics for efficient data mining. J. Algorithms Comput. Technol. 2018, 12, 293–310. [CrossRef]

59. Winding, R.; Wright, T.; Chapple, M. System anomaly detection: Mining firewall logs. In Proceedings of the 2006 Securecomm
and Workshops, Baltimore, MD, USA, 28 August–1 September 2006; pp. 1–5.

60. Khamitkar, S.; As-Suhbani, H. Discovering Anomalous Rules In Firewall Logs Using Data Mining And Machine Learning
Classifiers. Int. J. Sci. Technol. Res. 2020, 9, 2491–2497.

61. As-Suhbani, H.E.; Khamitkar, S. Using Data Mining for Discovering Anomalies from Firewall Logs: A comprehensive Review.
Int. Res. J. Eng. Technol. (IRJET) 2017, 4, 419–423.

62. Ceci, M.; Appice, A.; Caruso, C.; Malerba, D. Discovering emerging patterns for anomaly detection in network connection data.
In Proceedings of the International Symposium on Methodologies for Intelligent Systems, Toronto, ON, Canada, 20–23 May 2008;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 179–188.

63. Caruso, C.; Malerba, D. A data mining methodology for anomaly detection in network data. In Proceedings of the International
Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Vietri sul Mare, Italy, 12–14 September
2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 109–116.

64. Depren, O.; Topallar, M.; Anarim, E.; Ciliz, M.K. An intelligent intrusion detection system (IDS) for anomaly and misuse detection
in computer networks. Expert Syst. Appl. 2005, 29, 713–722. [CrossRef]

65. Anil, S.; Remya, R. A hybrid method based on genetic algorithm, self-organised feature map, and support vector machine for
better network anomaly detection. In Proceedings of the 2013 Fourth International Conference on Computing, Communications
and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–5.

66. Chen, X.; Li, B.; Proietti, R.; Zhu, Z.; Yoo, S.B. Self-taught anomaly detection with hybrid unsupervised/supervised machine
learning in optical networks. J. Light. Technol. 2019, 37, 1742–1749. [CrossRef]

67. Demertzis, K.; Iliadis, L. A hybrid network anomaly and intrusion detection approach based on evolving spiking neural network
classification. In E-Democracy, Security, Privacy and Trust in a Digital World, Proceedings of the 5th International Conference, E-
Democracy 2013, Athens, Greece, 5–6 December 2013; Revised Selected Papers 5; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 11–23.

68. Van, N.T.; Thinh, T.N. An anomaly-based network intrusion detection system using deep learning. In Proceedings of the 2017
International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 21–23 July 2017; pp. 210–214.

69. Liu, D.; Lung, C.H.; Lambadaris, I.; Seddigh, N. Network traffic anomaly detection using clustering techniques and performance
comparison. In Proceedings of the 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
Regina, SK, Canada, 5–8 May 2013; pp. 1–4.

70. Mulinka, P.; Casas, P. Stream-based machine learning for network security and anomaly detection. In Proceedings of the 2018
Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, Budapest, Hungary, 20 August 2018;
pp. 1–7.

71. Abdulhammed, R.; Faezipour, M.; Abuzneid, A.; AbuMallouh, A. Deep and machine learning approaches for anomaly-based
intrusion detection of imbalanced network traffic. IEEE Sens. Lett. 2018, 3, 7101404. [CrossRef]

72. Meng, Y.X. The practice on using machine learning for network anomaly intrusion detection. In Proceedings of the 2011
International Conference on Machine Learning and Cybernetics, Guilin, China, 10–13 July 2011; Volume 2, pp. 576–581.

73. He, S.; Zhu, J.; He, P.; Lyu, M.R. Experience report: System log analysis for anomaly detection. In Proceedings of the 2016
IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), Ottawa, ON, Canada, 23–27 October 2016;
pp. 207–218.

74. Ramakrishnan, J.; Shaabani, E.; Li, C.; Sustik, M.A. Anomaly detection for an e-commerce pricing system. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 1917–1926.

http://dx.doi.org/10.11591/ijece.v10i5.pp5445-5452
http://dx.doi.org/10.18517/ijaseit.11.4.14608
http://dx.doi.org/10.3390/info12050215
http://dx.doi.org/10.1002/nem.2109
http://dx.doi.org/10.3390/s22082874
http://www.ncbi.nlm.nih.gov/pubmed/35458857
http://dx.doi.org/10.1177/1748301818791503
http://dx.doi.org/10.1016/j.eswa.2005.05.002
http://dx.doi.org/10.1109/JLT.2019.2902487
http://dx.doi.org/10.1109/LSENS.2018.2879990


Sensors 2024, 24, 2636 29 of 30

75. Lyon, G.F. Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning; Insecure.Com LLC
(US): Seattle, WA, USA, 2008.

76. OffSec Services Limited. Kali Docs. 2022. Available online: https://www.kali.org/docs/ (accessed on 16 December 2022).
77. Kovačević, I. Firewall log PCAP Injection. 2023. Available online: https://zenodo.org/records/7782521 (accessed on

10 March 2024).
78. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2020, 17, 168–192. [CrossRef]
79. Bewick, V.; Cheek, L.; Ball, J. Statistics review 13: Receiver operating characteristic curves. Crit. Care 2004, 8, 508.

[CrossRef] [PubMed]
80. Soule, A.; Salamatian, K.; Taft, N. Combining filtering and statistical methods for anomaly detection. In Proceedings of the 5th

ACM SIGCOMM Conference on Internet Measurement, Berkeley, CA, USA, 19–21 October 2005; p. 31.
81. Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on

imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef] [PubMed]
82. Cook, J.; Ramadas, V. When to consult precision-recall curves. Stata J. 2020, 20, 131–148. [CrossRef]
83. Tang, J.; Chen, Z.; Fu, A.W.C.; Cheung, D.W. Enhancing effectiveness of outlier detections for low density patterns. In Advances

in Knowledge Discovery and Data Mining, Proceedings of the 6th Pacific-Asia Conference, PAKDD 2002 Taipei, Taiwan, 6–8 May 2002;
Proceedings 6; Springer: Berlin/Heidelberg, Germany, 2002; pp. 535–548.

84. Papadimitriou, S.; Kitagawa, H.; Gibbons, P.B.; Faloutsos, C. Loci: Fast outlier detection using the local correlation integral. In
Proceedings of the Proceedings 19th International Conference on Data Engineering (Cat. No. 03CH37405), Bangalore, India,
5–8 March 2003; pp. 315–326.

85. Janssens, J.; Huszár, F.; Postma, E.; van den Herik, H. Stochastic outlier selection. Tilburg Cent. Creat. Comput. Techreport 2012,
1, 2012.

86. Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution.
Neural Comput. 2001, 13, 1443–1471. [CrossRef]

87. Aggarwal, C.C. Data Mining: The Textbook; Springer: Cham, Switzerland, 2015; Volume 1, pp. 75–79.
88. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
89. Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Müller, E.; Kloft, M. Deep one-class classification.

In Proceedings of the International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 4393–4402.
90. Liu, Y.; Li, Z.; Zhou, C.; Jiang, Y.; Sun, J.; Wang, M.; He, X. Generative adversarial active learning for unsupervised outlier

detection. IEEE Trans. Knowl. Data Eng. 2019, 32, 1517–1528. [CrossRef]
91. Li, Z.; Zhao, Y.; Hu, X.; Botta, N.; Ionescu, C.; Chen, G. Ecod: Unsupervised outlier detection using empirical cumulative

distribution functions. IEEE Trans. Knowl. Data Eng. 2022, 35, 12181–12193. [CrossRef]
92. Li, Z.; Zhao, Y.; Botta, N.; Ionescu, C.; Hu, X. COPOD: Copula-based outlier detection. In Proceedings of the 2020 IEEE

International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 1118–1123.
93. Sugiyama, M.; Borgwardt, K. Rapid distance-based outlier detection via sampling. Adv. Neural Inf. Process. Syst. 2013, 26.
94. Shyu, M.L.; Chen, S.C.; Sarinnapakorn, K.; Chang, L. A Novel Anomaly Detection Scheme Based on Principal Component Classifier.

In Proceedings of the IEEE Foundations and New Directions of Data Mining Workshop, in Conjunction with the Third IEEE
International Conference on Data Mining (ICDM’03) Computer Engineering, Melbourne, FL, USA, 19–22 November 2003.

95. Hardin, J.; Rocke, D.M. Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator.
Comput. Stat. Data Anal. 2004, 44, 625–638. [CrossRef]

96. He, Z.; Xu, X.; Deng, S. Discovering cluster-based local outliers. Pattern Recognit. Lett. 2003, 24, 1641–1650. [CrossRef]
97. Angiulli, F.; Pizzuti, C. Fast outlier detection in high dimensional spaces. In Principles of Data Mining and Knowledge Dis-

covery, Proceedings of the 6th European Conference (PKDD 2002), Helsinki, Finland, 19–23 August 2002; Proceedings 6; Springer:
Berlin/Heidelberg, Germany, 2002; pp. 15–27.

98. Goldstein, M.; Dengel, A. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. KI-2012 Poster
Demo Track 2012, 1, 59–63.

99. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining,
Pisa, Italy, 15–19 December 2008; pp. 413–422.

100. Pevnỳ, T. Loda: Lightweight on-line detector of anomalies. Mach. Learn. 2016, 102, 275–304. [CrossRef]
101. Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 93–104.
102. Latecki, L.J.; Lazarevic, A.; Pokrajac, D. Outlier detection with kernel density functions. In Proceedings of the MLDM, Leipzig,

Germany, 18–20 July 2007; Volume 7, pp. 61–75.
103. Lazarevic, A.; Kumar, V. Feature bagging for outlier detection. In Proceedings of the Eleventh ACM SIGKDD International

Conference on Knowledge Discovery in Data Mining, Chicago, IL, USA, 21–24 August 2005; pp. 157–166.
104. Zhao, Y.; Nasrullah, Z.; Li, Z. PyOD: A Python Toolbox for Scalable Outlier Detection. J. Mach. Learn. Res. 2019, 20, 1–7.
105. Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise

Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4.

https://zenodo.org/records/7782521
http://dx.doi.org/10.1016/j.aci.2018.08.003
http://dx.doi.org/10.1186/cc3000
http://www.ncbi.nlm.nih.gov/pubmed/15566624
http://dx.doi.org/10.1371/journal.pone.0118432
http://www.ncbi.nlm.nih.gov/pubmed/25738806
http://dx.doi.org/10.1177/1536867X20909693
http://dx.doi.org/10.1162/089976601750264965
http://dx.doi.org/10.1109/TKDE.2019.2905606
http://dx.doi.org/10.1109/TKDE.2022.3159580
http://dx.doi.org/10.1016/S0167-9473(02)00280-3
http://dx.doi.org/10.1016/S0167-8655(03)00003-5
http://dx.doi.org/10.1007/s10994-015-5521-0


Sensors 2024, 24, 2636 30 of 30

106. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013;
Volume 112.

107. Axelsson, S. The base-rate fallacy and the difficulty of intrusion detection. ACM Trans. Inf. Syst. Secur. (TISSEC) 2000,
3, 186–205. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/357830.357849

	Introduction
	Related Work
	Firewall Logs
	Generating Synthetic Logs
	Methodology
	Generated Anomalies

	Feature Construction
	Unsupervised Learning
	Performance Measures
	Methodology
	Results
	Comparison of Unsupervised Models
	Comparison of Feature Construction Methods
	Comparison of Feature Subsets
	Comparison of Scaling Methods


	Supervised Learning
	Methodology
	Results

	Discussion
	Log Generation
	Anomaly Detection

	Conclusions
	References

