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Abstract: Incorrect sitting posture, characterized by asymmetrical or uneven positioning of the body,
often leads to spinal misalignment and muscle tone imbalance. The prolonged maintenance of such
postures can adversely impact well-being and contribute to the development of spinal deformities
and musculoskeletal disorders. In response, smart sensing chairs equipped with cutting-edge sensor
technologies have been introduced as a viable solution for the real-time detection, classification, and
monitoring of sitting postures, aiming to mitigate the risk of musculoskeletal disorders and promote
overall health. This comprehensive literature review evaluates the current body of research on smart
sensing chairs, with a specific focus on the strategies used for posture detection and classification and
the effectiveness of different sensor technologies. A meticulous search across MDPI, IEEE, Google
Scholar, Scopus, and PubMed databases yielded 39 pertinent studies that utilized non-invasive
methods for posture monitoring. The analysis revealed that Force Sensing Resistors (FSRs) are
the predominant sensors utilized for posture detection, whereas Convolutional Neural Networks
(CNNs) and Artificial Neural Networks (ANNs) are the leading machine learning models for posture
classification. However, it was observed that CNNs and ANNs do not outperform traditional
statistical models in terms of classification accuracy due to the constrained size and lack of diversity
within training datasets. These datasets often fail to comprehensively represent the array of human
body shapes and musculoskeletal configurations. Moreover, this review identifies a significant gap in
the evaluation of user feedback mechanisms, essential for alerting users to their sitting posture and
facilitating corrective adjustments.

Keywords: smart-sensing chair; musculoskeletal disorders; sitting posture classification

1. Introduction

In 2020 alone, musculoskeletal disorders (MSDs) were ranked as the second leading
cause of non-fatal disability, affecting over a billion people globally [1]. In the United
Kingdom, more than 7.1 million adults suffer from MSDs, imposing an economic burden
exceeding GBP 4.1 billion annually. Bevan et al. (2015) [2] highlighted that MSDs account
for over 2% of the European Union’s gross domestic product (GDP), translating to an
annual cost of approximately EUR 240 billion. These statistics underscore the increasing
concern surrounding MSDs, necessitating effective interventions.

MSDs arise from a variety of factors, ranging from congenital defects [3] to neurological
disorders [4]. Contrary to a common misconception, MSDs are not confined to the elderly;
individuals of all ages are susceptible. The early development of MSDs can be attributed
to various neurological conditions but also sedentary lifestyles and poor posture [5]. The
office environment, characterized by prolonged periods of sitting, can exacerbate the
risk of developing long-term musculoskeletal conditions, including back pain and spinal
deformities [6–8]. Studies conducted among daily office workers concluded that there is
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a strong correlation between prolonged sitting and severe back pain affecting the lumbar
area [9,10]. To combat this problem, a recommendation is that users take stroll breaks every
few hours. The incorporation of exercise breaks as a daily routine potentially increases
cognitive functions in the long term and improves muscle strength [11].

Poor sitting posture has long been recognized as a significant contributor to the
development of pressure sores, adversely affecting the function, comfort, physiology, and
mobility of individuals who use wheelchairs [12]. Healthcare professionals tasked with
conducting postural assessments often rely on external observations to infer the internal
configuration of musculoskeletal structures [13]. Typically performed in clinical settings,
these assessments are subjective, with the detection of abnormalities dependent on visual
inspection and palpation of the underlying skeletal structure [14]. Objective techniques for
measuring musculoskeletal configuration such as MRI, CT scans, and X-rays are accurate
but impractical for routine clinical use due to logistical, cost, and safety considerations,
such as, notably, the risk of increased radiation exposure. Over the years, a diverse array of
techniques for anthropometric measurements and postural assessments has been developed,
broadly categorized into contact and non-contact methods. The contact methods include
simple tactile devices such as anthropometric tapes, stadiometers, or scoliometers [15].
Non-contact techniques are radiography [16], Moiré fringe topography [17], structured light
methods [17], laser scanning [18], pressure mapping systems [19], mechanical displacement
sensors [20], and ultrasonic localization [21]. The primary drawbacks of tactile devices
are their time-intensive nature, the absence of three-dimensional (3D) data, and potential
discomfort for the patient. Non-contact methods, on the other hand, tend to offer enhanced
accuracy and frequently provide 3D shape information. Yet, a significant limitation of
these non-contact methods, particularly in the context of assessing sitting posture, is their
dependence on direct access to the individual’s back. This necessitates the person to be in an
upright, standing position for the measurement process, posing challenges for evaluations
conducted in a seated posture.

Smart sensing chairs offer a solution to the limitations inherent in both contact and
non-contact methods of assessing sitting posture. By integrating sensors directly into the
seating surface and backrest, these chairs enable the continuous, real-time monitoring of
posture without the need for direct physical contact or for the subject to be in a specific
position, such as standing. Furthermore, the incorporation of smart sensing chairs into
home or office environments enables active monitoring and feedback on a user’s health and
activity levels. With the recent development in sensor technology and Artificial Intelligence,
these systems hold promise for advancing personalized healthcare and enhancing quality
of life, particularly for individuals afflicted with musculoskeletal disorders (MSDs).

The concept of a smart sensing chair was first explored by Tan et al. (2001) [22], pio-
neering the classification of sitting postures using integrated pressure sensors. Recent years
have witnessed a surge in research focusing on smart sensing chairs, with approximately
500 studies published annually over the past five years. This trend underscores the growing
interest in the field, highlighting the continuous increase in related publications.

The primary aim of this literature review is to evaluate published papers on smart
sensing chair systems, aiming to understand the methods being employed in posture
classification. By exploring existing studies, it is possible to analyze current trends such as
the commonly used sensors and machine learning algorithms being adopted and potential
research gaps. Ultimately, this review paper aims to provide valuable insight for researchers
into the development of non-invasive smart sensing chair systems.

2. Research Methodology

This paper is aimed at conducting a comprehensive review of similar research studies
conducted on smart sensing chair technology. Overall, there were 6 steps involved in the
review process, which were the following: 1. Formulation of Research Questions, 2. Search
Strategy, 3. Study Screening and Selection, 4. Data Extraction, 5. Discussion, 6. Conclusion
and Recommendations.
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2.1. Formulation of Research Questions

Table 1 presents the research questions for the comprehensive literature review on
smart sensing chairs, each accompanied by its underlying rationale. These questions were
crafted to guide the literature review of smart sensing chairs, targeting key aspects that are
central to understanding the current state and future directions of this technology.

Table 1. Research questions.

ID Research Question and Rationale

RQ1

In the context of posture detection, what are the most used sensors in smart
sensing chair studies, and how do they compare in terms of accuracy and
reliability?

Rationale: This question aimed to uncover common trends in sensor
technology that can inform the development of more effective and
sensitive smart chairs for posture detection.

RQ2

What methods are being used to classify different sitting postures?

Rationale: This question addressed the computational approaches
employed to process sensor data, which is essential for the effective
classification of sitting postures. Understanding the methods used can
highlight the most successful strategies and potential areas for innovation
in posture classification algorithms.

RQ3

What technological, methodological, and application-based limitations and
research gaps are identified in the current literature on smart sensing
chairs?

Rationale: This question sought to pinpoint the shortcomings of current
studies on smart sensing chairs, laying the groundwork for future research
to address these areas.

RQ4

What user feedback mechanisms are implemented in smart sensing chairs,
and how do they impact user satisfaction and posture correction outcomes?

Rationale: The incorporation of user feedback mechanisms is critical for the
practical application of smart sensing chairs, influencing user compliance
and the effectiveness of posture correction strategies. This question focused
on the interaction between users and the technology, a key factor in the
adoption and success of these systems.

2.2. Search Strategy

A comprehensive search was conducted across several academic databases, including
MDPI, IEEE, Google Scholar, Scopus, and PubMed, with the aim of finding relevant articles
for this review. A predefined set of keywords and combinations thereof were used to refine
the search, ensuring the retrieval of pertinent studies published in the last two decades.
These search terms and phrases were specifically chosen to target topics related to smart
sensing chairs and sitting posture classification, as detailed in Table 2. To enhance the
search efficiency across databases, the terms were concatenated using the “OR” operator.
The refined search string employed to query the relevant research databases was as follows:
Smart Sensing Chair OR Sitting Posture Recognition OR Posture Classification OR Sitting
Posture Classification Using Machine Learning OR Sitting Posture Monitoring OR Sitting
Posture Detection.
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Table 2. List of search keywords.

ID Keywords

SK1 Smart Sensing Chair

SK2 Sitting Posture Recognition

SK3 Posture Classification

SK4 Sitting Posture Classification Using Machine Learning

SK5 Sitting Posture Monitoring

SK6 Sitting Posture Detection

2.3. Study Screening and Selection

The initial screening was based on the relevance of the titles and abstracts to the
research questions. Studies published within the last 20 years were considered, applying
the exclusion criteria to ensure that only relevant research studies were included in this
comprehensive review. The initial database search yielded 253 papers from MDPI, 2536
from IEEE, 2930 from Google Scholar, 618 from Scopus, and 4084 from PubMed. To refine
this selection and isolate relevant articles, specific conditions were applied to exclude
studies that did not meet our criteria, including the following: 1. Papers unrelated to sitting
posture, 2. Papers not concerning the prediction of sitting postures, and 3. Papers focused
on wearable technology. The rigorous selection process, depicted in Figure 1, ultimately
identified a total of 39 relevant papers.
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2.4. Data Extraction

The data extraction phase was primarily focused on extracting relevant information
from the research papers gathered. This was achieved by reading through each paper
with the aim of gathering useful data, especially on the methods and techniques being
employed in the development of smart sensing chair systems. Listed below is the following
information that was captured while going through each research paper: Publication Year,
Sensor Type Used, Number of Postures Classified and Recognized, Posture Classification
Method, Classification Accuracy, Number of Test Subjects, and User Feedback Mechanism.
Table 3 provides a list of all the research papers shortlisted, summarizing the key findings
of each study.

Table 3. Summary of the shortlisted papers.

Study Publication
Year Sensor Type # of Postures Classification

Method Accuracy # of
Test Subjects

User
Feedback

Mechanism

[23] 2023 Load Cell 8 KNN 98.50% 10 -
[24] 2021 Pressure Sensor 4 LightGBM 99.03% 32 -
[25] 2017 Pressure Sensor 8 ANN 92.20% - -
[26] 2023 Pressure Sensor 9 - - 5 -
[27] 2020 Pressure Sensor 9 - - 12 Mobile App
[28] 2022 Pressure Sensor 8 EMN 91.68% 40 -
[29] 2021 Pressure Sensor 12 SVM 89.60% 3 -

[30] 2021 Pressure Sensor 7 ANN 97.07% 100 Haptic
Feedback

[31] 2018 Load Cell 6 SVM 97.94% 9 -
[32] 2018 Pressure Sensor 7 - - - -

[33] 2019 Camera and RFID
Tags 3 RF 99.27% 14 -

[34] 2020 Flex Sensor 7 ANN 97.43% 11 -

[35] 2021 Pressure Sensor and
Ultrasonic Sensor 11 KNN 92% 36 -

[36] 2013 Pressure Sensor 8 ANN 70% 30 Mobile App
[37] 2007 Pressure Sensor 10 SimpleLogistic 78% 20 -
[38] 2017 Pressure Sensor 5 DT 99.47% 12 -
[39] 2016 Pressure Sensor 7 RF 90.90% 41 -
[40] 2023 Pressure Sensor 10 SVM 99.10% 20 Desktop App
[41] 2018 Pressure Sensor 5 CNN 95.30% 10 -
[42] 2021 Pressure Sensor 7 ANN 81% 12 Desktop App

[43] 2021 Pressure Sensor 6 SOM
(ISOM-SPR) 95.67% 40 Mobile App

[44] 2022 Pressure Sensor 5 CNN 99.82 8 -
[45] 2019 Camera - CNN 90% - Desktop App
[46] 2020 Pressure Sensor 5 DT 89% - -
[47] 2019 Pressure Sensor - ANN - - RGB LED
[48] 2021 Pressure Sensor 15 SNN 88.52% 19 Desktop App

[49] 2023 Camera 6 RCNN and
CNN 92.50% - -

[50] 2014 Pressure Sensor 7 DT - - -
[51] 2022 Flex Sensor 7 - - - -

[52] 2013 Pressure Sensor 7
Dynamic

Time
Warping

85.90% 14 -
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Table 3. Cont.

Study Publication
Year Sensor Type # of Postures Classification

Method Accuracy # of
Test Subjects

User
Feedback

Mechanism

[53] 2023 Pressure Sensor 6 - - 2 Desktop App

[54] 2019 Pressure Sensor and
Ultrasonic Sensor 15 CNN and

LBCNet 96% 8 Mobile App

[55] 2022 Pressure Sensor 15 RF 98.82% 18
Mobile App
and Haptic
Feedback

[56] 2023 Pressure Sensor 6 - 95% 37 Desktop App
[57] 2019 Pressure Sensor 5 KNN 98.33% 12 -
[58] 2022 Pressure Sensor 5 LightGBM 95.41% 40 -
[59] 2022 Pressure Sensor 6 DNN 93% 50 -
[60] 2023 Pressure Sensor 5 KNN 99.99% 118 -

[61] 2023 Pressure Sensor and
Load Cell 6 - 100% 6

Mobile App
and Desktop

App

In this table, the “-“ symbol denotes “data not included” for the respective category.

3. Sitting Posture Selection

The concept of an “ideal” sitting posture is inherently subjective, reflecting significant
variation across diverse groups. Particularly for individuals with permanent mobility
impairments or those who use wheelchairs, the parameters defining a comfortable sitting
posture are distinctly unique. While the conventional wisdom among healthcare profes-
sionals advocates for an upright lordotic spinal position, the inherent variability in spinal
anatomy across individuals challenges the notion of a one-size-fits-all “correct” posture [62].
Biomechanical research has shed light on the consequences of various sitting positions on
spinal alignment and muscle engagement, emphasizing the musculoskeletal stress induced
by inadequate postures [63]. These investigations reveal that extended periods of sitting,
especially in a slumped position, intensify the symptoms of musculoskeletal disorders and
are a contributing factor to lower back pain. Moreover, recommendations consistently sug-
gest minimizing prolonged sitting durations, regardless of whether the posture is upright
or slouched, to mitigate potential health risks. Korakakis et al. [63] underscored the absence
of conclusive medical evidence associating any particular sitting posture with enhanced
health benefits, further complicating the pursuit of an optimal sitting strategy. Figure 2
presents 20 sitting postures detected by smart sensing chair systems as reported in the
literature, with the relative prevalence of each posture depicted through a pie chart. This
pie chart quantifies the percentage of review papers that investigated each specific posture,
ranking these postures from the most to the least frequently detected by such systems. Blue
arrows highlight the primary pressure points at the interface between the seat and the
occupant, while red arrows delineate the direction of adjustments necessary for adopting
each specific posture. The most popular sitting postures detected by the smart sensing
chairs included the following: 1. Upright sitting with backrest, 2. Leaning forward without
backrest (slouching), 3. Leaning left, 4. Leaning right, and 5. Leaning back, reported by the
majority of studies.
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popularity among the research studies found.

4. Technologies Used in Smart Sensing Chairs
4.1. Sensor Technology

Currently, there are several types of sensors being used in the development of smart
sensing chairs, ranging from pressure sensors to image-based sensors. This section aims to
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review the variety of sensor technologies being integrated into smart sensing chair systems.
Each offers unique benefits and challenges in the classification of sitting postures. Figure 3
below visualizes the category of sensors being used by researchers in the classification of
sitting postures.
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4.1.1. Force Sensing/Sensitive Sensor (FSR)

Force Sensing Resistors, also known as force sensors, are commonly used to measure
the forces and physical pressure applied to a surface area. These sensors work by varying
their output resistance in response to the pressure exerted on them. An FSR sensor, shown
in Figure 4, is typically composed of a conductive polymer-based material that is integrated
between two metal electrodes [64]. This conductive material changes in resistivity as
more direct pressure is applied to the sensor’s z-axis. FSR sensors are also known to
be very cost-effective and have been utilized in various fields ranging from robotics to
medical applications [65]. However, the main limitation seen with these sensors is that
they can be susceptible to drift errors, which can negatively affect the accuracy of their
readings. Different methods such as periodical sensor calibration and other advanced force
computing techniques are able to mitigate this issue [66]. Listed in Table 4 are some of the
commercially available FSR sensors as well as some of their technical specifications.
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Table 4. Technical specifications of commercially available FSR sensors.

Model Manufacturer
Dimensions

(Length × Width ×
Thickness) (mm)

Force Sensitivity
Range (Newtons)

FSR 402 [68] Interlink Electronics 14.68 × 14.68 × 0.46 0.1–100 N
FSR 406 [69] Interlink Electronics 39.60 × 39.60 × 0.46 0.1–100 N

FSR01CE [67] Ohmite 39.70 × 39.70 × 0.375 Up to 49 N

4.1.2. Textile Pressure Sensor

A textile-based pressure sensor is generally composed of a soft fabric-based material
that consists of a conductive thread pattern placed over a dielectric material that serves as
a substrate between the threads [70]. Figure 5a visualizes an example of how each layer
within the textile pressure sensor is structured within. One of the main advantages seen
with textile force sensors is the fact that they can be very durable and seamlessly integrate
with garments, making them non-obstructive and comfortable for the end user. Thus, this
sensor tends to be more popular among wearable technologies.
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There were a few research studies found that employed textile pressure sensors to
classify sitting postures. Kim et al. [32] developed a washable textile pressure sensor and
incorporated it into their chair system to classify seven sitting postures using a decision-tree
algorithm. Another study proposed an “eCushion” device that incorporated an “eTextile”
pressure sensor array that could also detect seven different sitting postures with 85.90%
accuracy [52]. Additionally, Martínez-Estrada et al. [26] developed 10 detachable textile
pressure sensors (PreCaTex) (shown in Figure 5b) that were placed at strategic points
around a chair.

4.1.3. Load Cells

Load cells are another type of force sensor that is used among researchers in the
monitoring of sitting postures. A load cell sensor works by converting applied mechanical
forces into measurable digital signals that can be read by microcontrollers. There are
different types of load cells being used such as strain gauge, piezoelectric, hydraulic, and
capacitive load cells [71]. Some of the commercially available load cell sensors can be found
in Table 5 below.

Table 5. Technical specifications of commercially available load cell sensors.

Model Manufacturer
Dimensions

(Length × Width)
(mm)

Capacity (kg)

SEN-10245 [72] SparkFun Electronics 34 × 34 40–50
P0236-142 [31] Hanjin Data Corps 34 × 34 -

The use of load cells is not a popular option among research studies; only three
research studies from this review implemented load cells in their smart sitting systems.
Roh et al. in 2018 [31] developed a smart chair by integrating four load cell sensors within
a chair sitting cushion to classify six sitting postures. An accuracy of 97.94% was achieved
using an SVM (RBF kernel) ML model. Similarly, Pereira and Plácido da Silva in 2023 [23]
distributed three load cells across a seat cushion in order to classify eight sitting postures;
overall, they were able to achieve a classification accuracy of 98.50%. Tavares et al. [61]
used four load cells along with four FSR pressure sensors to classify six different postures
while achieving 100% accuracy.

4.1.4. Flex Sensors

A flex sensor, also known as a bend sensor, works by measuring the degree of displace-
ment resulting from the bending action being applied to the sensor. Currently, it is being
used in various applications from robotics to medical devices. There are multiple types of
flex sensors on the market; however, they are the conductive ink-based flex sensors that are
widely popular among robotics projects. These flex sensors are typically composed of a
flexible composite material that has a conductive ink material that changes in resistance as
the sensor is bent [73]. Table 6 shows two commercially available flex sensors along with
their technical specifications.

Table 6. Technical specifications of commercially available flex sensors.

Model Manufacturer
Dimensions

(Length × Width)
(mm)

Flat Resistance

FS-L-055-253-ST [74] Spectra Symbol 112.24 × 6.35 10 K Ohms
Flex Sensor 2.2 [75] Spectra Symbol 73.66 × 6.35 25 K Ohms

Overall, there were only two studies identified that utilized this method for sitting
posture detection. The first study was by Hu et al. [34], who developed a smart sensing
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chair using six flex sensors and a two-layer Artificial Neural Network (ANN) for the
detection of seven sitting postures while achieving an accuracy of 97.43%. The second
study was by AbuTerkia et al. [51], who developed a similar smart seating system without
the use of an ML model that could detect up to seven different sitting postures.

4.1.5. Image-Based Sensors

Image-based sensors such as cameras and 3D image sensors are another type of
technology being used by some studies that are often integrated with computer vision
algorithms. These algorithms operate by identifying visual elements from images and
videos. In the classification of sitting postures, there is typically a digital camera actively
positioned directly at the subjects. Thus, with the use of image processing libraries such
as OpenPose or OpenCV, researchers were able to analyze video frames to determine the
sitting postures of test subjects in view.

This method was not a very popular option among the research studies found. Mal-
lare et al. in 2017 [76] developed a system utilizing two digital cameras strategically
positioned at (front and side) angles for the detection of bad sitting postures. Overall, they
were only able to achieve an accuracy of 61.30% using the SVM algorithm. Additionally,
Chen et al. in 2019 [45] further improved on this by using an Astra3D Sensor, a 3D depth-
sensing camera. With the integration of the OpenPose library along with a CNN for posture
classification, they were able to achieve an overall accuracy of 90%.

4.2. Pressure Sensor Placement Strategy

Across the research studies found, there were two main approaches employed in the
placement of pressure sensors for smart sensing chair systems: dense sensor configuration
and sparse sensor configuration, as described by Ma et al. [46]. Dense sensor configuration
involves the use of a flexible sensor array mat containing multiple pressure sensor units
interconnected together. Sparse sensor configuration works on the concept of having
several individual pressure sensors placed at strategic points around a chair.

4.2.1. Dense Sensor Configuration

Xu et al. [52] used a textile pressure sensor array along with a dynamic time wrapping-
based algorithm to classify seven sitting postures with 85.90% accuracy. Huang et al. [25]
used a 52 × 44 Piezo-Resistive Sensor Array that was placed on the surface of the seating
area. Using the ANN classifier, they were able to achieve a classification accuracy of 92.2%.
Kim et al. in 2018 [32] developed a washable fabric-based sensor array. Even after one
thousand independent washes, the capacitance reading from the textile sensor array did
not deteriorate. Kim et al. [41] achieved 95.30% accuracy using an 8 × 8 pressure array and
a CNN classifier to classify five sitting postures among children. Similarly, Cai et al. [43]
utilized a flexible pressure sensor array (400 mm × 400 mm) placed on a bottom seat
cushion to recognize six different sitting postures, as shown in Figure 6a. Ran et al. [30]
installed an 11 × 13 Pressure Sensor Array (IMM00014, I-MOTION) that communicated
with a Raspberry PI computer, achieving 96.22% classification accuracy using a five-layer
ANN classifier, seen in Figure 6b. Ahmad et al. [24] embedded a 16-screen pressure sensor
array, also using a Raspberry Pi computer for sitting classification, which obtained a high
accuracy of 99.03% using the LightGBM machine learning algorithm. Wang et al. [48]
developed two sets of interconnected sensor sheets that covered both the backrest and
the seating cushion of a smart sensing chair. Using the SNN classifier, their proposed
system could distinguish 15 different sitting postures with an accuracy of 88.52%, among
the highest number of postures being classified. Fan et al. [44] also implemented a similar
system that analyzed hip pressure, which subsequently achieved an accuracy of 99.82%
using a CNN. Table 7 below provides a list of studies that used sensor arrays for the
classification of sitting postures.
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Figure 6. Illustration of some studies that implemented the use of dense sensor arrays. (a) Chair fitted
with large pressure sensor array modules placed on top of the seating cushion. Reproduced with
permission [43]. (b) Pressure array cushion with haptic feedback. Reproduced with permission [30],
copyright 2021 Sensors and Actuators.

Table 7. Studies using dense sensor array.

Sensor Accuracy # of Postures

Textile Pressure Sensor Array [52] 85% 14
52 × 44 Piezo-Resistive Sensor Array [25] 92% 8
32 × 32 Pressure Sensor Array [29] 89.60% 4
Textile Pressure Sensors (Woven Fabric) [32] - 7
8 × 8 Pressure Mat Sensor [41] 95% 5
400 mm × 400 mm Flexible Array Pressure Sensor [43] 95% 6
11 × 13 Pressure Array (IMM00014, I-MOTION) [30] 97% 7
Screen-Printed Pressure Sensor Units (16-Array) [24] 99% 4
Two Pressure Sensor Arrays (FSR) [48] 88% 15
44 × 52 Pressure Sensor Array [44] 99% 5
32 × 32 Pressure Sensor Array [59] 93% 6

4.2.2. Sparse Sensor Configuration

This sensor configuration appears to be a more popular option as more studies im-
plemented this setup compared to dense sensor configuration. Mutlu et al. in 2007 [37]
integrated 19 different FSRs into a seating cushion and used the Simple Logistic Regression
ML algorithm to achieve 78% accuracy in classifying 10 different postures. Martínez-
Estrada et al. [26] placed six textile sensors on a backrest and an additional four sensors
on a seating cushion in order to classify eight sitting postures, as shown in Figure 7a.
Tsai et al. [40] used 13 pressure sensors to classify 10 sitting postures and was able to
achieve an accuracy of 99.10% using the SVM algorithm. Aminosharieh Najafi et al. [28]
applied eight sensors (four on the seating cushion and four on the backrest) and used the
EMN algorithm to classify eight sitting postures, and achieved an accuracy of 91.68%, as
seen in Figure 7b. In addition to this, a Desktop Graphical User Interface (GUI) application
was also developed, which displayed a sensor reading in real-time. Luna-Perejón et al. [42]
added six sensors that were placed on a seating cushion, resulting in an 81.50% classifica-
tion accuracy using the SOM (ISOM-SPR) ML algorithm. Table 8 below provides a full list
of studies using this sensor configuration.
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Figure 7. Research studies using multiple pressure sensors placed around a chair. (a) Chair fitted with
10 textile pressure sensors. Reproduced with permission [26]. (b) Eight FSR sensors placed around a
chair, five sensors placed on a sitting cushion, and three sensors added to a backrest. Reproduced
with permission [28].

Table 8. Studies using sparse sensor array configuration.

Sensor Accuracy # of Postures

10 Textile Capacitive Sensors (PreCaTex) [26] - 8
19 4 × 4 Pressure Sensors (Force Sensing Resistors) [37] 78% 10
6 Flexible Force Sensors (FSR402) [27] - 9
8 Force Sensing Resistors [28] 91% 8
6 Pressure Sensors and 6 Infrared Reflective Distance
Sensors [35] 92% 11

8 Low-Resolution Matrices of Pressure Sensors [36] 70% 8
12 Pressure Sensors (Force Sensitive Resistor) [38] 99% 5
16 Force Sensors and Accelerometer [39] 90% 7
13 Pressure Sensors (FSR-406) [40] 99% 10
6 Force Sensitive Resistors (FSRs) [42] 81% 7
6 FSR Sensors [46] 89% 5
6 Square-Type Force Sensing Resistors [47] - -
8 Force Sensing Resistors FSR 406 [50] - 7
5 Flex Sensors [51] - 7
4 FSR Pressure Sensors [53] - 6
16 Pressure Sensors and 2 Ultrasonic Sensors [54] 96% 15
9 E-Textile Pressure Sensors [55] 98% 15
9 FSR Sensors [60] 99% 5
4 FSR Sensors and 4 Load Cells [61] 100% 6
9 FSR Sensors [58] 95% 5
13 Piezoresistive Sensors [57] 98% 5
16 FSR Sensors [56] 95% 6

4.3. Integration with the Internet of Things (IoT)

Over recent years, IoT has gained in popularity and become a game changer within
certain industries. It was projected that by the year 2030, there would be over 50 billion
devices interconnected through the IoT [77]. Within the context of smart sensing chair
systems, Ma et al. [46] highlighted the effectiveness of integrating IoT-based systems into
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healthcare sensor systems due to their major advantage of being able to seamlessly monitor
users’ health data in real-time. The use of IoT systems for remote health monitoring is
believed to not only reduce medical costs but also aid in the early detection of chronic
illnesses. Subsequently, this could potentially accelerate treatment and improve the overall
life expectancy of an individual.

There were some studies found that utilized IoT-based technology. Matuska et al. [27]
used an Arduino-based microcontroller that communicated using the Message Queuing
Telemetry Transport (MQTT) telemetry protocol in the detection of nine different sitting
postures. The sensor data was sent in real-time to a mobile application that alerted a user if
an incorrect posture was being detected by displaying “green”, “orange”, and “red” for
standard sitting, bad sitting, and heavy load on backbone, respectively. Other studies such
as [53,55] similarly used IoT for bad posture detection and to provide valuable, real-time
feedback to the end-user.

4.4. User Feedback System

The integration of a feedback system into a smart sensing chair is an integral compo-
nent of enhancing the user experience. From the end user’s perspective, individuals should
be able to receive real-time alerts whenever an improper sitting posture is detected. It was
seen that most studies focused on the classification aspects and left out the implementation
of a feedback platform. Only 36% (14) of all the studies incorporated a feedback platform
to encourage users to maintain a correct posture. The implementation of mobile applica-
tions was seen as the most used platform for alerting a user whenever an improper sitting
posture was detected [27,36,43,54]. Another common method was the use of a desktop
application, which was observed in some studies [40,45,48,53]. Ran et al. [30], on the other
hand, proposed the use of a haptic motor system that was integrated into a seating cushion
and vibrated its motors whenever an incorrect sitting posture was detected. To make the
system as unintrusive as possible, another study by Ren et al. [47] looked at using an RGB
bulb capable of changing color whenever an incorrect posture was detected.

5. Techniques for Posture Detection in Smart Sensing Chairs

Posture detection is a critical function of smart sensing chair systems. This section
explores the diverse techniques and machine learning algorithms employed to classify
various sitting postures, which range from traditional rule-based approaches through
statistical methods to advanced machine learning models.

5.1. Rule-Based Systems

Rule-based systems operate by employing a series of if–else conditions or predefined
rules to make decisions based on sensor inputs [78]. In the context of posture classifica-
tion, these systems are configured to establish specific data thresholds during the testing
phase, which are used to align sensor readings with corresponding sitting postures. Our
review documented several studies that effectively utilized rule-based systems for posture
recognition [26,27,32,61].

The primary advantage of rule-based systems lies in their transparent and explainable
decision-making process. These systems are highly efficient, requiring minimal computa-
tional resources, which renders them particularly suitable for real-time applications [79].
Additionally, their straightforward logic and operational mechanisms allow for ease of
understanding and implementation. However, as the complexity of posture detection
increases, rule-based systems can become unwieldy [27]. The number of rules needed to
cover all potential sitting postures and transitions can grow significantly [61], making the
system difficult to manage and prone to errors. Scalability issues also arise as managing and
updating a large set of rules for various postures can become cumbersome. This challenge
can be magnified in healthcare settings, where the variety of user body shapes and complex
muscular skeletal configuration broadens the scope of posture detection.
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5.2. Statistical Models

Statistical models analyze data by identifying correlations between variables and
making predictions based on statistical hypotheses derived from a dataset [80]. Various
statistical models have been used to classify sitting postures, including K-Nearest Neighbors
(KNNs) [23,35,57,60], Decision Tree [38,46,50], Support Vector Machines (SVMs) [29,31,40],
Random Forests (RFs) [33,39,55], Light Gradient-Boosting Machine (LightGBM) [24,58],
Simple Logistic Regression (SLR) [37], and Self-Organizing Maps (SOMs) [43]. In the
context of smart sensing chairs, statistical models offer a balance between complexity
and performance, making them integral tools for posture classification. They are also
less resource-intensive compared to more complex models [33], making them well-suited
for real-time processing in embedded systems. However, the choice of model should be
aligned with the specific characteristics of the posture data and the operational demands of
the smart chair system to optimize both user comfort and system efficiency.

5.3. Deep Learning Models

Deep learning models [81], characterized by their multi-layered neural network struc-
ture that includes an input layer, several hidden layers, and an output layer, have been exten-
sively employed in the classification of sitting postures in smart sensing chairs. Research has
primarily focused on utilizing Convolutional Neural Networks (CNNs) [41,44,45,49,54], Ar-
tificial Neural Networks (ANNs) [25,30,34,36,42,47], Spiking Neural Networks (SNNs) [48],
and Deep Neural Networks (DNNs) [59] for this purpose. Both CNNs and ANNs have
emerged as particularly popular choices due to their robustness in handling complex pat-
tern recognition tasks. Deep learning models are advantageous for posture classification in
smart sensing chairs due to their ability to process large datasets and perform automatic
feature extraction, essential for analyzing the spatial arrangement of pressure points on
a chair. However, these models require extensive, well-labeled training data to function
effectively without overfitting [82]. A lack of diverse data can lead to biases, limiting their
real-world applicability, particularly in varied clinical settings. Additionally, the complex
nature of these models often results in a “black box” phenomenon, making it difficult
to interpret decision-making processes, which is crucial in medical applications where
transparency is necessary.

5.4. Evaluation of Machine Learning Model performance

The accurate evaluation of machine learning models is essential for validating their
performance and accuracy. Commonly used methods include confusion matrices and
performance comparisons between different models. A confusion matrix helps measure
algorithm performance, indicating True Positives (TPs), True Negatives (TNs), False Posi-
tives (FPs), and False Negatives (FNs) for binary classification, while extending to an NxN
matrix for multi-class models, where N represents the number of classes [83].

6. Discussion
6.1. Technology

The vast majority of the research studies revealed that the most popular approach
to developing a smart sensing chair was to employ the use of pressure sensors. Figure 8
clearly shows that over the years, pressure sensors have always been the preferred option
for the classification of sitting postures among researchers, among which FSR sensors were
the preferred option compared to textile pressure sensors.
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Figure 8. Number of research papers published on smart sensing chair technology along with the
sensor being used from 2007 to 2023.

In terms of the sensor placement configuration, placing various individual pressure
sensors around a chair tends to be the preferred method, rather than utilizing dense
pressure arrays. There was no correlation seen that suggested that one sensor placement
strategy produced higher classification accuracy than another. However, there are other
variables that should be considered such as maintenance and costs. Dense sensor arrays
are known to be more costly and harder to manage compared to their counterparts [46].
This is because if one or more of the individual sensing units within an array were faulty,
the entire sensor array would need to be replaced, further increasing maintenance costs.

Multiple Sensor Types

While most studies utilized a singular type of sensor for posture detection, there
were only a few studies that involved multiple sensor types in their proposed smart chair
system. Jeong and Park [35] utilized six pressure sensors (placed on the seating cushion)
along with six Infrared Reflective Distance Sensors (placed on the backrest). By using the
K-Nearest Network (KNN), they were able to classify 11 different sitting postures while
achieving an accuracy of 92%, compared to 59% while using only pressure sensors. This
study highlighted one of the main limitations seen with other smart sensing systems, where
pressure sensors alone are incapable of measuring the spinal trunk angle, which is yet
another important factor in maintaining a proper sitting posture. Similarly, Cho et al. [54]
used 16 pressure sensors placed on the sitting cushion along with two ultrasonic sensors
placed at the neck support region. With this configuration, they were able to achieve 96%
accuracy using the Lower-Balance Check Network (LBCNet) to classify 15 sitting postures.

Furthermore, integrating multiple sensor types to enhance sitting posture classification
improves classification accuracy by expanding sensor coverage, thereby increasing the
system’s robustness [35]. This integration also offers additional benefits beyond basic
posture detection, such as continuous health monitoring and rehabilitative support. For
example, a recent study by Pereira et al. [23] demonstrated the potential for invisible
electrocardiography (ECG) monitoring using conductive Nappa placed strategically at
the armrests.

However, this approach also presents several challenges. Data fusion complexity is
a significant hurdle, as combining multiple types of sensors often necessitates advanced
data fusion techniques, particularly in IoT-based devices [84]. The cost of using multiple
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sensors also introduces financial considerations, including potential increases in system
maintenance expenses over time. Additionally, the collection and storage of sensitive user
data raises important concerns about data privacy and security. It is crucial to ensure
that robust security measures are in place and that data handling complies with privacy
regulations [85].

6.2. Classification Algorithm

Figure 9 illustrates the relationship between the number of sitting postures classified
and the overall classification accuracy of various machine learning models, as reported in
the literature. Data analysis indicated a moderate negative correlation between a model’s
accuracy and the number of postures it classified. This trend indicates that as the complexity
of posture classification increases—with more postures being identified—the precision of
classification tends to decrease. Consequently, this pattern has led researchers to typically
restrict the scope of posture detection to between five and seven specific positions, including
leaning left, leaning right, leaning backward, upright sitting, and leaning forward, to
optimize accuracy. A study by Feng et al. [33] that utilized RFID tags in conjunction with a
camera sensor to classify three distinct sitting postures—sitting straight, leaning forward,
and leaning backward—representing the lower end of the posture classification spectrum.
In contrast, investigations by Wang et al. [48], Cho et al. [54], and Bourahmoune et al. [55]
expanded posture classification to encompass up to 15 different postures, achieving notable
accuracies of 88.52%, 96%, and 98.82%, respectively. This range highlights the diverse
capabilities and limitations of machine learning applications in posture detection within
smart sensing chair systems.
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as indicated by the size of the circle.

Figure 9 also indicates that deep learning models, including Convolutional Neural
Networks (CNNs) and Artificial Neural Networks (ANNs), do not significantly outperform
traditional statistical models in terms of classification accuracy for sitting posture detection.
This observation may be attributed to the size of the datasets employed for model training.
Deep learning models are recognized for their superior performance with extensive datasets,
in contrast to statistical models that require less data. An additional reason for this disparity
is the limited number of test subjects contributing data to train the deep learning models,
suggesting that an expansion of dataset size could enhance their classification accuracy.
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6.3. Research Gaps
6.3.1. Lack of User Feedback Evaluation

In examining the current state of this research field, many of the studies predominantly
focused on the development of algorithms that would achieve high classification accuracy.
Although the pursuit of enhanced algorithmic performance in posture detection is impor-
tant, there exists a noticeable void in the integration and subsequent evaluation of user
feedback methods. Most studies tended to prioritize other aspects such as sensor placement
and classification accuracy and leave out critical evaluations of user feedback systems for
posture correction. As previously discussed, only 14 studies implemented a user feedback
system for posture correction, 6 of which used a mobile application. This limited adoption
underscores a significant research gap in the assessment of such feedback systems.

With the lack of comprehensive evaluations being conducted, a few questions can
be raised regarding effectiveness, feasibility, and overall usability from the end user’s
perspective when interacting with these systems. Are these systems truly effective in
motivating and guiding users towards adopting healthier sitting postures? Performing
a critical evaluation of these systems would be beneficial in various aspects. Firstly, it
would provide vital information regarding the user experience while interacting with
these systems, making it quite easy to find potential gaps that could be further improved
upon. Moreover, a detailed examination would elucidate whether user expectations align
with a system’s outcomes, thereby facilitating targeted improvements to ensure agreement
between user needs and system functionality. Employing methodologies such as user
interviews, surveys, and usability testing stands to offer invaluable feedback, paving the
way for the refinement of feedback mechanisms within smart sensing chair systems.

6.3.2. Lack of Diversity of Training Datasets

The quality of the training dataset is very important during the training of a machine
learning model. In the process of model training, test subjects are commonly enlisted to
simulate various sitting postures over designated periods. On average, the research studies
utilized a low number of test subjects, typically around 21 individuals. A sample size
this small might not be adequate to fully represent the wide postural variances that exist
within the wider population. Additionally, there also seemed to be a bias towards the test
subjects involved in data collection, most of whom were healthy individuals mocking poor
sitting postures.

While this no doubt simplifies the data collection phase for most studies, it fails to
account for the different challenges involved in the recognition of poor sitting postures
among individuals suffering from musculoskeletal conditions. Consequently, the effective-
ness of the machine learning model might be compromised when applied in real scenario
settings involving a much wider demographic.

Addressing this issue requires a lot of effort that involves broadening datasets by
the inclusion of a wider demographic with different age groups, body shapes, and health
conditions. Enriching the datasets in this manner would enhance the models’ ability to
accurately classify sitting postures among a heterogeneous population, thereby increasing
their robustness and applicability in diverse real-world scenarios.

6.4. Feasibility of Implementing Smart Sensing Chair Systems in Real-World Settings

The implementation of smart sensing chairs in real-life scenarios such as offices or
healthcare facilities has both opportunities and challenges. The current advancement of
sensor technology has made it increasingly possible to actively monitor various sitting
postures while also providing valuable user feedback in real-time. As previously discussed,
smart sensing chair systems have the capacity to promote better sitting and posture habits
by reducing the risk of musculoskeletal disorders among individuals who are regularly
seated for an extended period, further improving quality of life by actively promoting
the habit of a wellness attitude while in the workplace of the healthcare environment.
However, the implementation of smart sensing chairs also involves several challenges. For
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these systems to be successful, they must be embraced by users, including employees in
office settings and patients in healthcare facilities. Promoting effective user adoption can
be achieved through training sessions that emphasize the health benefits of smart chairs
and by designing interfaces that are intuitive and encourage frequent use. One primary
concern is the reliability and accuracy of sensor data, including the potential for false
positives in posture detection. Sensor drift represents a recurring risk, which can lead to
data inaccuracies over time [86]. The regular calibration of sensors is crucial to maintain
their accuracy and effectiveness in interpreting users’ postures.

Integration with existing technological infrastructures also poses significant challenges.
Smart sensing chairs need to be compatible with workplace networks and healthcare IT
systems without requiring extensive modifications. The rise of IoT-based technologies
offers feasible solutions for integration within these environments [87–89]. It is vital that
these systems comply with the communication and security protocols of the respective or-
ganizations.

Maintenance overheads and compatibility with existing furniture and wheelchair
systems are additional concerns. Furthermore, the implementation of these systems must
address data privacy issues related to the collection of sensitive user information. Regarding
cost-effectiveness, the affordability of a system is heavily influenced by the cost of hardware
components, particularly sensors and computing units. Each of these factors must be
carefully considered to ensure that smart sensing chairs are a viable and beneficial addition
to both office and healthcare settings.

7. Conclusions and Recommendations for Future Research

This paper provided a comprehensive literature review of smart sensing chair systems
within the research landscape. It identified a diverse array of sensors utilized across
studies, including Force Sensing Resistors (FSRs), textile pressure sensors, load cells, and
image sensors, with FSR sensors emerging as the predominant choice among researchers.
The strategies for sensor placement predominantly fall into two categories: utilizing a
pressure sensor array or distributing individual sensors throughout a chair. Presently, no
conclusive evidence suggests a definitive advantage of one strategy over another in terms
of enhancing classification accuracy. However, from maintenance and cost perspectives,
the dispersed sensor approach is deemed more favorable but may not be feasible for people
with MSDs due to their unique and complex body shapes. In the area of sitting posture
classification, various machine learning models have been employed, with many achieving
a high classification accuracy rate of 90%. Despite these successes, a notable gap in the
research is the quality of the datasets used for training these models. Predominantly, test
subjects are healthy individuals from a narrow demographic simulating incorrect sitting
postures, which raises concerns about these models’ applicability to broader populations,
particularly those with musculoskeletal disorders.

Looking ahead, it is important for future research to prioritize the development
and rigorous evaluation of user feedback systems aimed at posture correction. Such
investigations would significantly contribute to assessing the effectiveness of these systems
in real-world settings. Validation tools such as the System Usability Scale, NASA Task-Load
Index (TLX), and Single Ease Questions could be implemented to assess user usability
across an entire system [90,91].

Moreover, there is a compelling case for exploring the integration of various sensor
types to enhance the functionality of smart sensing chair systems. While current studies
often focus on a single sensor type for posture detection, the integration of multiple sensor
types, as demonstrated by Jeong and Park [35], who combined infrared reflective distance
sensors with pressure sensors, could offer a more versatile approach to posture classification.
Incorporating Inertial Measurement Unit (IMU) sensors could further enable the monitoring
of user activity, enriching the data available for posture analysis and correction [46].
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