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Abstract: Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has high-
lighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to
neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that
metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity,
thereby offering promising therapeutic targets. Herein, we characterized these enzymatic MSs in silico
as potential therapeutic targets, employing protein–protein and drug–protein interaction networks
alongside structural characterization techniques. Our findings indicate that five MSs (P00558, P04406,
Q08426, P09110, and O76062) were functionally linked to nervous system drug targets and may
be indirectly regulated by specific neurological drugs, some of which exhibit polypharmacological
potential (e.g., Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol). Furthermore, four MSs
(P00558, P04406, Q08426, and P09110) feature ligand-binding or allosteric cavities with druggable
potential. Our results advocate for a focused exploration of P00558 (phosphoglycerate kinase 1),
P04406 (glyceraldehyde-3-phosphate dehydrogenase), Q08426 (peroxisomal bifunctional enzyme,
enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase), P09110 (peroxisomal 3-ketoacyl-CoA
thiolase), and O76062 (Delta(14)-sterol reductase) as promising targets for the development or repur-
posing of pharmacological compounds, which could have the potential to modulate lipotoxic-altered
metabolic pathways, offering new avenues for the treatment of related human diseases such as
neurological diseases.

Keywords: astrocytes; metabolic switches; drug-protein network; druggable cavity; therapeutic targets

1. Introduction

Astrocytes are specialized glial cells that play a crucial role in various intricate pro-
cesses within the brain. They are pivotal in the maintenance of a healthy central nervous
system and the management of pathological conditions. Their functions include elimi-
nation of toxic substances, synaptogenesis, neurotransmitter release, and modulation of
neuroinflammation, among others [1–5]. Astrocytes perform various essential functions
for brain homeostasis and neuronal function [6]. These cells regulate glutamate and ion
homeostasis, cholesterol, and sphingolipid metabolism, and respond to environmental
factors exerting neuroprotective effects maintaining general homeostasis of the nervous
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system [7]. Therefore, one of the crucial functions of astrocytes is their involvement in fatty
acid metabolism [8]. Recent research has highlighted the significance of palmitic acid (PA),
a long-chain saturated fatty acid that has been found to induce proinflammatory effects
and reduce astrocyte viability, a condition known as lipotoxicity. This scenario is character-
ized by the accumulation of excessive lipids and the subsequent generation of lipotoxic
molecules, leading to impaired astrocyte function and viability, which can contribute to
neuroinflammation and neuronal damage. In this context, it has been observed that PA
triggers proinflammatory signaling pathways, such as the NF-kB pathway, resulting in the
upregulation of proinflammatory cytokines, such as TNF, IL-1, and IL-6 [9–11]. These cy-
tokines disrupt cellular metabolism and elicit inflammatory responses, ceramide formation,
and oxidative stress [11–13].

The intricate interplay between lipotoxicity and cellular dysfunction has garnered
significant attention, particularly in various metabolic disorders, including neurodegenera-
tive diseases [14]. Saturated fatty acids, such as palmitic acid (PA), are closely associated
with the development of conditions such as dementia, amyotrophic lateral sclerosis (ALS),
Alzheimer’s disease (AD), and Parkinson’s disease (PD) [15]. While recent studies on astro-
cyte metabolism under lipotoxicity have primarily concentrated on deciphering specific
elements through experimental simulations, there has been a notable gap in comprehending
the systemic mechanisms operating at various organizational levels. This lack of under-
standing of the metabolic relationships in pathological conditions has prompted the need
for more holistic strategies. To obtain a more comprehensive perspective on the cellular
functions of brain behavior, genome-wide metabolic networks (GEM) and control theory
have been employed. These innovative approaches have enabled the identification of
reaction groups that exert direct or indirect control over cellular metabolism, even in the ab-
sence of prior knowledge of specific cellular targets at the in silico level [16]. Consequently,
the mathematical modeling of metabolic processes has facilitated the identification of cru-
cial control sites and their contribution to the overall functionality of a given metabolic
network. According to the most recent study conducted by our team [8], we identified
16 enzymatic metabolic switches in astrocytes treated with PA. Enzymatic metabolic
switches (MSs) serve as critical control points, facilitating transitions between metabolic
states and allowing cells to adapt to varying environmental cues and physiological de-
mands. These switches play a fundamental role in both the regulation and deregulation
of metabolic pathways in lipotoxic conditions, intensifying neurotoxicity, and potentially
serving as valuable treatment targets.

Due to their relevance, metabolic switches (MSs) could be evaluated as potential
targets of drugs and drug-like small molecules approved by the US Food and Drug Admin-
istration (FDA). However, it is necessary to determine the pharmacological features that
clarify the potential of these enzymes to be proposed as therapeutic targets of pathological
conditions associated with lipotoxicity. Structural-based computational analyses of protein-
binding sites have been used to predict the pharmacological potential by transforming
structural and physicochemical properties (hydrogen bonding, hydrophobicity, polarity,
and amino acid composition, among others) into quantitative metrics of druggability [17].
In addition, biological network analyses, such as the protein–protein interactions network
(PPI) and the drug–protein interactions network (DPI), can be useful for organizing and
analyzing biological data [18,19] and promoting the analysis of biological information
from experimental databases to elucidate new conclusions on new potential drug–target
interactions [19–21] or polypharmacological activities [19,21].

This study aimed to elucidate the potential of enzymatic MSs of the human astrocyte
response to lipotoxicity as therapeutic targets for related diseases, such as nervous sys-
tem diseases. Using a multidisciplinary approach integrating different in silico methods
(network analysis and structural bioinformatics), this research seeks to uncover novel
targets within the lipotoxic cascade that could be harnessed to mitigate astrocyte-mediated
neurodegenerative processes, promoting the study of innovative therapeutic molecules for
human neurodegenerative disorders.
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2. Results and Discussion
2.1. Enzymatic Metabolic Switches (MSs) Are Functionally Related to Metabolic Pathways That
Are Altered under Neurodegenerative Conditions

To identify whether any of the metabolic switches have the potential to be targets in
neurological diseases, we established a functional relationship between these MSs and drug
targets associated with neurological diseases. Initially, our analysis revealed that the 16 MSs
are connected to 175 proteins (Figure 1a), most of these being reported as nervous system
disease targets by the Open Target database, and these functional interactions were well
supported according to the different interaction sources employed by STRING (text mining,
experiments, databases, co-expression, neighborhood, gene fusion, and co-occurrence).
These proteins participate in enriched metabolic pathways, such as fatty acid catabolism and
the one-carbon folate cycle, and are present in cellular components, such as mitochondria
and peroxisomes (Figure 1b) (Table S1 in the Supplementary Materials). Notably, these
metabolic pathways are also known to be (de)regulated in human astrocytes under lipotoxic
conditions because of the control exerted by these MSs [8]. Furthermore, previous studies
have linked alterations in mitochondrial and peroxisomal fatty acid oxidation, along
with other functions in these organelles, to the development of neuroinflammation and
neurodegeneration [22–25].
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Figure 1. (a) Protein–protein interaction (PPI) network between metabolic switches and their 
STRING first neighbors. Metabolic switches are shown in orange, and STRING first neighbors (N1) 
are shown on a blue scale according to their nervous system disease (NSD) association score (score 
from 0.1 to 1.0) obtained from the Open Target Database. Those N1 with little or no association (<0.1) 
are shown in gray. (b) Enriched terms in proteins functionally related to metabolic switches, ob-
tained from Gene Ontology Cellular Component (GO:CC), KEGG, and REACTOME databases. The 
adjusted p-value reflects the statistical significance of each term’s enrichment within the set of pro-
teins associated with MSs. 

2.2. Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol Would Significantly Affect MSs 
After establishing the proteins functionally associated with MSs, we generated a 

drug–target interaction network (DPI), integrating the approved neurological drugs pre-
viously reported for proteins in the PPI network. Interestingly, none of the drugs were 
found to directly target a metabolic switch, which supports the novelty of MSs as thera-
peutic targets of nervous system diseases. In the DPI, we identified 37 drugs that interact 
with proteins functionally related to five metabolic switches (Figure 2), which may be 
modulating these MSs indirectly during their action. A search in OpenTargetsDB showed 
that two of these five proteins (PGK1: P00558, and GAPDH: P04406) are highly associated 
with neurodegenerative diseases according to the association score for this neurological 
condition, supported primarily by Pathways System Biology data (Table S2). By contrast, 
EHHADH (Q08426), ACAA1 (P09110), and TM7SF2 (O76062) presented little or no 

Figure 1. (a) Protein–protein interaction (PPI) network between metabolic switches and their STRING
first neighbors. Metabolic switches are shown in orange, and STRING first neighbors (N1) are shown
on a blue scale according to their nervous system disease (NSD) association score (score from 0.1 to
1.0) obtained from the Open Target Database. Those N1 with little or no association (<0.1) are shown
in gray. (b) Enriched terms in proteins functionally related to metabolic switches, obtained from Gene
Ontology Cellular Component (GO:CC), KEGG, and REACTOME databases. The adjusted p-value
reflects the statistical significance of each term’s enrichment within the set of proteins associated
with MSs.
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2.2. Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol Would Significantly Affect MSs

After establishing the proteins functionally associated with MSs, we generated a
drug–target interaction network (DPI), integrating the approved neurological drugs previ-
ously reported for proteins in the PPI network. Interestingly, none of the drugs were found
to directly target a metabolic switch, which supports the novelty of MSs as therapeutic
targets of nervous system diseases. In the DPI, we identified 37 drugs that interact with
proteins functionally related to five metabolic switches (Figure 2), which may be modulat-
ing these MSs indirectly during their action. A search in OpenTargetsDB showed that two
of these five proteins (PGK1: P00558, and GAPDH: P04406) are highly associated with neu-
rodegenerative diseases according to the association score for this neurological condition,
supported primarily by Pathways System Biology data (Table S2). By contrast, EHHADH
(Q08426), ACAA1 (P09110), and TM7SF2 (O76062) presented little or no association with
these diseases (Table S2), which argues for their novelty as proteins potentially related to
neurodegenerative diseases.
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Figure 2. DPI network. Metabolic switches are shown as orange circles and their first neighbors as
circles on a blue scale according to their association score for nervous system diseases (NSD) obtained
from the Open Target Database. Edges between nervous system phase 4 drugs (green diamonds)
with first neighbors are colored on a green–violet scale according to their pChEMBL interaction score.
Drug names colored in blue correspond to molecules with more than one target in the DPI network.

Finally, to identify the drugs with the greatest impact on the MSs, we determine the
drugs with multiple PPI targets, finding that four of these drugs (CHEMBL15023: Trifluperi-
dol, CHEMBL422: Trifluoperazine, CHEMBL964: Disulfiram, CHEMBL54: Haloperidol)
have polypharmacological potential over MS-related proteins (Table 1). The 33 drugs with
a single target in the DPI network are described in Table S3 in the Supplementary Materials.

Trifluperidol (CHEMBL15023) has had three targets (PKM, EBP, and SIGMAR1) that
are functionally related to the three MSs (PGK1, GAPDH, and TM7SF2) (Table 1). Thus,
the pharmacological activity of trifluperidol may be associated with the modulation of gly-
colysis and cholesterol biosynthesis [26,27]. This drug has been widely used for NR1a/2B
receptors and is indicated for treating schizophrenia, behavioral disorders, motor disorders,
and edema in psychotic illnesses [28]. Trifluperidol has preclinical evidence of neuropro-
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tective properties by promoting the reduction of tumor necrosis factor-alpha (TNF-α) and
nitric oxide secretion in microglial cells [29] and modulating proinflammatory cytokines
(IL- 1-beta and IL-2) in glial cells [30]. Furthermore, the modulatory nature of trifluperidol
contains inhibitory characteristics. For example, the modulation of TNF-α can have an
impact on neurodegenerative processes associated with demyelination and degeneration,
as it induces the production of growth-promoting cytokines and neurotrophins, as well
as nitric oxide and free radicals, among others that favor apoptotic processes [31–33]. Al-
though most studies have described that the energy demand in patients with processes
involving the CNS increases, there is a lack of studies that describe the metabolic effect
of drugs such as trifluperidol. However, it has been described that antipsychotic drugs
managed to improve the enzymatic activity associated with the glycolysis pathway [34].

Table 1. Nervous-system drugs identified in the DPI network with potential polypharmacological
potential against MSs.

Drug Name
(CHEMBL ID) Drug Group Pharmacological Activity Number of

Targets
ID UniProt

Target Targets Metabolic
Switch Related

Trifluperidol
(CHEMBL15023)

Butyrophenone
derivatives

Modulation of glycolysis and
cholesterol biosynthesis 3

P14618 PKM PGK1, GAPDH
Q15125 EBP TM7SF2
Q99720 SIGMAR1 TM7SF2

Trifluoperazine
(CHEMBL422)

Phenothiazines with
piperazine structure

Modulation of fatty acid
oxidation, cholesterol

biosynthesis, and amino-acid
catabolism

3
Q15125 EBP TM7SF2

Q99714 HSD17B10 ACAA1,
EHHADH

Q99720 SIGMAR1 TM7SF2

Disulfiram
(CHEMBL964)

Drugs used in
alcohol dependence

Glycolysis and fatty acid
oxidation modulation

2
Q99714 HSD17B10 ACAA1,

EHHADH
P42858 HTT GAPDH

Haloperidol
(CHEMBL54)

Butyrophenone
derivatives

Modulation of lipid metabolism 2
Q15125 EBP TM7SF2
Q99720 SIGMAR1 TM7SF2

PKM: Pyruvate kinase; EBP: 3-Beta-hydroxysteroid-Delta(8), Delta(7)-isomerase; SIGMAR1: Sigma non-opioid
intracellular receptor 1; HSD17B10: 3-hydroxyacyl-CoA dehydrogenase type-2; HTT: Huntingtin; PGK1: phospho-
glycerate kinase 1; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; TM7SF2: Delta(14)-sterol reductase;
ACAA1: 3-ketoacyl-CoA thiolase; EHHADH: peroxisomal bifunctional enzyme (enoyl-CoA hydratase and
3-hydroxyacyl CoA dehydrogenase).

Trifluoperazine (CHEMBL422) has three targets (EBP, HSD17B10, and SIGMAR1) that
are functionally related to the three MSs (TM7SF2, ACAA1, and EHHADH) (Table 1). Thus,
the pharmacological activity of trifluoperazine may be associated with the modulation of
fatty acid oxidation, cholesterol biosynthesis, and amino acid catabolism [26,35,36]. It is an
antipsychotic drug that inhibits dopamine receptor type 2 (DR2) [37]. Trifluoperazine sup-
presses the release of cytokines and exerts anticancer effects [38]. Recently, trifluoperazine
has been observed to reduce the levels of interleukin-1-beta and TNF-alpha, attenuating
the production of proinflammatory mediators [39,40]. Huang et al., (2021) have described
that trifluoperazine reduces hypothalamic inflammation in the acute stage by suppressing
gliosis induced by saturated fatty acids and inhibiting the protein calmodulin, which binds
to Ca+2 in edema brain processes [39,41]. Therefore, this drug modulates metabolic dys-
function, where it has been described that its administration has a positive effect on the
homeostasis of the glucose pathway [39,42,43]. Likewise, trifluoperazine has been shown
to rescue dopaminergic cells and reduce a particular species of alpha-synuclein, a protein
involved in PD [37]. In multiple sclerosis, the administration of trifluoperazine improves
deficiencies in motor coordination and demyelination processes [44].

Disulfiram (CHEMBL964) has two targets (HSD17B10 and HTT) functionally related
to three MSs (ACAA1, EHHADH, and GAPDH) (Table 1). Thus, the pharmacologi-
cal activity of disulfiram could be associated with glycolysis and fatty acid oxidation
modulation [35,45]. It has been widely used as an anti-alcoholic drug for relapse preven-
tion [46]. Disulfiram has shown anti-inflammatory and neuroprotective effects [47]. For
example, it decreases the activity of the BACE-1 promoter and increases the activity of
ADAM10 [47–49]. Therefore, Disulfiram could be a therapeutic strategy by increasing
the amount of the sAAP-alpha protein, which exerts neurotrophic and neuroprotective
properties, since authors such as Reinhardt et al., (2018) have shown that the sAAP-alpha
protein protects primary neurons in the hippocampus to apoptosis via the AKT survival
pathway. In addition, studies carried out in mice have shown that disulfiram increases
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functional behavior, influencing AD pathology [47,50]. However, predicting the beneficial
results of disulfiram remains difficult, considering the few clinical studies.

Haloperidol (CHEMBL54) has two targets (EBP and SIGMAR1) that are functionally
related to a single MS (TM7SF2) (Table 1). Thus, the pharmacological activity of haloperidol
could be associated with the modulation of lipid metabolism [26]. This antipsychotic drug
is used for the treatment of schizophrenic symptoms, such as the control of delusions
and hallucinations, and behavioral symptoms associated with Alzheimer’s disease [51].
However, the use of haloperidol is limited by its association with extrapyramidal symptoms,
such as increased memory loss in patients with AD and Parkinsonism due to dopamine-
receptor blockade, which leads to the generation of reactive oxygen species (ROS) [52,53].
Thus, haloperidol causes deterioration in the storage of antioxidant enzymes by increasing
oxidative stress and lipid peroxidation, which is a causal factor of neurodegeneration [51,53].

Herein, we demonstrated that five MSs (TM7SF2: Delta(14)-sterol reductase;
PGK1: phosphoglycerate kinase 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase;
ACAA1: peroxisomal 3-ketoacyl-CoA thiolase; and EHHADH: peroxisomal bifunctional
enzyme) are functionally related to neuropathological drug targets, suggesting that these
MSs could be indirectly modulated as part of drug action. In addition, some of these drugs
act on multiple targets related to MSs, suggesting polypharmacological activity. Most neu-
rodegenerative diseases have a multifactorial nature, which, from the perspective of drug
development, has raised questions about the classic paradigm of “one drug, one target, one
disease” [54,55]. However, a holistic vision has allowed us to observe the multiplicity of the
underlying pathways involved in neurodegenerative processes [56,57]. Polypharmacology
has received recognition because a single drug approved by the FDA can exert a thera-
peutic effect on multiple targets linked to different disease pathways [56,58]. However,
they may have neuroprotective properties, and their long-term use carries potential risks.
More research is needed to fully understand the relationship between these medications
and neurodegeneration.

Although most of the medications found are related to psychiatric diseases, psychiatric
and neurodegenerative diseases often share some common biological pathways, such as
inflammation, oxidative stress, and dysfunctions in neuronal signaling [31]. Several studies
have investigated the relationship between these two therapeutic areas and found that they
share epidemiological and genetic risk factors and distinct and shared causal proteins [59].
For example, schizophrenia and Parkinson’s diseases share common biological pathways
through dopaminergic and synaptic dysfunction and neuroplasticity [60]. Furthermore,
excitotoxicity appears to be the final common pathway of many neuropsychiatric and
neurodegenerative disorders [59]. Moreover, some studies suggest that antipsychotics may
have both beneficial and harmful effects in patients with neurodegenerative disorders. For
example, atypical antipsychotics, such as risperidone, have been used to treat psychiatric
symptoms associated with Alzheimer’s disease. However, concerns have also been raised
about possible adverse effects, such as increased risk of stroke and the decline in cognitive
function in this population [61]. In addition, Trifluoperazine, one of the antipsychotic
drugs characterized as potential drugs for MSs, exhibits promise in reducing demyelination
in multiple sclerosis (MS) and suppressing inflammation in the brain induced by a high-
fat diet, suggesting potential therapeutic benefits for neurodegenerative diseases [39].
However, it may also induce cell death in mitochondria, indicating potential cytotoxic
effects. Further research is needed to understand fully its benefits and risks in treating
neurodegenerative diseases and other conditions.

It has been found that medications such as disulfiram, a drug indicated for chronic alco-
holism treatment, are converted to an active metabolite, diethyldithiocarbamate, which has
been shown to have potential neuroprotective effects by modulating secretase activity [47].
Furthermore, disulfiram has been shown to suppress the activation of the NLRP3 inflam-
masome, which is involved in neuroinflammation [62]. Finally, a recent study identified
disulfiram as a potent activator of DJ-1, which has been proposed as a potential therapeutic
target against neurodegenerative diseases [63]. While available research suggests that
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disulfiram may have potential therapeutic effects on neurodegeneration, further research
or specific studies on this topic may be needed to establish a comprehensive understanding
of the potential impact of disulfiram on neurodegeneration.

The reported targets for Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol
functionally interact with the MSs. We consider that the MSs may be indirectly modulated
by the four drugs as part of their pharmacological mechanism. This premise highlights
these interactions between drug targets and the MSs, as these events are potentially regu-
lated through drugs for nervous system diseases. Therefore, there are metabolic pathways
to explore given their possible implication in the development of nervous system dis-
eases, including diseases treated by these drugs (psychiatric diseases) or related to MSs
(neurodegenerative diseases).

2.3. Enzymatic Metabolic Switches Related to Nervous System Drugs Have Interesting Structural
Characteristics with Druggable Potential

In recent decades, methods based on structural geometry, analysis of the surface and
volume of protein cavities, surface area, and the ability to form hydrogen bonds [64–66]
have enabled the identification of the structural characteristics of proteins that promote
ligand recognition. Therefore, considering the previous results, we carried out an in silico
characterization of the druggable cavities of the five MSs associated with neurological
drugs through ligandability and druggability scores for each enzyme and its respective
natural ligand (Table S4 in the Supplementary Materials).

To perform druggable cavity analysis, ligand and orthosteric binding sites were ob-
tained for the five switches of interest (Table 2). Four of the MSs analyzed had druggable
cavities in their active sites, with acceptable ligandability (Pred. Max pKd from 9.48 to 11.39)
and druggability scores (Drug score from 656 to 3753) (Table 2). Thus, they were considered
to have pharmacological potential. Only one of the MSs analyzed (Delta(14)-sterol reductase
TM7SF2) does not have druggable cavities, so it was ruled out as a possible directed target.
The detection, characterization, and analysis of cavities allowed us to predict potential
binding sites of covalent ligands (drugs), promoting the study and design of drugs with the
potential to interact with metabolic switches [67,68].

Table 2. Ligand-binding and allosteric druggable cavities characterized in MSs associated with
neurological drug targets.

Protein Cavity
Number

Pred. Max
pKd

Drug
Score Druggability Residues Allosteric

Cavities
Z-Score
(>0.5)

P00558 1 11.01 1424 Strong

LEU:63, GLY:64, ARG:65, PRO:66, ASP:67, LYS:74, TYR:75,
ARG:122, GLU:128, LY:166, THR:167, ALA:168, HIS:169, ARG:170,
HIS:172, GLY:212, GLY:213, ALA:214, LYS:215, VAL:216, ALA:217,
ASP:218, LYS:219, GLY:236, GLY:237, GLY:238, MET:239, PHE:241,
SER:255, LEU:256, ASP:258, PHE:285, VAL:286, PHE:291, ASP:292,
GLU:293, MET:311, GLY:312, LEU:313, ASP:314, CYS:315, ASN:336,
GLY:337, PRO:338, VAL:339, GLY:340, VAL:341, PHE:342, GLU:343,
TRP:344, PHE:347, THR:351, GLY:371, GLY:372, GLY:373, ASP:374,
THR:375, ALA:376, THR:377, CYS:378, LYS:381, THR:393, GLY:394,
GLY:395, GLY:396, ALA:397, SER:398, GLU:400

1 1.57
2 1.26
3 0.89
4 0.79
5 0.62

P04406 1 11.39 1477 Strong

GLY:82, PHE:83, GLY:84, ARG:85, ILE:86, GLY:87, ARG:88, ASP:121,
THR:123, HIS:124, GLU:168, SER:169, THR:170, GLY:171, VAL:172,
TYR:173, LEU:174, ILE:192, SER:193, ALA:194, PRO:195, SER:196,
PRO:197, MET:201, ALA:222, SER:223, CYS:224, THR:225, THR:226,
ASN:227, MET:247, THR:249, VAL:250, HIS:251, SER:252, TYR:253,
THR:254, ALA:255, THR:256, GLN:257, LYS:258, PRO:263, SER:264,
ARG:265, LYS:266, ALA:267, ASP:270, GLY:271, ILE:279, PRO:280,
ALA:281, SER:282, THR:283, GLY:284, ALA:285, ALA:286, LYS:287,
ALA:288, VAL:289, LYS:291, GLY:302, MET:303, ALA:304, PHE:305,
ARG:306, THR:309, PRO:310, ASP:311, SER:313, TYR:386, ASN:388,
GLU:389, TYR:392, SER:393, VAL:396

1 2.89
2 0.94

Q08426 1 10.53 656 Strong

ASP:62, ILE:63, ARG:64, GLY:65, PHE:66, SER:67, ALA:68, LEU:129,
LEU:259, LEU:260, GLN:261, SER:262, GLY:263, ALA:265, ARG:266,
ALA:267, LEU:268, GLN:269, TYR:270, ALA:271, PHE:272,
PHE:273, ALA:274, GLU:275, ARG:276, LYS:277, ALA:278,
ASN:279, LYS:280, SER:642, GLU:644, ASP:647, PHE:665,
LEU:709, LYS:710

1 1.84

P09110 1 9.48 3753 Strong

ARG:50, ALA:51, GLY:52, ASN:90, VAL:91, LEU:92, GLN:93,
PRO:94, GLY:95, ASN:120, ARG:121, GLN:122, CYS:123, SER:124,
SER:125, GLU:151, SER:152, MET:153, SER:154, LEU:155, ALA:156,
ASP:157, ARG:158, GLY:159, ASN:163, ILE:164, THR:165, SER:166,
LEU:168, ASP:176, CYS:177, LEU:178, ILE:179, PRO:180, MET:181,
GLY:182, ILE:183, THR:184, ALA:263, PHE:264, THR:270, THR:271,
ALA:272, GLY:273, SER:275, SER:276, GLN:277, VAL:278, SER:279,
ASP:280, PRO:313, PRO:314, ASP:315, ILE:316, MET:317, ASN:345,
GLU:346, ALA:347, PHE:348, VAL:373, HIS:377, PRO:378, LEU:379,
CYS:408, ILE:409, GLY:410, THR:411, GLY:412, MET:413

- -
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It is important to emphasize the role of MSs in processes such as glycolysis/gluconeo-
genesis, folate metabolism, fatty acid oxidation, purine catabolism, peroxisomal trans-
port, and extracellular transport (Table S5 in the Supplementary Materials). The capacity
to inhibit or activate enzymes associated with fatty acid oxidation has been studied in
neurodegenerative contexts. The enzyme 3-ketoacyl-CoA thiolase (ACAA1, EC:2.3. 1.9;
Uniprot ID: P09110) has been extensively studied for treatment with trimetazidine to im-
prove insulin resistance in obese mice experimentally [69,70]. In addition, recent studies
have shown the positive effect of Trimetazidine and Progesterone on brain injury [71].
Furthermore, multiple interactions (alkyl, pi-sigma, and pi-cation) have been described
between Trimetazidine/Progesterone and the amino acids Ser, Val, and Phe that are present
in the active site of the molecular targets 3-ketoacyl-CoA thiolase (UniProt ID: P09110) and
enoyl reductase (UniProt ID: Q9BV79) [69]. Interestingly, ligand-binding pockets predicted
in 3-ketoacyl-CoA thiolase (Figure 3a,b) showed similar interactions with the predicted
ligand. The interaction of this enzyme with these compounds is an example of the ligand-
binding ability of the druggable cavities identified in 3-ketoacyl-CoA thiolase, confirming
its potential as a drug receptor.
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Figure 3. Tertiary structure and druggable cavities predicted in four of the five MSs related to nervous
system drug targets. (a) The druggable cavity identified in the ligand-binding site of 3-ketoacyl-CoA
thiolase (green) that catalyzes the condensation reaction of acyl-CoA or acyl-acyl ACP with malonyl-
CoA to form 3-ketoacyl-CoA in the presence of the ligand Acetyl coenzyme A (orange). The surface
represents the monomeric structure of the enzyme 3-ketoacyl-CoA thiolase (Uniprot ID: P09110).
(b) Magnified view of the interactions between the ligand and binding amino acids (Gln208, Ser277,
Val279, Phe349, and His378). (c–e) Druggable cavities predicted in glyceraldehyde-3-phosphate
dehydrogenase (Uniprot ID: O14556), peroxisomal bifunctional enzyme (Uniprot ID: Q08426), and
phosphoglycerate kinase 1 (Uniprot ID: O14556), respectively. Predicted druggable cavities in the
ligand-binding site are colored green. Non-green cavities are allosteric cavities with druggable
potential predicted for the ligand-binding site.

Regarding the enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC
0.1.2.1.12; UniProt ID P04406), we find a cavity with a strongly druggable potential that
also could be potentially regulated by two identified allosteric druggable cavities (Table 2,
Figure 3c,d). Previous studies determined that the interaction of this enzyme with alpha-
synuclein in Lewy bodies and the GAPDH active site, specifically with cysteine residues,
modulates alpha-synuclein aggregation in PD [72,73]. However, studies describe the
allosteric regulation of the channeling of substrates in the active site of this enzyme through
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the assembly of oligomers and the NAD binding site [72,73]. In addition, previous studies
identified that Ser 50 and Tyr 41 play an important role in enzyme stabilization and,
thus, in the regulation of metabolism by interacting the substrate with GAPDH through
allosteric regulation by differences in enzyme–substrate deactivation rates between different
substrates or isoenzymes [72].

According to the multi-omic computational model developed by [8], in the presence
of PA, reactions such as the catalysis of the reversible transfer of a phosphate group from
1,3-bisphosphoglycerate to ADP-producing 3-phosphoglycerate and ATP (PGK, EC. 2.7.2.3;
UniProt ID: P00558) by phosphoglycerate kinase are partially inhibited [8]. At the level
of the active site, this enzyme presents a cavity with strong druggable potential, thus
being a potential therapeutic target. In this regard, recent studies have determined that
the yeast cell cycle regulatory kinase inhibitor NG52, when coupled to the active site of
PGK, decreases the phosphorylation of proteins such as pyruvate dehydrogenase kinase
1, potentially inhibiting glioma proliferation through the pharmacological regulation of
PGK [74,75]. As far as we know, peroxisomal bifunctional enzymes (EHHADH, EC. 1.3.3.6;
Uniprot ID: Q08426) have not been previously suggested as pharmacological targets in
any neuropathological context. Then, it could be a very novel target with therapeutic
potential for pathologies promoted by lipotoxicity conditions. Ligand-binding and allosteric
druggable cavities identified for PGK and EHHADH are modeled in Figure 3.

Although in silico studies are valuable for exploring variables, designing drugs, and
reducing reliance on animal experimentation, validation with experimental data is crucial
to ensure accuracy and biological relevance, enhancing their utility in scientific research.
For instance, recent research in ACAA1, one of the MSs proposed as potential targets for
nervous system diseases, has focused on its interactions with the β-oxidation pathway
and their potential role in neurodegeneration. In the central nervous system, ACAA1 is
vital for fatty acid metabolism. Deficiencies can lead to neurodegenerative disorders [76].
Experimental evidence [76] highlights ACAA1’s role in regulating intracellular Ca2+ levels
in neurodegenerative diseases, interacting with IP3R and SERCA, potentially impacting
conditions like Alzheimer’s and Parkinson’s disease.

This study explores potential therapeutic targets for neurological diseases associated
with astrocyte-mediated neurotoxicity, focusing on pro-inflammatory pathways triggered
by palmitic acid. Despite these exciting findings, the research is mainly based on in sil-
ico characterizations of MSs associated with the human astrocyte lipotoxicity response;
therefore, this study does not characterize a single type of disease. Thus, we propose
experimental validation in the future to determine the applicability and address chal-
lenges associated with translating computational predictions into effective therapeutic
interventions for nervous system disorders.

3. Materials and Methods
3.1. Metabolic Switches Analyzed in This Study

The enzymatic metabolic switches analyzed in this study were identified in a previous
study [8]. A description of all previously reported MSs can be found in Table S5 of the
Supplementary Materials.

3.2. Protein–Protein Interactions Network (PPI)

In this study, we constructed a comprehensive map of MS-associated protein inter-
actions, using the Knime analytics platform v4.3.0 [77] to obtain human PPI for each
enzymatic metabolic switch (MS) from the STRING database [78]. Only the first shell (N1)
with a medium confidence interaction score (>0.400) according to all STRING interaction
sources, was used to construct an MS-PPI network using Cytoscape software v3.8.2 [79].
Then, N1 proteins were subjected to an enrichment analysis of the KEGG and REACTOME
pathways, as well as gene ontology terms for cellular components (GO:CC), using the
g:Profile server [80]. MS–MS interactions were also extracted from the STRING database.
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N1 proteins were searched in the Open Targets database [81] to retrieve the highest mean
association score for any nervous system disease.

3.3. Drug–Protein Interactions Network (DPI)

We developed a pipeline utilizing Knime to identify compounds with activity against
protein–protein interactions (PPIs), applying a specified pChEMBL value threshold [82].
This information was sourced from the ChEMBL database (release: ChEMBL31, last ac-
cessed on 21 November 2022) [83]. Our selection of drugs adhered to certain criteria,
specifically those categorized as “small molecules” with information on “max phase” (0,
1, 2, 3, and 4). In cases where a drug had multiple pChEMBL values against a biological
target, we considered the highest reported value. Subsequently, we filtered the data to
focus on approved neurological drugs (in Phase = 4) that interacted with the identified
targets. Finally, we harnessed the refined dataset to construct a drug–protein interaction
(DPI) network using Cytoscape. The DPI-network MSs were searched in the Open Targets
database [81] to retrieve all associated nervous system diseases.

3.4. Targets 3D Structures and Associated Ligands

The 3D structures of the MSs functionally related to neurological drug targets were
retrieved from the PDB (Protein Data Bank) database [84]. Any experimental structure
that met the following criteria was considered: (1) 80% coverage, (2) high resolution
(<2.6 Å), and (3) no fragmentation. Proteins without a PDB structure were obtained from
the AlphaFold database [85].

The natural ligands of each protein were identified by reviewing the enzymatic reaction
of each protein in the UniProt and Mechanism and Catalytic Site Atlas databases [86]. The
natural ligand is any molecule modified by the activity of the protein; if there is no natural
ligand, a cofactor is selected. The natural ligands and their binding sites were obtained
from the crystallographic complexes reported in the PDB. Proteins without co-crystallized
ligands were analyzed using the COACH-D server [87]. In the COACH-D server, potential
ligands and their binding sites were predicted using crystallographic complexes of related
proteins, and the coupling between the ligand and the predicted binding site was refined
using AutoDock Vina. [88].

The protein and ligand data employed in this analysis are summarized in Table S4 in
the Supplementary Material.

3.5. Characterization of Cavities with Druggable Potential

To characterize cavities associated with the ligand-binding sites of MSs, each MS and
its natural ligand were characterized in the CavityPlus server using the “With Ligand”
option [67]. In addition, we predicted potential allosteric binding sites using the “No
Ligand” option of the Cavity tool and the CorrSite2.0 tool, both available from the same
server [67]. In this context, an allosterically regulated pocket was defined as any pocket
with a CorrSite value exceeding 0.5, indicating a correlation with the ligand-binding site
pocket. Then, we gauged the druggable potential of the identified cavities by assessing
their ligandability (Pred. Max pKd) and druggability (DrugScore) through the CavPharmer
tool from the CavityPlus server. We considered any cavity with a Pred. Max pKd exceeding
6.0 and possessing a medium or strong DrugScore as a cavity with druggable potential.
Finally, the druggable cavities were visualized using the PyMOL molecular graphics system,
version 2.5 (Schrödinger, 2015).

4. Conclusions

Neurodegenerative diseases are complex, with multiple cellular and molecular mech-
anisms at play. It is crucial to adopt a holistic approach when studying the pathological
conditions that underlie these diseases, such as the impact of palmitic acid (PA) on astro-
cytes, which is associated with lipotoxicity. This comprehensive understanding is vital for
the development of effective treatments. In our study, we concentrated on the identification
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and characterization of potential pharmacological targets within the enzymatic metabolic
switches (MSs). These MSs had been previously linked to metabolic alterations in response
to PA in astrocytes. Through this approach, we pinpointed five enzymatic MSs (P00558:
phosphoglycerate kinase 1, P04406: glyceraldehyde-3-phosphate dehydrogenase, Q08426:
peroxisomal bifunctional enzyme—enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydro-
genase, P09110: peroxisomal 3-ketoacyl-CoA thiolase, and O76062: Delta(14)-sterol reduc-
tase) that exhibited functional connections to the drug targets associated with neurological
conditions. Moreover, the first four of these MSs featured potentially druggable cavities
linked to their ligand-binding sites. Consequently, we propose phosphoglycerate kinase
1, glyceraldehyde-3-phosphate dehydrogenase, peroxisomal bifunctional enzyme—enoyl-
CoA hydratase and 3-hydroxyacyl CoA dehydrogenase, and peroxisomal 3-ketoacyl-CoA
thiolase as promising therapeutic targets for neurological conditions.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ph17050648/s1: Table S1: biological processes, Cellular components
and Metabolic pathways terms enriched in proteins functionally related to Metabolic Switches; Table
S2: OpenTargetDB association scores of neurodegenerative diseases to five MS indirectly regulated
by ChEMBL nervous system drugs; Table S3: description of the 32 nervous system drugs associated
with a single target in the PPI network; Table S4: metabolic Switches and natural ligands analyzed in
the identification of druggable cavities; Table S5: enzymatic metabolic switches under PA (palmitic
acid)-mediated cellular regulation.
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