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Abstract: All over the world, wild edible plants are an essential source of chemical components
that justify their use in folk medicine. The aim of this review is to document and summarize the
knowledge of ten wild plants analyzed in a previous study for their ethnomedical significance.
Achillea millefolium, Borago officinalis, Foeniculum vulgare, Gentiana lutea, Juniperus communis, Laurus
nobilis, Malva sylvestris, Satureja montana, Silybum marianum and Urtica dioica were the subjects of
our study. They are commonly found in the central Italian Apennines and the Mediterranean basin.
Phytochemicals contained in wild plants, such as phenols, polyphenols, flavonoids, condensed
tannins, carotenoids, etc., are receiving increasing attention, as they exert a wide range of biological
activities with resulting benefits for human health. Based on the 353 studies we reviewed, we focused
our study on the following: (a) the ethnobotanical practices and bioactive phytochemicals; (b) the
composition of polyphenols and their role as antioxidants; (c) the methodologies commonly used to
assess antioxidant activity; (d) the most advanced spectroscopic and spectrometric techniques used
to visualize and characterize all components (metabolomic fingerprinting). The potential of pure
compounds and extracts to be used as nutraceuticals has also been highlighted through a supposed
mechanism of action.

Keywords: wild edible plants; ethnobotany; medicinal food; nutraceuticals; functional foods; Italian
Apennines; Mediterranean basin

1. Introduction

In recent decades, several epidemiological studies have shown a progressive growth in
the incidence of chronic degenerative diseases in the population, mainly due to an incorrect
diet. The main factors responsible for the pathogenesis of degenerative diseases are believed
to be oxidative stress and inflammatory processes, which are involved in cardiovascular
diseases, rheumatoid arthritis, and diabetes mellitus [1]. Thus, medicinal plants rich in
antioxidants, such as polyphenols, flavonoids, and carotenoids, may contribute to the
prevention of chronic diseases [2,3]. Natural products are important therapeutic agents and
are becoming an attractive option as they have a lower incidence of adverse reactions and
lower costs than synthetic pharmaceuticals [4].

The supplementation of natural products with antioxidant activity into the diet is
therefore considered the main solution to reduce the occurrence of many health problems.
For this reason, there is a growing interest in unexplored plants or wild plants characterized
by bioactive molecules with potential health-beneficial effects [5]. Wild plants have been
known for centuries in folk medicine for their therapeutic properties, and many scientific
studies have determined the chemical composition of plant extracts and highlighted their
side effects. In folk medicine, commonly used extraction procedures include conventional
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methods such as maceration, percolation, decoction, and infusion. Most wild plants known
for their therapeutic effects are often used as food. They are especially common in salads as
green vegetables, but are also cooked, fried, or boiled, used in omelet dishes, etc. [6].

Wild plants may play an essential role in a healthy diet as an alternative source of
minerals, vitamins, and phytochemicals with antioxidant capacities, or they can be used as
supplements to formulate functional foods. The use of wild plants in popular cuisine is a
common practice in Italy [7], but their consumption varies in different regional districts.
Generally, all plant organs are consumed, including the leaves, tender stems, bulbs, seeds,
and roots [8]. In Italian tradition, as well as in other countries, wild plants are generally
eaten in salads or as boiled vegetables in soups, herb omelets or drink preparations [8]. The
Central Apennine mountains represent one of the world’s biodiversity hotspots, with a
rich flora characterized by the presence of numerous endemics [9].

In recent decades, social and economic changes have caused the depopulation of
mountain villages in the Apennines; as a result, wild food plants are declining due to the
lack of oral transmission of traditional knowledge from generation to generation. Modern
lifestyles are quickly transforming traditions, and the consumption of wild foods is not
as common as it was in the past [10]. Minerals and the primary metabolites of plants
are essential for humans. In contrast, the secondary metabolites of plants are not vital to
humans, but experimental research has shown that they promote health and longevity [10].

The ten wild edible plants reported in this analysis are the result of a selection based
on these criteria:

(1) An analysis of about 90 wild plants reported for their ethnopharmacological
properties by Fortini et al. [11];

(2) The selection of the ten most common wild edible plants identified in the flora of
the south–central Apennines that are used as food or beverages without adverse health
effects [8,11].

The aim of the present review is as follows:
(a) To provide an overview of wild food plants typical of the Mediterranean basin and

traditionally used in the gastronomy of the central Apennine area (Italy), characterized by
their high biological diversity and whose cultural heritage is well known;

(b) To summarize the current knowledge on the potential use of edible wild plant ex-
tracts in the prevention or treatment of some of the most widespread diseases in developed
countries, such as cardiovascular diseases, cancer, neurodegenerative diseases, diabetes,
obesity, and liver disease;

(c) To illustrate and discuss the chemical composition of edible wild plants, their
nutritional properties, and their relationship with the biological effects reported in the
literature for the development of nutraceuticals or functional foods;

(d) To identify the methodologies that are commonly used to assess antioxidant
activity in vitro and in vivo, and to highlight widely used advanced spectroscopic and
spectrometric methods that are able to identify all primary and secondary metabolites
contained in an extract (metabolic fingerprinting).

2. Strategy of Searching Articles

A comprehensive phytochemical analysis of the ethnobotanical literature and a bio-
logical activity search on the food plants used in the Apennine and Mediterranean area
were carried out using existing online scientific databases, such as Scopus, Web of Science,
Wiley Online Library, and Science Direct, as well as Google Scholar keywords. The search
was limited from 2000 to November 2023. The information summarized in Tables 1 and 2
was obtained from research articles (in vivo or in vitro studies). A total of 353 studies were
selected and included in this review.

3. Role of Nutraceuticals

The term nutraceutical is commonly used in marketing, but there is no regulatory
definition. Nutraceuticals are substances that are not recognized as nutrients but that have
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positive physiological effects on the human body and possess multiple therapeutic benefits.
Epidemiological studies indicate that a diet rich in plant-based foods significantly reduces
the risk of chronic-degenerative diseases, suggesting that some natural components found
in plants may be effective agents for the prevention of diabetes, hypertension, heart disease,
Alzheimer’s disease, and arteriosclerosis [12,13].

Some nutrients, herbal products, probiotics, polyunsaturated fatty acids, and phyto-
chemicals are considered nutraceuticals. Since ancient times, many plant extracts, now
marketed as herbal products, have provided hundreds of remedies to treat acute and
chronic diseases.

Herbal nutraceuticals are foods prepared from plants, and some examples include
Yarrow (Achillea millefolium), which contains bioactive components useful for treating lack
of appetite, gastric disorders, or diarrhea, or Chamomile (Matricaria recutita), which is
widely used to treat insomnia, gastrointestinal disorders, inflammation, wounds, ulcers,
muscle spasms, etc. [14].

The term ‘probiotics’ refers to live microorganisms that, when administered in suf-
ficient quantities, provide health benefits by regulating the balance of human intestinal
microorganisms and inhibiting the colonization of pathogenic bacteria in the gut. In ad-
dition, probiotics help the body build a healthy protective layer of the intestinal mucosa,
enhancing the intestinal barrier effect and improving immunity [15].

Polyunsaturated fatty acids (PUFAs), mainly omega-3 and omega-6, have been shown
to decrease the production of inflammatory eicosanoids, cytokines, and reactive oxygen
species (ROS), and to possess immunomodulatory effects. They are, therefore, able to
alleviate inflammatory pathologies and are effective in the prevention and treatment of
coronary heart disease, hypertension, diabetes, arthritis, and other inflammations [16].

Phytochemicals are non-nutritive bioactive plant components that have attracted
interest in human nutrition due to their potential effects as antioxidants, as well as their
anti-inflammatory, immunomodulatory, and anticarcinogenic effects. They are naturally
occurring secondary metabolites that impart color, taste, odor, and texture to plants [17].
Many vegetables, wild plants, legumes, whole grains, fruit, fruit and vegetable juices,
tea/coffee, and spices have nutraceutical properties as they contain compounds with
antioxidant activity, such as flavonoids, phenolic acids, anthocyanins, terpenoids, tannins,
carotenoids, phenylethanoid glycosides, etc. [18]. Antioxidants used in the diet consist
of different phytochemical molecules that are present in low concentrations [18], and
their consistent inclusion in the diet has a protective effect against free-radical-related
disease [19,20].

Polyphenols are found more abundantly in the edible parts of plants and are consid-
ered one of the main classes of plant compounds responsible for antioxidant activity, as
they can scavenge free radicals such as reactive oxygen species; thus, they are of particular
interest to the food and pharmaceutical industries [21]. Polyphenols are considered the
principal agents responsible for several biological [22] and pharmacological functions, as
they exhibit anti-inflammatory, antimicrobial, anti-allergic, antiviral, antithrombotic, and
hepatoprotective activity, and they are involved as signaling molecules in some biochemical
reactions [23], and in modulating a range of cancer signaling pathways [24].

3.1. Antioxidant Activity

In biological systems, oxidative stress is a complex process characterized by an im-
balance between the production of free radicals (ROS) and the body’s ability to eliminate
these reactive species through endogenous and exogenous antioxidants. During metabolic
processes, a variety of reactions take place in which the initiators are reactive oxygen
species (ROS), such as hydrogen peroxide (H2O2), the superoxide radical anion (O2

−), and
many others. Endogenous antioxidants are enzymes, such as superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase, while examples of non-enzymatic compounds
include bilirubin and albumin [25]. When an organism is exposed to a high concentration
of ROS, the endogenous antioxidant system fails, and to compensate for this antioxidant
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deficit, the body can use exogenous antioxidants provided through food, dietary supple-
ments, or pharmaceuticals. The main characteristic of an antioxidant compound is that
it can prevent or break the chain of oxidative propagation by stabilizing the radical that
is generated, thus reducing oxidative damage in the human body. Phenolic compounds,
through their distinctive chemical structure, reduce or inhibit free radicals by reducing
oxidative stress and, thus, inflammatory processes [26].

Data from the literature suggest that plant polyphenols (PPs), especially phenolic
acids and flavonoids, can inhibit the inflammation process by regulating the production of
pro-inflammatory molecules, such as cytokines like tumor necrosis factor (TNF-α), nitric
oxide (NO), and leucocyte adhesion, which are produced during inflammatory reactions.
PPs have been shown to play a crucial role in the immune-inflammatory response [27,28].
Hence, inhibition of the production of such pro-inflammatory molecules is expected to
have therapeutic value against inflammatory diseases. By blocking reactive oxygen species,
flavonoids can mitigate photo-oxidative damage in plants [29,30].

The mechanisms of action of these compounds in the human organism have not
been fully elucidated [5]. Studies have indicated that the mechanism underlying the
radical-scavenging activity of polyphenols is related to the high reactivity of the phenolic
OH-groups through hydrogen atom donation. Radicals can be inactivated through the
following equation [26]:

PPs(OH) + R• → PPs(O•) + RH

where R• is a free radical and O• is a reactive oxygen species.
In flavonoids, structure–activity relationship (SAR) studies have shown that to achieve

the best antioxidant activity, the following functions are required in the chemical structure:
an ortho-hydroxy substitution in the B ring, a C2-C3 double bond, and a carbonyl function
at C4 in the C ring (Figure 1) [31,32]. The free hydroxyl groups on the B ring donate
hydrogen atoms to a radical to obtain neutral derivatives with stable molecular structures,
interrupting the chain reaction. At the same time, a relatively stable flavonoid radical is
produced. Flavonoids with the C2-C3 double bond in conjugation with a C4 carbonyl group
are planar; this structural feature allows for a charge delocalization from the A ring to the
B ring throughout the aromatic system. In flavonoids with the ortho-dihydroxy group
(catechol), the formation of flavonoid phenoxy radicals can be stabilized via the mesomeric
equilibrium with the ortho-semiquinone structures [33]. Moreover, some flavonoids can
chelate transition metal ions (pro-oxidants), which are responsible for the production of
reactive oxygen species and inhibit the lipoxygenase reaction [5].
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Phytoestrogens belong to the class of flavonoids but, due to their structural similarity
to estrogens, are able to interact with the estrogen receptor [32,34]. Although polyphenols
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and flavonoids are generally associated with health-promoting properties, it has been
reported that, when consumed in high doses, flavonoids can act as pro-oxidants and
mutagens, and are thus cytotoxic [35].

The method based on the Folin–Ciocalteu reagent is commonly used to determine and
quantify total phenols in many matrices. This method evaluates the ability of phenols to
react with oxidizing agents, but is not very selective as it reacts with any phenol [36].

3.2. Methods of Estimation of Total Antioxidant Activity (TAC)

The antioxidant activity of an extract can be evaluated in vitro or in vivo by means of
simple experiments. Several in vitro methods are proposed and described in the literature to
determine the effectiveness of antioxidant compounds in different matrices (plant extracts,
blood, etc.) using lipophilic, hydrophilic, and amphiphilic media (emulsions). Because
of their mechanism, in vitro methods can be divided into two main groups: (a) hydrogen
atom transfer (HAT) reactions and (b) transfer reactions of a single electron (SET) [37].

Reducing compounds donate electrons or hydrogen atoms to compounds which
have higher reduction/oxidation (redox) potentials. The latter group of compounds in-
cludes free radicals and other oxidants occurring in living systems. These methods are
widely used due to their high speed and sensitivity. When assessing the antioxidant ca-
pacity/activity of a sample, more than one method should be used [37]. Diverse tests
have been developed to evaluate the potential antioxidant activity of plant extracts or pure
secondary metabolites in vitro. The most popular assay includes 2,20-azinobis (3-ethyl-
benzothiazoline-6-sulphonic acid (ABTS) [38,39]. The antioxidant activity (colorimetric
method) measured by ABTS• reduction is usually referred to as that of Trolox (6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid), a standard antioxidant. This allows for the
results to be expressed in Trolox equivalents (TE).

2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, a colorimetric
method, is one of the most stable free radicals and is frequently used in the evaluation
of radical scavengers in natural foods. The DPPH assay method is straightforward and
can be used to perform a quick manual analysis of antioxidant contents [40]. The ferric
reducing antioxidant power assay (FRAP), a colorimetric method, is based on the reduction
of the 2,4,6-tripyridyl-s-triazine (TPTZ)–Fe3+ to the deep blue TPTZ-Fe2+ complex [41,42].
The cupric-reducing antioxidant capacity (CUPRAC) method uses copper 2+-neocuproine
(2,9-dimethyl-1,10-phenanthroline), which can be reduced by antioxidants [43]. The oxygen
radical absorbance capacity (ORAC) assay is based on the inhibition of the oxidation of a
fluorescent substrate (and fluorescence loss) by peroxyl radicals. Commonly used peroxyl
radical generators in this assay are represented by azo-compounds that decompose at
elevated temperatures [44,45]. Chemiluminescence (CL) assays are based on the reaction of
ROS/RNS with detection reagents to generate species in an excited state that emit light
upon de-excitation to the ground state [46]. The main chemiluminescence reagents that are
used include luminol, lucigenin, and peroxyoxalate [37].

Less popular methods include the potassium ferricyanide reducing power (PFRAP)
assay [47], the total reactive antioxidant potential (TRAP) test [48], and the β-carotene-
linoleic acid bleaching (BCLB) assay [49].

For all in vivo methods, the samples that are to be tested are usually administered to
mice, rats, etc., following methods that ensure strict compliance with recommended doses
and administration times. Upon completion, the animal is typically sacrificed, and the
blood and/or tissues are used for analysis [50]. The main methods used with plasma are
the Ferric-Reducing Ability of Plasma (FRAP) [51] and the measurement of γ-Glutamyl
transpeptidase activity (GGT), which is important for glutathione homeostasis [52]. The es-
timate of reduced glutathione (GSH) is used as an index of cell protection from free radicals,
peroxides, and other toxic compounds [53]. Estimating glutathione peroxidase (GSHPx)
activity is important; this activity may indicate a disturbance of the prooxidant/antioxidant
balance [54]. Glutathione-S-transferase (GST) is believed to play a physiological role in
initiating the detoxification of potential alkylating agents, including pharmacologically
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active compounds. Under these circumstances, GST is important to carcinogenesis and
chemoresistance [55]. Erythrocyte lysate can be used as a substrate for the evaluation
of antioxidant enzymes such as SOD and CAT activity [50]. The glutathione reductase
(GR) assay is important for maintaining the supply of reduced glutathione [56]. Finally,
lipid peroxidation (LPO) is the most important test, which considers the quantity and
physiological importance of biological membranes and lipoproteins. LPO is commonly
used to estimate the oxidative state of the cell [57].

3.3. Metabolomics Analysis

The phytochemicals contained in plant food sources or non-food plants are an unlim-
ited reservoir of nutraceutical compounds with a broad range of biological activities [58,59].
The plant metabolome consists of primary metabolites, secondary metabolites, vitamins,
organic acids, alkaloids, etc.; therefore, the metabolome of plants is the main target in the
search for new nutraceuticals at present [60].

Metabolomic analysis allows for the simultaneous detection of all primary and sec-
ondary metabolites in a biological system and provides qualitative and quantitative infor-
mation on its components. Metabolomics is, therefore, a powerful tool for defining the
phytochemical profile in an extract and allows several phenomena to be monitored. It can
help to understand plant responses to stress, assess changes in natural products in different
tissues/organs or during growth or ripening, etc. [61]. Metabolomics can be undertaken
using two different approaches: non-targeted and targeted methods.

Currently, the two main analytical techniques used for these purposes are nuclear mag-
netic resonance (NMR) spectroscopy in both 1D and 2D experiments and mass spectrometry
(MS), often coupled with separation techniques such as liquid or gas chromatography (LC
or GC) [62–64].

NMR methods provide information on a wide range of compounds present in the
plant extract in a single experiment, offering advantages in terms of the simplicity of sample
preparation, the time required for analysis, high reproducibility, and the acquisition of a
large amount of data in a relatively short time [65]. NMR spectroscopy is a non-destructive
technique because the sample can be recovered and used in a further experiment. However,
the main drawback of NMR spectroscopy is its relative lack of sensitivity, coupled with
the overlapping of signals in the 1H NMR spectrum of biological samples, which limits
the identification of metabolites. The acquisition of 2D NMR experiment series (TOCSY,
HSQC, HMBC) in metabolomics workflows can reduce the signal overlap and provide
crucial information to elucidate the structure of metabolites.

Over the years, efforts have been made to improve sensitivity and resolution in NMR
experiments with ultra-high-field magnets [66].

The richness of this information often results in high spectral complexity, so multivari-
ate data analysis is required to study the spectra and extract meaningful information.

NMR is an evolving field, and many new techniques are emerging in NMR-based
metabolomics analysis. Among these, high-resolution magic-angle sample spinning
(HRMAS) has been increasingly applied in recent years [67] due to its potential in solid-
state sample analyses without previous extraction. Other new NMR applications include
hyperpolarization methods, ultrafast 2D NMR methods, pure-shift NMR techniques, and
hybrid NMR approaches [67].

MS-based techniques are the most widely implemented strategies for metabolomics
purposes, especially UPLC-MS with electrospray ionization (ESI), thanks to the greater
sensitivity that this technique offers. In recent years, further developments have taken place
using high-resolution (HR)-MS techniques, with the possibility of accurately determining
the mass of a compound. However, these techniques are less robust than NMR techniques.
A difference can be found between targeted and non-targeted methods. The results of the
former are generally comparable across studies, whereas non-targeted methods require
careful quality-control procedures to assess robustness and repeatability over time [68].
Moreover, the high sensitivity offered by MS, especially HRMS techniques, has disadvan-
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tages, such as ion suppression, meaning that other strategies are required to increase the
number of metabolites.

Multivariate methods are routinely used to visualize biological data, identify possible
clusters, and build predictive models based on the amount of data obtained from previous
spectral datasets [69]. Multivariate data analysis (MVA) can be divided into two main
categories: unsupervised analyses to explore data without any class membership and
supervised analyses to discriminate among known groups of interest. Techniques such
as Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discrim-
inant Analysis (OPLS-DA) provide an essential platform for the rapid interpretation of
information-rich spectral datasets to infer biological conclusions. Through the proper
application of preprocessing transformations, the optimal choice of analysis algorithms,
and the judicious application of validation metrics, MVA can lend a powerful hand in the
biological understanding and exploration of complex metabolic systems.

4. Botanical Information, Ethnobotanical Practices, and Bioactive Phytochemicals in
Wild Edible Plants

The characteristic botanical information (systematics, etymology, distribution, habitat, etc.)
was obtained for each species analyzed in this study. Table 1 provides references showing where
the complete information can be obtained.

Table 1. Botanical information, including scientific name and important morphological characteristics,
systematics, etymology, distribution, and habitat.

Scientific Name and
Important Morphological

Characters
Systematics Etymology Distribution and Habitat Ref.

Achillea millefolium L.
Perennial herbaceous plant,
roots in the rhizome; hairy
stem; simple or branched;

leafy; ascending; can reach up
to 80 cm in height. The hairy
leaves have contours, both
lanceolate and linear. The
flowers are white or pink,

whitish achenes. The fruits
are achenes.

Domain Eukaryota, Kingdom
Plantae, Division

Magnolio-phyta, Class
Magnoliopsida, Subclass

Asteridae, Order Asterales,
Family Asteraceae, Subfamily

Asteroideae, Tribe
Anthemideae, Subtribe

Achilleinae, Genus Achillea,
Species A. millefolium.

Tradition (Pliny) states that
Achilles healed some wounds

of his comrades in arms
during the siege of Troy, with
the plant, hence the name of
the genre. The name (milfoil)
is due to its deeply indented

leaves; in fact, the epithet
refers to the numerous foliar

laciniae that characterize
this plant.

The A. millefolium is native to
Europe; it grows in temperate
regions all over the world up

to 2500 m. It prefers sunny
places, meadows, and the

edges of paths and railways; it
also adapts well to dry, stony,

and acidic soils.

[70,71]

Borago officinalis L.
is an herbaceous plant; it can

reach up to 80 cm. It has
elliptic oval leaves and

petioles, with rough hair and a
dark green color, collected in a

basal rosette 10–15 cm long,
which are then smaller on the
stem. The flowers have five

petals arranged in a
blue-purple star. The fruits are

achenes that contain
small seeds.

Domain Eukaryota, Kingdom
Plantae, Division

Magnolio-phyta, Class
Magnoliopsida, Order

Solanales, Family
Boraginaceae, Genus Borago

and specie B. officinalis.

The etymology of its name is
uncertain. Some suppose that

it derives from the Arabic
“abou” and “rash”. Others

assume that it comes from the
Latin “wad” or from the Celtic

“barrach”, meaning “brave
man”. The Italian name
Borage comes from the

Latin Borago.

This herb is well adapted to
the Mediterranean basin and
widespread throughout Italy,
where it grows spontaneously
up to 1800 m above sea level.
It prefers a rich soil, without

stagnant water.

[72,73]

Foeniculum vulgare Mill is
complex and difficult to

summarize. It derives from the
distinction between the

varieties of wild fennel and
“sweet” fennel

(horticultural production).

Eukaryota Domain, Kingdom
Plantae, Division

Magnolio-phyta, Class
Magnoliopsida, Subclass
Rosidae, Order Apiales,

Family Apiaceae, Foeniculum
Genus and F. vulgare Specie.

The names comes from
foenum, meaning hay, due to
the subtlety of the leaves and

its intense aromatic odor.
Vulgare means that the plant is

quite widespread
(vulgar = common).

Fennel is a typical
Mediterranean plant. It is
mainly found in southern

regions and islands, from sea
level up to about 1000 m
altitude. It prefers sunny,

unspoilt, dry, and
pebbled places.

[74,75]
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Table 1. Cont.

Scientific Name and
Important Morphological

Characters
Systematics Etymology Distribution and Habitat Ref.

Juniperus communis L. is an
evergreen shrub or tree with a
twisted trunk, of 1–10 m tall,

with linear, needle-like,
pungent leaves, gathered in

verticils of 3. Male flowers are
yellowish; female flowers are
small greenish cones, which

produce berries
(called cuddles).

Domain Eukaryota, Kingdom
Plantae, Subkingdom Tracheo
bionta, Superdivision Sperma
tophyta, Division Pinophyta,

Class Pinopsida, Order Pinales,
Family Cupressaceae, Genus
Juniperus, Specie J. Communis.

The term Juniperus derives
from iúnix, heifer, and pário,
meaning giving birth. This is

due to its presumed properties
favoring childbirth.

Communis epithet obviously
means common, banal.

It is widespread, from marine
regions to mountainous areas,
and is found in dry pastures,

as well as on moors or
scrubland. It is a very

long-lived species in the
temperate regions of the

northern hemisphere. It is
resistant to low temperatures,

and tolerates aridity and
strong wind.

[76,77]

Malva sylvestris L. is an annual
herbaceous plant that is

biennial or perennial. The
stem can grow to 60–80 cm.
The leaves of palminervia

have 5–7 lobes and an
irregularly serrated margin.

The flowers are grouped axils
of leaves. The fruit is a

circular poliachenio.

Eukaryota Domain, Kingdom
Plantae, Division

Magnolio-phyta, Class
Magnoliopsida, Order

Malvales, Family Malvaceae
Genus Malva and Specie

M. sylvestris.

The genus name, the
consonant with the greek

“Malatto” and “malákhe”,
means emollient, benevolent,
with reference to the soothing

properties of these plants.

The plant is native to Europe
and temperate Asia; it can be

found in fields and
uncultivated places.

[78,79]

Gentiana lutea L. is an
herbaceous, perennial species
with very slow growth. It can

reach up to 150 cm, with a
single stem that is hollow

inside, and green leaves. The
flowers are yellow, sometimes
punctuated with darker color,
star-shaped, and gathered in

bundles to the axil of the
upper leaves. The fruit is an
oblong oval capsule, which

opens at maturity in two parts,
containing brown oval seeds.

Domain Eukaryota, Kingdom
Plantae, Phylum

Magnolio-phyta, Class
Magnoliopsida, Order

Gentianales, Family
Gentianaceae, Genus Gentiana,

Specie G. lutea

According to Pliny, Gentiana
derives from Gentius (in

Greek, , Gentios) Genzio, last
king of the Illyrians (II century

BC), discoverer of the
antimalaric properties of the

roots of G. lutea. The lutea
name derives from lúteus

(yellow); that is, the
floral color.

Gentian is a plant that grows
in meadows and low-humidity

pastures, as well as in
calcareous soils, rich in organic

substances, with heavy
sunlight. In Italy, it grows in

the central-southern
Apennines, at an altitude that
varies between 1000 and 2200

m above sea level.

[80,81]

Laurus nobilis L.
The laurel often appears in

shrubs when pruned. In
natural conditions, it becomes
a tall tree reaching up to 10 m.
It is an evergreen plant. The
leaves are ovate, dark green,

leathery, glossy on the top, and
dull underneath. The fruits of
the laurel are black and shiny

berries with only one seed.

Domain Eukaryota, Kingdom
Plantae, Subkingdom Tracheo
bionta, Superdivision Sperma
tophyta, Division Magnolio
phyta, Class Magnoliopsida,
Subclass Magnoliidae, Order
Laurales, Family Lauraceae,

Genus Laurus, Specie
L. nobilis L.

The name of this plant comes
from the Latin “laus”,

meaning praise, to highlight
the curative properties of the

plant, which have been
“praised” from ancient times.

“Nobilis” stands for illustrious,
important, famous. For others,

the vulgar name would be
derived from the Celtic root

“laur”, meaning green.

L. nobilis is a common species
along the northern coastal
areas of the Mediterranean

basin. In Italy, it grows
spontaneously in the central
and southern areas along the
coast, while in the northern

regions it is cultivated.

[82,83]

Satureja montana L. is an
herbaceous species which

grows to 50 cm. The stems are
woody at the base, tetragonal,

erect, and have short back
hairs when pubescent. They
are usually widely branched

from the bottom to form a
small bush. The leaves are
bright green, opposite, and

subsessile. The fruit is formed
by 4 oval achenes dotted with

small grains.

Domain Eukaryota, Kingdom
Plantae, Subkingdom-Tracheo
bionta, Superdivision Sperma
tophyta, Division Magnolio
phyta, Class Magnoliopsida,

Subclass Asteridae, Order
Lamiales, Family Lamiaceae,

Tribe Mentheae, Genus
Satureja, Specie S. montana.

The term Satureja is of
uncertain etymology. The
specie name “mountain”

comes from mons montis,
mountain, meaning “of the

mountains”, because it grows
1000–1400 m above sea level.

Winter savory is a perennial
semi-evergreen species native
to the mountainous regions of
central–southern and western
Europe. Its habitat is that of
calcareous, rocky, arid lands,

at the edge of mountain roads,
at up to 1400 m altitude.

[84]
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Silybum marianum (L) Gaertn is
an herbaceous species with
vigorous bearing that can

reach up to 150 cm. The plant
is completely glabrous and
spiny. The scape is robust,

streaked, and branched, with
erect branches. The plant has
hermaphroditic flowers, with
a tubular red-purple corolla;

these are united in large
globular end heads, covered

with strong bracts.

Domain Eukaryota, Kingdom
Plantae, Subkingdom Tracheo
bionta, Superdivision Sperma
tophyta, Division Magnolio
phyta, Class Magnoliopsida,

Subclass Asteridae, Order
Asterales, Family Asteraceae,

Subfamily Cichorioideae, Tribe
Cardueae, Subtribe Carduinae,

Genus Silybum,
Specie S. marianum.

The term Silybum comes from
the Greek sílybon/síllybon,
the name which Dioscorides
called some edible thistles,

which was taken over by Pliny
to denote sillybus, a type of

thistle. The name “marianum”
derives from the Virgin Mary.

Milk thistle is a wild species,
widespread in all the

Mediterranean regions from
sea level to submountain areas.

Its habitat is in ruins, along
roads, and in uncultivated
areas, and it is common in

desert and sub-desert areas
ranging from the

Mediterranean basin to
Central Asia.

[85,86]

Urtica dioica L.
Nettle is a perennial,

deciduous herbaceous plant,
30–250 cm tall. It has an erect,

densely hairy, striated, and
grooved stem. The leaves are

large, ovate, and opposite;
lanceolate, jagged, and

pointed; dark green on the
upper side, and lighter and

hairier on the lower side. The
female flowers are collected in
long hanging spikes, while the
male flowers are grouped in

erect spikes.

Domain Eukaryota, Kingdom
Plantae, Division Magnolio
phyta, Class Magnoliopsida,

Subclass Rosidae, Order
Urticales, Family Urticaceae,
Genus Urtica, Specie U.dioica.

The name “nettle” probably
derives from the Latin “urere”

(Urtica), meaning burn,
indicating the effect of the

irritating substances contained
in stinging hairs.

U. dioica is widespread in
Europe, most of Asia, North

Africa, and North America. In
Italy, it is found in all regions:

uncultivated land, woods,
urbanized areas, roadside, and

places in the half-shade of
nitrate-rich soil, ranging from

the plains to 2300 m above
sea level.

[87,88]

Table 2 lists the main ethnobotanical uses, phytochemical constituents, and biological
activity of the selected wild edible plants (see also Figure 2).

Table 2. Phytochemical components, ethnobotanical uses, and biological activity of selected wild
edible plants.

Scientific Name Ethnobotanical Uses Phytochemical
Components Biological Activity Ref.

A. millefolium L.

Tea for gastrointestinal disorders.
Essential oils (from flowers)
against influenza. Infusions,

decoctions, or fresh juices
against hemorrhage,

hemorrhoidal, menstrual
problems, and dysmenorrhea,
toothache, headache, diuretic,

wounds, and burns (hemostatic).

Rutin; luteolin 7-O-glucoside;
apigenin 4′-O-glucoside;

apigenin 7-O-glucoside; luteolin
4′-O-glucoside

Anti-inflammatory activity,
treatment of gastrointestinal and
hepato-biliary disorder and skin

inflammation. The in vitro
anti-inflammatory activity was

established through the
inhibition of matrix

metalloproteinases (MMP-2 and
-9), which are involved in

psoriasis and atopic dermatitis
and in inflammatory bowel

diseases such as ulcerative colitis
and Crohn’s disease.

[89–93]

B. officinalis L.

Diuretic; promotes perspiration;
emollient; lenitive; mild laxative;

diuretic.
Decoction of leaves against

rheumatism and as a diuretic.
Leaf poultice against tooth

abscess. Digestive; depurative.

Flavonoids; phenolic acids;
rosmarinic acid; syringic; sinapic;
chlorogenic acids. β−sitosterol,
oleuropein; lithospermic acid

(leaves); tocopherols;
sterols; squalene.

Anti-inflammatory properties
(HaCaT and BJ cell lines) and
anti-ageing properties. Weak
anti-inflammatory activity in

murine RAW 264.7 macrophage
cell.

Cytotoxic effects of extracts by
MTT assay against human liver
(HPG2), prostate (LNCaP) and

colon (HT-29) cancer.

[11,94–104]

F. vulgare Mill.

Antispasmodic and carminative
effects. Promotes intestinal
peristalsis. Diuretic action.

Cures respiratory diseases as
an expectorant.

Cirsiliol, 4-O-caffeoylquinic acid
(4-CQA); vanillic acid;

O-coumaric acid; rosmarinic
acid; kaempferol; resveratrol;

rutin; myricetin;
catechin; quercetin.

Antioxidant; antimicrobial;
anti-inflammatory. Protection

against cardiovascular diseases,
neurological disorders, and

diabetes, and
hepatoprotective effects.

[105–120]



Nutraceuticals 2024, 4 199

Table 2. Cont.

Scientific Name Ethnobotanical Uses Phytochemical
Components Biological Activity Ref.

G. lutea L.

In folk medicine, it is known for
its digestive and

appetite-stimulating effects.
Other uses include antipyretic,

hepatoprotective, hypoglycemic,
antianemic, and cardiotonic
activity; for sores and minor
wound healing; for stomach

ulcers, as an immune stimulant.

Isovitexin, isosaponarin,
isoorientin,

isoorientin-2′-O-glucoside, and
isoorientin-4′-O-glucoside

Anti-inflammatory properties,
with the rate of enzyme

inhibition increasing with time.
[121–127]

J. communis L.

Urinary antiseptic for acute and
chronic cystitis; diuretic;
emmenagogue; sudorific;

digestive; anti-inflammatory.
Used as a stimulant and

disinfectant against constipation,
chronic Bright’s disease,

migraine, dropsy, rheumatic
swellings, and

infantile tuberculosis.

Quercetin, kaempferol,
myricetin, isorhamnetin, and
patuletin derivatives in their

composition.
Quinic acids, 5-O-caffeoylquinic,

catechin, epicatechin, luteolin,
apigenin, naringenin,
amentoflavone, and

their derivatives.

Antidiabetic, anti-inflammatory,
antihypercholesterolemic,
antihyperlipidemic, and
hepatoprotective effects.

Anticancer properties alleviate
cardiovascular disorders.

Anticataleptic activity alleviates
neuropathologies and improves
the mental state of individuals.

[128–134]

L. nobilis L.

In cooking recipes, it is used to
provide an aroma and a spicy

flavour to meat, fish, broths, and
vegetables. It is a component of

two typical Italian vegetable
infusions: one used as a

digestive, called “canarino”, and
one for the treatment of

respiratory aliments, called
Ricotto or Ricuotto. It is used in
treatments for gastro-intestinal

disorders, carminative, diarrhea,
hemorrhoids, stomach aches,

and kidney diseases.

Isoquercitrin, luteolin, rutin,
apigenin derivatives, catechin,
cinnamtannin B1, epicatechin

hexoside, (+)-catechin,
(−)-epicatechin,

epigallocatechin, and methyl
eugenol. Gallic; vanillic;

rosmarinic acid; ferulic acid;
coumaric acid. Costunolide;

santamarine; reynosine.

Anti-inflammatory: reduction in
lung inflammation caused by
LPS and in skin lesions and

inflammation caused by
Propionobacterium acnes.

[135–142]

M. sylvestris L.

Used to treat various ailments,
such as colds, antiseptic, colic,
constipation, cough, cystitis,

high fever, migraines, puerperal
mastitis, stomachic, wounds,

and abscesses. Leaves, flowers,
fruits, roots, shoots, and seeds

are applied in infusions,
decoctions, poultices, liniments,

lotions, baths, and gargles.

Gossypetin
3-sulphate-8-O-β-Dglucoside;

hypolaetin 3′-sulphate;
isoscutellarein

8-O-ß-D-glucuronpyranoside;
hypolaetin

8-O-ß-D-glucuronopyranoside;
3-O-β-D-glucopyranosyl-8-O-β-

D-glucuronopyranoside;
hypolaetin 4′-methyl ether

8-O-β-D-glucuronopyranoside.

Antibacterial, anti-inflammatory,
antioxidant, and

anti-inflammatory activity on
carragenin-induced edema in

rats. Antiproliferative activity on
cancer cell lines. Reduction in

nephrotoxicity induced
by gentamicin.

[11,143–155]

S. montana L.

Effective against colds, asthma,
antitussive and expectorant,

cough, bronchitis, and
inflammation of the

respiratory tract.

Rosmarinic acid, caffeic acid and
its glycoside derivatives.

Quercetin, catechin or
luteolin derivatives.

High antimicrobial potential,
together with antioxidant and

anxiolytic capacity.
Hepatoprotective effects,

protection against cardiovascular
ailments, and uses in

cancer treatment.

[156–161]

S. marianum (L)
Gaertn

Antihypertensive; stimulates
milk production in rats and

insect (flies) repellents. Used in
the treatment of liver

dysfunctions and gallbladder
disorders, laxatives, and breast

cancer treatment.

Flavonoids. Flavonolignan
complex composed of

isosilychristin, isosilybin A and
isosilybin B, silybin A and

silybin B, silychristin, silydianin,
and taxifolin

mariamide A and
mariamide B (seeds).

Antidiabetic agent
(α-glucosidase and PTP1B

inhibitory activities), used in the
treatment of chronic hepatitis,

cirrhosis, and hepatic toxic
lesions, with choleretic and

cholagogue effects.
Applied in Italy to treat liver and
gastrointestinal disorders and as

a laxative, with
anti-inflammatory, antioxidant,

cardiovascular protective,
anti-cancer, and

neuroprotective effects.

[11,162–168]
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U. dioica L.

In folk medicine, it has been
used to treat rheumatism,

arthritis, gout, eczema, anemia,
urinary tract infections, kidney
stones, hay fever, and the early
stages of an enlarged prostate.

3-O-caffeoylquinic acid;
4-O-caffeoylquinic acid;
5-O-caffeoylquinic acid;

caffeoylmalic acid;
p-coumaroylmalic acid;
quercetin O-rutinoside.

Antiviral, antimicrobial,
antioxidant, anti-inflammatory,

antiaging, and
cytotoxic/anticancer effects, as

well as benign prostatic,
hyperplasia, antidiabetic,
antiendometriosis, and

nephroprotective effects.

[169–171]

4.1. Ethnobotanical and Ethnomedicinal Relevance

A. millefolium L. (Asteraceae family) is commonly known as yarrow or milfoil. It is the
best-known and most widespread species, and has been one of the most used plants in
both folk and conventional medicine for over 3000 years [172]. A. millefolium is native to
Europe and western Asia, widespread in most temperate regions, and represented by about
85 species, which are mostly found in Europe, Asia, and North America [173]. In Bosnia–
Herzegovina, the flowers are used as vegetables or in the preparation of liqueurs [129].
The leaves can be eaten cooked or raw. As they have a slightly bitter taste and a strong
licorice-like scent, they can be added to mixed salads [6,11]. The plant is used in traditional
medicine against wounds, burns, and internal and external bleeding due to its hemostatic
properties. Almost all the pharmacological activities are attributed to the flowering tops
and leaves [174]. Several cultures use this plant for different treatments. In Italy, it is
mainly used against gastrointestinal problems but is also used also for urinary problems
such as diuretics, menstrual problems, toothache, and sedatives [89]. These properties are
attributed to the essential oils, sesquiterpenes, and phenolic compounds [92,93]. The recipe
states that three cup of Achillea tea a day, prepared with 1.5 g crude drug, equal to a 900 mg
extract, would cause an anti-inflammatory effect [90].

The Borago genus belongs to the Boraginaceae family. It comprises only five species,
B. officinalis, B. trabutii, B. longifolia, B. pygmaea, and B. morisiana, all of them native to the
Mediterranean basin. In folk medicine, most medicinal plants are used as aqueous extracts,
which provide raw materials for different medicinal purposes. B. officinalis seeds and the
aerial parts are traditionally used to treat respiratory, cardiovascular, and gastrointestinal
diseases [103]; borage juice and tea are used to treat flu, colds, injuries, and ulcers. Borage
is generally cultivated for its culinary and medicinal uses; currently, the preferentially
consumed parts are the seeds, which are marketed for their oil. Therefore, borage is
considered an oilseed crop [104]. As a vegetable, borage is included in many recipes from
different countries: in Germany, it is used for the preparation of green sauce; in the Italian
region, Liguria is an ingredient in the famous “Preboggion”; in Crete, in France, in Great
Britain, and in Spain, it is boiled and sautéed with garlic. Borago flowers are used as snacks,
salads, vinegar aromatizers, fritters, and soups in Italy, Libya, and Spain [175].
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Figure 2. Some examples of plant wild species traditionally used in the central Apennines as food 
and/or medicine: (a) A. millefolium [70]; (b) B. officinalis [72]; (c) F. vulgare [74]; (d,e) G. lutea L. subsp. 
Lutea, reprinted with permission from Ref. [176]; copyright 2008–2024, Giuliano Mereu, (f,g) L. no-
bilis, reprinted with permission from Ref. [177]; copyright 2008, Marinella Zepigi (h) J. communis, 
reprinted with permission from Ref. [177]; copyright 2008, Marinella Zepigi (i) M. sylvestris, re-
printed with permission from Ref. [177]; copyright 2008, Marinella Zepigi (j) S. montana, reprinted 
with permission from Ref. [178]; copyright 2024, Enzo de Santis (k) S. marianum; [179] (l) U. dioica 
[180]. 

Fennel (Foeniculum vulgare Mill.) is a plant belonging to the Apiaceae family and rep-
resents one of the most used plants in traditional medicine. It is a plant that grows spon-
taneously as a native aromatic plant in the large area around the Mediterranean basin, 
particularly in Israel, Egypt, and Tunisia, and on both coasts of the Adriatic Sea: Monte-
negro, Croatia, and Italy [108,112–116,181,182]. Alcoholic beverages are often enriched 
with aromatic components, such as herbs (leaves, roots, seeds, and flowers), fruits (whole 
fruit, peel, and hazel) and natural sweetening agents [117,183]. The preparation of these 
drinks dates to ancient Mediterranean history, and aromatic plants and essential oils are 
still used today [118]. In popular Italian cuisine [159], fennel liqueur, reaching 30% alcohol 
content, called “Finocchietto”, is produced by macerating the fruits of F. vulgare in alcohol 
[119]. The characteristic flavor of fennel essential oil is related to the presence of anethole, 
fenchone, and estragole, which are the main chemical components. Anethole has a sweet, 

Figure 2. Some examples of plant wild species traditionally used in the central Apennines as food
and/or medicine: (a) A. millefolium [70]; (b) B. officinalis [72]; (c) F. vulgare [74]; (d,e) G. lutea L. subsp.
Lutea, reprinted with permission from Ref. [176]; copyright 2008–2024, Giuliano Mereu, (f,g) L. nobilis,
reprinted with permission from Ref. [177]; copyright 2008, Marinella Zepigi (h) J. communis, reprinted
with permission from Ref. [177]; copyright 2008, Marinella Zepigi (i) M. sylvestris, reprinted with
permission from Ref. [177]; copyright 2008, Marinella Zepigi (j) S. montana, reprinted with permission
from Ref. [178]; copyright 2024, Enzo de Santis (k) S. marianum; [179] (l) U. dioica [180].

Fennel (Foeniculum vulgare Mill.) is a plant belonging to the Apiaceae family and
represents one of the most used plants in traditional medicine. It is a plant that grows
spontaneously as a native aromatic plant in the large area around the Mediterranean basin,
particularly in Israel, Egypt, and Tunisia, and on both coasts of the Adriatic Sea: Montene-
gro, Croatia, and Italy [108,112–116,181,182]. Alcoholic beverages are often enriched with
aromatic components, such as herbs (leaves, roots, seeds, and flowers), fruits (whole fruit,
peel, and hazel) and natural sweetening agents [117,183]. The preparation of these drinks
dates to ancient Mediterranean history, and aromatic plants and essential oils are still used
today [118]. In popular Italian cuisine [159], fennel liqueur, reaching 30% alcohol content,
called “Finocchietto”, is produced by macerating the fruits of F. vulgare in alcohol [119].
The characteristic flavor of fennel essential oil is related to the presence of anethole, fen-
chone, and estragole, which are the main chemical components. Anethole has a sweet,
anise-like note, while estragole has a bitter flavor. The composition and concentration
of the individual components depend on the geographical origin of the plant. Generally,
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southern European plants produce sweeter-tasting extracts, while plants from central and
northern Europe have more bitter flavors [112]. Fennel can also be used as an herbal tea
for stomach aches due to its antispasmodic and carminative effects, aids intestinal peristal-
sis, has a diuretic effect, acts as an expectorant, and is also recommended for respiratory
diseases [120].

Gentiana lutea L. is also known as yellow gentian, bitter root, and bitter herb. Belonging
to the Gentianaceae family, it grows wild in hilly areas of Europe as far as Japan and is
present in the traditional medicine of many countries [184], especially due to its antiseptic
and anti-inflammatory properties [185]. The roots are the most widely used part of the
plant as they are rich in bitter-tasting molecules such as amarogentin and gentiopicroside,
and they have been known for their medicinal properties since antiquity. G. lutea L. radix
is often used in the preparation of bitter liqueurs to stimulate the appetite and improve
digestion. “Amaro di genziana” is a typical liqueur produced in the Abruzzo region of
Italy. The quality of the gentian root is assessed by evaluating the main bitter principle,
gentiopicroside [186].

Gentiana is considered a pleiotropic drug as it has multiple properties, such as antimi-
crobial, antioxidant, anti-inflammatory, anti-atherosclerotic, antihypertensive, hepatopro-
tective, and antidepressant activity [125–127]. Gentiana is a plant included in the “Regional
Red Lists of the Plants” of Italy and is a protected plant (L.R. 11.9.1979 no. 45).

The Juniperus genus is a member of the Cupressaceae family [187] and has about
68 species and 36 variants of the same species. The J. communis, also called Zimbro, is
the only species of Juniperus that has been documented as existing in both hemispheres,
and has been found in the arctic regions of both Asia and North America. The Alps,
Scandinavia, Poland, northwest European lowlands, and the mountainous regions of the
Mediterranean in Europe are home to more varieties [188,189]. The considerable variety
in the morphological traits and chemical composition of secondary metabolites can be
traced to the vast geographical dispersion of the species [187]. Berries have a fragrant, spicy
aroma and a slightly bittersweet flavor. Mature, dark berries are used in cuisine to season
sauces and stuffing, and in pickling meats, and are also used to flavor spirits like gin or
grappa. Juniperus has been traditionally used in many countries as a diuretic, antiseptic,
and digestive [131].

Laurus nobilis L. is a member of the family Lauraceae, which comprises 32 genera
and about 2000–2500 species [141]. It is cultivated in temperate areas of the world, mainly
in south Europe and the Mediterranean basin [190,191]. It is also known as laurel, bay
laurel, or sweet bay, and is the laurel tree featured Greek and Roman mythology [142],
where it was considered a symbol of peace and a sign of victory in both military and sports
competitions. Laurel is used in cooking as a flavoring and provides a spicy taste for meat,
fish, broths, and vegetables. It is a component of a typical Italian plant infusion used as a
digestive, named “canarino” [135]. Based on the classifications of diseases and remedies
in ethnomedicine and ethnopharmacology suggested by Staub et al. [136], the major uses
of L. nobilis include treatments for gastro-intestinal complaints, including indigestion,
constipation, and flatulence; it is also used for diarrhea, hemorrhoids, and stomach aches.
The leaves are traditionally used to reduce blood glucose levels and for fungal and bacterial
infections [136]. This species is also reported to treat kidney diseases and coughs, colds, flu,
and sore throats. Laurel leaves are one of the main ingredients of a preparation used for
the treatment of respiratory ailments that are often called “Ricotto” or “Ricuotto”. They
still used in this way today and can be found in the traditional phytotherapy of central and
southern Italian regions [135]. Essential oils or fumigations with bay leaves are also used
as repellents and insecticides against home insects and crop pests [138].

Malva sylvestris L. is a flowering plant belonging to the Malvaceae family. It is native
to north Africa, southwest Asia and southern Europe (Mediterranean area), although it is
widespread worldwide as a weed [192]. Its edible uses are found in popular gastronomy;
the young leaves are eaten raw in salads or, together with the sprouts, are used in soups and
as boiled vegetables [143]. Traditionally, the plant has been used to treat various ailments,
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such as coughs, colds, diarrhea, dysentery, hypertension, and skin diseases [11]. The
Greeks and Romans noted its emollient and laxative properties, and several ethnobotanical
surveys conducted in Europe highlight the potential of this neglected local resource, whose
use is now on the brink of disappearance [143]. Roots, shoots, leaves, flowers, fruits,
and seeds are applied in infusions, decoctions, poultices, liniments, lotions, baths, and
gargles [98,149–155]. Also known as mallow, it is considered to have spasmolytic, lenitive,
and choleretic effects. It is also used as a bronchondilator, an expectorant, in acne and skin
care, and as an antiseptic, emollient, and demulcent [153–155].

Satureja montana L., known as winter savory, is a plant belonging to the Lamiaceae
family. This family includes approximately 236 genera and more than 6000 species, some
of them important medicinal plants [193]. The Satureja genus is mainly distributed in
the Mediterranean area. Reports have been registered in Italy [194–196], Spain [197],
France [198], Montenegro [199], Slovenia [200], Croatia [201], Serbia [202], Bosnia, and
Herzegovina [203]. Winter savory is often used in Mediterranean recipes, and, recently,
the use of its essential oil as a natural antibacterial agent in food packaging has been
reported. [204,205]. The enrichment of olive oil with winter savory essential oil (EO)
has led to low values of lipid oxidation and a higher concentration of antioxidants (total
phenols and pigments) [206]. Winter savory dried leaf is used as an herbal tea [207]; this
is an aqueous preparation that is extemporaneously prepared for oral administration for
therapeutic purposes. In some regions of Italy, it is used for nervous gastric pains, bloating,
and vomiting [161].

Silybum marianum L. Gaertn. (milk thistle) is a medicinal plant widespread in southern
Europe, northern Africa, and parts of southern Russia, and found in North and South
America and southern Australia. The aerial parts of the plant are edible and are cooked
like the artichoke [208]. In Italy, its use has been reported in the treatment of liver and
gastrointestinal disorders and as a laxative [168]. The leaves, unripe fruits, roots, and the
bark are used in the treatment of gastroenteritis, diarrhea, and dysentery, while the leaves
are applied on sores and for hemorrhoidal pains [11]. The leaves also act as a choleretic
and cholagogue [74] and the Greeks have suggested that S. marianum could be used to treat
gallstones and allergic coughs, and for “blood purification” [164].

Urtica dioica L. (stinging nettle) is an herbaceous perennial flowering plant growing
in temperate and tropical wasteland areas around the world. It grows 1–2 m high and
produces pointed leaves and white to yellowish flowers. Nettle has a well-known reputa-
tion for giving a savage sting when the skin touches the hairs and bristles on the leaves
and stems [169]. U. dioica is certainly one a primitive vegetables that has been consumed
since time immemorial. For a long time, in folkloric medicine, it has been used to treat
rheumatism, arthritis, gout, eczema, anemia, urinary tract infections, kidney stones, hay
fever, and the early stages of an enlarged prostate [169,209].

4.2. Bioactive Phytochemicals

Many secondary metabolites were isolated from each plant; Figures 3 and 4 show some
of the most significant natural products from the polar, apolar, and essential oil (EO) extracts.

The MeOH extract of Italian A. millefolium (Vercelli, Italy) was shown to contain chloro-
genic acid, 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-
dicaffeoylquinic acid, and phenolic compounds like rutin, luteolin 7-O-glucoside, apigenin
4′-O-glucoside, apigenin 7-O-glucoside, and luteolin 4′-O-glucoside [91]. Major volatile
compounds found in the Italian A. millefolium include the following: α-pinene, 17.2%;
sabinene, 3.9%; β-pinene, 2.1%; (E)-methyl isoeugenol, 8.8%; β-bisabolene, 16.6%. Achillea
oils were shown to have antifungal activity [210] and cytotoxicity activity against cancer
cells [211]. Other compounds, like alkaloids, choline, achillinin A, azulene, chamazulene,
salicylic acid, artemetin, lignans, tannins, and flavonoids, were found in this plant [172,174].
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An analysis of the aerial parts (methanolic extracts) of B. officinalis from Algeria
revealed the presence of many flavonoids, rosmarinic acid, gallic acid, and chlorogenic acid,
while, in the essential oil, spathulenol was the main component [212]. A lignane derivative,
officinalioside, was isolated from the polar extract of borage’s aerial parts from Egypt, along
with megastigmane derivatives (actinidioionoside, (6S,9R)-roseoside, crotalionoside C), and
kaempferol 3-O-β-D-galactopyranoside [213]. The RP-HPLC analyses of the methanolic,
ethanolic, and aqueous extracts of Borage flowers from Iran confirmed the presence of
phenolics (gallic acid; pyrogallol; salicylic acid; caffeic acid), flavonoids (myricetin; rutin),
and isoflavonoid (daidzein). The EO from borage flowers was also prepared, and the
major individual fatty acids were α-linolenic, stearidonic, palmitic, linoleic, and γ-linolenic
acids [214]. As a member of the Boraginaceae family, B. officinalis is also known for its
pyrrolizidine alkaloid content and its toxic properties [215]; oleuropein and litospermic acid
were also identified in the aqueous extract of the plant [101]. The seed oil of B. officinalis is
considered one of the richest natural sources of γ-linolenic acid (GLA, 18:3 n-6), ranging
from 20 to 23% of the total fatty acid composition. GLA displays interesting medicinal
properties, such as anti-inflammatory and anti-cancer properties, and can be used as an
emollient of the skin and mucous membranes [104]. The main polyunsaturated fatty acids
that were identified were linoleic acid (18:2 n-6), α-linolenic acid (18:3 n-3), γ-linolenic acid
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(18:3 n-6, GLA), and stearidonic acid (SDA, 18:4, n-3), which account for approximately
70% of the polyunsaturated fatty acids [216].
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Figure 4. Some natural products from wild plants: malvidin from M. sylvestris; gentisin from G. lutea;
scopoletin from U. dioica; costunolide from L. nobilis; achillinin A from A. millefolium; taxifolin from
S. marianum; officinalioside from B. officinalis; amentoflavone from J. communis; rosmarinic acid from
F. vulgare.

In general, the main ingredients of F. vulgare EOs are anethole (40–70%), fenchone
(1–20%), and estragole (2–9%). Trans-anethole is also a common main component of
fennel populations, especially cultivated populations. Alpha-pinene, camphene, methyl
chavicole, and limonene are also presented in essential oils [112,115,217,218]. Differences
in the quality of the essential oils’ composition have been observed. These differences
may be caused by different chemotypes, phenological stages, drying conditions, distil-
lation modes, and geographic and climatic factors [115,181]. The main composition of
fennel essential oil from mid–southern Italy includes α-pinene (33.75%), β-pinene (5.13%),
myrcene (5.25%), 3-carene (6.12%), γ-terpinene-like (9.45%), estragole (25.06%), and (E)-
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anethole (5.30%) [113]. Flavonoids and some important hydroxycinnamic acids are the
most abundant polyphenols in fennel waste. Methanolic fennel seed extracts from Saudi
Arabia were shown to contain vanillic acid, o-coumaric acid, and rosmarinic acid. Among
the flavonoids, kaempferol, resveratrol, and rutin were found in higher concentrations,
followed by myricetin, catechin, and quercetin [111]. In an aqueous extract of F. vulgare
waste, 24 phenolic compounds were found, and 4-O-caffeoylquinic acid (4CQA) had the
highest concentration of 1949 mg/g and 5824 mg/g of total polyphenols [110]. These
exert evident antioxidant activity and other important biological properties, such as anti-
inflammatory and anti-tumor activities, as well as the ability to modulate cell signaling and
gene expression in different experimental models [5], making them good candidates for
nutraceutical applications [219]. Complex trimers of stilbenes diglucosides were isolated
from polar extracts of the fruit of F. vulgare, which were tested for their in vitro antioxidant
activity [142].

Several secondary metabolites have been identified from G. lutea, such as iridoids,
secoiridoids, xanthones, and flavones, which are distributed in different concentrations
between the aerial parts and rhizomes. Gentiopicroside and stemoside were found to be
abundant in the roots; iso-vitexin predominated in the leaves, and the amount of isogentisin
was found to be ten times higher in the flowers than in the leaves. [220–223]. Iridoids and
secoiridoids are a broad group of cyclopentane [c] pyran monoterpenoids found in the
Gentiana genus, particularly in the leaves of G. lutea. Loganic acid, sweroside, amarogentin,
gentiopicroside, swertiamarin, and their derivatives belong to these classes of compounds.
They have been shown to have a large variety of pharmacological properties, including
hepatoprotective, antitumor, and anti-inflammatory effects. Isovitexin, isosaponarin, isoori-
entin, and its glycosides are the main flavonoids isolated from Gentiana and known for
their antioxidant and anti-inflammatory activities [224]. Xanthones such as isogentisin,
gentisin, mangiferin, and gentiol are compounds of great interest due to their antibacterial,
antifungal, hepatoprotective, and antioxidant activity. They have mainly been isolated in
roots as mono- or polymethyl ethers or as glycosides. [225–228].

J. communis species contain a complex mixture of secondary metabolites that are respon-
sible for both organoleptic characteristics, such as aroma and color, and beneficial health
effects. These metabolites can be divided into several major categories, such as carotenoids
and chlorophylls, phenolic compounds, and Volatile Organic Compounds (VOC’s) [229].
Generally, most phenols reported in the Juniperus plant include caffeoylquinic acids with
their corresponding derivatives, amentoflavone, catechin, epicatechin, quercetin, and their
derivatives (see Table 2) [132]. Flavonols and flavones have been shown to act as radical
scavengers and are associated with anti-inflammatory, antimicrobial, anti-proliferative, and
pro-apoptotic properties. Furthermore, flavanones acting in synergy with flavones can
inhibit the development of estrogen-dependent colon tumors. [133]. Several anthocyanins
have also been isolated in juniper berries and, generally, occur in the form of cyanidin,
delphinidin, peonidin, and pelargonidin glycosides. Anthocyanins also act as radical scav-
engers and exhibit anti-inflammatory activity, interacting with related pathways, increasing
antioxidant defenses, and diminishing proinflammatory biomarkers, thus preventing the
occurrence of many oxidative-stress-related disorders [130]. The chemical composition of
the essential oil of J. communis differs according to the part of the plant that is extracted
(berries, leaves, flowers) and the berries’ stage of ripening [134].

L. nobilis leaves contain flavonoids such as isoquercitrin, luteolin, and rutin, and
apigenin derivatives and flavonols such as catechin, cinnamtannin B1, epicatechin hex-
oside, (+)-catechin, (−)-epicatechin, epigallocatechin, and methyl eugenol. Many phe-
nolic acids have been detected: rosmarinic acid, caffeic acid, 3,4-dihydroxybenzoic acid,
2-hydroxycinnamic acid, and others (see Table 2). Several cyclic terpenoids were found
in L. nobilis, such as gazaniolide, spirafolide, reynosin, costunolide, santamarine, and
lauroxepine [139]. The chemical composition of the EO from laurel leaves has been an-
alyzed in different studies, and 1,8-cineole was found to be the major component [139].
Other compounds were present in appreciable amounts, such as camphene (0.05–13.4%),



Nutraceuticals 2024, 4 207

linalool (0.37–47.21%), methyl eugenol (3.3–7.8%), D- limonene (21.6–32.4%), sabinene
(0.34–14.05%), neoiso-isopulegol (2.5%), eugenol (0.22–2.47%), γ-terpinene (0.23–3.48%),
α-pinene (1.39–8.92%), β-pinene (3.0–6.22%), and terpinen-4-ol (1.21–5.2%). α-terpinyl
acetate (5.9–15.33%) and α-humulene (0.51–8.58%) were major constituents [141,230–233].
Anthocyanins were found in berries from L. nobilis with cyanidin 3-O-glucoside (41%) and
cyanidin 3-O-rutinoside (53%) [139]. The main compounds of berries’ EO were 1,8-cineole,
α-phellandrene, β-pinene, α-pinene, α-terpinyl acetate, sabinene, camphene, germacrene
D, and β-caryophyllene [139,141]. Several megastigmane and phenolic components were
also isolated from polar extracts of L. nobilis leaves that exhibited anti-inflammatory activ-
ity [142,234].

Many phenolic compounds were detected in extracts from various parts of M. sylvestris. To-
tal phenolic compounds were identified in leaves (386.5 mg g−1), flowering stems
(317.0 mg g−1), flowers (258.7 mg g−1), and immature fruits (56.8 mg g−1) [143]. The primary
components of the leaves were identified as gossypetin 3-sulphate-8-O-β-D-glucoside (gossypin)
and hypolaetin 3′-sulphate, followed by isoscutellarein 8-O-β-D-glucuronpyranoside, hypo-
laetin 8-O-β-D-glucuronopyranoside, 3-O-β-D-glucopyranosyl-8-O-β-D-glucuronopyranoside,
and hypolaetin 4′-methyl ether 8-O-β-D-glucuronopyranoside [145,235,236]. Anthocyanins like
malvin (malvidin 3,5-glucoside), found only in flavylium cationic form, were mostly identified
in flowers [237–240]. Oenin (malvidin 3-O-glucoside), malvidin, delphinidin, delphinidin-
3-O-glucoside, kaempferol derivatives, quercetin, apigenin, myricetin, and genistein were
detected in the flowers, and the total anthocyanin content was found to be 0.42–7.3% of the
dry weight [239,241,242]. The leaves of M. sylvestris contain γ-sitosterol, stigmasterol, and
campesterol [243]. Vernolic acid, linoleic acid, palmitoleic acid, sterculic acid, myristic acid,
lauric acid, malvalic acid, oleic acid, and palmitic acid are the primary fatty acids found in seed
oil [244,245]. Sesquiterpenes, nor-terpenes, monoterpenes, and diterpenes were also found in
M. sylvestris [246]. Linalool, linalool-1-oic acid, and linalool-2-oic acid were detected in aqueous
extracts from fresh leaves, along with several megastigmane derivatives [247].

S. montana (winter savory) is used in cooking due to its distinctive aroma, which is
related to the presence of essential oils. The EO yield from the fresh plant can vary be-
tween 0.12 and 0.7% [197,203,248,249], with the volatile fraction mainly being characterized
by thymol and carvacrol (oxygenated monoterpenes), indicators of antimicrobial activ-
ity [250,251], associated with open-chain and/or monocyclic monoterpenes that exhibit
an allelopathic effect [252]. Carvacrol has been classified as Generally Recognized As Safe
(GRAS) and approved for use in food [253], while linalool and p-cymene (non-oxygenated
monoterpenes) have been shown to have analgesic effects [204]. Polar extracts contain
variable amounts of secondary metabolites, such as phenolic acids, phenylpropanoids,
fatty acids, tannins, and tocopherols [254,255]. The main constituents of the phenolic acid
components were caffeic acid (78.17 µg g−1) and gallic acid (15.36 µg g−1). Quercetin,
p-coumaric acid, chlorogenic acid, and ferulic acid were represented at concentrations of
2.36, 1.59, 1.36, and 0.50 µg g−1, respectively [255].

From S. marianum, a typical extract, namely silymarin, is used. This is a mixture of
different flavonolignans, and, at present, the term “silymarin” is indicative of an extract of
S. marianum that is rich in these compounds. It is composed of silicristin, isosilybin A and
B, dehydroxylysilybin and silybin, and flavonoids such as taxifolin, with silybinin being
the most active. Silybinin consists of two diastereoisomers: silybin A and silybin B [256].
Flavonolignans have been isolated from the seeds and fruits and are the biologically
active constituents of the plant; to date, 23 compounds have been identified from this
species [163]. Several other minor flavonolignans have also been found: silychristin,
isosilychristin, and silydianin, with several flavonoids, such as taxifolin [167], and 3′-O-
methyltaxifolin and dihydrokaempferol from plant seeds [257]. Polyphenolic compounds
such as hydroxycinnamic acids (caffeic, chlorogenic, ferulic, and cynarinic acids) and
flavonoids (apigenin; catechin; luteolin; luteolin-7-O-glucoside; quercetin) have also been
identified [257]. The oil fraction is known to be rich in fatty acids, palmitic (C16:0), oleic
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(C18:1) and linoleic (C18:2) organic acids, sterols (cholesterol, campesterol, and stigmasterol)
and tocopherol (vitamin E), triacylglycerols, and phospholipids.

The active chemical part of U. dioica includes several compounds from the lipophilic
and hydrophilic extracts of different parts of the plant [170]. In particular, the com-
monly known phytochemical components from U. dioica are flavonoids, tannins, volatile
compounds, and sterols [171,258,259]. Hexahydrofarnesyl acetone, carvacrol, carvone,
naphthalene, copaene-8-ol, anethol, geranyl acetone, β-ionone, α-ionone, and phytol are
characterized as the main components of U. dioica essential oil [260,261]. Rhizomes of
U. dioica contain other biologically active compounds, such as scopoletin, sterols, fatty
acids, polysaccharides, and isolectins [262]. Extracts of U. dioica have been studied for
their various potential therapeutic applications: antitumor, antimicrobial, analgesic, and
anti-inflammatory activity has been evidenced. Extracts showed antioxidant properties,
and experimental tests proved that the constituents of U. dioica may have neuroprotective
effects [263].

4.3. Evaluation of In Vitro Antioxidant Activity of Selected Edible Wild Plants

The antioxidant activity of A. millefolium was tested by different assays. DPPH scav-
enging test of MeOH extract showed an IC50 = 1.18 mg mL−1; total antioxidant capacity
(TAC) based on Cu (II) reduction and lipid peroxidation measurements (TBARS/LDL)
were also calculated [91]. In the same study, Total Polyphenol Content (TPC) for the Italian
plant was determined by Folin–Ciocalteau assay, with a result of 281.7 mg g−1 reported
as mEq of Gallic acid [91]. Dias et al., in 2013, reported the results of DPPH, TBARS, and
inhibition of β-carotene bleaching tests [264]. Mohammed et al., in 2023, described the an-
tioxidant activity of the essential oils using TAA, DPPH, FRAP, and Metal Chelating Assay
(MCA) [211], and the Total Flavonoid Content (TFC) of the Iranian plant was measured
using the standard curves of Rutin and reported as mg per g dry weight [265].

B. officinalis seed extracts from Poland were assessed for their total polyphenol content
using the Folin–Ciocalteau method, followed by an evaluation of antioxidant potential
using the FRAP assay and the free radical method with the DPPH reagent. The flavonoid
content in borage seeds was much lower than that observed in borage flower and leaf oil;
however, the antioxidant activity of the seed meal infusion was high [266].

The antioxidant activity of essential oil extracted from different parts of F. vulgare was
evaluated, showing that the leaves have a better EC50 (12.37 mg mL−1 at 60 min incubation)
than seeds and umbels [267]. A similar study conducted on Tunisian EOs from fennel,
characterized by their richness in estragole, revealed an important antioxidant activity [182],
while the antioxidant activity of Tajikistan fennel EO was moderate. EC50 values were
between 30 and 210 mg L−1 [268]. Finally, the Italian wild cultivar of fennel has a better
antioxidant activity in essential oil when compared to cultivated fennel [269]. The total
phenolic content (TPC) of the methanolic fennel seed extract (FS) was 70.42 mg gallic acid
equivalent (GAE) g−1; Total Flavonoids (TFC) and Total Flavonols (TFL) were 4.83 and
4.93 mg quercetin equivalent (QE) g−1, respectively. Antioxidant activity was 9.36 µmol of
Trolox equivalent (TE) g−1 [111].

The most studied part of G. lutea is the roots due to the presence of characteristic secoiri-
doid glucosides. G. lutea root’s antioxidant activity was evaluated through various assays,
including total phenolic content (TPC), DPPH, ferric-reducing antioxidant power (FRAP),
and oxygen radical absorbance capacity (ORAC). Both methanol and ethanol produced
the extracts with the highest activity, but methanol is toxic and not suitable for human
use. Ethanol is safe and environmentally friendly and should be the first choice when
producing extracts from natural resources. pH also plays a significant role in antioxidant
activity, with higher activity observed under acidic conditions while increased pro-oxidant
action was observed under alkaline conditions [125]. Gentiopicroside and stemoside were
not directly involved in antioxidant activity, but mass spectrometry data indicated that
antiradical scavenging activity is probably associated with xanthones’ glycosides [226].
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Furthermore, in vivo studies have evaluated the antioxidant activity of G. lutea root extract
against ketoconazole-induced testicular damage in rat models [270].

In vitro tests showed that the J. communis ethanolic extract of berries showed a half-
maximal inhibitory concentration (IC50) of 1.42 µg mL−1. Berries’ methanolic extracts and
essential oils also exhibited the capacity to scavenge DPPH•, ferric species, and β-carotene
species. Ethanolic extracts of J. communis berries also showed the ability to scavenge
peroxyl radicals and reduce power potential [271]. The remarkable antioxidant capacities
displayed by J. communis extracts are indeed linked to their phenol and terpenoid content,
in particular, quercetin, which contains the flavan-3-ol system, with hydroxyl groups in
the ‘key positions’ of its structure (see Section 3.1), making it a potent radical scavenger.
Regarding the antioxidant activity of terpenes, it has already been reported that α-pinene,
p-cymene, limonene, and linalool possess notable capacities to block lipid peroxidation and
to avoid deoxyribose degradation [272].

L. nobilis L. is a source of monoterpenes and other antioxidant compounds, such
as tocopherol. The ultrasound-assisted extract (UAE) of dried laurel leaves from Brazil
presented total phenolic compounds (TPC) of 47 mg GAE g−1 per extract, and the hydrodis-
tillation extract (HD) shows a TPC of 22 mg GAE g−1 extract and EC50 (35 ± 1 µg mL−1).
Although phenolic compounds are the primary natural antioxidants, they are not the only
class of substances that contribute to the antioxidant performance of natural products,
which explains the good EC50 results obtained for the HD extract, since this extract does
not possess α-tocopherol [230]. A potent suppression of lipid peroxidation was observed in
aqueous and ethanolic extracts, with 96.8% and 98.6% inhibition rates, respectively, when
using a linoleic acid emulsion at a concentration of 60 µg mL−1 [139].

M. sylvestris contains phenolic compounds in its leaves and flowers, which may be
responsible for the plant’s antioxidant activity [273]. Several tests have also determined the
antioxidant properties of the plant. In the DPPH test, the aqueous extract at concentrations
of 20 g mL−1 and 100 g mL−1 showed scavenging activity by decreasing the DPPH radical
by 24% and 30%, respectively. The 0.1 mg mL−1 aqueous extract demonstrated 87%
antioxidant activity when tested using the ß-carotene-linoleic acid assay. Antioxidant
activity was also found in the EO of M. sylvestris (77% antioxidant activity) [151,274].
Overall, the antioxidant activity in the seed extracts was moderate to poor [275–277].

Due to the presence of polyphenolic compounds, ethyl acetate fractions of S. montana
from MeOH extract and the total EO demonstrated radical scavenging activity via DPPH
and ABTS assays. A spray-dried hydroalcoholic extract of winter savory, in combination
with 10% maltodextrin as a carrier and drying agent, also showed the same activity [278].
EOs show less antioxidant activity than aqueous or ethanol extracts; this is due to the
presence of carvacrol and sesquiterpenes that do not give rise to antioxidant activity [279].

Several studies on antioxidant activity were carried out on methanol, ethanol, and
aqueous extracts and EO. However, many papers agree that the remarkable antioxidant
properties of S. marianum are significantly related to its flavonolignan content [165].

The aqueous extract of U. dioica leaves exhibited antioxidant activity, achieved by the
DPPH radical scavenging (IC50 = 16.93 ug mL−1), reducing power (EC50 = 30.07 ug mL−1),
and polarographic (HPMC = 243.2% mL−1) assays [259]. Based on these results, U dioica
extracts have been proposed as an antioxidant and as a source of anti-ageing phytochemicals
for cosmetic applications [280]. A comparative study by Carvalho et al. demonstrated that
the antioxidant properties of U. dioica are greater than those observed for the aerial parts of
other nettle species [171].

5. Therapeutic Potential of Selected Edible Wild Plants
5.1. Anti-Inflammatory Activity

A. millefolium has shown anti-inflammatory activity. It is used in the treatment of
gastrointestinal and hepato-biliary disorders and to treat skin inflammation. This activity
is probably due to the presence of sesquiterpenes, known for their anti-inflammatory
activity through the inhibition of arachidonic acid metabolism. Antiphlogistic activities
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have been observed in Yarrow fractions enriched with flavonoids and di-caffeoylquinic
acids. The anti-inflammatory activity of this extract is ascribable to the inhibition of human
neutrophil elastase, which is known to be associated with the inflammatory process. The
in vitro anti-inflammatory activity was also established through the inhibition of matrix
metalloproteinases (MMP-2 and -9). These proteases are involved in psoriasis, atopic
dermatitis, and inflammatory bowel diseases such as ulcerative colitis and Crohn’s disease.
Azulenes, which make up about half of the chemical compounds in yarrow, are a potent
anti-inflammatory agent [90].

The seed oil of B. officinalis has shown powerful anti-inflammatory and analgesic
effects. Seed oil was tested against carrageenan-induced inflammation and compared with
indomethacin, a known anti-inflammatory drug. The analgesic effect of Borago seed oil was
tested in mice using two assays: the tail immersion test, which is used to determine the
central analgesic effect, and the writhing test, which is used to determine the peripheral
analgesic effect in mice [94]. Borage extracts have exhibited anti-inflammatory properties,
as observed in the methanolic extracts, which result in a potent inhibition of collagenase
and elastase activity. This characteristic underlines the anti-ageing properties, meaning
that borage extracts are a source of valuable bioactive compounds with protective effects
on skin cells [97].

The oral administration (200 mg kg−1) of F. vulgare fruit methanolic extract exhibited
inhibitory effects against acute and subacute inflammatory diseases and type IV allergic
reactions and showed a central analgesic effect. At the same time, the administration
of methanolic extracts of F. vulgare led to an increase in plasma SOD and catalase while
MDA decreased. These data seem to demonstrate that the use of methanolic extracts from
fennel seeds is effective in relieving inflammation [281]. Extracts and pure compounds
from F. vulgare fruits showed antioxidant activity in vitro (DPPH, TBARS); the antioxidant
activity was higher in the pure compounds than the crude extracts but was weaker than
the reference compound, i.e., quercetin [282].

G. lutea L. has been used to prevent or treat inflammatory disorders for centuries.
In vitro studies have shown that G. lutea root extracts have anti-inflammatory properties,
with the rate of enzyme inhibition increasing with time. In vivo studies have also demon-
strated that apolar and alcoholic extracts of G. lutea rhizomes have anti-inflammatory
activity in different animal models [127].

The anti-inflammatory effects of J. communis have already been evaluated by in vitro
and in vivo studies. The anti-inflammatory activity is closely associated with the presence of
phenolic compounds and terpenes, such as amentoflavone, α-pinene, 1-octanol, and linalool.
These compounds have been shown to inhibit inflammatory cytokine and prostaglandin
expression [125]. Recently, loganic acid and gentiopicroside were tested in silico using an
innovative technique named Inverse Virtual Screening (IVS) to highlight putative partners
among a panel of proteins involved in inflammation and cancer events [283].

L. nobilis extracts have shown the ability to reduce edema caused by chemicals in
the ears and paws and lung inflammation caused by LPS. Bay leaf extracts also induced
a reduction in skin injuries and inflammation caused by Propionobacterium acnes [140].
Megastigmane and phenolic components able to inhibit nitric oxide production were
isolated from polar extracts of L. nobilis leaves [142], and it has been proven that lauroside
B induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation [234].

Numerous studies have investigated the anti-inflammatory properties of M. sylvestris [284].
Their results claim that malvidin 3-glucoside, isolated from M. sylvestris leaves, is mainly
responsible for the anti-inflammatory action on the skin. In carrageenan-induced oedema in rats,
the anti-inflammatory properties of creams with various concentrations of mallow extract were
evaluated. A 5% malva cream effectively reduced carrageenan-induced edema when compared
to placebo therapy. This effect was greater than that of a cream containing 2% indomethacin,
used as a positive control and a potent non-selective inhibitor of cyclo-oxygenase-2 (COX-2) [148].
The beneficial component rutin was isolated in a chemical investigation of M. sylvestris extract.
This flavonoid is widely used in plant-based beverages, cuisine, and folk medicine [285]. Rutin
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has been shown to be an anti-inflammatory therapeutic candidate, with a novel mechanism for
selective COX-2 inhibition [286].

Methanolic extracts from S. montana were evaluated for their anti-inflammatory activ-
ity using COX-1, COX-2, 5-LOX, and MPO inhibition assays. The alcoholic extract showed
both a powerful anti-inflammatory activity and a strong antioxidant activity [287].

Silymarin extract from S. marianum showed an important anti-inflammatory effect
in carrageenan-induced rat paw oedema, inhibiting the release of elastase proteinases
from neutrophils as a response to normal and chronic inflammation [165]. The common
molecular targets of S. marianum are the multiple signaling pathways associated with
oxidative stress and inflammation. In addition, flavonolignans are potential PPARγ and
ABCA1 agonists, PTP1B inhibitors, and metal chelators [288].

5.2. Anti-Microbial Activity

A. millefolium extracts show antimicrobial activity. They are used as an infusion for
respiratory tract infection [172], against flu as an antiseptic [174], to treat gastrointestinal
infections, and as an anti-acne [90]. Many papers reported the antifungal activity of the
essential oils on various fungal strains, with an MIC ranging from 0.32 to 1.25 µL mL−1

against dermatophyte strains [210]. Vitalini et al. 2011 reported luteolin 7-O-glucoside and
apigenin 7-O-glucoside as the most active compounds against the Plasmodium falciparum
chloroquine-resistant strain (IC50 of MeOH extract = 44.6 µg mL−1) [91].

In B. officinalis flower extracts, high (methanolic extract), moderate (ethanolic extract),
and weak (aqueous extract) antimicrobial activity was reported [214]. Flavonoid-rich
extracts and EO Borago aerial parts were tested on bacteria isolated from respiratory in-
fections of clinical patients. Multiresistant hospital isolates were found to be sensitive
to the flavonoid extracts and to the essential oil; interestingly, Escherichia coli (resistant),
Streptococcus pneumoniae (sensitive to amoxicillin), and Klebsiella pneumoniae (sensitive to
Imipeneme) were sensitive to flavonoids [289].

Fennel essential oils showed extensive antibacterial activity against Gram-positive
bacteria and fungi such as Aspergillus niger. Gram-negative bacteria, particularly E. coli, are
less sensitive to fennel essential oils, as well as Listeria innocua CECT910 and Pseudomonas
fluorescens [290–292]. An antimicrobial role against Giarda duodenalis has been described
by the trans-2,4-undecadienal (IC50 72.1 µg mL−1). However, it was not active as the
positive control metronidazole (IC50 0.5 µg mL−1) against the parasite [293]. The activity
of the essential oil of F. vulgare also varied considerably between Gram-negative and
Gram-positive bacteria. This low antimicrobial activity also seems to be related to strain
susceptibility and the essential oil’s composition, which is poor in components such as
carvacrol and thymol, which are usually associated with higher antimicrobial activity [294].
Other authors specifically describe controversial antimicrobial properties obtained using
different extraction methods [295].

Interestingly, the experiment was designed to evaluate the effectiveness of fennel
essential oil in controlling Fusarium solani infections on Vicia faba L. The growth of F. solani
was inhibited both in vitro and in vivo, allowing for a reduction in disease incidence by
50%. The essential oil acted on both the fungus and the plant as an enhancer of defense
reactions [296].

In vitro studies have shown that Pseudomonas aeruginosa, Bacillus subtilis, Proteus
mirabilis, Staphylococcus epidermidis, and Candida albicans were the most sensitive to Gentiana
leaf extract, with MIC values between 0.12 and 0.31 mg mL−1 [220,297,298]. The flower
extract was not very active against the tested microorganisms, with the most sensitive
being Salmonella enteritidis (MIC 0.15 mg mL−1). Both leaf and flower extracts showed
an antitubercular effect against Mycobacterium bovis. Tests performed on isolated pure
compounds showed a broader spectrum of activity; gentiopicrin was active against E. coli
(0.12 mg mL−1), while it had a moderate effect against Staphylococcus aureus and Salmonella
typhimurium (0.15 mg mL−1). Xanthone isogentisin was particularly active against M. bovis,
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while moderate activity was observed against the gram-negative E. coli and P. aeruginosa
(0.15 mg mL−1) and the gram-positive Micrococcus luteus (0.15 mg mL−1).

A different biological activity was observed in J. communis extracts. In phenol-rich
extracts, antiparasitic action dominates, whereas essential oils exhibit antimicrobial ef-
fects. [129]. Generally, extracts with a more balanced composition in their components
showed greater antibiotic effects against multiresistant hospital isolates belonging to the
species S. aureus, Serratia marcescens, Enterobacter cloacae, K. pneumoniae, P. aeruginosa, Acine-
tobacter baumanii, and Listeria monocytogenes, as well as C. albicans. The use of essential oils
obtained from J. communis biomass, without differentiating each of its parts, showed remark-
able inhibitory activity against E. coli at concentrations between 1.25 and 2.5 mg mL−1 [299].
Notable inhibitory activities were observed against other Gram-negative bacteria, such
as P. mirabilis, K. pneumoniae, P. aeruginosa, and Morganella morganii; however, only slight
activity against L. monocytogenes and methicillin-resistant S. aureus was observed [130]. The
different effects against various pathogenic fungi obtained using the EOs of Juniperus are
believed to be related to the composition of the EOs, particularly the ratio of sesquiterpene
hydrocarbons and oxygenated aromatic hydrocarbons [300].

Since ancient times, L. nobilis has been an important ingredient in traditional medicine
for the treatment of different infectious diseases [301]. L. nobilis EO, seed oil, and a methano-
lic extract of seed oil showed antibacterial activity in vitro. However, the methanolic extract
of the seed oil has higher antibacterial activity than the EO. L. nobilis was detected to
have EO activity against S. aureus, B. subtilis, and Staphylococcus intermedius. One of the
main constituents of bay leaf is 1,8 cineole, which may be responsible for its antibacterial
activity. The antifungal activity of EO from leaves was examined on seven strains of plant
pathogenic fungi in vitro at different concentrations. The highest antifungal activity was
obtained against the fungus Botrytis cinerea at a concentration of 250 mg mL−1 [302]. Bay
leaf EO has shown efficacy against a large panel of Gram-negative and Gram-positive
bacteria and three fungi [303].

M. sylvestris exhibited moderate activity against selected microorganisms associ-
ated with typical antibiotics [304]. De Souza et al. showed the antimicrobial activity
of M. sylvestris aerial part extracts against C. albicans, S. aureus, M. luteus, B. subtilis, S. epi-
dermidis, E. coli, and Saccharomyces cerevisiae. Their study reported that ethanol extracts of
M. sylvestris were active against P. aeruginosa, B. subtilis, and E. coli, whereas methanol ex-
tracts only showed activity against S. cerevisiae [305]. The antimicrobial activity of ethanolic
extracts of the leaves and flowers against Helicobacter pylori strains ranged from moderate to
low [306]. Other studies showed that the seed oil inhibited the growth of all tested microor-
ganisms except the Gram-negative bacteria [307]. The only preparation of M. sylvestris that
demonstrated substantial antimicrobial activity against fungi was an aqueous extract of the
leaves. The aqueous extract prevented the growth of colonies of the Fusarium culmorum,
Aspergillus candidus, A. niger, and Penicillium species [308].

S. montana EO (SEO) was demonstrated to have antimicrobial activity in several
application fields, ranging from veterinary medicine [309,310] to plant pathology, with
phytogenic bacteria such as Xanthomonas euvesicatoria [311]. In general, gram-positive
bacteria proved to be more sensitive to EO treatment, while gram-negative bacteria were
less sensitive—even more resistant yeasts and fungi [312,313]. The impact of SEO is
certainly effective and important, but the disposal problem must be taken into consideration,
as this can cause problems and modify the microbial communities of soil and water [314].
Encouraging results were obtained from a combined therapy of SEO and antibiotics. For
example, associations between SEO and erythromycin and gentamicin have been described.
This association improves the effectiveness of monotherapeutic treatments, reduces adverse
effects by reducing the dose of the drug, and combats antibiotic-resistant bacteria [253,315].
Antiphytoviral activity was also described [316].

S. marianum extracts were tested against several pathogenic strains, such as P. aeruginosa,
E. coli, Salmonella typhi, S. epidermidis, and K. pneumoniae [317]. In a recent study, Rakelly
de Oliveira et al. [318] demonstrated an interesting antibacterial effect of silymarin and its
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major compound, silibinin. Indeed, silymarin inhibited E. coli at MIC = 512 µg mL−1, while
silibinin inhibited 64 µg/mL (MIC = 64 µg mL−1), P. aeruginosa (MIC = 1024 µg mL−1), and
S. aureus (MIC = 1025 µg mL−1). An important effect against C. albicans was also observed by
Yun e Lee et al. Their results revealed that a possible mechanism of action of silymarin as an
antifungal agent may involve an increase in the membrane permeability of C. albicans [319].

The antibacterial activity of ethanol and aqueous extracts of U. dioica has been demon-
strated against both Gram-positive and Gram-negative bacteria and yeasts, including
Proteus mirabilis, P. aeruginosa, Enterobacter aerogenes, E. coli, Citrobacter koseri, S. pneumonia,
S. aureus, M. luteus, S. epidermidis, and C. albicans. The extracts were also active against
Mycobacterium tuberculosis in cases of multiple drug resistance [170,320]. Notably, the
aqueous (microwave-assisted, ultrasound-assisted, and subcritical water extraction) and
ethanol extracts of U. dioica leaves also confirmed the antibacterial activity, with a mini-
mal inhibitory concentration (MIC) of 9.76 ug mL−1 and 0.0625–0.500 mg mL−1 against
methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) S. aureus strains [259]; these
observed effects are assumed to be due to the high content of hydroxycinnamic acids
(chlorogenic, caffeic, and rosmarinic acids) and flavonoids (quercetin) [321].

5.3. Protection against Cardiovascular Diseases

The hydroalcoholic extract of B. officinalis leaves, rich in polyphenols and sterols, pro-
duced a concentration-dependent relaxation of spontaneous and K+-induced contractions
(80 mM) in isolated rabbit jejunum preparations, suggestive of a Ca++ antagonistic effect.
In rabbit aorta preparations, Borago showed a vasodilator effect against phenylephrine- and
K+-induced contractions. When tested in guinea pig atria, B. officinalis inhibited the force
and speed of atrial contractions. These results suggest the spasmolytic effects of Borago
extracts [103].

Recent experiments in rats suggest that the inhalation of F. vulgare essential oil by
experimental animals could lead to a reduction in blood pressure [322].

G. lutea root extracts may also have promising activity in the prevention and treatment
of cardiovascular disease, particularly thromboembolic disorders, attributable to their bitter
constituents, such as amarogentin and isovitexin [125].

L. nobilis decoction is utilized to reduce blood pressure and treat cardio-vascular
illnesses [140]. The powdered leaves of L. nobilis have positive effects on lipid and blood
sugar dysregulation. After treatment, there was a reduction in plasma glucose levels, a
decrease in overall cholesterol levels, a significant decrease in low-density lipoprotein
(LDL) levels, an increase in high-density lipoprotein (HDL) levels, and a decrease in
triglyceride levels [323]. Extracts of L. nobilis leaves showed a vascular protective effect
and angioprotective activity on rat liver capillaries, and they prevented the progression
of necroinflammation. These results could be explained by the presence of flavonoids,
terpenes, and terpenoids with antioxidant and antimicrobial properties [139].

The main components of the EO of S. montana, such as carvacrol and thymol, have
been found to be responsible for reducing serum cholesterol levels. Carvacrol and other
monoterpene hydrocarbons, flavonoids such as apigenin, and phenolic acids such as labiatic
acid could contribute to the antiplatelet properties [324]. Satureja flavonoids also have
antioxidant and anti-hyperlipidemic properties [325].

The various traditional uses of S. marianum have motivated several experimental
investigations into the pharmacological properties of the plant. Antihypertensive and
cardioprotective activities have been documented, which seem to be linked to the presence
of taxifolin [165].

U. dioica (leaves extracts) and isolated flavonoids were active against thrombin-induced
platelet aggregation (IC50 values of 0.25 ± 0.05 and 0.40 ± 0.04 mg/mL) [326].

5.4. Role of Wild Plants in Cancer Prevention and Treatment

Due to the considerable number of different secondary metabolites, the tested species
exhibit toxic activity against the growth of tumor cell lines, and several experiments were
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conducted both in vivo and in vitro. A. millefolium showed activity on human cancer
cell lines (MCF-7, NCI-H460, HCT-15, HeLa, and HepG2) with low toxicity to primary
non-cancerous liver cells (PLP2) [264].

B. officinalis EO contains a high concentration of γ-linolenic acid, with several anti-
cancer activities, inhibiting the p38 MAPK-dependent activator protein and the mitochondria-
mediated apoptosis pathway [327].

The ethanolic extract of F. vulgare seeds significantly reduced the growth of lung
cancer cells both in vitro and in vivo. The alcoholic extract reduced viability and triggered
apoptosis in lung cancer cell lines NCI-H446 and NCI-H661 by targeting the Bcl-2 protein,
which may suggest that it has potential as a therapeutic drug for lung cancer [328]. The role
of anethole, found in fennel extracts, in anti-cancer activity was demonstrated in albino
mice [329].

In vitro studies have investigated the cytotoxic effect of the G. lutea leaf extract on
various cell lines, including human cervix adenocarcinoma (HeLa), breast cancer (MCF7),
prostate cancer (PC3), and colon cancer (LS174). The Gentian methanolic leaf extract
demonstrated a moderate cytotoxic effect against HeLa cells, with an IC50 value of
41.1 ± 1.5 µg mL−1, compared to cisplatin, used as a control [125].

Methanolic extracts of J. communis leaves have been found to block the growth and
development of C6 rat-brain tumor and HeLa human-cervix carcinoma cells, PC3 human-
prostate cancer cells, HCT 116 human-colon cancer cells, and MCF7 breast cancer cells.
Essential oil and extracts from J. communis berries have also been found to suppress A549
human lung adenocarcinoma epithelial cells’ growth and development, as well as suppress
the development of SH-SY5Y human neuroblastoma cells [330,331].

L. nobilis seed extract was suitable for eliminating multidrug-resistant P-glycoprotein-
expressing tumor cells [139]; fresh EO exhibited growth-inhibitory effects on the breast
cell line, lung cell line, and brain cancer cell line. The cervix cell line exhibited the lowest
sensitivity to essential oil (IC50 value of 1.8 µg mL−1) [141].

The study of Alesiani et al. [332] demonstrated the cytotoxic activity of M. sylvestris
leaf extracts on murine using an MTT assay and human cancer cell lines.

Studies have been conducted on the antiproliferative activity of S. montana extracts
on “mice’s model of induced Ehrlich ascites carcinoma (EAC)”. The results show that the
extracts had a positive role in inducing oxidative stress in malignant cells [279]. Carvacrol
is confirmed to have an antitumor effect on liver cancer [333], as well as apoptosis [334],
metastatic breast cancer cells (MDA-MB 231) [335], and on human colon adenocarcinoma
(HT-29) and human breast adenocarcinoma (MVF-7) [160].

Silibinin, silymarin, and silybin A and B from S. marianum possess anticancer activity
on several tumor cell lines [165].

U. dioica aqueous extracts have responded positively in studies on prostate and breast
cancer [336,337].

5.5. Neurological Disorders and Wild Plants

The various metabolites may play an important role in neurological disorders. A. mille-
folium is used as a sedative and analgesic against pain (headache, toothache, menstrual
pain, and dysmenorrhea) [338,339].

The analgesic effect of B. officinalis seed oil was tested in mice using two assays: a
tail immersion test to determine the central analgesic effect, and a writhing test, used to
establish the peripheral analgesic effect in mice [94].

Inran et al. investigated the role of fennel seed extracts in promoting functional
recovery following a mechanical insult to the sciatic nerve of mice, concluding that F. vulgare
may be a potential therapeutic candidate to accelerate functional recovery after peripheral
nerve injury [340,341]. In both studies, the authors considered fennel extracts and trans-
anethole to be suitable candidates for the prevention and treatment of stress-induced
neurological disorders [342].
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G. lutea extract and its compounds exert effects on the central nervous system (CNS).
Iridoids such as geniposide have been found to exert beneficial effects on neuronal cell
cultures due to their ability to activate protein kinase, leading to neuronal cell differentia-
tion [343]. The same plant extracts also enhanced neurite outgrowth [344]. G. lutea extract
significantly enhanced the viability of cells treated with vinblastine and prevented Bcl-2
phosphorylation induced by the antimitotic drug vinblastine. These results suggested that
G. lutea may be a potential vegetable resource for preventing and treating Parkinson’s and
Alzheimer’s disease thanks to its MAO-B inhibition activities [345].

A neuroprotective effect was observed in the n-hexane fraction of L. nobilis. Indeed, in
an in vivo study using rodents with Parkinson’s disease, the fraction exhibited a marked
inhibition of 6-hydroxydopamine (6-OHDA)-induced cell loss of tyrosine hydroxylase
(TH)-positive cells in the substantia nigra [139]. Additionally, bay leaf extracts showed
promising results in reducing neuronophagia, localized gliosis, and neural necrosis in
the rat brain, helping to resolve the lead-induced imbalance in brain acetylcholinesterase
(AcChE) activity [140,346].

The dried methanolic extract from S. montana leaves was demonstrated to have sig-
nificant anxiolytic activity in rats. Carvacrol and rosmarinic acid, used as controls, only
showed a moderate anxiolytic effect in some tests [347]. Satureja genera essential oil may
act as a neuroprotective agent in the early stage of Alzheimer’s disease [348], as well as
S. marianum extracts [165].

5.6. Diabetes and Hepatoprotective Effects of Edible Wild Plants

Recently, A. millefolium ethanolic extract was tested for its in vivo antidiabetic effects.
The hydroalcoholic extract possesses an anti-diabetic effect in vivo through a multitarget ac-
tivity involving α-glucosidase inhibition, insulin secretion, and potential insulin-sensitizing
actions [165].

B. officinalis was shown to have relevant hypoglycemic activity in rat models [349].
Essential oil and aqueous extracts of F. vulgare were administered to rats with

streptozotocin-induced diabetes, with hyperglycemia corrected from (162.5 + 3.19 mg dL−1)
to (81.97 + 1.97 mg dL−1), and reducing the pathological abnormalities in diabetic-induced
rats [350] A similar study showed that fennel seed extract and its active ingredient trans-
anethole can protect the liver from diabetes-induced liver damage in rats, probably through its
hypoglycemic and antioxidant effects [351]. Experimental treatments with the 80% methanolic
extract of the wild and cultivated fennel showed hepatoprotective effects at a concentration of
12.5 µg mL−1 and hepatotoxic effects at a concentration of 1000 µg mL−1 [352]. In a further
study, oxidative stress and the complications of hepatotoxicity caused by CCl4 injection in
rats were reversed by the administration of fennel seed extracts at 300 or 600 mg kg−1. The
improvement in liver function was monitored by following the attenuation values of the
enzymes ALT, AST, and ALP [111].

Gentiana roots have been widely used in folk medicine, so scientific studies have fo-
cused on their choleretic and hepatoprotective properties, which make them a good remedy
for stomach and liver inflammations. In pylorus-ligated mice treated with methanolic
extract of gentian root in the duodenum, there was a decrease in gastric juice secretion
and total acid production, with a noticeable dose-dependent effect at doses of 500 and
1000 mg kg−1. The hepatoprotective activity of gentian root may be due to gentiopicroside,
which has been reported in previous studies to resolve cholestasis [353,354]. As the inci-
dence of liver problems has increased in recent years, the use of gentian root extracts may
provide an alternative to synthetic drugs due to their hepatoprotective activity [354,355].

Ethyl acetate fractions of J. communis leaf extracts have been shown to be hepatopro-
tective agents, promoting favorable portal triads and central-vein arrangements [356].

Extracts of L. nobilis have been used in folk medicine due to their anti-diabetic ef-
fect. Diabetic rats treated with L. nobilis extracts showed a significant decrease in glucose
concentration compared to untreated diabetic rats. A beneficial effect on pancreatic islet
regeneration was also observed, and levels of liver enzymes, total protein, creatine ki-
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nase, calcium, urea, and ferritin returned to near-normal levels. The EO of L. nobilis also
suggested the inhibition of alpha-glucosidase, which is an indication of its in vitro antidia-
betic activity [139,140]. An extract of L. nobilis leaves proved to be a powerful free radical
scavenger in vivo, preventing carbon tetrachloride-induced hepatotoxic effects in rats.

The methanolic extract of M. sylvestris protected liver tissue from the harmful effects
of paracetamol in a dose-dependent manner by lowering the blood levels of liver enzyme
markers. In animals treated with mallow, the dramatic lowering of the blood levels of liver
enzyme markers was complemented by the regeneration of liver tissue, demonstrating
the hepatoprotective properties. The traditional use of mallow in liver problems has been
scientifically validated through the hepatoprotective activity of M. sylvestris [147,357].

The EO of savory products, through experiments on rats, induces a hepatoprotec-
tive effect and a decrease in inflammatory processes in the organs of the gastrointestinal
tract [358].

The silymarin extract from S. marianum was found to promote hepatocyte regener-
ation and inhibit liver fibrosis by significantly increasing the survival time of rats with
paracetamol-induced liver injury [359]. In addition to the hepatoprotective action, scientific
evidence suggests that silibin exerts its activity by interacting with various tissues through
the modulation of inflammation and apoptosis, which, together with its antioxidant power,
are the key points that have led to its use in various diseases [360]. Oral administration of
silymarin extract was able to generate a significant decrease in ALP, ALT, and AST in the
liver tissue of rats with lead-induced liver toxicity [361].

U. dioica showed a hepatoprotective effect by increasing the activity of some liver
enzymes (paraoxonase, arylesterase, and catalase). Treatment with U. dioica reduced
oxidative stress, with a decrease in ceruloplasmin levels. Also, treatment with U. dioica
extracts generated an antioxidant effect, preventing the formation of some oxidant agents
such as LOOH and showing a protective effect on the liver in rats damaged by hepatic
ischaemia-reperfusion [355]. U. dioica can prevent liver fibrosis and cirrhosis, suggesting
that this plant probably protects the liver through immunomodulatory and antioxidant
activities [362].

5.7. Other Biological Activity

The results of in vitro tests on human keratinocytes (HaCaT) and fibroblasts (BJ)
showed that methanol and methanol/water extracts of B. officinalis can reduce the intra-
cellular level of reactive oxygen species in skin cells. It has been proposed that oral or
topical borage oil may be effective for the treatment of atopic dermatitis. Atopic dermatitis
is believed to be associated with an abnormality in the metabolism of essential fatty acids
(EFAs), particularly the altered production of gamma-linolenic acid (GLA), so nutritional
supplementation with omega-6 essential fatty acids (ω-6 EFAs) is of potential interest
for the treatment of atopic dermatitis. Borage oil is of interest because it contains two to
three times more GLA than evening primrose oil (Oenothera biennis L.). Borage oil is well
tolerated in the short term, but no long-term tolerability data are available [363].

In human studies, G. lutea extracts were effective in reducing increased intestinal
permeability, a problem that causes a more significant absorption of endotoxins due to
the loss of integrity of the epithelial cells of the intestine tenuous. In Complementary and
Integrative Medicine (CIM), G. lutea reduced the time needed to resolve the alterations
in intestinal permeability to 4–5 months compared to the expected 6 months [364]. The
Committee on Herbal Medicinal Products approved the use of G. lutea for mild stomach and
gut complaints. Still, they limited their approval to their traditional use and not long-term
use, as there is poor evidence from clinical trials [125]. Gentian root and its hydroalcoholic
extracts have shown potential in treating skin disorders, including atopic dermatitis and
psoriasis. Further research is needed to understand the mechanisms behind these effects
and their potential applications in various skin conditions.

Hydroethanolic extracts (90% ethanol, v/v) of J. communis berries displayed antipro-
gestational and antifertility activity at doses ranging from 50 to 450 mg/kg on female
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rats, without estrogenic or antiestrogenic effects. Moreover, the oral administration of
hydroethanolic extracts (50% ethanol, v/v) from J. communis berries at doses of 300 and
500 mg/kg in albino female rats from day 1 to day 7 of pregnancy exhibited dose-dependent
anti-implantation activity. Furthermore, these extracts, at the same concentrations, gen-
erated abortions when administered on days 14, 15, and 16 of pregnancy. No teratogenic
effects were detected. [365].

M. sylvestris (aqueous or hydroalcoholic extract) increases skin hydration and prevents
or alleviates skin dryness when used as a cream, lotion, serum, patch, emulsion, hydrogel,
mask, etc. [2,143]. The extracts of mixed Mentha piperita and M. sylvestris have a substantial
skin-whitening effect. Cosmetics made from the leaves and flowers of M. sylvestris and
other plant extracts inhibit melanogenesis and tyrosinase activity, improving skin color and
reducing pigmentation [2].

Silymarin from S. marianum protects the kidneys against renal ischemia/reperfusion
injury in Wistar rats. The protective effect is associated with its antioxidant properties, as it
possibly acts as a free-radical-scavenger and lipid peroxidation inhibitor. Thus, new thera-
peutic strategies, such as antioxidant supplementation with flavonoid silymarin, could be
explored for protection against damage caused by ischemia and reperfusion [366]. Studies
have shown that S. marianum extracts have an immunomodulatory effect in vitro and are
able to increase lymphocyte proliferation. These properties were strongly associated with
the increase in IF-γ, IL-4, and IL-10 [367]. In addition, extracts of S. marianum fruits have
shown hyperprolactinemic activity, which exerts a stimulating effect on milk production in
the mother [162]. An antiulcerogenic effect of S. marianum extract has been reported in rats.
This activity involves a reduction in acid production and increase in mucin secretion, and
the release of prostaglandin E2 with a decrease in leukotrienes [368].

6. Conclusions

This review has gathered all the basic information on the phytochemical, nutritional,
and pharmacological profile of the active ingredients known to date, as published in vari-
ous books and journals on the wild plants under study from 2000 to November 2023. Most
of the ailments treated with wild plants are common: digestive disorders, colds, coughs,
circulatory problems, diarrhea, etc. However, there are some examples of treatments for
more specific diseases, such as hypertension, hypercholesterolemia, hyperglycaemia, and
others. Their use in folk medicine is supported by scientific investigations and, together
with the knowledge of their side effects, makes these plants potential sources for nutraceu-
tical purposes. Wild plants are often identified as functional foods because of their higher
content of vitamins, antioxidants, trace elements and fibers compared to cultivated crops.
The richness of natural antioxidants, mainly phenolic compounds with nutraceutical prop-
erties, is crucial in preventing acute and chronic diseases induced by improper nutrition, so
wild plants lend themselves to the formulation of dietary supplements with benefits for
human health and longevity, allowing for an improved quality of life.
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Properties of Satureja montana L. and S. Subspicata Vis. (Lamiaceae). Curr. Drug Targets 2015, 16, 1623–1633. [CrossRef] [PubMed]
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