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Abstract: This paper examines the stochastic behaviour of the realized betas in the CAPM model
for the ten largest companies in terms of market capitalisation included in the U.S. Dow Jones stock
market index. Fractional integration methods are applied to estimate their degree of persistence at
daily, weekly, and monthly frequencies over the period July 2000–July 2020 over time spans of 1, 3,
and 5 years. On the whole, the results indicate that the realized betas are highly persistent and do
not exhibit weak mean-reverting behaviour at the weekly and daily frequencies, whilst there is some
evidence of weak mean reversion at the monthly frequency. Our findings confirm the sensitivity of
beta calculations to the choice of frequency and time span (the number of observations).
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1. Introduction

The capital asset pricing model (CAPM), initially introduced in the 1960s, is based on
the idea that systematic risk is determined by the covariance between the market and indi-
vidual stock returns. It is still the standard framework taught in finance courses and used
by risk-averse investors for selecting the optimal portfolios. Its general description can be
found in Sharpe (1964), and there is further discussion in Treynor (1961), Lintner (1965), and
Mossin (1966). Fama and MacBeth (1973) made use of this model to analyse the relationship
between risk and return in NYSE stocks and documented a positive linkage between the
average return and the market beta over the period 1926–1968; however, Fama and French
(1992) found that this linear relationship had disappeared in the period 1963–1990.

The CAPM model has several limitations and is based on rather restrictive assumptions
(see Fernandez 2015, [2014] 2019); for instance, it requires investors to have homogeneous
expectations (of the returns, volatility, and correlations for every security over the same
time horizon). In its standard formulation, which is the one mostly used by practitioners,
it is a linear regression, whose most important parameter to be estimated is beta, which
measures the risk arising from the exposure to market-wide as opposed to idiosyncratic
factors. Polls are instead used to predict the market risk and the yield curve for the expected
return of the risk-free asset.

Betas are normally predicted using historical data on the assumption that their future
behaviour will be similar. Out of 150 finance textbooks, we reviewed 80 that recommend an
estimation method but differ in terms of the frequency (daily, weekly, monthly, or annually)
and the time span (from 6 months to 25 years) used for this purpose. As in Campbell et al.
(1997), we found that the most common estimation approach (in 64% of the cases) is based
on monthly data over a 5-year period. However, more recently, higher frequency data
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have often been used as the developments in IT have made computations easier. Table 1
summaries our findings concerning the frequency and the number of observations (the
time span) chosen for estimating the realized betas in the textbooks reviewed.

Table 1. Estimation of the realized betas: chosen frequency and number of observations (time span)
in finance textbooks.

Daily Weekly Monthly Quarterly Annually

Number of textbooks 7 6 51 1 15

Average number of observations used 489 156 76 16 8

Most common number of observations used 765 26 60 16 10

It can be seen that, as the frequency increases, the selected time span decreases (on average, monthly estimates
are based on a span of 6 years, weekly ones on a span of 3 years, and daily ones a span of 1.5 years), whilst the
number of observations used for the analysis increases.

Among the more recent studies focusing on higher frequency data, Andersen et al.
(2003) and Bollerslev et al. (2009) analysed intraday trading with samples of 15 min.
Damodaran1 on his public portal for beta estimation selected different time periods (5 years
and 2 years with weekly returns). Papageorgiou et al. (2016) analysed the daily returns
over a 1-year period and showed that these results outperform those obtained using
monthly data over a 5-year period as in Fama and MacBeth (1973). Cenesizoglu et al.
(2016) evaluated the accuracy of one-month-ahead beta forecasts (at the monthly, daily,
and 30-min frequency) and found that low (high) frequency returns produce the least
(most) accurate estimates. Sharma (2016) analysed the conditional variance of various
stock indices over 14 years. Bollerslev et al. (2016) investigated how individual stock
prices respond to market price movements and jumps using data at the 5-min intraday
frequency with 1-year samples and found evidence that the betas associated with intraday
discontinuous and overnight returns entail significant risk premiums, while the intraday
continuous betas do not. Cenesizoglu and Reeves (2018) used a realized beta estimator for
the daily returns over the previous year for holding periods of 1, 3, and 6 months to explain
the momentum effects.

Thus, an appropriate estimation period and sampling frequency are clearly crucial for
obtaining accurate beta forecasts. An important issue is the possibility of time variation in
the betas (Andersen et al. 2003), which is not considered by the standard CAPM. Multifactor
pricing models including additional empirically motivated factors, such as firm size and
book-to-market ratios (Fama and French 1993), have been shown to have a better in-sample
fit and to produce more accurate out-of-sample predictions but are often criticised because
of the difficulty in interpreting the expanded set of variables in terms of systematic risk.

An interesting question for practitioners is how persistent the realized betas are in
the medium and long term. Andersen et al. (2005) applied fractional integration methods
to analyse the data for 25 Dow Jones Industrial Average (DJIA) stocks over the period
1962–1999 for intraday frequencies and concluded that the corresponding betas are not
very persistent and are best modelled as I(0) mean-reverting processes. This present paper
uses a similar modelling framework but computes beta coefficients at the daily, weekly,
and monthly frequency over the period July 2000–July 2020 using medium- and long-term
window spans of 1-, 3-, and 5-year samples for the 10 largest stocks in terms of capitalisation
included in the Dow Jones Index. The layout of this paper is as follows: Section 2 provides
a brief literature review; Section 3 outlines the fractional integration model used for the
analysis; Section 4 describes the data; Section 5 discusses the empirical results; and Section 6
offers some concluding remarks.

2. Literature Review

To analyse the persistence and long memory properties in the realized CAPM betas,
a beta time series with different spans and sampling periods will be analysed. Therefore,
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the literature review should be focused both on the study of time-varying betas and on the
analysis of long memory studies with fractional integration. To avoid misunderstandings,
the literature review will be accordingly divided into these two subsections.

2.1. Time-Varying Betas

A first group of studies are based on the idea that the betas may vary with the
conditioning variables, which leads to the concept of “conditional CAPM”, and therefore
focus on time-varying betas. This approach was introduced by Dybvig and Ross (1985a,
1985b). Fama and French (1992) pointed out the inability of the static CAPM to explain the
cross section of average returns; more specifically, the robustness of the size effect and the
absence of a relationship between the beta and average returns are inconsistent with the
CAPM. Fama and French (1993) examined the common risk factors in the returns on stocks
and bonds, namely, the factors related to markets, the firm size, and the book-to-market
ratio. Ferson et al. (1987) developed tests of asset-pricing empirical models allowing market
betas to change over time. Ferson and Harvey (1991) analysed the predictable components
of monthly common stock and bond portfolio returns. Jagannathan and Wang (1996)
argued in favour of time-varying betas on the grounds that the relative risk of a firm’s
cash flow is likely to change with the business cycle. Wang (2003) used a non-parametric
approach to incorporate the conditioning information. Ang and Chen (2007) proposed a
conditional CAPM with time-varying betas and market risk premia.

In the last decade, additional factors have been considered. Garleanu and Pedersen
(2011) introduced the margin-CAPM model, where high-margin assets require higher
returns. Ang and Kristensen (2011) estimated time-varying betas with non-parametric
techniques, proposing a conditional CAPM and multifactor models for book-to-market
and momentum decile portfolios. Engle and Rangel (2010) and Rangel and Engle (2012)
provided evidence that models with volatility and correlation components outperform
single component models. Patton and Verardo (2012) studied the information flow and its
impact on the betas, and found that these increase on announcement days by a statistically
significant amount. Buss and Vilkov (2012) used forward-looking information from option
prices to estimate the option-implied correlations. Boubaker and Sghaier (2013) analysed
portfolio optimization in the presence of financial returns with long memory. Frazzini
and Pedersen (2014) presented a leverage and margin constraint model that varies across
investors and time. Jayasinghe et al. (2014) estimated the time-varying conditional variance
of index returns and found evidence of mean reversion and long memory in the betas.
More recently, Fama and French (2015) extended the standard CAPM model to include
five additional factors representing size, value, profitability, and investment patterns in
average stocks. Bali et al. (2017) re-examined the static CAPM of Fama and French (1993)
and provided evidence that it has no predictive power; they then introduced a conditional
CAPM with a time-varying beta and showed that there is a significant link between the
dynamic conditional beta and future stock returns.

Other recent studies have proposed alternative beta estimation methods. Lu and
Murray (2017) suggested a “bear beta” model, where the time variation in the probability of
future bear market states is priced. Pyun (2019) introduced a new out-of-sample forecasting
method for monthly market returns using the Variance Risk Premium (VRP) defined
in Bollerslev et al. (2009) as the difference between the objective and the risk-neutral
expectations of the forward variance. Bai et al. (2019) proposed a general equilibrium model
to quantify the consumption CAPM performance. Hollstein et al. (2019) focused on the
link between conditional betas and high-frequency data to explain asset pricing anomalies.

2.2. Long Memory in Asset Pricing

The second approach was introduced by Bollerslev et al. (1988) and focuses on long-
run dependence. Following the early contribution of Robinson (1991), many subsequent
studies showed the empirical relevance of long memory for asset return volatility (e.g.,
Ding et al. 1993). Robinson (1995) developed a formal framework for testing long-run
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dependence in the logarithmic volatilities; this FIGARCH model was used by Baillie et al.
(1996) to analyse exchange rates and by Bollerslev and Mikkelsen (1996) to examine the U.S.
stock market. In both cases, long memory was detected, with the series being modelled as
mean-reverting fractionally integrated processes, where the conditional variance decreased
at a slow hyperbolic rate. Andersen and Bollerslev (1997) concluded that long memory is
an intrinsic feature of returns. Bollerslev and Mikkelsen (1999) provided evidence of mean
reversion in the volatility process using fractionally integrated models.

Cochran and DeFina (1995) found predictable periodicity in market cycles. Bollerslev
and Mikkelsen (1996) concluded that long-run dependence in the U.S. stock market is best
modelled as a mean-reverting fractionally integrated process. However, Andersen and
Bollerslev (1997) found that this process is very slow for most returns, and, as a result,
detecting mean reversion is not an easy task. Balvers et al. (2000) pointed out that, if it
exists, it can only be detected over long horizons; nevertheless, investors try to discover
mean-reverting patterns for forecasting purposes (Jayasinghe et al. 2014).

Andersen et al. (2003) analysed the persistence and predictability of the realized betas
as well as of the underlying market variances and covariances using intraday data over the
period 1962–1999; the latter were found to be highly persistent and fractionally integrated
processes, in contrast to the realized betas, which appear to be much less persistent and
best modelled as a standard stationary I(0) process. Further, simple AR-type models were
shown to outperform other parametric models in terms of their forecasting properties for
the integrated volatility. Andersen et al. (2006) pointed out that it is possible for the betas
to be only weakly persistent (short memory, with d ~ 0), despite the widespread finding
that realized variances and covariances exhibit long memory (fractionally integrated, with
d > 0), in the case of fractional cointegration.

Regarding the sampling frequency, Bollerslev et al. (2006) found evidence of negative
correlations between stock market movements and volatility at the intraday frequency.
In particular, five-minute intervals appear to provide better results than one-day market
sampling for assessing volatility asymmetries. Todorov and Bollerslev (2007) looked for a
solution to the problem of modelling jumps in the betas using high-frequency data. Morana
(2009) improved the realized beta estimator introduced by Andersen et al. (2005, 2006) by
allowing for multiple non-orthogonal risk factors.

Bollerslev et al. (2011) explored alternative volatility measures to reduce the impact
of the microstructure noise. Bollerslev et al. (2012) used intraday data for the S&P 500
and the VIX volatility indices and found further evidence that aggregate stock market
volatility exhibits long-run dependence, while the volatility risk premium (VRP) is much
less persistent. Bollerslev et al. (2013) concluded that market volatility is best described as
a long memory fractionally integrated process. Hansen et al. (2014) proposed a GARCH
model incorporating realized measures of variances and covariances. Engle (2016) put
forward the Dynamic Conditional Beta (DCB) model to estimate regressions with time-
varying parameters.

A brief comparison between the most popular market beta estimation techniques can
be found in Hollstein and Prokopczuk (2016), who examined the performance of several
time-series models and option-implied estimators and suggested using the hybrid method-
ology of Buss and Vilkov (2012) since it consistently outperforms all other approaches.

3. Methodology

We analysed persistence in the realized betas by using fractional integration methods
to estimate the degree of dependence in the data, which is measured by the differencing
parameter d. For our purposes, we define a covariance stationary process {xt, t = 0,
±1,. . .} with mean µ as integrated of order 0 and denoted by I(0) if the infinite sum of the
autocovariances, defined as γ(u) = E[(x(t) − µ)(x(t + u) − µ)], is finite, that is,

∞

∑
j=−∞

|γ(u)| < ∞ .
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This type of process, also known as a short memory process, includes not only the
white noise but also the stationary and invertible AutoRegressive Moving Average (ARMA)
model, which is the most frequently employed model for a stationary time series. By con-
trast, a process displays the property of long memory (so-named because of the relevance
of observations in the distant past) if the infinite sum of its autocovariances is infinite:

∑u=∞
u=−∞ | γ(u) | = ∞

An alternative definition, based on the frequency domain, uses the spectral density
function, f (λ), which is the Fourier transform of the autocovariances. In this context, a
process is said to exhibit long memory if the spectral density function is unbounded at one
or more frequencies in the spectrum:

f (λ) → ∞, as λ ∈ [0, π)

This category includes many statistical processes, such as the Fractional Gaussian
Noise (FgN) model proposed by Mandelbrot and Van Ness (1968).

As for the concept of fractional integration, a process is said to be integrated of order
d and denoted by I(d), if d-differences are required to make it I(0), i.e.:

(1 − B)dxt = ut , t = 0 , ±1 , . . . , (1)

where B is the backshift operator and d can be any integer or fractional value. Processes
with d higher than 0 are known as long memory processes because of the high degree of
dependence between observations far apart in time, where the polynomial in B in Equation
(1) can be expressed in terms of its binomial expansion, such that:

(1 − B)d =
∞

∑
j=0
ψjB

j =
∞

∑
j=0

(
d
j

)
(−1)j Bj = 1 − dB +

d (d − 1)
2

B2 − . . . ,

implying that

(1 − B)dxt = xt − d xt−1 +
d (d − 1)

2
xt−2 − . . . (2)

The parameter d plays a crucial role in this context, as it is a measure of the degree of
persistence of the series: the higher is d, the higher is the degree of dependence between
observations. Following the above equation, if the differencing parameter (d) is an integer,
xt would only depend on a finite number of previous observations; however, if it is a non-
integer, it will depend on all its past history. Moreover, the higher the value of d, the higher
the relationship between the observations. In particular, from an statistical perspective, if
d is smaller than 0.5, xt is still covariance stationary; however, d ≥ 0.5 indicates a lack of
covariance stationarity and non-stationarity. Furthermore, xt in (2) admits that values of
d that are below 1 support the hypothesis of reversion to the mean, with shocks having
transitory effects. Finally, if d ≥ 1, there is a lack of mean reversion, which implies the
permanency of shocks in the long term and the need of additional policies to restore the
previous behaviour.

More specifically, d = 0 implies short memory behaviour, while 0 < d < 0.5 characterises
a covariance stationary long memory process; if 0.5 ≤ d < 1, the series is non-stationary
but mean-reverting with shocks having long-lasting effects that disappear in the long run;
finally, d ≥ 1 implies non-stationarity and a lack of mean reversion.

Although fractional integration was already proposed in the early 1980s by Granger
(1980, 1981), Granger and Joyeux (1980), and Hosking (1981), it was not until the late
1990s and early 2000s that it become popular in economics and finance (Baillie 1996; Gil-
Alana and Robinson 1997; Mayoral 2006; Gil-Alana and Moreno 2012; Abbritti et al. 2016;
etc.). In particular, we estimate the differencing parameter d using the Whittle function
in the frequency domain (Dahlhaus 1989) by using a version of the long memory tests of
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Robinson (1994), which is computationally very attractive. Using this method, we test the
null hypothesis:

H0 : d = d0 (3)

in (1), where xt can be the errors in a regression model of form:

yt = β′zt + xt, t = 1, 2, . . . , (4)

where zt can be either exogenous regressors or deterministic terms such as an intercept
and/or a linear time trend. The test statistic proposed in Robinson (1994) contains several
important features. Its limiting distribution is standard normal (N(0, 1)), so we do not
need to rely on critical values based on Monte Carlo simulation studies. Moreover, the test
statistic and its asymptotic behaviour remain valid for any real value d0 in (3), including
nonstationary cases, and, thus, preliminary differencing is not required to render the series
stationary prior to the performance of the test.

4. Data Description

We have obtained data on daily, weekly, and monthly returns from the Reuters Eikon
database for the ten companies with the highest market capitalisation included in the Dow
Jones Industrial Average Index (.DJI) over the period 13 July 2000–14 July 2020. Specifically,
we considered the following companies: Apple Inc. (AAPL.O), Microsoft Corp. (MSFT.O),
Johnson & Johnson (JNJ), Procter & Gamble Co. (PG), Walmart Inc. (WMT), Home Depot
Inc. (HD), JPMorgan Chase & Co. (JPM), Intel Corp. (INTC.O), Verizon Communications
Inc (VZ), and UnitedHealth Group Inc (UNH).

Using the raw data, we constructed daily, weekly, and monthly realized beta series by
applying the formula Covariance(Stock,Index)

Variance(Index) over 1-, 3-, and 5-year spans, thus obtaining nine
beta measures for each company to examine their behaviour in the medium and long term.
These are displayed in Figure 1.

Table 2 reports some descriptive statistics (standard deviation, average, and scaled
volatility calculated as the standard deviation over the average) for the series of interest.
It can be seen that the volatility coefficient measured as standarddeviation

average is smaller at the
daily frequency than at the weekly and monthly ones and increases when the window span
decreases. For instance, over a 5-year span the average volatility coefficient is equal to 0.274
for the monthly series, 0.146 for the weekly series, and 0.135 for the daily series; the latter
increases to 0.163 in the case of the 3-year span and to 0.227 in the case of the 1-year span.

Table 2. Descriptive statistics.

Monthly Weekly Daily

Apple 5y 3y 1y 5y 3y 1y 5y 3y 1y

Stdev 0.306 0.449 0.843 0.093 0.206 0.370 0.128 0.183 0.290
Average 1.178 1.180 1.234 1.014 1.030 1.028 1.039 1.069 1.099
Stdev/average 0.259 0.380 0.683 0.092 0.200 0.360 0.123 0.172 0.264
Microsoft

Stdev 0.108 0.253 0.596 0.093 0.121 0.216 0.083 0.115 0.163
Average 0.984 0.947 0.911 0.957 0.964 0.952 1.070 1.070 1.066
Stdev/average 0.109 0.267 0.655 0.097 0.125 0.227 0.077 0.107 0.153
Homedepot
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Table 2. Cont.

Monthly Weekly Daily

Apple 5y 3y 1y 5y 3y 1y 5y 3y 1y

Stdev 0.173 0.197 0.429 0.117 0.123 0.182 0.097 0.110 0.169
Average 0.996 1.013 1.068 1.144 1.129 1.139 1.050 1.052 1.062
Stdev/average 0.174 0.194 0.401 0.102 0.109 0.160 0.093 0.104 0.159
Intel

Stdev 0.387 0.440 0.638 0.157 0.194 0.269 0.190 0.204 0.251
Average 1.232 1.256 1.277 1.173 1.195 1.207 1.198 1.219 1.247
Stdev/average 0.314 0.351 0.499 0.134 0.162 0.223 0.158 0.168 0.202
Johnson & Johnson

Stdev 0.150 0.215 0.334 0.093 0.120 0.181 0.084 0.097 0.162
Average 0.595 0.568 0.575 0.623 0.626 0.619 0.649 0.653 0.625
Stdev/average 0.252 0.378 0.581 0.150 0.191 0.292 0.129 0.149 0.260
JPMorgan

Stdev 0.206 0.344 0.539 0.219 0.256 0.351 0.210 0.249 0.308
Average 1.402 1.371 1.364 1.487 1.427 1.375 1.523 1.453 1.391
Stdev/average 0.147 0.251 0.395 0.147 0.179 0.255 0.138 0.171 0.221
Procter & Gamble

Stdev 0.148 0.248 0.397 0.053 0.076 0.154 0.052 0.086 0.134
Average 0.489 0.483 0.508 0.551 0.539 0.515 0.620 0.617 0.601
Stdev/average 0.302 0.513 0.781 0.097 0.141 0.298 0.084 0.139 0.222
United Health

Stdev 0.303 0.332 0.426 0.268 0.298 0.365 0.192 0.203 0.234
Average 0.692 0.623 0.601 0.890 0.829 0.776 0.909 0.875 0.825
Stdev/average 0.437 0.534 0.709 0.301 0.360 0.471 0.211 0.232 0.284
Verizon

Stdev 0.279 0.326 0.505 0.116 0.153 0.241 0.120 0.140 0.178
Average 0.678 0.689 0.710 0.737 0.741 0.724 0.769 0.757 0.725
Stdev/average 0.411 0.474 0.710 0.158 0.206 0.333 0.156 0.185 0.246
Walmart

Stdev 0.133 0.208 0.549 0.115 0.138 0.196 0.122 0.138 0.180
Average 0.400 0.401 0.448 0.646 0.661 0.675 0.669 0.689 0.695
Stdev/average 0.332 0.519 1.225 0.179 0.209 0.290 0.183 0.200 0.258
Average (all)

Stdev 0.219 0.301 0.526 0.133 0.168 0.252 0.128 0.153 0.207
Average 0.865 0.853 0.870 0.922 0.914 0.901 0.950 0.945 0.934
Stdev/average 0.274 0.386 0.664 0.146 0.188 0.291 0.135 0.163 0.227
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5. Discussion of the Empirical Results

The estimated model used for analysing the stochastic properties of the constructed
series is the following:

yt = β0 + β1 t + xt , (1 − L)do xt = ut, t = 1 , 2 , . . . , (5)

where yt is the observed time series (the realized betas in our case), β0 and β1 are unknown
coefficients on the intercept (constant) and the linear time trend, and xt is I(d), where
d is estimated from the data. We consider three model specifications, namely, (i) no
deterministic terms, i.e., β0 = β1 = 0 in (5); (ii) a constant only, i.e., β1 = 0; and (iii) a constant
as well as a linear trend, i.e., β0 and β1 are estimated. Table 3 reports the estimated values
of d along with their associated 95% confidence bands under the assumption of white
noise errors for all three models. The coefficients in bold are in each case those from the
preferred model, which has been selected on the basis of the statistical significance of the
other parameters, as indicated by the t-statistics. These are reported in Table 4 together
with the corresponding estimates of d.

Table 3. Estimates of the differencing parameter d.

No Terms Constant Constant + Time Trend

APPLE INC.

DAILY. 1 YEAR 1.01 (0.99, 1.03) 1.03 (1.01, 1.05) 1.03 (1.01, 1.05)

DAILY. 3 YEAR 1.00 (0.98, 1.04) 1.06 (1.04, 1.08) 1.06 (1.04, 1.08)

DAILY. 5 YEAR 1.00 (0.97, 1.03) 1.07 (1.04, 1.09) 1.07 (1.04, 1.09)

WEEKLY. 1 YEAR 0.96 (0.91, 1.01) 0.96 (0.92, 1.01) 0.96 (0.92, 1.01)

WEEKLY. 3 YEAR 0.94 (0.90, 0.99) 0.90 (0.87, 0.94) 0.90 (0.87, 0.94)

WEEKLY. 5 YEAR 0.96 (0.91, 1.01) 0.88 (0.83, 0.93) 0.88 (0.83, 0.93)

MONTHLY. 1 YEAR 0.86 (0.76, 0.98) 0.84 (0.74, 0.97) 0.84 (0.74, 0.97)

MONTHLY. 3 YEAR 0.91 (0.83, 1.02) 0.90 (0.82, 1.02) 0.90 (0.82, 1.02)

MONTHLY. 5 YEAR 0.92 (0.84, 1.03) 0.91 (0.83, 1.02) 0.91 (0.83, 1.02)

HOMEDEPOT

DAILY. 1 YEAR 1.02 (0.98, 1.03) 1.04 (1.01, 1.07) 1.04 (1.01, 1.07)

DAILY. 3 YEAR 1.00 (0.98, 1.03) 1.02 (1.00, 1.05) 1.02 (1.00, 1.05)

DAILY. 5 YEAR 1.00 (0.97, 1.03) 1.03 (1.01, 1.06) 1.03 (1.01, 1.06)

WEEKLY. 1 YEAR 0.96 (0.91, 1.01) 0.93 (0.88, 0.98) 0.93 (0.88, 0.98)

WEEKLY. 3 YEAR 0.99 (0.94, 1.05) 0.96 (0.91, 1.03) 0.96 (0.91, 1.03)

WEEKLY. 5 YEAR 0.99 (0.94, 1.05) 0.97 (0.91, 1.03) 0.97 (0.91, 1.03)

MONTHLY. 1 YEAR 1.02 (0.98, 1.03) 0.82 (0.75, 0.92) 0.82 (0.75, 0.92)

MONTHLY. 3 YEAR 0.89 (0.78, 1.03) 0.85 (0.73, 0.99) 0.85 (0.73, 0.99)

MONTHLY. 5 YEAR 0.96 (0.87, 1.08) 0.75 (0.67, 0.87) 0.75 (0.67, 0.87)

INTEL

DAILY. 1 YEAR 1.00 (0.98, 1.03) 1.02 (1.00, 1.05) 1.02 (1.00, 1.05)

DAILY. 3 YEAR 1.00 (0.97, 1.03) 1.08 (1.05, 1.11) 1.08 (1.05, 1.10)

DAILY. 5 YEAR 1.00 (0.98, 1.03) 1.13 (1.10, 1.16) 1.13 (1.10, 1.16)

WEEKLY. 1 YEAR 0.97 (0.92, 1.02) 0.94 (0.89, 1.00) 0.94 (0.89, 1.00)

WEEKLY. 3 YEAR 0.99 (0.94, 1.04) 0.98 (0.94, 1.04) 0.98 (0.94, 1.04)
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Table 3. Cont.

No Terms Constant Constant + Time Trend

INTEL

WEEKLY. 5 YEAR 0.99 (0.94, 1.05) 1.02 (0.96, 1.08) 1.02 (0.96, 1.08)

MONTHLY. 1 YEAR 0.87 (0.78, 1.01) 0.78 (0.67, 0.93) 0.78 (0.65, 0.93)

MONTHLY. 3 YEAR 0.94 (0.85, 1.05) 0.73 (0.64, 0.87) 0.76 (0.67, 0.88)

MONTHLY. 5 YEAR 0.94 (0.85, 1.07) 0.80 (0.71, 0.93) 0.83 (0.75, 0.94)

JOHNSON & JOHNSON

DAILY. 1 YEAR 1.03 (1.01, 1.05) 1.03 (1.01, 1.05) 1.03 (1.01, 1.05)

DAILY. 3 YEAR 1.01 (0.99, 1.03) 1.05 (1.03, 1.07) 1.05 (1.03, 1.07)

DAILY. 5 YEAR 1.01 (0.98, 1.03) 1.06 (1.04, 1.08) 1.06 (1.04, 1.08)

WEEKLY. 1 YEAR 1.05 (1.00, 1.11) 1.05 (1.00, 1.11) 1.05 (1.00, 1.11)

WEEKLY. 3 YEAR 1.05 (0.99, 1.11) 1.21 (1.14, 1.28) 1.21 (1.14, 1.28)

WEEKLY. 5 YEAR 1.03 (0.97, 1.09) 1.23 (1.16, 1.32) 1.23 (1.16, 1.32)

MONTHLY. 1 YEAR 0.81 (0.71, 0.94) 0.81 (0.71, 0.94) 0.81 (0.71, 0.94)

MONTHLY. 3 YEAR 0.89 (0.80, 1.00) 0.88 (0.79, 0.99) 0.88 (0.79, 0.99)

MONTHLY. 5 YEAR 0.85 (0.74, 0.97) 0.79 (0.70, 0.90) 0.80 (0.72, 0.91)

JPMORGAN

DAILY. 1 YEAR 1.03 (1.00, 1.05) 1.11 (1.09, 1.13) 1.11 (1.09, 1.13)

DAILY. 3 YEAR 1.01 (0.99, 1.04) 1.12 (1.10, 1.14) 1.12 (1.10, 1.14)

DAILY. 5 YEAR 1.01 (0.98, 1.03) 1.12 (1.10, 1.14) 1.12 (1.10, 1.14)

WEEKLY. 1 YEAR 1.04 (0.99, 1.10) 1.08 (1.03, 1.15) 1.08 (1.03, 1.15)

WEEKLY. 3 YEAR 1.03 (0.98, 1.08) 1.13 (1.08, 1.20) 1.13 (1.08, 1.20)

WEEKLY. 5 YEAR 1.02 (0.97, 1.08) 1.15 (1.08, 1.22) 1.15 (1.08, 1.22)

MONTHLY. 1 YEAR 0.89 (0.79, 1.01) 0.92 (0.81, 1.05) 0.92 (0.81, 1.05)

MONTHLY. 3 YEAR 0.96 (0.87, 1.08) 0.99 (0.90, 1.10) 0.99 (0.91, 1.10)

MONTHLY. 5 YEAR 0.94 (0.85, 1.07) 0.90 (0.83, 1.00) 0.90 (0.83, 1.00)

MICROSOFT

DAILY. 1 YEAR 1.00 (0.98, 1.03) 1.02 (1.00, 1.04) 1.02 (1.00, 1.04)

DAILY. 3 YEAR 1.00 (0.97, 1.02) 1.01 (0.99, 1.04) 1.01 (0.99, 1.04)

DAILY. 5 YEAR 1.00 (0.97, 1.02) 1.02 (1.00, 1.04) 1.02 (1.00, 1.04)

WEEKLY. 1 YEAR 0.98 (0.94, 1.03) 0.98 (0.94, 1.03) 0.98 (0.94, 1.03)

WEEKLY. 3 YEAR 0.98 (0.94, 1.04) 0.98 (0.94, 1.04) 0.98 (0.94, 1.04)

WEEKLY. 5 YEAR 0.98 (0.93, 1.04) 1.05 (1.00, 1.10) 1.05 (1.00, 1.10)

MONTHLY. 1 YEAR 1.00 (0.88, 1.13) 1.03 (0.92, 1.16) 1.03 (0.92, 1.16)

MONTHLY. 3 YEAR 0.99 (0.89, 1.12) 1.03 (0.94, 1.14) 1.03 (0.94, 1.14)

MONTHLY. 5 YEAR 0.94 (0.82, 1.09) 0.93 (0.82, 1.07) 0.93 (0.83, 1.07)

VERIZON

DAILY. 1 YEAR 1.03 (1.01, 1.05) 1.06 (1.03, 1.09) 1.06 (1.03, 1.09)

DAILY. 3 YEAR 1.01 (0.98, 1.03) 1.02 (1.00, 1.04) 1.02 (1.00, 1.04)

DAILY. 5 YEAR 1.00 (0.98, 1.03) 0.99 (0.97, 1.01) 0.99 (0.97, 1.01)

WEEKLY. 1 YEAR 1.03 (0.99, 1.08) 1.04 (0.99, 1.09) 1.04 (0.99, 1.09)
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Table 3. Cont.

No Terms Constant Constant + Time Trend

VERIZON

WEEKLY. 3 YEAR 1.02 (0.97, 1.07) 1.04 (0.99, 1.09) 1.04 (0.99, 1.09)

WEEKLY. 5 YEAR 1.02 (0.97, 1.07) 1.05 (1.01, 1.10) 1.05 (1.01, 1.10)

MONTHLY. 1 YEAR 0.90 (0.81, 1.01) 0.90 (0.81, 1.01) 0.90 (0.81, 1.01)

MONTHLY. 3 YEAR 1.00 (0.92, 1.11) 0.96 (0.87, 1.07) 0.96 (0.87, 1.07)

MONTHLY. 5 YEAR 1.00 (0.92, 1.12) 0.93 (0.85, 1.04) 0.93 (0.84, 1.04)

WALMART

DAILY. 1 YEAR 1.00 (0.98, 1.03) 1.02 (0.99, 1.05) 1.02 (0.99, 1.05)

DAILY. 3 YEAR 1.01 (0.97, 1.03) 1.02 (1.00, 1.05) 1.02 (1.00, 1.05)

DAILY. 5 YEAR 1.00 (0.97, 1.03) 1.03 (1.01, 1.06) 1.03 (1.01, 1.06)

WEEKLY. 1 YEAR 1.01 (0.95, 1.05) 1.01 (0.95, 1.06) 1.00 (0.95, 1.06)

WEEKLY. 3 YEAR 1.00 (0.96, 1.07) 1.07 (1.02, 1.13) 1.07 (1.02, 1.13)

WEEKLY. 5 YEAR 1.01 (0.96, 1.07) 1.12 (1.07, 1.19) 1.12 (1.07, 1.19)

MONTHLY. 1 YEAR 0.99 (0.89, 1.12) 0.99 (0.88, 1.11) 0.99 (0.88, 1.11)

MONTHLY. 3 YEAR 0.96 (0.86, 1.08) 0.92 (0.83, 1.04) 0.92 (0.83, 1.04)

MONTHLY. 5 YEAR 1.01 (0.92, 1.13) 0.96 (0.87, 1.07) 0.96 (0.87, 1.07)

UNITED HEALTH

DAILY. 1 YEAR 1.01 (1.03, 1.06) 1.03 (1.05, 1.07) 1.03 (1.05, 1.07)

DAILY. 3 YEAR 1.04 (1.02, 1.07) 1.08 (1.05, 1.10) 1.08 (1.05, 1.10)

DAILY. 5 YEAR 1.03 (1.01, 1.06) 1.09 (1.07, 1.12) 1.09 (1.07, 1.12)

WEEKLY. 1 YEAR 1.01 (0.96, 1.06) 1.02 (0.97, 1.07) 1.02 (0.97, 1.07)

WEEKLY. 3 YEAR 1.08 (1.03, 1.14) 1.12 (1.07, 1.18) 1.12 (1.07, 1.18)

WEEKLY. 5 YEAR 1.06 (1.01, 1.12) 1.13 (1.08, 1.20) 1.13 (1.08, 1.20)

MONTHLY. 1 YEAR 0.71 (0.62, 0.84) 0.71 (0.61, 0.83) 0.71 (0.61, 0.83)

MONTHLY. 3 YEAR 0.86 (0.77, 0.97) 0.87 (0.78, 0.98) 0.87 (0.78, 0.98)

MONTHLY. 5 YEAR 0.93 (0.86, 1.01) 0.94 (0.87, 1.02) 0.94 (0.87, 1.02)

PROCTER

DAILY. 1 YEAR 1.04 (1.01, 1.06) 1.04 (1.02, 1.06) 1.04 (1.02, 1.06)

DAILY. 3 YEAR 1.01 (0.99, 1.04) 1.05 (1.03, 1.08) 1.05 (1.03, 1.08)

DAILY. 5 YEAR 1.00 (0.98, 1.03) 1.05 (1.02, 1.07) 1.05 (1.02, 1.07)

WEEKLY. 1 YEAR 0.99 (0.94, 1.05) 0.99 (0.94, 1.05) 0.99 (0.94, 1.05)

WEEKLY. 3 YEAR 0.98 (0.94, 1.04) 0.94 (0.89, 0.99) 0.94 (0.89, 0.99)

WEEKLY. 5 YEAR 0.99 (0.94, 1.05) 0.96 (0.90, 1.02) 0.96 (0.90, 1.02)

MONTHLY. 1 YEAR 0.81 (0.73, 0.90) 0.80 (0.73, 0.90) 0.80 (0.73, 0.90)

MONTHLY. 3 YEAR 1.02 (0.94, 1.12) 1.02 (0.94, 1.13) 1.02 (0.94, 1.13)

MONTHLY. 5 YEAR 0.99 (0.91, 1.09) 0.99 (0.91, 1.10) 0.99 (0.92, 1.10)

Note: In bold, there are the selected specifications on the basis of the significance of the deterministic terms. In
parentheses, there are the 95% confidence bands for the values of d. The terms 1y., 3y., and 5. stand for 1-, 3-, and
5-year time spans, respectively. The red values indicate statistical evidence of mean reversion.
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Table 4. Estimates of the differencing parameter d, the constant, and the trend coefficient from the
selected model specifications.

APPLE INC.

Series d Constant (t-Value) Time Trend (t-Value)

DAILY. 1 YEAR 1.03 (1.01, 1.05) 1.6077 (108.68) ---

DAILY. 3 YEAR 1.06 (1.04, 1.08) 1.1725 (219.08) ---

DAILY. 5 YEAR 1.07 (1.04, 1.09) 1.2341 (346.27) ---

WEEKLY. 1 YEAR 0.96 (0.92, 1.01) 1.2450 (17.41) ---

WEEKLY. 3 YEAR 0.90 (0.87, 0.94) 0.9460 (33.72) ---

WEEKLY. 5 YEAR 0.88 (0.83, 0.93) 1.0351 (52.88) ---

MONTHLY. 1 YEAR 0.84 (0.74, 0.97) 0.9699 (2.63) ---

MONTHLY. 3 YEAR 0.90 (0.82, 1.02) 1.2838 (9.74) ---

MONTHLY. 5 YEAR 0.91 (0.83, 1.02) 1.3565 (16.92) ---

HOMEDEPOT

DAILY. 1 YEAR 1.04 (1.01, 1.07) 1.7660 (192.13) ---

DAILY. 3 YEAR 1.02 (1.00, 1.05) 1.3610 (365.57) ---

DAILY. 5 YEAR 1.03 (1.01, 1.06) 1.3395 (484.54) ---

WEEKLY. 1 YEAR 0.93 (0.88, 0.98) 1.8297 (39.84) ---

WEEKLY. 3 YEAR 0.96 (0.91, 1.03) 1.3601 (71.35) ---

WEEKLY. 5 YEAR 0.97 (0.91, 1.03) 1.3468 (95.50) ---

MONTHLY. 1 YEAR 0.85 (0.73, 0.99) 1.2262 (23.46) ---

MONTHLY. 3 YEAR 0.75 (0.67, 0.87) 1.5201 (6.50) ---

MONTHLY. 5 YEAR 0.82 (0.75, 0.92) 1.2262 (23.46) ---

INTEL

DAILY. 1 YEAR 1.02 (1.00, 1.05) 1.7379 (153.35) ---

DAILY. 3 YEAR 1.08 (1.05, 1.11) 1.7014 (395.14) ---

DAILY. 5 YEAR 1.13 (1.10, 1.16) 1.6635 (549.21) ---

WEEKLY. 1 YEAR 0.94 (0.89, 1.00) 1.4212 (25.26) ---

WEEKLY. 3 YEAR 0.98 (0.94, 1.04) 1.4904 (69.62) ---

WEEKLY. 5 YEAR 1.02 (0.96, 1.08) 1.4810 (98.42) ---

MONTHLY. 1 YEAR 0.78 (0.67, 0.93) 1.9179 (7.21) ---

MONTHLY. 3 YEAR 0.76 (0.67, 0.88) 2.2423 (26.87) −0.0077 (−3.90)

MONTHLY. 5 YEAR 0.80 (0.71, 0.93) 2.1440 (35.01) ---

JOHNSON & JOHNSON

DAILY. 1 YEAR 1.03 (1.01, 1.05) 0.1824 (23.79) ---

DAILY. 3 YEAR 1.05 (1.03, 1.07) 0.5251 (172.07) ---

DAILY. 5 YEAR 1.06 (1.04, 1.08) 0.5316 (234.23) ---

WEEKLY. 1 YEAR 1.05 (1.00, 1.11) 0.3276 (10.56) ---

WEEKLY. 3 YEAR 1.21 (1.14, 1.28) 0.5870 (51.09) ---

WEEKLY. 5 YEAR 1.23 (1.16, 1.32) 0.5590 (67.11) ---

MONTHLY. 1 YEAR 0.81 (0.71, 0.94) 0.3028 (1.97) ---

MONTHLY. 3 YEAR 0.88 (0.79, 0.99) 0.2723 (5.00) ---

MONTHLY. 5 YEAR 0.80 (0.72, 0.91) 0.2694 (8.44) 0.0025 (2.57)
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Table 4. Cont.

APPLE INC.

Series d Constant (t-Value) Time Trend (t-Value)

JPMORGAN

DAILY. 1 YEAR 1.11 (1.09, 1.13) 1.7388 (133.52) ---

DAILY. 3 YEAR 1.12 (1.10, 1.14) 1.5851 (239.56) ---

DAILY. 5 YEAR 1.12 (1.10, 1.14) 1.5182 (287.83) ---

WEEKLY. 1 YEAR 1.08 (1.03, 1.15) 1.6091 (26.63) ---

WEEKLY. 3 YEAR 1.13 (1.08, 1.20) 1.4782 (25.16) ---

WEEKLY. 5 YEAR 1.15 (1.08, 1.22) 1.4901 (53.59) ---

MONTHLY. 1 YEAR 0.92 (0.81, 1.05) 1.7416 (7.13) ---

MONTHLY. 3 YEAR 0.99 (0.90, 1.10) 1.8103 (20.28) ---

MONTHLY. 5 YEAR 0.90 (0.83, 1.00) 1.4200 (64.74) ---

MICROSOFT

DAILY. 1 YEAR 1.02 (1.00, 1.04) 1.3670 (152.43) ---

DAILY. 3 YEAR 1.01 (0.99, 1.04) 1.2866 (356–95) ---

DAILY. 5 YEAR 1.02 (1.00, 1.04) 1.2453 (478.18) ---

WEEKLY. 1 YEAR 0.98 (0.94, 1.03) 0.7315 (16.31) ---

WEEKLY. 3 YEAR 0.98 (0.94, 1.04) 0.9853 (62.74) ---

WEEKLY. 5 YEAR 1.05 (1.00, 1.10) 0.9787 (91.63) ---

MONTHLY. 1 YEAR 1.03 (0.92, 1.16) 1.6761 (6.77) ---

MONTHLY. 3 YEAR 1.03 (0.94, 1.14) 1.2954 (16.51) ---

MONTHLY. 5 YEAR 0.93 (0.82, 1.07) 1.1091 (22.95) ---

VERIZON

DAILY. 1 YEAR 1.06 (1.03, 1.09) 0.6732 (83.90) ---

DAILY. 3 YEAR 1.02 (1.00, 1.04) 0.8549 (268.43) ---

DAILY. 5 YEAR 0.99 (0.97, 1.01) 0.8368 (356.58) −0.00008 (−2.38)

WEEKLY. 1 YEAR 1.04 (0.99, 1.09) 0.3860 (9.79) ---

WEEKLY. 3 YEAR 1.04 (0.99, 1.09) 0.4852 (33.43) ---

WEEKLY. 5 YEAR 1.05 (1.01, 1.10) 0.5321 (51.19) ---

MONTHLY. 1 YEAR 0.90 (0.81, 1.01) --- ---

MONTHLY. 3 YEAR 0.96 (0.87, 1.07) 0.8531 (10.84) ---

MONTHLY. 5 YEAR 0.93 (0.85, 1.04) 0.8421 (14.60) ---

WALMART

DAILY. 1 YEAR 1.02 (0.99, 1.05) 1.0386 (116.79) ---

DAILY. 3 YEAR 1.02 (1.00, 1.05) 0.9207 (268.68) ---

DAILY. 5 YEAR 1.03 (1.01, 1.06) 0.9026 (370.02) −0.00019 (−1.98)

WEEKLY. 1 YEAR 1.01 (0.95, 1.06) 0.7702 (19.72) ---

WEEKLY. 3 YEAR 1.07 (1.02, 1.13) 0.8185 (54.33) ---

WEEKLY. 5 YEAR 1.12 (1.07, 1.19) 0.7927 (78.57) ---

MONTHLY. 1 YEAR 0.99 (0.89, 1.12) --- ---

MONTHLY. 3 YEAR 0.92 (0.83, 1.04) 0.4108 (5.39) ---

MONTHLY. 5 YEAR 0.96 (0.87, 1.07) 0.3719 (7.98) ---
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Table 4. Cont.

APPLE INC.

Series d Constant (t-Value) Time Trend (t-Value)

UNITED HEALTH

DAILY. 1 YEAR 1.05 (1.03, 1.07) 0.5975 (46.12) ---

DAILY. 3 YEAR 1.08 (1.05, 1.10) 0.4647 (67.82) ---

DAILY. 5 YEAR 1.09 (1.07, 1.12) 0.5028 (92.59) ---

WEEKLY. 1 YEAR 1.02 (0.97, 1.07) 0.8156 (15.19) ---

WEEKLY. 3 YEAR 1.12 (1.07, 1.18) 0.4929 (21.42) ---

WEEKLY. 5 YEAR 1.13 (1.08, 1.20) 0.5399 (311.51) ---

MONTHLY. 1 YEAR 0.71 (0.62, 0.84) --- ---

MONTHLY. 3 YEAR 0.87 (0.78, 0.98) 0.1953 (2.0.8) ---

MONTHLY. 5 YEAR 0.94 (0.87, 1.02) 0.2112 (3.53) ---

PROCTER

DAILY. 1 YEAR 1.04 (1.02, 1.06) 0.2120 (28.05) ---

DAILY. 3 YEAR 1.05 (1.03, 1.08) 0.4088 (140.18) ---

DAILY. 5 YEAR 1.05 (1.02, 1.07) 0.4494 (216.88) ---

WEEKLY. 1 YEAR 0.99 (0.94, 1.05) 0.4353 (12.41) ---

WEEKLY. 3 YEAR 0.94 (0.89, 0.99) 0.5084 (39.93) ---

WEEKLY. 5 YEAR 0.96 (0.90, 1.02) 0.4800 (50.68) ---

MONTHLY. 1 YEAR 0.81 (0.73, 0.90) --- ---

MONTHLY. 3 YEAR 1.02 (0.94, 1.13) 0.1168 (1.99) ---

MONTHLY. 5 YEAR 0.99 (0.91, 1.10) 0.1893 (5.68) ---

The values in parentheses in the second column correspond to the 95% confidence bands. Those in columns 3 and
4 are t-statistics. The red values indicate statistical evidence of mean reversion.

As can be seen, the preferred specification includes an intercept in only 93% of the
cases, whilst in two cases, both over a 5-year span and at the daily frequency, this also
includes a linear time trend. In four cases, all for the monthly series over a 1-year span, no
deterministic trends are found to be significant. As for the estimated values of d, the unit
root null cannot be rejected in most cases. In fact, the average value of d in all cases is very
close to 1 (0.989).

Table 5 summarises the estimated values of d with the corresponding volatility co-
efficients. When using the Fama and MacBeth (1973) “standard” beta measure (based on
5 years of monthly observations), the estimates of d are smaller than 1 in all cases (0.897 on
average), which implies a weak mean reversion, although there are differences between
companies. In general, d tends to be larger at higher frequencies and over longer time
spans; in particular, for the daily data (over 1y, 3y, and 5y spans) or the weekly data (over
3y and 5y spans), the average value of d is 1.04, which implies a lack of mean reversion. By
contrast, volatility is smaller at higher frequencies and over longer time spans. The bottom
rows of Table 5 report the average over the 10 stocks, for both the integration parameter d
and the volatility coefficient for each beta measure. Figure 2 provides a scatter diagram for
these two parameters, which confirms that d tends to be larger over longer spans and at
higher frequencies, whilst the opposite holds for volatility. Figure 3 provides the same type
of information for each individual stock, with the same broad picture emerging.
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Table 5. Estimates of the d parameter with the corresponding volatility coefficient for each beta series.

Monthly Weekly Daily

APPLE 5Y 3Y 1Y 5Y 3Y 1Y 5Y 3Y 1Y Average

d 0.910 0.900 0.840 0.880 0.900 0.960 1.070 1.060 1.030 0.950
Stdev/average 0.259 0.380 0.683 0.092 0.200 0.360 0.123 0.172 0.264 0.282
MICROSOFT

d 0.930 1.030 1.030 1.050 0.980 0.980 1.020 1.010 1.020 1.006
Stdev/average 0.109 0.267 0.655 0.097 0.125 0.227 0.077 0.107 0.153 0.202
HOMEDEPOT

d 0.820 0.850 0.750 0.970 0.960 0.930 1.030 1.020 1.040 0.930
Stdev/average 0.174 0.194 0.401 0.102 0.109 0.160 0.093 0.104 0.159 0.166
INTEL

d 0.800 0.730 0.780 1.020 0.980 0.940 1.130 1.080 1.020 0.942
Stdev/average 0.314 0.351 0.499 0.134 0.162 0.223 0.158 0.168 0.202 0.246
JOHNSON & JOHNSON

d 0.790 0.880 0.810 1.230 1.210 1.050 1.060 1.050 1.030 1.012
Stdev/average 0.252 0.378 0.581 0.150 0.191 0.292 0.129 0.149 0.260 0.265
JPMORGAN

d 0.900 0.990 0.920 1.150 1.130 1.080 1.120 1.120 1.110 1.058
Stdev/average 0.147 0.251 0.395 0.147 0.179 0.255 0.138 0.171 0.221 0.212
PROCTER & GAMBLE

d 0.990 1.020 0.800 0.960 0.940 0.990 1.050 1.050 1.040 0.982
Stdev/average 0.302 0.513 0.781 0.097 0.141 0.298 0.084 0.139 0.222 0.286
UNITED HEALTH

d 0.940 0.870 0.710 1.130 1.120 1.020 1.090 1.080 1.030 0.999
Stdev/average 0.437 0.534 0.709 0.301 0.360 0.471 0.211 0.232 0.284 0.393
VERIZON

d 0.930 0.960 0.900 1.050 1.040 1.040 0.990 1.020 1.060 0.999
Stdev/average 0.411 0.474 0.710 0.158 0.206 0.333 0.156 0.185 0.246 0.320
WALMART

d 0.960 0.920 0.990 1.120 1.070 1.010 1.030 1.020 1.020 1.016
Stdev/average 0.332 0.519 1.225 0.179 0.209 0.290 0.183 0.200 0.258 0.377
d analysis

MAX 0.990 1.030 1.030 1.230 1.210 1.080 1.130 1.120 1.110
MIN 0.790 0.730 0.710 0.880 0.900 0.930 0.990 1.010 1.020
Average 0.897 0.915 0.853 1.056 1.033 1.000 1.059 1.051 1.040 0.989
Stdev/average

MAX 0.437 0.534 1.225 0.301 0.360 0.471 0.211 0.232 0.284
MIN 0.109 0.194 0.395 0.092 0.109 0.160 0.077 0.104 0.153
Average 0.274 0.386 0.664 0.146 0.188 0.291 0.135 0.163 0.227 0.275

To summarise, we find evidence of non-stationary behaviour, with orders of integra-
tion equal to or higher than 1, in the daily and weekly series, whilst there is weak evidence
of mean reversion (d < 1) at the monthly frequency. In other words, the parameter d is
affected by the data frequency. There is also evidence that the window span (1y, 3y, and 5y)
has an impact on the parameter d.
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Figure 3. Scatter diagram showing the relationship between the fractional integration parameter d (x
axis) and the volatility coefficient calculated as stdev/average (y axis) for each frequency/sample
length and each stock.
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6. Conclusions

In this study, we examined the statistical properties of the realized betas within the
framework of the CAPM model, using data on the 10 largest capitalised companies from
the U.S. Dow Jones index and applying fractional integration and long memory techniques
in the medium and long term (1, 3, and 5 years). In particular, we estimated their degree of
integration d to measure persistence.

Our results highlight the importance of the choice of frequency and time span (the
number of observations) for estimation purposes. We find evidence that longer time
spans and higher frequencies correspond to higher estimates of d. When using a monthly
sampling 5-year span as in Fama and MacBeth (1973), the realized betas appear to be
characterised by a weak mean reversion (d = 0.897 on average), which implies that shocks do
not have permanent effects. However, the estimations at the daily frequency and for a 5-year
span yield larger values of d (d = 1.059 on average), which implies that a mean reversion
does not occur in these cases. Note that at higher frequencies more observations are
available and thus investors might feel more confident about the corresponding estimates.

On the whole, our analysis suggests that the standard practice of estimating the betas
as in Fama and MacBeth (1973) using only a 5-year sample period is questionable given the
lack of robustness of the results with regard to the choice of frequency and time span (the
number of observations): at higher frequencies, volatility appears to be smaller but higher
values of d are obtained, and thus mean-reverting behaviour is not observed. Our findings
also point to d possibly not being a time-invariant parameter. Future work should aim
to obtain evidence for other developed stock markets to gain additional insights into the
behaviour of the realized betas depending on the sampling frequency and/or window span.
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