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Abstract: This article discusses the issue of diagnosing low-power solar power plants using the
five-valued (5VL) state evaluation {4, 3, 2, 1, 0}. We address in depth how the 5VL diagnostics
built upon 2VL, 3VL, and 4VL—two-valued diagnostics, three-valued logistics, and four-valued
diagnostics. Logic (5VL) assigns five state values to the range of signal value changes, and these
states are completely operational ({4}), incomplete ({3}), critical efficiency ({2}), and pre-fault efficiency
({1}). For the identical ranges of diagnostic signal values, all three of the applied state valence logics
interpret failure as changes outside of their permitted ranges. Diagnostic procedures made use of an
AI-based DIAG 2 system. This article’s goal is to provide a comprehensive overview of the DIAG 2
intelligent diagnostic system, including its architecture, algorithm, and inference rules. Diagnosis
with the DIAG 2 system is based on a well-established technique for comparing diagnostic signal
vectors with reference signal vectors. A differential vector metric is born out of this examination
of vectors. The input cells of the neural network implement the challenge of signal analysis and
comparison. It is then possible to classify the object components’ states in the neural network’s output
cells. Based on the condition of the object’s constituent parts, this approach can signal whether those
parts are working, broken, or urgently require replacement.

Keywords: neural networks; intelligent systems; servicing process; diagnostic process; expert system;
knowledge base; low-power solar plant devices; diagnostic information

1. Introduction

The use of five-valued logic (5VL) to work out diagnoses about the investigated
state in the diagnosis of complex technical objects is new and has not yet been pre-
sented in publications. The implementation of object diagnosis in 5VL diagnostics re-
quired the additional training of the SSN precisely to teach the network to recognise state
“1”—the state of pre-damage fitness. The theoretical principles developed by the research
team for diagnosing and distinguishing the ‘1’ state are new to the literature, which we are
already effectively implementing. The diagnostic condition labelled “1” is new to diagnos-
tic research. The condition ‘1’ is already recognised and described is called the ‘pre-injury
condition’. This condition is the team’s original idea. It is also an important and significant
scientific achievement of ours. This new “1” state has already been fully developed the-
oretically, is also trained by the SSN, and is put into practice in the intelligent diagnostic
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system DIAG 2. The technical ability to recognise the pre-damage state in an object is
particularly important for reliability reasons for sensitive objects. This is particularly true
of such objects, where their efficiency and continuity of use is decisive, such as passenger
aircraft, medical systems, energy systems, etc. If a pre-damage condition is recognised in a
technical facility, it means that technical refurbishment must be initiated, resulting in the
facility being restored to a serviceable condition. Therefore, the knowledge of the time of
occurrence of the “1”—pre-damage state in the object is the basic diagnostic information
due to the possible use in the developed strategy of restoration of the object in the literature
called the “state by state strategy”. This fact underlines the novelty and innovation of this
article in relation to other studies on the diagnosis of complex technical objects. The term
“object renewal strategy by condition” was already known in the literature. What was
lacking, however, was a diagnostic tool such as the DIAG 2 system that would effectively
recognise the “1” state—the pre-damage state. Such a capability was not provided by
diagnostics in logic: 2VL; 3VL; and 4VL diagnostics—four-valued due to the state of critical
fitness. The above-mentioned diagnostics ensure, with some approximation, the realisation
of the renewal of an object with a “strategy by state”. Thus, as presented in the article, the
diagnostics of each object allow the recognition of current states in the object. Especially
states that are related to non-critical damage.

Our research confirms the thesis, and it can be concluded with high probability that
technical diagnostics (5VL) is an effective tool to identify the occurrence of a pre-damage
state. The ‘1’ condition information produced indicates that the technical facility will
experience a state of unfitness (sudden and critical damage) in the near future, as a result
of which, the facility will cease to be used.

Studies [1–7] in particular offer a plethora of material regarding AI systems, neural
networks included. All things considered, the findings from these studies lay a firm ground-
work for comprehending the inner workings of artificial neural networks. In addition, they
contain the scientific and mathematical foundations for understanding the brain and its
networks. The authors laid out the theoretical foundations of static neural network training,
instruction, and design in great depth. Research into radial basis function artificial neural
networks may shed light on their development, training, and deployment. Efforts were also
made by the authors to incorporate sections on dynamic neural networks, covering topics
such as training methods, teaching methodologies, and construction concepts. Artificial
neural network operation has been the focus of multiple investigations into sets and fuzzy
knowledge [8–11]. The references begin with the publications [12–18].

The text covers the fundamentals of how technological devices function. It includes
equations that spell out how a technological object’s model works and how reliable it is.
An approach to structuring the operation process according to the object models is also
part of the study. The authors have substantial experience in this field, and their prior work
describes the outcomes of diagnostic tests on technological devices. Recent years have seen
a dramatic acceleration in the development of technical diagnostics thanks to the utilization
of AI systems, particularly artificial neural networks. Many variables have been considered
in earlier research on technical and technological process control and diagnosis, such as
the difficulty of controlling different kinds of industrial robots and the necessity to modify
technological systems [19–21].

Investigations conducted might significantly affect the design of a diagnostic system
that makes use of artificial neural networks. Based on the results of the technical diagnostics,
these studies outlined a method for constructing an operating system for technological
objects. A theory on how the status of a technological item evolves was suggested in the
study. This causes it to undergo a transformation or lose some of its useful properties. As a
result, you need a solid diagnostic for this item’s following state. Preventative procedures,
including regenerating the object, are the way to go when the recognized state is partially
operable or non-operable. The author of the aforementioned study outlined an ANN’s
architecture and explained how it functions, down to the theoretical dependencies that
determine the ANN’s operation by the approach given. The trivalent logic also laid
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the theoretical groundwork for identifying technological goods using an artificial neural
network. The results were supported by a case study of the diagnostic information base
setup of the device that was evaluated [22,23].

The focus of the diagnostic procedure is the technical component. The method of
diagnosis is determined by its structure, function, and target application. This document ex-
plains a diagnostic problem with a complex technical item. Specifically, the paper describes
the construction and operation of this solar power plant equipment. One particularly
innovative aspect of this work is the method it presents for creating diagnostic knowledge
bases for solar low-power plant devices (L-PPD). Analysing distance measurements pro-
duced by comparing diagnostic signal vector images with their patterns, the authors of this
article painstakingly improved the object’s condition testing technique, which improved
the reliability of condition testing of technical devices. We completed this task by utilizing
AI and solutions based on expert systems.

The result of this work is the DIAG 2 diagnostic program [24–28]. Discover the results
of tests and research on solar low-power plant devices in the following articles [29–32]. A
study by Hwang et al. [33] detailed the application of multilayer neural networks (MNN) in
the diagnosis of solar streetlamps. Adaptive Responsiveness Theory 2 was the basis for the
selected network type. The duty cycle voltage applied to unloaded panels was inputted into
two neural networks. In their study, Ganeshprabu et al. [34] utilized a distributed online
monitoring system based on an XBee wireless sensor network to track crucial performance
indicators of solar panels. Module insolation, temperature, voltage, output current, and
ambient insolation are some of these indicators. Jing et al. [35–40] describe a method for PV
system fault detection and diagnosis that can operate independently. It uses a combination
of an ANN and a more conventional analytical method to identify and fix errors. An ANN
with two layers was used for electricity forecasting. By analysing the power differential, the
difference between predicted and actual power, the open-circuit voltage and short-circuit
current of a string of PV modules, and other similar variables, the authors were able to
identify as many as six distinct failure types. In their papers, Duera et al. [41] explain the
diagnostic system (DIAG 2) for devices used in low-power power substations and discuss
research topics related to logical diagnoses with two, three, or four values. The article not
only details the testing but also gives a quick rundown of the intelligent diagnostic system
(DIAG 2) that was used.

The diagnostic system (DIAG 2) functions by comparing a set of actual diagnostic
output vectors with their respective primary vectors. The comparison produces the diag-
nostic output vectors’ elementary divergence metrics that were determined by the neural
network. Using difference-trial distance measurements, elementary divergence metrics
determine the condition of the test object’s basic components as input (DIAG 2). Projecting
future output power from various solar cell types was the principal goal of the ANN model.
The process was carried out on all three types of cells: monocrystalline, multicrystalline,
and amorphous. According to the findings, multi-, mono-, and high-crystalline cells are
the most effective. Most of the essay was devoted to explaining how to identify damaged
photovoltaic (PV) panels. The suggested method examines the ideal features of the fault by
analysing current–voltage (I-V) curves from various fault types, including hybrid faults. To
standardize the fault features, we also proposed a metaheuristic approach to particle swarm
optimization (PSO) and a deterministic technique for the reflective confidence region. In
addition, we used AdaBoost, an adaptive multi-class method that models stage-wise with
the multi-class exponential loss function (SAMME) and depends on the classification and
regression tree (CART).

2. Ranges of Changes in Object’s Conditions in Five-Valued Logic Used in the DIAG 2
Diagnostic System

The technical features of each complicated technical entity are determined by the
values of the physical quantities that define it (Figure 1). These quantities are referred to as
features that indicate the specific conditions which the object can be located in. The output
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signals of the object are contingent upon the input signals and the state of its fundamental
components. Let us establish the definition in the subsequent manner:

Yi = f (X1, X2, . . ., Xm: p1, p2, . . ., pn) (1)

where p1, p2, . . ., pn are parameters that describe the object’s status and Yi is the output
diagnostic signal of the ith functional element and X1, X2, . . ., Xm are the input signals
given to the mth inputs of the object’s elements.

Energies 2024, 17, x FOR PEER REVIEW 4 of 19 
 

 

2. Ranges of Changes in Object’s Conditions in Five-Valued Logic Used in the  
DIAG 2 Diagnostic System 

The technical features of each complicated technical entity are determined by the 
values of the physical quantities that define it (Figure 1). These quantities are referred to 
as features that indicate the specific conditions which the object can be located in. The 
output signals of the object are contingent upon the input signals and the state of its 
fundamental components. Let us establish the definition in the subsequent manner: 

Yi = f(X1, X2, …, Xm: p1, p2, …, pn) (1)

where p1, p2, …, pn are parameters that describe the object’s status and Yi is the output 
diagnostic signal of the ith functional element and X1, X2, …, Xm are the input signals given 
to the mth inputs of the object’s elements. 

 
Figure 1. Schematic representation of a sophisticated diagnostic system for a technical device, where 
X(ei,j) is the diagnostic signal is present; jth is an element of ith set; X(w)(ei,j) is an exemplary signal for 
X(ei,j) signal; FC max is the max. worth of the purpose for which the object is used; W(ε(ei,j)) is the 
importance of state assessment reasoning for the jth element within ith module, which is a part of 
the recognised five-valued logic of state evaluation; and {ME(ei,j)} is a specialist knowledge base that 
refers to a collection of maintenance information specific to an object. 

The technique of comparing diagnostic signals with their corresponding model 
signals is frequently employed in the diagnostics of technical objects (see Figure 2). The 
diagnostic approach is described in the literature by the following equation: ∀௘೔,ೕ∈ሼா೔ሽ ∃௑൫௘೔,ೕ൯∈௑ 𝑋൫𝑒௜,௝൯ → ∀௘೔,ೕ∈ሼா೔ሽ ∃௑ሺೢሻ൫௘೔,ೕ൯∈௑ሺೢሻ 𝑋ሺ௪ሻ൫𝑒௜,௝൯ ⇒ 𝑊 ቀ𝜀൫𝑒௜,௝൯ቁ  (2)

where the abbreviations below represent the following: variables W(ε(ei,j)) and W(ε(ei,j)) 
represent the value of state assessment logics for the jth element in the ith module, the 
diagnostic signal in the jth element of the ith assembly of the object, the model signal for 
the X(ei,j) → signal, and the symbols 𝑎 and Ei, which denote diagnostic activities and ⇒ 
comparison, respectively. 

 
Figure 2. Changes within the feature value range of the ith diagnostic signal. “4”—the state of full 
operation; “3”—the state of an incomplete usability; “2”—a critical operable condition; “1”—pre-
damage condition; “0”—the state of non-operation (defect). 

Figure 1. Schematic representation of a sophisticated diagnostic system for a technical device, where
X(ei,j) is the diagnostic signal is present; jth is an element of ith set; X(w)(ei,j) is an exemplary signal
for X(ei,j) signal; FC max is the max. worth of the purpose for which the object is used; W(ε(ei,j)) is the
importance of state assessment reasoning for the jth element within ith module, which is a part of
the recognised five-valued logic of state evaluation; and {ME(ei,j)} is a specialist knowledge base that
refers to a collection of maintenance information specific to an object.

The technique of comparing diagnostic signals with their corresponding model signals
is frequently employed in the diagnostics of technical objects (see Figure 2). The diagnostic
approach is described in the literature by the following equation:

∀
ei,j∈{Ei}

∃
X(ei,j)∈X

X
(
ei,j

)
→ ∀

ei,j∈{Ei}
∃

X(w)(ei,j)∈X(w)

X(w)

(
ei,j

)
⇒ W

(
ε
(
ei,j

))
(2)

where the abbreviations below represent the following: variables W(ε(ei,j)) and W(ε(ei,j))
represent the value of state assessment logics for the jth element in the ith module, the
diagnostic signal in the jth element of the ith assembly of the object, the model signal for
the X(ei,j) → signal, and the symbols a and Ei, which denote diagnostic activities and ⇒
comparison, respectively.

Energies 2024, 17, x FOR PEER REVIEW 4 of 19 
 

 

2. Ranges of Changes in Object’s Conditions in Five-Valued Logic Used in the  
DIAG 2 Diagnostic System 

The technical features of each complicated technical entity are determined by the 
values of the physical quantities that define it (Figure 1). These quantities are referred to 
as features that indicate the specific conditions which the object can be located in. The 
output signals of the object are contingent upon the input signals and the state of its 
fundamental components. Let us establish the definition in the subsequent manner: 

Yi = f(X1, X2, …, Xm: p1, p2, …, pn) (1)

where p1, p2, …, pn are parameters that describe the object’s status and Yi is the output 
diagnostic signal of the ith functional element and X1, X2, …, Xm are the input signals given 
to the mth inputs of the object’s elements. 

 
Figure 1. Schematic representation of a sophisticated diagnostic system for a technical device, where 
X(ei,j) is the diagnostic signal is present; jth is an element of ith set; X(w)(ei,j) is an exemplary signal for 
X(ei,j) signal; FC max is the max. worth of the purpose for which the object is used; W(ε(ei,j)) is the 
importance of state assessment reasoning for the jth element within ith module, which is a part of 
the recognised five-valued logic of state evaluation; and {ME(ei,j)} is a specialist knowledge base that 
refers to a collection of maintenance information specific to an object. 

The technique of comparing diagnostic signals with their corresponding model 
signals is frequently employed in the diagnostics of technical objects (see Figure 2). The 
diagnostic approach is described in the literature by the following equation: ∀௘೔,ೕ∈ሼா೔ሽ ∃௑൫௘೔,ೕ൯∈௑ 𝑋൫𝑒௜,௝൯ → ∀௘೔,ೕ∈ሼா೔ሽ ∃௑ሺೢሻ൫௘೔,ೕ൯∈௑ሺೢሻ 𝑋ሺ௪ሻ൫𝑒௜,௝൯ ⇒ 𝑊 ቀ𝜀൫𝑒௜,௝൯ቁ  (2)

where the abbreviations below represent the following: variables W(ε(ei,j)) and W(ε(ei,j)) 
represent the value of state assessment logics for the jth element in the ith module, the 
diagnostic signal in the jth element of the ith assembly of the object, the model signal for 
the X(ei,j) → signal, and the symbols 𝑎 and Ei, which denote diagnostic activities and ⇒ 
comparison, respectively. 

 
Figure 2. Changes within the feature value range of the ith diagnostic signal. “4”—the state of full 
operation; “3”—the state of an incomplete usability; “2”—a critical operable condition; “1”—pre-
damage condition; “0”—the state of non-operation (defect). 

Figure 2. Changes within the feature value range of the ith diagnostic signal. “4”—the state of full
operation; “3”—the state of an incomplete usability; “2”—a critical operable condition; “1”—pre-
damage condition; “0”—the state of non-operation (defect).

A determination is made by the network regarding which of the three distinct states
{4, 3, 2, 1, 0} a particular element of the object that computed the signal should be classified
into, as a result of this activity (comparison of signals).
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Assuming that the nominal values of the input signals’ characteristics are provided,
we may determine the signal’s value at the object’s output, which represents its current
state. The process of analysing the output signal Yi involves measuring its kth features
and comparing the measurement result with the feature of the ith modular signal Y(w),i.
It is much easier to determine whether the values of diagnostic signals fall within their
range of allowable changes rather than comparing the output signal with the model.
Figure 3 displays the ranges of the value variations of the ith diagnostic signal feature for
five-valued logic.
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Figure 2 identifies five distinct categories of changes, namely:

• variety of inconsequential signal alterations (Yi
4′ , Yi

4); this specifies the state of the
characteristic of the entity at level “4”;

• extent of the pertinent signal alteration (Yi
3′ , Yi

4′ ) ∪ (Yi
4, Yi

3); this refers to the state or
status of a specific characteristic of the object at a particular level “3”;

• range of the crucial signal variation (Yi
2′ , Yi

3′ ) ∪ (Yi
3, Yi

2), which describes the state of
the characteristic of the item at level “2”;

• extent of signal alteration in the pre-damaged compartment (Yi
1′ , Yi

2′ ) ∪ (Yi
2, Yi

1);
describes the state of the characteristic of the item at level “1”;

• range of unacceptable signal variations (−∞, Yi
1′ ) ∪ (Yi

1, +∞) to determine the state
of the feature of the object at level “0”, if there is a requirement to analyse multiple
features of the output signal Y, one must check if each of these characteristics falls
within an acceptable range of change.

The establishment of ranges for variations in the diagnostic signals relative to the
reference signal facilitated the formulation of diagnostic guidelines for the functioning of
the RBF artificial neural network as follows:

Rw1 : I
Yk∈Y

{
Yk ∈

(
Y4

i , Y4
i

)}
⇒

(
εi = ε4

i

)
= {4} (3)

where Rw1 is the first guideline for diagnostic inference, (Y4
i , Y4

i ) is the range of changes
that are of no significance to the signal features’ values, ⇒ is a comparison symbol, and {4}
is the operable condition.

Rw2 : I
Yk∈Y

{
Yk ∈

(
Y3′

i , Y4′
i

)
∪
(

Y4
i , Y3

i

)}
⇒

(
εi = ε3

i

)
= {3} (4)
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where the second rule of diagnostic inference is denoted as Rw2, the range of changes for
the relevant values of the signal characteristics is (Yi

3′ , Yi
4′ ) ∪ (Yi

4, Yi
3), ⇒ is a comparison

symbol, and {3} represents the state of imperfect operability.

Rw3 : I
Yk∈Y

{
Yk ∈

(
Y2′

i , Y3′
i

)
∪
(

Y3
i , Y2

i

)}
⇒

(
εi = ε2

i

)
= {2} (5)

where Rw3 represents the third rule of diagnostic inference. (Yi
2′ , Yi

3′ ) ∪ (Yi
3, Yi

2) represents
the range of changes for the critical values of the features of the signal. The symbol ⇒
denotes a comparison, and {2} represents the critical operable condition.

Rw4 : I
Yk∈Y

{
Yk ∈

(
Y1′

i , Y2′
i

)
∪
(

Y2
i , Y1

i

)}
⇒

(
εi = ε1

i

)
= {1} (6)

where Rw4 is the diagnostic inference rule, which states that the range of modifications for
the pre-damage compartment values of signal characteristics is (Yi

1′ , Yi
2′ ) ∪ (Yi

2, Yi
1), with

⇒ as a comparison symbol and {1} as the critical operable condition.

Rw5 : I
Yk∈Y

{
Yk ∈

(
−∞, Y1′

i

)
∪
(

Y1
i ,+∞

)}
⇒

(
εi = ε0

i

)
= {0} (7)

where the fourth rule of diagnostic inference is known as Rw5, the allowable range for the
values of the signal’s features is (−∞, Yi

1′ ) ∪ (Yi
1, +∞), ⇒ is a comparison symbol, and {0}

denotes the inoperability condition.
The four-valued evaluation of conditions in technical diagnostics allows us to deter-

mine the genuine condition of the object’s states during the diagnosing process. We assign
one condition from a collection of conditions to represent the actual condition of the object.

• {4}: the object is said to be in an operable condition when it has the whole capability to
carry out the duties it was specifically built for;

• {3}: an item is said to be in an incomplete operable condition when it can only fulfil
its functions to a limited extent. In such cases, it is necessary to initiate preventive
operations in order to restore the object’s full functionality;

• {2}: a critical operable condition refers to a state when an object is capable of performing
its functions, but only within a very limited scope. This condition occurs before any
harm occurs and it necessitates taking pre-emptive measures to restore the object;

• {1}: the term “pre-damage compartment operable condition” refers to a state in which
the object is able to execute its tasks, but only to a very limited extent. This condition
occurs before any damage ensues and necessitates adopting preventive measures to
restore the object;

• {0}: an inoperable condition refers to a state when the object has lost its ability to
function and is unable to accomplish the tasks it was built for.

3. Diagnostic Model of Devices in the Solar Power Plant System

The low-power solar plant devices were diagnosed using the DIAG 2 system, which
is a patented intelligent system that operates based on an artificial neural network of
the RBF type. The descriptive section of the article outlines the algorithm used in the
DIAG 2 intelligent diagnostic system for implementing the diagnostic approach. The
diagnostic approach employed in the DIAG 2 system employs a methodology described
in the literature. This methodology involves comparing diagnostic signals with their
corresponding standard diagnostic signal vector, as indicated in Equation (1). The DIAG 2
system utilizes a diagnostic information format that is represented by a five-valued state
evaluation {4, 3, 2, 1, 0}. The diagnostic information obtained from the DIAG 2 program is
presented in a tabular format, specifically referred to as the “Table states of objects”. To
conduct the approved experiments in a small solar power plant system, an experimental
setup was created, as depicted in Figures 3 and 4.
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Figure 4. Diagram of functional and diagnostic structure of low-power solar plant devices:
E1—photovoltaic system, E2—voltage regulator (controller) system), E3—electrical energy storage
system, E4—DC/AC converter, E5—receiving system.

Prior to conducting diagnostic tests using the DIAG 2 diagnostic system, it is neces-
sary first to perform a diagnostic analysis of the object being inspected. The reader will
discover illustrations and the approach to implementing this diagnostic objective in the
subsequent sections: the following text is a functional and diagnostic study of devices in
low-power solar plant devices which was conducted for research purposes. The outcome
of this analysis is a specified collection of ith functional units {Ei}. During the subsequent
stage of the research, the collection of jth fundamental components was identified within
each ith group {ei,j}. The DIAG 2 diagnostic system displays the functional units of the item,
which are labelled as “units”, and the basic elements are labelled as jth “elements”. The
subassemblies within the ith assemblies of the facility are regarded as third-level compo-
nents, referred to as “Modules” which function as intermediate elements. The modules
facilitate the conversion of an object’s hierarchical form into an internal matrix structure, as
depicted in Figures 4 and 5. This conversion can be performed in both directions.
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To initiate the DIAG 2 diagnostic system, it is necessary to connect and store the
diagnostic measurement knowledge base created in the program memory. The measure-
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ment base comprises diagnostic signals {X(ei,j)} obtained from the output of the jth object
elements, along with the corresponding diagnostic standard signals {Xw(ei,j)}. The measure-
ment base set produced for the DIAG 2 program is depicted in Figure 6.
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The DIAG 2 system determines the diagnostic status of the object by examining and
analysing the set of output diagnostic signals and comparing them with the reference signal
(nominal) (Figure 7).
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4. Investigations and Outcomes of an Artificial Neural Network-Based Determination of
Diagnostic Information for Low-Power Solar Plant Devices (L-PSPD)

The DIAG 2 diagnostic system utilizes two-, three-, four- or five-valued logic to
generate the conclusive diagnostic information regarding the condition of the object. The
conclusive compilation of diagnostic information regarding the states of the object studied
is shown in the state table for 2VL—a two-valued state assessment. The states determined
are established based on the values from the {1, 0} set (Figure 8).
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a two-valued logic system.

The diagnostic outcome of the bivalent evaluation of 2VL conditions in low-power
solar power plant equipment is depicted in Figure 8. The diagram illustrates that the j
fundamental components in the subset {e1,1; e1,2; e1,3; e1,4; e2,1; e2,2; e2,3; e3,1; e3,2; e3,3; e4,1; e4,2;
e4,3; e5,1; e5,2} all have the state of “1”, i.e., the state of fitness.

The diagnostic information regarding the states of the object examined is consolidated
in the state table for 3VL: three-valued state assessment. The calculated states are based on
values from the {2, 1, 0} set (Figure 9).

The diagnostic results of the low-power solar plant equipment in the three-valued
3VL state assessment are depicted in Figure 9. Figure 9 illustrates that the fundamen-
tal components of the subset {e1,1; e1,2; e1,3; e2,1; e3,1; e4,1; e4,2} exhibit the state of “2”:
the condition of fitness. Nevertheless, the fundamental components of the item belong-
ing to the collection {e2,2; e2,3; e3,2; e3,3; e4,3; e5,1; e5,2} exhibit the “1” state, indicating an
unfinished state.

The examination of Figure 9 demonstrates that the DIAG 2 system, developed in
three-valued logic (3VL), exhibits enhanced informativeness in terms of reasoning and
informationally. This is due to the fact that the DIAG 2 system not only acknowledges
the {1} condition but also recognizes it as the state of incomplete compliance. Thus, it is
evident, as already established in the literature, that in three-valued logic, the presence of
the determined state “1”—representing an incomplete condition—renders this 3VL logic
more informative than 2VL two-valued logic.
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Figures 10 and 11 display diagnostic information for four-valued and five-valued logic.
The ultimate form of diagnostic information on the states of the item investigated, in which
the 15 jth basic elements (modules) found in the ith functional units, are identified by their
internal structure. Figure 10 demonstrates that the basic components in the subset {e1,1;
e1,2; e1,3; e2,1; e3,1; e4,1; e4,2} possess state “3”: fitness. The basic components of the element
belonging to the collection {e1,4; e2,2; e2,3; e3,2; e5,1; e5,2} show the state of ‘2’, indicating a
state of partial fitness. The remaining components of the collection {e3,3; e4,3} element show
the status of ‘1’, indicating a critical performance condition.
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Figure 11. The output format of the DIAG 2 program, namely the “Table of states of the EHPSS”,
is designed for assessing states using a five-valued system known as 5V: “4”—the state of full
operation; “3”—the state of an incomplete usability; “2”—a critical operable condition; “1”—pre-
damage condition; “0”—the state of non-operation (defect).

In the case of five-valued logic, tests showed that only one basic element {e3,3} has state
‘1’: pre-fault, which is 3%. The basic elements {e1,1; e1,2; e1,3; e2,1; e3,1; e4,1; e4,2} have state ‘4’:
fitness. Other core components assessed from the subset {e1,4; e2,2; e2,3; e3,2; e5,1; e5,2} have
state ‘3’: partial fitness. The remaining subset of core components from the set {e4,3} have
state ‘2’, which indicates critical fitness. The percentage of these jth components with the
state of critical condition in the structure of the object assessed is 3%. The information gain
from five-valued logic to four-valued logic is 16%, relative to three-valued logic at 26%,
and relative to basic logic at 58%. Tests have shown that the use of five-valued logic is an
optimal solution for the diagnosis of technical objects, providing a lot of information about
the state of the object.

Here you may obtain the final version of the diagnostic data pertaining to the object’s
condition. With these data, we can pinpoint exactly where in the object’s internal structure
each of the fifteen fundamental components (modules) located in the functional units sit.
Figure 8 shows the DIAG 2 program’s output form, the “Object states table” for 2VL: the
bivalent state evaluation. In terms of the technical condition of the item under investigation,
this is the pinnacle of diagnostic information. Each functional unit had fifteen separate
fundamental pieces, or modules, that together formed the object’s underlying structure.
The basic components from the subset {e1,1; e1,2; e1,3; e1,4; e2,1; e2,2; e2,3; e3,1; e3,2; e3,3; e4,1; e4,2;
e4,3; e5,1; e5,2} (Figure 8) using three-, four-, or five-valued logic tend to have a decreasing
fitness condition for the basic element, leading to more accurate object diagnosis, as shown
in Figures 12 and 13.
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We reach the meat of the matter with low-power solar plant devices in Section 3.
Any technological item’s diagnostic procedure is an intricate organizational and technical
activity. Included in that operation are the following elements: The first step is to test
the item’s functionality and diagnose any problems. The second is to create a diagnostic
system, which is essentially a computer program. The third is to establish a measurement
database. Conducting a functional and diagnostic investigation of the examined object is
necessary before making a diagnosis. This investigation is based on a generally recognized
technique for segmenting the object’s internal structure, such as a three- or four-level
division. This leads to the identification of the object’s structural elements, which in turn
define the object’s diagnostic state, which in turn indicates the states of the object’s separate
units, or functional systems. The object’s functional systems identify its state, which in turn
determines the object’s state under investigation.

For things assessed as low-power solar plant equipment in particular, the DIAG 2
diagnostic system’s usage of an artificial neural network is a powerful research and analysis
tool. An efficient measuring system that builds a measurement knowledge base is the
bedrock for diagnostics implementation. Along with this specific database of measurement
information, which includes a subset of diagnostic signal values, it is necessary to include a
subset of standard diagnostic signal values (Figure 7).
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The authors of this research provide a technique for assessing comparable photos that
they used to troubleshoot equipment in low-power solar plants. The DIAG 2 software and
an algorithm for artificial neural networks were both built on top of that approach. The
article lays forth a comprehensive method for identifying technological items and systems.
The diagnostician’s work model is crucial for establishing the object’s condition. That is
why we used this three-tiered technique to partition the object’s internal structure. Object
System Function: The object’s fundamental component or module. Graphs depicting these
diagnostic signals and a collection of fundamental components are the end product of
this process.

5. Discussion

The DIAG 2 diagnostic program, created by the author and shown in this paper,
works as a result of using an artificial neural network with an RBF-like architecture. The
effectiveness of the artificial neural network’s operation and training determines how well
the DIAG 2 system performs. For the SSN’s training process to work, training signal vectors
had to be made for each of the recognized states.
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The SSN was initially trained to identify (classify) the fundamental states of 2VL logic.
The recognized states in 2VL logic are “1” states, which denote the state of fitness, and “0”
states, which denote unfitness. In contrast, the SSN has been trained to detect the additional
states present in five-valued 5VL logic, such as the “3” state, which stands for the state of
incomplete fitness; the “2” state, which stands for the state of crucial fitness; and the “1”
state, which stands for the pre-damage state. The EHPSS diagnosis findings in the 2VL
and 5VL logics, which are shown in Figure 14 clearly demonstrate that the DIAG 2 system
detects the “0” unfitness state in both diagnosis logics applied. Both logics tested share the
unfitness condition, sometimes known as the “0” condition. The DIAG 2 system detected
an unsuitable state in one element, e1,6 when used in 2VL and 5VL logics. This leads to the
conclusion that the DIAG 2 diagnostic system is quite powerful and that the SSN in the
system is well-trained. Additionally, it may be inferred that the training vectors developed
for instructing and training the SSN to identify an unfit state were ready. All the diagnoses
in the investigation were made using the same DBW diagnostic knowledge base. The size
of the DBW matrix was initially anticipated to be small during the system testing stage due
to the speed of the research being undertaken. After performing test runs and looking at
how well the developed diagnosis worked, it was possible to state that the initial limits on
the size of the DBW were not very significant.
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Figure 14. An artificial neural network (SBM) in the program of the DIAG 2 intelligent diagnosis
system: “4”—the state of full operation; “3”—the state of an incomplete usability; “2”—the critical
operable condition; “1”—pre-damage condition; “0”—the state of non-operation (defect).

The same DBW diagnostic knowledge base is used by the 2VL and 5VL implementa-
tions of the EHPSS diagnostic tests that are based on the DIAG 2 system at logic. As a result,
diagnostic tests are applied to the same test object and the same test conditions. When we
wish to compare how accurate and useful the diagnoses we performed in the 2VL and 5VL
logics are, it is important that the same conditions in the diagnostic test plan are met.

A study that describes the diagnostics of a technical object in four-valued logic is
included the papers cited in the article. This article is unique in comparison to other works,
such as the study, because it presents a diagnosis utilising 5VL five-valued logic for the
first time.
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Technical objects sustain damage while in use due to internal and external forces
acting on them as well as aging processes. Any damage to a technical object may have little
or a lot of effect on how it can be used in the future.

In accordance with:

Definition 1. The damage is a state in which a technological object is unable to carry out its
intended functions (the object ceases to carry out its functions). The two types of damage include
critical and non-critical based on their nature.

Definition 2. Critical (sudden) damage is any harm that causes the technical item to be in the
“0” condition, which denotes the state of unfitness. The object’s capacity to carry out its necessary
functions is suddenly completely lost in this state. Critical damage can be caused by huge material
losses or other issues that could bring harm to both to the facility and the people who use it.

Definition 3. Non-critical (parametric) damage is the kind of damage that occurs slowly over time
to a technical object while it is being used. It can be caused by aging, the effects of internal factors
(like pressure, temperature, etc.) on the object’s structural parts, and other things.

When a technological facility is in use, there is a circumstance that causes the level
of operational characteristics to gradually (parametrically) decline. The object’s capacity
to carry out its necessary functions in a parametric manner also gradually declines. Non-
critical damage does not always mean property loss or other risky situations for the facility
and the staff that work there.

Technological diagnostics, when used in a technical facility, have the responsibility of
continuously observing (diagnosing) and monitoring any state inside (Figure 14).

When analysing the figure, it can be observed that non-critical (parametric) damage is
continuously recognised, regardless of the diagnosis rationale applied during the diagnosis
procedure. The DIAG 2 system continuously recognises variations in the level of exploita-
tion characteristics that occur in the technical object as it is being used. The DIAG 2 system
detects negative changes in the object’s level of exploitation characteristics when they
deteriorate over time in the form of interpreted states that are appropriate to the inference
logic applied, such as “3” for incomplete serviceability, “2” for critical serviceability, and
“1” for pre-damage. It needs to be noted that only fit objects possess the state of “4”, which
is the state of fitness. A new item possesses a state that it is present after it is put into use.

It has not yet been documented in publications how 5VL logic can be used to diagnose
intricate technical objects. The SSN needs more training to implement object diagnosis
in 5VL diagnostics. The “1” state, or the pre-damage state, is used to train the network
to recognise a new state for this diagnosis. My research team is already using principles
that are novel in the literature as well as developed theoretical rules for diagnosing and
separating the “1” condition. The concept of the diagnostic condition, which my team
developed, is known as the “pre-rupture state” in diagnostic research. It represents our
significant scientific accomplishments. This new condition “1” has already been created
in theory, taught by SSN, and put to use by the DIAG 2 intelligent diagnostic system.
Due to their operability and continuous usage, sensitive objects such as passenger aircraft,
medical systems, energy systems, etc., require the technical ability to identify a pre-damage
condition in the object. If the pre-damage status of the technical facility is acknowledged,
technical renewal should be commenced, leading to the facility’s return to the state of fitness.
The primary diagnostic information is the knowledge of the object’s time of occurrence in
the “1”—pre-damage state, owing to the potential restoration plan for the object described
in the literature as “strategy by condition”. This finding highlights how unique this article
is in comparison to other studies on the diagnostics of complex technical objects. In the
literature, the idea of the “object’s renewal strategy by condition” is already well known.
However, there is no diagnostic device like the DIAG 2 system that could accurately identify
the “1” state or the pre-damage state. The logic diagnostics do not point to such a possibility:
due to the condition of critical fitness, 2-VL, 3-VL, and, to a certain extent, 4-VL diagnostics
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are given with some approximation so that the “strategy by state” renewal of the object can
be performed.

When compared to four-, three-, and two-valued diagnostics, and five-valued diagnos-
tics are new because they can more accurately identify the pre-damage condition. Before
the occurrence of an inoperable condition in the object, the “0” condition: the pre-damage
condition in the object under study occurs in the process of its use. Experience with the
application of 5VL logic to the diagnosis of EHPSS equipment shows how crucial it is for a
facility’s operational procedures to be able to identify the facility’s pre-damaged state. If
the technological facility exhibits a pre-damage condition, it means that there is a possibility
that a failure (unfitness) may happen there soon.

The structuration of technical object restoration utilizing a “strategy by state” approach
will be the main topic of our upcoming research.

6. Conclusions

Based on the results obtained, it appears that the diagnoses occurring in five-valued
logic in terms of informativeness are greater (richer) than those occurring in two-value,
three-value, and four-valued logic. On this basis, the percentage information efficiency of
five-valued logic (5VL) diagnoses was calculated, which is 16%, four-valued logic (4VL) to
two-valued logic (26%), and three-valued logic (3VL) diagnoses, which is 58% higher than
two-valued logic (2VL) diagnoses (Table 1).

Table 1. Amount of additional information that can be obtained when introducing the k-th condition
into the diagnostic evaluation of the object.

k P(A) Ik(A) Ik(A) [%]

2 0.5 - -
3 0.33 1.5849 58.5
4 0.25 1.2618 26.2
5 0.2 1.1609 16.1

Where: k—number of states; P(A)—probability of the occurrence of state A; Ik(A)—amount of possible additional
information for the k-th number of states.

The DIAG 2 diagnostic system is based on an artificial neural network, which is a
powerful tool for research and analysis, particularly when dealing with test objects like
equipment for low-power solar power plants. An efficient measuring system that builds a
measurement knowledge base is the foundation for diagnostics implementation. We will
build the measurement knowledge base from these values of the diagnostic signals. The
establishment of a consistent set of diagnostic signal values is an additional requirement
for this body of information (Figure 7).

The necessity to employ the data generated by the DIAG 2 system in the course of
arranging maintenance (repair and renewal procedures) increases the diagnostic utility of
technical objects in five-valued logic. In order to use an appropriate strategy for arranging
the technical maintenance (renewal) in the item under consideration, it is necessary to
interpret (recognize) the incomplete state of the object and the reliability status of its
components. In complicated technological items, the diagnostic process using a five-value
condition evaluation is predictive. Because of the frequent and brief outages experienced
by such sophisticated technological facilities, this issue is of paramount importance when
it comes to their usage and operation.
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Abbreviations

E1 photovoltaic system
E2 voltage regulator (driver) system
E3 electric energy storage system
E4 DC/AC converter
E5 receiving system
X(ei,j) diagnostic signal in jth element of ith set
X(w)(ei,j) model signal for X(ei,j) signal
FC max max. value of the function of the use of the object
∆X(n)i standardized vector of the distance metric of jth signal
DMi standard deviation of ith vector of signal metric

W(ε(ei,j))
valued of state assessment logics for jth element within ith module (from the
set of the accepted three-valued logic of states’ assessment)

{ME(ei,j)} specialist knowledge base (a set of maintenance information of the object)
DM(Xi, X(w)i α) standard deviation of the vector signal metric, (α = 2)
Xn nth diagnostic signal in jth element of ith set
wi,n weight coefficient
σi,j coefficients of weights

w(ε(0)(ei,j))i,j
compliance coefficient of the similarity of the input signal vector to its
standard vector for the diagnostic signal in jth element of ith set

(4VL) four-valued state rating
DIAG 2 invented name of the Intelligent Diagnostic System
ANN artificial neural network
RBF radial basis function (type of ANN)
SBM similarity-based method (type of ANN)
(5VL) five-valued state assessment
{4} set of performance states
{3} set of incomplete states
{2} set of critical condition states
{1} set of pre-damage states
{0} set of unfitness states
(4VL) four-valued state assessment
{3} set of fitness states
{2} set of incomplete states
{1} set of critical fitness states
{0} set of states of unfitness
(3VL) three-valued state assessment
{2} set of states of fitness
{1} set of incomplete states
{0} set of states of unfitness
(2VL) two-valued state assessment
{1} set of states of fitness
{0} set of states of unfitness
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