
Citation: Alsari, S.; Al-Hashimi, M.

Investigation of Energy and Power

Characteristics of Various Matrix

Multiplication Algorithms. Energies

2024, 17, 2225. https://doi.org/

10.3390/en17092225

Academic Editors: Shuaibing Li,

Guoqiang Gao, Guochang Li, Yi Cui,

Jiefeng Liu, Guangya Zhu and Jin Li

Received: 15 April 2024

Revised: 28 April 2024

Accepted: 28 April 2024

Published: 5 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Investigation of Energy and Power Characteristics of Various
Matrix Multiplication Algorithms
Salem Alsari * and Muhammad Al-Hashimi

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah 25732, Saudi Arabia; mhashimi@kau.edu.sa
* Correspondence: ssalemalsari@stu.kau.edu.sa

Abstract: This work studied the energy behavior of six matrix multiplication algorithms with various
physical asset usage patterns. Two were variants of the straight inner product of rows and columns.
The rest were variants of Strassen’s divide-and-conquer. Cases varied in ways that were expected
to affect energy behavior. The study collected data for square matrix dimensions up to 4000. The
research used reliable on-chip integrated voltage regulators embedded in a recent HPC-class AMD
CPU for power measurements. Inner product methods used much less energy than the others for
small to moderately large matrices. The advantage diminished for sufficiently large dimensions. The
power draw of the inner product methods was less for small dimensions. After a point, the power
advantage shifted significantly in favor of the divide-and-conquer group (average of 24% better),
with the more block-optimized versions showing increased power efficiency (at least 8.3% better than
the base method). The study explored the interplay between algorithm design, power efficiency, and
computational resources. It aims to help advance the cause of power efficiency in HPC and other
scenarios that rely on this vital computation.

Keywords: matrix multiplication; power efficiency; AMD EPYC; memory-optimized Strassen
multiplication; power-aware algorithm; green HPC

1. Introduction

Matrix multiplication has always been a critical part of scientific and engineering appli-
cations. Recently, it has found extensive use in machine learning and other AI applications,
which are growing in importance at all levels of computing. From the standpoint of high-
performance systems, it will likely be a significant fraction of daily workloads. Therefore,
even modest improvements in runtime or energy consumption can result in substantial
gains in the overall performance of a typical high-performance system. Those gains may
translate to meaningful reductions in the costs of operating such systems, especially those
at the extreme. At the mobile levels, savings in power consumption may help yield longer
battery life.

Kouya [1] noted that multiplication methods that process the matrices in blocks rather
than whole rows and columns produced high cache hit ratios. One would expect those
methods to result in significant memory reference locality. They are no better complexity-
wise than their non-blocked counterparts. An energy perspective, however, may lend
more value to the locality advantage. Unlike time efficiency, which relies on patterns of
repetition of operations, energy efficiency is affected more by the use of physical assets.
The two effects are not unrelated, of course. Therefore, block-oriented methods should
show more energy efficiency since they rely on the SRAM-based cache, which is known
to be energy efficient. Processing whole rows and columns relies more on the DRAM-
based main memory, which is less efficient. Functional unit usage patterns should have
similar effects. For example, in 1968, S. Winograd suggested a variation on the standard
multiplication method [2] that ran faster. It was still cubic in complexity, but since it cut the

Energies 2024, 17, 2225. https://doi.org/10.3390/en17092225 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17092225
https://doi.org/10.3390/en17092225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0009-0000-7254-2405
https://doi.org/10.3390/en17092225
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17092225?type=check_update&version=2


Energies 2024, 17, 2225 2 of 22

number of element multiplications in half, there may potentially be some energy benefits
to expect. Also, depending on how algorithmic operations map to the hardware, the rate at
which energy is consumed (power) may vary. Consuming energy at high power levels may
cause equipment to experience failures due to high temperatures or may cause batteries
to drain too fast. In those situations, power consumption may be more significant. In the
context of this report, the reader should note that the terms energy and power, the time rate
of energy, will not be used interchangeably. The authors will use the phrase energy profile or
behavior to refer to all energy concerns in general, including power draw.

Strassen’s divide–conquer multiplication [3] reduced the number of element multipli-
cations for the 2 × 2 case to 7, down from 8 in the standard procedure. Winograd showed
that result to be optimal for element multiplications and reduced the number of additions
to 15, down from 18 in the original Strassen procedure, which Probert [4] proved optimal
for additions for all Strassen-like methods. Strassen-like methods tend to be block-oriented
since they are recursive, but they involve large memory overheads. A naive implemen-
tation may cause an excessive amount of memory allocation and motion. Strassen-like
methods perform significantly fewer multiplications than the school pen–paper method
at the expense of substantially more additions. Multiplications tend to be more expensive
in terms of hardware and cost more energy. In addition, modern processors strive to
offer multiplications that cost fewer cycles of latency to keep up with tight pipelines [5].
Aggressive timings may raise power consumption when energy costs are kept comparable.
These variations in hardware and its usage should be interesting for energy concerns.

Based on the preceding ideas, this paper reports on an extensive experimental study
of the energy and the power characteristics of six matrix multiplication algorithms. The al-
gorithms are described fully in Section 3. Here is a summary.

1. A straight implementation of the standard/school algorithm;
2. Winograd’s improvement on the standard method;
3. A naive implementation of Strassen’s divide-and-conquer algorithm;
4. A naive Winograd’s variant of Strassen implemented similarly to the previous one;
5. A memory-optimized Strassen that eliminates the allocation of temporary memory

blocks used for calculations;
6. An algorithm similar to the previous one but with some memory motions eliminated.

The study focused on the case of square matrices crucial to most applications. It
collected empirical energy performance and other data from an HPC-class AMD EPYC
processor, including timings, cache misses, and memory bandwidth data. The algorithms
varied in how they used the physical hardware. The study considered the following factors:
functional unit usage, memory allocations, and memory motion (copying around regions
in memory). It suggested memory allocation strategies to optimize energy behavior for
the divide-and-conquer methods based on hardware usage. The choice of processor was
significant since it is part of a family used in many high-performance systems (some on the
https://top500.org/ (accessed on 24 March 2024) list). Thus, the findings should credibly
approximate what to expect in those environments. This work attempts to elucidate the
links between the usage patterns of energy-significant hardware and expected energy
behaviors. It should, hopefully, provide valuable insights for future optimization efforts
and may contribute to a deeper understanding of these computations. It may also help
design algorithms that address energy concerns in better ways.

The organization of this paper is as follows. Section 2 presents a review of related work.
Section 3 describes the characteristics of interest of the investigated algorithms. Section 4
describes methods and materials used in this research. Section 5 presents results and a
thorough discussion of findings. Lastly, Section 6 offers some conclusions and proposes
directions for future research.

2. A Literature Review

This section reviews a selection of relevant work in chronological order. Table 1 at the
end of the section summarizes the main contributions for convenience.

https://top500.org/


Energies 2024, 17, 2225 3 of 22

Boyer et al. [6] focused on reducing the amount of memory used by Strassen–Winograd
matrix multiplication. A highly interesting feature of the study was the development of
several partially and fully in-place calculation schedules. Also, they developed a generic
way to transform non-in-place algorithms to in-place ones with less overhead. They did
not show that the memory-optimized versions ran faster (due to the drastic improvement
in the utilization of the cache memory in many cases). The study did not consider stability
or speed issues. It did include a cursory timing table, however.

Ren and Suda [7] studied power-efficient software for large matrix multiplication
on multi-core CPU–GPU platforms. They measured and modeled the power of each
component, considering frequency, voltage, and capacitance. They proposed a method
to save power via multithreaded CPUs to control two parallel GPUs. They showed that
their method saved 22% energy and sped up kernel time by 71%. However, their method
depended on problem size and hardware configuration.

Ren and Suda [8] (second paper) optimized large matrix multiplication on multi-core
and GPU platforms for power efficiency. They used block matrix partitioning, shared mem-
ory, and multithreading to improve the algorithm. Their enhanced kernel was 10.81 times
faster than the original and saved 91% more energy. However, their power measurement,
power model, and power-saving strategies may not be accurate or generalizable for other
components, problems, or algorithms.

Yan et al. [9] compared parallel matrix multiplication algorithms on shared-memory
machines in terms of performance, energy efficiency, and cache behavior. They studied
loop chucking, recursive and hybrid tiling, and Strassen’s algorithm. They found that
the Intel MKL cblas_dgemm was the best for large matrices and small or medium threads.
The hybrid tiling improved locality and performance. However, Strassen’s algorithm had a
lower cache hit rate and higher memory bandwidth usage. Their study lacked hardware
features and software tools for power and energy profiling.

Legaux et al. [10] optimized matrix multiplication for multi-core systems with data
access, vector unit, and parallelization techniques. They used Halstead metrics to evaluate
software complexity and efficiency trade-offs. They showed that SSE and OpenMP versions
were faster, but the SSE version was harder to develop. However, their method depended
on architecture and had high development costs for some optimizations. Those factors
limited their method’s feasibility in some contexts.

Lai et al. [11] optimized the Strassen–Winograd algorithm for arbitrary matrix sizes
on a GPU using techniques such as an empirical model, multi-kernel streaming, dynamic
peeling, and two temporary matrices. They surpassed previous GPU implementations
and showed Strassen’s algorithm’s practicality. However, they ignored the CPU–GPU
communication cost, other fast algorithms, and Strassen’s algorithm’s numerical stability.

Kouya et al. [1] improved multiple precision matrix multiplications with Strassen’s and
Winograd’s algorithms. They compared their speeds and accuracies for different precisions
and block sizes. They used their technique for LU decomposition and checked the numerical
properties on well-conditioned and ill-conditioned matrices. They showed that Winograd’s
was faster than Strassen’s, and both recursive algorithms reduced computation time for
LU decomposition. However, they lost significant digits for ill-conditioned matrices and
required more tuning and parallelization for efficiency.

Sheikh et al. [12] developed a multi-objective evolutionary algorithm for parallel task
scheduling on multi-core processors, optimizing performance, energy, and temperature
together. Their approach beat existing techniques, as shown by experiments. The paper
built on previous work on performance and temperature optimization.

Zhang and Gao [13] compared standard and Strassen tile-based matrix multiplication
algorithms on high-density multi-GPU systems. They found that the standard method
outperformed the Strassen method on these systems due to the performance gap between
multiplication and addition operations. They concluded that the performance ratio of
these operations determines the best matrix multiplication algorithm for new architectures.



Energies 2024, 17, 2225 4 of 22

However, their study was specific to the hardware configurations tested and may not apply
to other systems or future technologies.

Kouya et al. [14] (second paper) compared parallelized Strassen and Winograd algo-
rithms for multiple precision matrix multiplications using MPFR/GMP and QD libraries.
They used thread-based parallelization to improve performance. They also showed that
the Strassen and Winograd algorithms can reduce costs and increase speed in QD and DD
precision environments.

Jakobs et al. [15] examined vectorization techniques’ impact on dense matrix mul-
tiplication algorithms’ power and energy. They used loop unrolling, frequency control,
and compiler optimization levels. They showed that vectorization and loop unrolling
reduced power up to 10% or more. The results varied by architecture and frequency.
The study was limited to Intel’s Sandy Bridge and Haswell architectures.

Muhammad and Islam [16] improved matrix–matrix multiplication performance on
the .NET platform by loop restructuring of sequential and blocking algorithms. They found
KIJ and IKJ reordering the best due to fewer cache faults and reads. However, they did not
discuss the real-world implications or the applicability of these findings.

Haidar et al. [17] explored power usage control and its impact on scientific algorithms’
performance. They used representative kernels and benchmarks and PAPI’s powercap
component for measurement and control to provide a framework for understanding and
regulating power usage in scientific applications. They focused on identifying algorithms
that benefit from power management strategies and gave observations and recommenda-
tions for energy efficiency in scientific algorithm development and execution.

Fahad et al. [18] measured on-chip power sensors and energy predictive models using
PMCs against external power meters, finding significant errors in both methods. On-chip
sensors had up to 73% average and 300% maximum error. Predictive models had up to 32%
average and 100% maximum error. They also found that inaccurate energy measurements
can cause up to 84% of losses in energy for dynamic energy optimization.

Oo and Chaikan [19] improved energy efficiency and performance of Strassen’s algo-
rithm for matrix multiplication on a shared memory architecture by using loop unrolling
and AVX. They achieved 98% speedup and 95% savings in energy compared to the method
without unrolling. However, their method depended on the loop unrolling factor, the code
size, the number of registers, and the hardware configuration.

Kung et al. [20] addressed performance issues in bandwidth-constrained systems that
are prevalent today. They proposed an algorithm to optimize memory bandwidth for a
widely used block-oriented matrix multiplication. The goal was to find a balance between
compute and memory bandwidths and tilted sharply against the memory access trends
in the current state of technology. Their approach relied on shaping constant bandwidth
blocks (self-contained units of computation that fit in local memory with fixed bandwidth
needs to external ones). Adjusting block properties allowed the algorithm to control the
ratio of (slow) external memory access to (fast) computation rate and overcome memory
bottlenecks. Optimizing local memory (the cache) block bandwidth while limiting the less
power-efficient DRAM-based external one should also provide energy benefits in addition
to the reported performance boost, which makes such techniques of interest to our research.

Oo and Chaikan [21] optimized the Strassen–Winograd algorithm for arbitrary matrix
sizes on a GPU using techniques such as empirical modeling, multi-kernel streaming,
dynamic peeling, and two temporary matrices. They surpassed previous GPU implementa-
tions and showed Strassen’s algorithm’s practicality. However, they ignored CPU–GPU
communication cost, other fast algorithms, and Strassen’s algorithm’s numerical stability.

Jammal et al. [22] compared the energy performance of a definition-based algorithm
against two basic divide-and-conquer ones on an HPC-class Haswell Intel processor. They
showed that the divide-and-conquer algorithms were the best in terms of power and energy
consumption when the calculations fit in the cache. Both continued to be the most energy-
efficient regardless of placement in memory. A notable result was that the definition-based



Energies 2024, 17, 2225 5 of 22

algorithm took the lead in power consumption, but not overall energy, for sizes that spilled
over to the main memory. The authors described their results as preliminary.

Table 1. A summary of reviewed previous work.

Study Year Key Contribution

Boyer et al. [6] 2009 Developed memory-efficient scheduling for Strassen–Winograd’s
matrix multiplication, reducing overhead.

Ren and Suda [7] 2009 Optimized large matrix multiplication on multi-core and GPU
platforms using CUDA, focusing on power efficiency.

Ren and Suda [8] 2009

Developed power-efficient software for large matrix multiplication on
multi-core CPU–GPU platforms, measuring and modeling power
components and proposing a method to save power via
multi-threaded CPUs controlling two parallel GPUs.

Yan et al. [9] 2012 Compared multiple matrix multiplication parallel algorithms on
shared memory machines for performance and efficiency.

Legaux et al. [10] 2012
Explored various optimizations for parallel matrix multiplication on
multi-core systems, evaluating the trade-off between software
complexity and computational efficiency.

Lai et al. [11] 2013 Optimized the Strassen–Winograd algorithm for matrices of arbitrary
sizes, achieving significant speedups over existing methods.

Kouya et al. [1] 2014 Evaluated multiple precision matrix multiplications using parallelized
Strassen and Winograd algorithms.

Sheikh et al. [12] 2015
Developed a multi-objective evolutionary algorithm for parallel task
scheduling on multi-core processors, optimizing performance, energy,
and temperature.

Zhang and Gao [13] 2015 Investigated performance of standard and Strassen matrix
multiplication on high-density multi-GPU architectures.

Kouya et al. [14] 2016

Compared parallelized Strassen and Winograd algorithms for multiple
precision matrix multiplications using MPFR/GMP and QD libraries,
showing cost reduction and speed increase in QD and DD
precision environments.

Jakobs et al. [15] 2016 Explored reduction in power and energy consumption for matrix
multiplications through vectorization on modern computer systems.

Muhammad and Islam [16] 2017
Evaluated matrix multiplication performance in Virtual on the .NET
platform, analyzing the performance of loop reordering and blocking
algorithms in virtual machine environments.

Haidar et al. [17] 2019
Presented a framework for understanding and managing power usage
in HPC systems, aiming to improve energy efficiency without
compromising performance.

Fahad et al. [18] 2019 Compared methods for measuring the energy of computing,
highlighting significant errors.

Oo and Chaikan [19] 2021 Studied effects of loop unrolling in an energy-efficient Strassen
algorithm on shared memory architecture.

Kung et al. [20] 2021 Proposed an algorithm to optimize memory bandwidth for
block-oriented matrix multiplication.

Oo and Chaikan [21] 2023 Enhanced Strassen’s algorithm for power efficiency using AVX512 and
OpenMP on multi-core architecture.

Jammal et al. [22] 2023 Conducted a preliminary empirical evaluation of the power efficiency
of basic matrix multiplication algorithms.



Energies 2024, 17, 2225 6 of 22

3. The Algorithms

In classic complexity analysis, designers are concerned with the patterns of mapping
the most frequent operations to time or memory. Efficiency depends on the growth of
functions that express those patterns. The main idea in this work is that a careful mapping
of such operations to the hardware is the key to designing power efficiency and, ultimately,
total energy budgets. In some cases, the algorithms may offer opportunities for choosing
an energy-efficient operation, such as dividing by two, which maps to highly efficient
hardware. In others, there is a choice of circuits that serve the same purpose functionally
but vary in energy behavior. A design focused on speed may result in a circuit that
consumes a lot more energy or, worse in some cases, increases consumption rates (power)
to maintain a time advantage. This section describes the investigated algorithms and
highlights the differences in hardware usage patterns that are likely significant to their
energy profiles. They vary mainly in how the frequent operations map to functional units,
the local memory footprint, and the data motions in the memory. It should clarify the
experimental design and perhaps help with interpretation of the outcomes. Table 2 presents
a coding scheme for the algorithms and a reminder of their generic complexity. In each
case, the complexity term is the exact number of element multiplications. For convenience,
the codes will be used from this point on to refer to the algorithms.

Table 2. Algorithm coding scheme for reference purposes.

Code Algorithm Complexity

DEF Standard definition-based
O(n3)

WINOG Winograd’s improvement on the standard

STRAS Naive Strassen’s divide–conquer

O(nlog2 7)
WINOGV Naive Winograd’s divide–conquer variant

STRAS2 Memory-optimized Strassen (temps in-place)

STRAS3 STRAS2 + return product matrix in-place

DEF is a straight implementation of the definition of matrix multiplication based
on the inner product of rows into columns. It is simply the school pen–paper algorithm.
WINOG is Winograd’s improvement [2] on the standard, which cuts the number of element
multiplications roughly in half without changing the base complexity. Both of these
algorithms process whole rows and columns. Their performance should suffer relatively
quickly as matrix sizes increase and cache utilization drops. The number of additions,
however, increases 1.5 times in WINOG. So the net effect is not readily apparent, given that
multiplication tends to be more energy expensive than addition.

The remaining algorithms are divide-and-conquer and are typically implemented
recursively. A quick overview of the base method helps highlight the differences between
them. These algorithms generally operate on k× k submatrix blocks (k-blocks, k ← n

2 , n
4 ,

. . . , 1) of 2k× 2k inputs and output on each recursive iteration, dubbed k to simplify the
discussion. There are seven of these blocks included for the following iteration (therefore,
the number of recursive iterations is ∑k−1

i=0 7i = 1
6 (7

k − 1)). These are combined to calculate
and return an iteration’s product matrix. Calculating these and holding the iteration input
and output submatrices requires extra k-blocks. More are needed to return the iteration
product matrix (2k× 2k, i.e., four more k-blocks). Those blocks are common to all except
STARS3 and thus are omitted from the discussion. It helps when designing these algorithms
to distinguish temporary blocks (temps) used during calculations to hold expression partial
and final results from those used to store iteration input and output submatrices (submats).

A careless implementation could use up to 37 blocks per iteration: 25 temps (18 sum and
7 product) and 12 in/out submats. With reasonable effort, one should be able to manage the
block allocation to reduce its overhead considerably. Standard calculation sequences offer
natural opportunities to reuse temps, which helps reduce the memory footprint, especially
in local memory that is faster and more power efficient. For example, even a beginner



Energies 2024, 17, 2225 7 of 22

would quickly see that 8 of the sum temps may be reused to reduce the total allocation
to 29 blocks. Also, in a straight implementation, an iteration k fills the k-blocks from its
2k× 2k inputs and copies the resulting ones to its 2k× 2k output. Filling those involves
considerable back-and-forth copying.

STRAS follows a natural calculation schedule as suggested by a standard formulation
(such as the one in [23]). It is considered naive for this reason. The natural flow allows
the reuse of eight temps (as mentioned earlier) and four submats. Therefore, STRAS needs
17 temps and 8 submats, a total of 25 in iteration k. No memory allocation or motion
optimizations were applied except an obvious allocation strategy: allocate blocks as late
as possible and free blocks as early as possible, which is considered in this work to be
the baseline for the family of methods. This allocation strategy needed 18 blocks at first,
with four released early. STRAS retains four temps to calculate the outputs used to fill the
iteration return matrix. Hence, its block allocation pattern was 18–14 and down to 4 before
and after the recursive calls in each iteration—compared to the the 25 needed otherwise.
WINOGV followed the same plan. It benefited from the recursive reduction in additions to
hold slightly fewer temps. Together with the significantly fewer overall multiplications
shared with STRAS, WINOGV should have better energy performance. Table 3 compares
how the algorithms used memory.

Table 3. A summary of k-block usage per typical recursive call k. The last columns show an example
of how much memory is held at most in iteration k = 6 for n = 64 to make a concrete sense of the
differences between the algorithms.

Algorithm
Block Allocations Block

Motions
Max Holdings Example

Max Min Blocks Elements Blocks Elements

STRAS 18–14 4 12 14(k− 1) + 4 14(4k − 1)/3 + 2 74 19,112

WINOGV 16–14 4 12 14(k− 1) + 2 14(4k − 1)/3− k 72 19,104

STRAS2 12 4 12 12(k− 1) 4(4k − 4) 60 16,368

STRAS3 8 - 8 8(k− 1) 8(4k − 4)/3 40 10,912

STRAS2 is a memory-optimized multiplication technique that focuses on eliminating
the temps and only keeping the submats. It employs the calculation schedule of Table 3
from [6] that uses the input submats as temps instead of creating extra ones. STRAS2 needs
fewer blocks (good for caching) but keeps those that would have been freed earlier in
STRAS until the schedule finishes (cached longer). The algorithm behind STRAS3, like
STRAS2, does not create temps. It also eliminates the need for some submats by constructing
the return product matrix in place, i.e., directly in the original n × n output matrix. It
eliminates the need to copy from the output submats and thus reduces some of the memory
motion. So it has the smallest memory footprint per recursive call, and it reduces the need
to move data around memory. It should show the best energy performance of the lot.

Rather than a complex full implementation, STRAS3 simulates the power behavior. It
fully implements the memory behavior of STARS2 in addition to in-place product matrix
generation. However, instead of updating the row and column positions of the output block
for each recursive iteration, it reuses the first position. The position calculation requires a
constant time overhead per iteration. It should have a modest effect on the power draw
relative to the memory access. Therefore, STRAS3 focuses on the parts that exercise the
most relevant hardware for the energy rate. The rationale for the simulation is as follows:
(a) expect a fairly representative power footprint and (b) inexpensively assess against the
relatively cheap STRAS2. More importantly, it illustrates a point about power assessment.
It should be reasonably accurate as long as the simulation exercises the same hardware
in the same or close enough ways, which should help credibly check if more complex
algorithms are worth it before committing to a full implementation.

Strassen-like algorithms rely on cutting the input size in half on each iteration, so they
work naturally with input sizes that are powers of two, with no loss of generality since



Energies 2024, 17, 2225 8 of 22

one may pad the rows and columns of any matrix with zeros to change its dimensions
without affecting its arithmetic value. The implementations in this work automatically
upscale the dimensions to the nearest power of two (so 300, 400, and 500 are processed
as 512). Therefore, some cases will be sparse, while others will be dense, which may be
interesting from an energy perspective. Finally, the implementations do not halt recursion
at an appropriately small block size and switch to a faster procedure, as is customary. They
recurse down all the way to remain faithful to the method.

4. Materials and Methodology

The methodology used in this study was based on the established techniques for
experimental measurement of energy and power on modern CPU platforms that were
developed by some of the authors of this report and detailed in [22,24]. The main difference
was the shift to another CPU platform. Fortunately, more modern CPUs, circa 2021,
provided access to better profiling options. A summary of the methodology is as follows.
To empirically determine the energy performance that one could credibly ascribe to the
fundamental way a computation was configured, i.e., the algorithm: (a) the code is isolated
on one processor core, and (b) as much influence of the runtime environment as possible,
considered noise in this study, must be eliminated. Adverse influences could arise from
the machine code representation of the computation, the OS threading model, and how
the processor executes the code. In particular, power management mechanisms in modern
CPUs can completely mask the natural energy behavior. Ultimately, the empirical evidence
relies on high-resolution data from probes inside modern CPUs to dynamically control the
run voltages and frequencies in response to loading conditions. Therefore, with a careful
setup, there can be a credible argument that most of the measurements stem from the
computation style. This backboxing approach eliminates the need for complex simulations
that rely on detailed knowledge of the inner workings of the CPU and keeps the focus on
the algorithm.

Timing data were collected as a control to ensure correct programming and expected
asymptotic behavior. Experimentation showed that the readings from the profiling tools
were consistent and close in value. An average of twenty to fifty sampling runs was
sufficient to get a reliably convergent value for a single reading (to at least three fractional
digits). For examples, see Table 4. These figures seem to confirm that the experimental
setup was quite successful at eliminating noise from the runtime environment. Runs up to
fifty times revealed little added value in the context of the experiment beyond guaranteeing
convergence to four fractional digits. Therefore, readings for dimensions 3000 and 4000
were from an average of 20 runs due to their heavy time cost; the rest were from 40–50 runs.

Table 4. Sample STRAS power readings (watts) for matrix dimension 1100.

Average Power Runs

12.91012346 7
12.91018765 10
12.91014681 20
12.91013579 30
12.91009531 40
12.91008022 50

The following describes the environment and procedures used in the experiments,
the characteristics of the test datasets, the executable code, and the tools used to collect data.

4.1. Experimental Environment and Procedures

Table 5 lists the specifications of the testbed machine. The main feature is the AMD
CPU from the third generation of the high-performance EPYC 7003 series (code name
Milan). Cores are organized in blocks, called core complexes (CCXs), that combine 2–8
Zen 3 cores with a sizable multilevel cache. A silicon die can have one or more CCXs
(plus necessary off-core functions). The 7313 has four, with each on a separate die. This
configuration should work well for thermal cross-noise affecting the core chosen to run the



Energies 2024, 17, 2225 9 of 22

experiments. Some experimentation revealed that readings were not affected by the system
case being open or left closed or case fans on/off.

Table 5. The test machine: L1/L2 caches are private (L1 separate 32 KB instruction and data). Cores
on the same CCX (core complex) share the L3. In the 7313, four cores vie for 32 MB of L3 cache. SMT
is AMD’s implementation of hardware threads.

Processor AMD EPYC 7313 (Milan) 16-Core (4×4 CCX) 32 SMT

Cache (SRAM) L1 1 MB 2 × 16 × 32 KB 8-way
L2 8 MB 16 × 512 KB 8-way
L3 128 MB 4 × 32 MB 16-way

Main Memory (DRAM) 64 GB

Operating System Linux Ubuntu 22.04.3 LTS 64-bit

The remainder of the section lists the measures and precautions put in place by
the researchers to minimize environmental noise and ensure a reliable estimate of the
energy profiles under investigation. These are related to the experiment environment and
procedures, the CPU, or the operating system (OS).

1. Disabled the CPU cooler fan: prevent cooling the chip package based on different loading
conditions, which allows the experimental loads to run under consistent thermals.

2. Configured a cool-off period between test runs: run scripts check the CPU temperature
between runs and apply a time delay to return to a consistent baseline temperature of
30 ◦C before the following run could begin.

3. Disabled SMT: hardware-managed threads share a single physical CPU core in unpre-
dictable ways from a computation viewpoint.

4. Disabled the power management components responsible for regulating the energy
behavior of the CPU (core performance boost in AMD terminology). This function
depends on hardware behaviors set by the CPU manufacturer. It could significantly
alter energy patterns in unpredictable ways. Hence, it prevents an even comparison
of the desired effects due to the test loads.

5. Set the isolcpus kernel boot parameter to explicitly restrict the OS process scheduler
and load balancing algorithms from using a designated set of CPU cores reserved for
the experiment (Cores 0–3 from the same CCX in this case).

6. Set the core affinity for the experiment’s code via the profiling tool to ensure that the
code ran exclusively on Core 0.

7. Set perf_event_paranoid in Linux to −1 (allow all events), as required by the profiler.
The default settings usually restrict access to event monitoring for security reasons.

8. Disabled the NMI (non-maskable interrupt) watchdog on Linux (also recommended
by the profiler) to stop periodic check overhead to improve the reported results.

4.2. Test Datasets

The datasets consisted of random square matrices ranging in dimension from 50 to
2500. Divide-and-conquer methods adjust the dimension to the nearest power of two.
The range span ensured that the algorithms work across the three levels of cache well
into the DRAM. Matrix elements were double-precision (8-byte) floating point numbers,
the most common operand type in typical high-performance applications, based on ran-
domizing the bit patterns rather than the stored values. There is some evidence [25] based
on extensive experimental work that suggests power consumption depends on the data
value being read or written. Randomizing stored bits should help eliminate any bias due to
those effects.

The patterns used in the study only randomized the lower 52 bits that hold the
fractional part of the number in the prevalent IEEE encoding. The upper bits, exponent and
sign, were fixed so that values were in the interval [2.0, 4.0). The rationale is as follows. Each
application will likely work, for the most part, with a different range of values depending
on the most frequent calculations and the application domain. The upper bits will not



Energies 2024, 17, 2225 10 of 22

likely change frequently, in general. The lower 52 bits, however, are guaranteed to change
constantly throughout any computation in every application. Therefore, randomizing
them will be a good representation of typical behavior involving floating point calculations.
The actual range of values will not matter (any will do for this line of research). Figure 1
shows a sample of the random patterns used to fill test matrices. The datasets were pre-
generated and saved in binary files accessible from any C/C++ program in order to be
reusable. All algorithms used the same test data to keep things even.

Figure 1. Sample of test data simulating double-precision floating point calculations to illustrate bit
patterns used for matrix elements and the corresponding numerical values.

4.3. Executables

The authors implemented the algorithms in standard C++. A multiply function calls
code that implements an algorithm in a different source file. Therefore, separate executables
for each case were generated via the GNU compiler collection (gcc 11.4.0) using the base
command: gcc-lstdc++-lm. The experimental methodology calls for producing code as
faithful as possible to the algorithms it purports to execute to be able to argue about the
underlying methods. The machine code, in practice, is composed of instructions that reflect
a combination of the hardware and the compiler. Optimizing compilers are concerned
with efficient execution and can make the code bear little resemblance to the original
computations described by an algorithm as long as the code runs correctly. Therefore, it
may be desirable to turn off optimization. For this work, only the lowest level, the default,
was allowed (compiler flag-O0). It performs basic optimizations, such as loop unrolling,
which is arguably more faithful to the algorithms. Unrolling resembles hand applications of
the algorithm (repeating based on a cheap decision) more than costly, hardware-dependent
branches that machines go through. Thus, the resultant code should yield a realistic
estimate of what users can expect while remaining reasonably faithful to the methods.

Higher optimization levels attempt to improve code performance at the expense of
compilation speed, typically via aggressive code changes. For example, the next level in gcc
(accessed via optimization flag-O2) performs common subexpression elimination [26]. It
replaces expressions that result in the same values with variables for reuse if helpful. This
optimization may alter the codes in different ways, making comparisons of behavior due
to hardware use problematic. In general, such optimizations are counterproductive for this
line of research as they may obscure the natural energy behaviors in question. It becomes
harder to tell if the effects stem from the algorithms or from the compilation technology.

4.4. Profiling Tools

The study used the Linux version of the µProf profiler [27] version 4.0, which is
provided by AMD and supports extensive power and thermal monitoring [28]. Some recent
studies utilized the profiler for a variety of purposes. For example, Lane and Lobrano [29]
used the profiler to analyze the memory bandwidth limitations in the second-generation
EPYC chips. Lu et al. [30] used the profiler’s energy reporting features to construct reliable
thermal maps for an AMD Ryzen processor.

The main advantage of the tool for the study was that it provided a dependable source
of nuanced core-specific metrics on the EPYC processor. It can report the runtime for a
whole executable or break it down by function or thread. Moreover, it separates CPU time
from user modules and system libraries. The detailed information helped confirm that core



Energies 2024, 17, 2225 11 of 22

and thread usage was consistent with expectations. It also revealed that most of the user
module time (97–99% typically) was in the multiplication function. Therefore, the user
module CPU time was an adequate choice since it captured the essential information while
being more resilient to inaccuracies due to measurement resolution.

5. Results and Discussion

This section is divided into two main parts. The first presents the main results and
discussions of findings about the observed energy behaviors. The second provides a
detailed analysis of the memory trends behind those behaviors.

5.1. Main Results

Table 6 presents the main average power and energy consumption results (figures
rounded to the first fractional digit). In the divide-and-conquer methods, lines indicate
cases that share the same power of two matrix sizes, e.g., dimensions 300–500 upscaled
to 512. These boundaries also mark very dense matrices for those methods. For brevity,
runtimes will appear in a later figure set. Each power and timing data point is an average of
multiple runs with bit-randomized datasets, as detailed in the previous section, to eliminate
noise from the runtime environment. The power figures were based on spot averages
reported by the profiler from the sensors for each run (a lightweight rapid sampling over
the runtime interval [28]). The energy figures were calculated from average runtimes based
on the times reported by the profiler and the average power figures. The table omits energy
data for STRAS3 since it is a simulation of block behavior, which primarily affects power
consumption. Its time and energy data will not be realistic and, therefore, not comparable
to the other cases. The readings at dimension 50 (64 for the divide–conquer) seemed
anomalous. The very short runtimes may interfere with the internal sampling process. It is
safe to ignore that point as an outlier. For reliable instrumentation in tiny cases, readings
should be from an average of repeated runs.

Table 6. Average power consumption in watts and overall energy in Joules (0.0 signifies tiny values
of 3–18 mJ that were kept for context).

Dim. Power (W) Energy (J)
DEF WINOG STRAS STRAS2 WINOGV STRAS3 DEF WINOG STRAS STRAS2 WINOGV

50 2.9 3.0 4.3 3.8 4.1 3.3 0.0 0.0 0.0 0.0 0.0
100 4.0 3.7 5.6 5.1 5.4 4.6 0.0 0.0 0.1 0.1 0.1

200 4.7 4.4 7.1 6.6 6.8 5.5 0.1 0.1 1.1 0.9 0.9

300 5.4 5.1 9.0 8.4 8.6 7.1 0.5 0.3 10.1 8.1 9.3
400 6.2 5.8 9.0 8.4 8.6 7.1 1.3 0.9 10.2 8.2 9.3
500 7.2 6.8 9.0 8.4 8.7 7.1 3.0 2.0 10.3 8.2 9.5

600 8.0 7.6 10.1 9.1 9.7 7.8 5.7 4.0 77.6 61.4 72.0
700 9.3 8.8 10.5 9.5 10.1 8.2 10.6 7.4 80.7 64.6 75.2
800 10.2 9.6 11.0 10.0 10.7 8.8 17.3 12.1 85.2 68.5 79.4
900 11.2 10.6 11.5 10.4 11.0 9.2 27.1 19.1 89.5 71.4 82.2
1000 12.4 11.7 12.0 10.9 11.4 9.7 40.9 28.8 93.9 75.1 85.0

1100 13.6 12.8 12.9 11.8 12.4 9.9 59.9 41.9 694.9 562.0 647.4
1200 15.0 14.1 13.2 12.1 12.7 10.2 85.3 60.1 714.7 576.3 662.6
1300 16.5 15.5 13.4 12.3 12.9 10.4 120.0 84.0 728.0 588.8 675.0
1400 18.1 17.1 13.8 12.7 13.3 10.6 165.7 115.2 748.4 607.9 695.7
1500 19.9 18.8 14.4 13.3 13.9 11.1 224.1 156.3 783.0 636.9 729.2
1600 21.9 20.7 15.1 14.0 14.5 11.7 301.6 210.8 820.5 671.8 768.2
1700 23.0 21.7 15.7 14.6 15.1 12.1 387.7 271.5 854.1 700.8 799.7
1800 23.8 22.5 16.4 15.3 15.8 12.7 493.0 342.6 892.7 737.0 836.8
1900 24.4 23.1 17.6 16.5 16.9 13.6 611.3 432.1 957.6 795.6 898.6
2000 24.9 23.5 20.5 19.3 19.7 15.8 757.7 524.4 1119.1 933.7 1047.0

2100 25.3 23.9 21.8 20.3 20.9 16.8 918.3 630.5 8251.4 6817.0 7657.8
2200 25.7 24.3 22.6 21.1 21.7 17.4 1113.9 751.2 8567.4 7090.4 7957.4
2300 26.1 24.7 23.6 22.1 22.7 18.2 1310.8 906.5 8953.0 7440.7 8319.2
2400 26.6 25.1 24.5 23.0 23.6 18.9 1527.6 1045.3 9290.9 7736.7 8651.7
2500 26.8 25.3 25.9 24.3 24.9 20.0 1780.3 1193.2 9833.8 8205.6 9133.0
3000 30.9 29.2 28.0 26.1 26.9 21.5 3631.4 2574.6 10,666.6 8751.6 9828.6

4000 38.3 36.1 36.1 33.8 34.7 27.9 10,107.7 7858.1 13,797.8 11,376.4 12,723.2



Energies 2024, 17, 2225 12 of 22

The table immediately reveals the advantage of small dimensions, up to 100, for the
non-recursive methods (128 for the others). However, the differences in power draw or
runtimes, and hence, energy consumption, were insignificant at those points, as expected.
Figure 2 comparatively shows how energy seemed to track the runtimes, suggesting similar
asymptotic trends. The asymptotic advantage of divide-and-conquer should only show
for large enough matrices on a particular CPU. A closer look at timing data showed that
the ratio of runtimes for STRAS to DEF shrank from up to 12 times slower to 1.4 at 4000.
Therefore, for this CPU, the asymptotic advantage should start to show for larger sizes not
too far from 4000. Moreover, the mildly memory-optimized STRAS2 was an average of 14%
faster than the basic STRAS, a result somewhat consistent with the results in [6] (for the
small dimensions reported there).

(a)

(b)

(c)

Figure 2. Total energy (left) and runtimes (right). The sharp turn at 3000 is due to missing data points.
(a) Small matrix size lower range (inside 10 J). (b) Small matrix size upper range (inside 100 J).
(c) Large matrices (up to 14K joules, likely DRAM).



Energies 2024, 17, 2225 13 of 22

The following parts separately discuss energy characteristics, analyze power perfor-
mance, and close with some notes.

5.1.1. Energy Consumption

Energy trends in Figure 2 show DEF and WINOG to be drastically more energy efficient
for most of the investigated sizes. Their advantages diminish significantly, however, at the
larger end of the range. This should be expected based on the heavy costs of recursion
incurred by the divide-and-conquer methods, which are hard to justify at the lower part
of the range. As the matrix size rises, the runtime asymptotic advantage overcomes
recursion overheads, translating eventually into energy consumption advantages. The
energy consumption of WINOG was consistently better than that of plain DEF at an
average of 42% (only 35% faster on average, though), with a widening gap as matrix size
increased. Better utilization of functional units may explain that result. The readers may
recall that WINOG performs half the multiplications and 1.5 times more additions than
DEF. By shifting the computational burden to the less expensive hardware, WINOG can
run more energy efficiently.

Among the divide–conquer methods, STRAS2 consumed the least amount of overall
energy. In particular, it consumed 24% on average less than the basic STRAS. This is a
significant improvement given the small effort taken to optimize memory usage. STRAS2
moves around significantly fewer in-flight memory blocks than the other two methods,
which may explain its efficiency. The Winograd variant of the original Stassen, WINOGV,
was also clearly better than STARS. The slightly faster WINOGV uses energy-significant
hardware less by performing fewer additions. The payoff in energy was even better than
that in time. In all cases, a faster runtime may explain some of the improvements in overall
energy efficiency, but the bigger payoff in energy may be due to the more optimal use of
energy-significant hardware or, perhaps, points to better consumption rates.

5.1.2. Power Performance Analysis

Power consumption findings were somewhat more interesting. Power consumption
is critical for applications for which energy concerns are not just about total consumption.
The rate of energy expenditure is crucial in mobile and high-performance applications.
Optimizing for low power could lead to smaller, lighter batteries or to fitting heavier
workloads within a power budget. Figure 3 shows the average power consumption for the
divide-and-conquer group. Figure 4 shows the power for DEF and WINOG superimposed
on the best two from the divide-and-conquer set for comparison.

Figure 3. Average power consumption in watts for the divide-and-conquer algorithms.



Energies 2024, 17, 2225 14 of 22

Figure 4. Comparative average power with DEF and WINOG (only STRAS2 and STRAS3 shown).

It is clear from Figure 3 that the memory-optimized algorithms, STRAS2 and STRAS3,
outperformed their unoptimized counterparts throughout the range. The significant re-
ductions in the memory footprint in both cases (more in STRAS3) may explain this result.
In particular, the power draw was an average of 8.3% less in the mildly memory-optimized
STRAS2 than in the naive STRAS (the baseline for the method). This may not seem like
much, but the savings could add up for a system-wide workload for which multiplication
(at various matrix dimension points) is a significant fraction. WINOGV was also consis-
tently a little better than STRAS, likely due to its slightly reduced memory footprint (see
Table 3) and clever use of functional units from a power viewpoint.

STRAS3 was better than STRAS2 since it implemented more aggressive in-place mem-
ory block management. The main difference between the two was that STRAS3 reduced
memory motion also. The improvement due to STRAS3 was significant. Although STARS3
was just a simulation, it did include a valid implementation of most block behaviors rele-
vant to power. A caution, however, is in order. Some of the cache traffic in STRAS3 will
go unaccounted for due to writing the product blocks in the same position in the DRAM-
resident n× n output matrix. That may exaggerate its performance, but the effects should
be slight since those DRAM blocks are relatively few, and all the required block allocations
still occur. Therefore, the STRAS3 results should at least indicate the potential for its added
optimization. In-place algorithms tend to be more complex, with typically little advantage
with regard to runtime. So they tend not to be attractive unless there are crucial limitations
on storage. But in the case of STRAS3, the added complexity of the in-place calculations in
the output seems to be well justified from a power consumption view.

Figure 4 shows WINOG to be consistently more power efficient than DEF (6% on
average), as expected given the relatively reduced use of the typically power-hungry
multiplication hardware. This edge may also explain why the payoff in overall energy
consumption was greater than that in the runtime, as observed earlier. Moreover, DEF
and WINOG were more power efficient than the best of the divide-and-conquer group
through the upper range of small matrix sizes (dimensions 500–1000), after which the trend
seemed to reverse. The region over which the reversal happened corresponds to a point
where the power of two matrix sizes shifts from 512 to 1024. After that inflection point, all
the divide-and-conquer algorithms consumed less power. The more efficient of the group
overtakes earlier after that point. From dimension 1100 forward, the divide-and-conquer
method seems to have a clear power advantage. In that range (1100–4000), STRAS2 was a
significant 24% on average more power efficient than WINOG. It is also evident from the
performance of STRAS3 that more aggressive memory optimization may be expected to
lead to even better power efficiency gains.

A closer look at the power figures of the divide-and-conquer algorithms shows that
the power gradually increases (converges) for dimension points that share the same power-



Energies 2024, 17, 2225 15 of 22

of-two matrix size as the matrix becomes dense. This sparse vs. dense matrix effect seems
to support the idea that processing bit patterns dominated by zeros may consume less
power. It also suggests that the dimension points corresponding to the dense cases (marked
by lines) best depict the performance of the divide-and-conquer method. Therefore, these
points should provide the most realistic comparison to the other two methods (see Table 7).
Also, this trend encourages adding checks to cut recursions that will not contribute to
non-zero elements in the product matrix to improve the power performance for the sparse
cases even more. The energy consumption would also drop due to reducing the power and
the runtime together.

Table 7. The relative advantage in power draw in the dense matrix cases (95.4% non-zero elements)
for the pair of memory-optimized divide-and-conquer compared to WINOG. Negative percentages
signify improvement. STRAS3 hints at the potential for optimizing memory motion.

Dimension
Power (W) % Advantage

WINOG STRAS2 STRAS3 STRAS2 STRAS3

500 6.8 8.4 7.1 24 5
1000 11.7 10.9 9.7 −7 −17
2000 23.5 19.3 15.8 −18 −33
3000 29.2 26.1 21.5 −11 −26
4000 36.1 33.8 27.9 −7 −23

5.1.3. Closing Notes

It is worth noting that the reader should treat the results discussed in this section as
a worst-case for the divide-and-conquer algorithms. Practical implementations should
stop the recursion at appropriate points and switch to some faster non-recursive procedure
to avoid the overhead of excessive recursions, which should widen the advantage of
those methods. From the viewpoint of energy behavior, that point should be when the
power advantage starts to shift in favor of methods based on the row and column inner
products (DEF or WINOG). For the testbed CPU, the data suggest that at dimension 1024,
perhaps the shift should also close the runtime and total energy gap somewhat, which
brings the asymptotic advantage of the divide-and-conquer methods to even smaller
matrix sizes.

In [22], the authors commented on how much power these seemingly fundamental
computations consumed on an HPC-class Intel Haswell CPU from 2014: as much as 80 watts
at matrix size 1500. The AMD EPYC, a later CPU (2021), consumed 20 and 14 watts for DEF
and STRAS, respectively, for the same size matrix. This is a statement on how costly the
computation is and how far power technology has come in less than a decade.

5.2. Cache Miss Analysis and Other Memory Trends

A computation interacts with memory in different ways as it moves through the levels
of a memory hierarchy. Cache misses significantly influence power and energy consump-
tion [31]. The cache, typically in SRAM technology, is known to be much more power
efficient than DRAM-based main memory. Therefore, from a power standpoint, the most
significant event occurs when a computation spills into the main memory. Moreover,
all cache levels tend to be on-chip nowadays, with relatively little differences in timing
compared to the DRAM. Hence, it is more about differences in the general behavior of
the algorithm when the computation is small enough to fit in the uppermost parts of the
cache. As its size grows, it becomes more about success in managing the locality, with
profound effects on speed and power. Behavior in the necessarily tiny Level 1 (L1) cache is
the least interesting due to its inherently poor locality and the minor differences in timing
and energy behavior. Therefore, the discussion in this section will lump L1 with the second
cache level. In addition, the divide-and-conquer strategy involves breaking down larger
matrices into smaller blocks that memory-intensive recursive functions calls processes.
This approach can lead to premature cache spillover as data and stack frames vie for cache



Energies 2024, 17, 2225 16 of 22

space. This effect is crucial for cache efficiency, with consequent impacts on the energy
performance of those algorithms in general.

With the preceding points in mind, Table 8 summarizes cache miss data collected for
the L2 and L3 caches. The profiling tool did not provide straightforward cache miss counts
per run. Instead, the tool provided access and miss counts per thousand instructions (PTI),
i.e., normalized rates. Miss ratio PTIs for L2 and L3 caches may be calculated from those
count rates. Absolute counts show pronounced jumps, which helps spot likely spillover
points. Rates, however, tend to even out differences, leading to more subtle behavior.
In addition, the profiler performs internal sampling and can provide more sample points
for readings depending on runtimes. Longer runtimes allow for more samples and, hence,
more accurate gauging. Therefore, results for larger dimensions involving more samples
tend to provide more reliable figures than smaller ones. The table shows averages of ten
runs. Two regions of interest inferred from the energy and power data are highlighted for
closer examination.

Table 8. Average cache miss ratios per thousand instructions (PTI), the L3 figures are percentages.
Regions of interest are shaded for highlighting.

Dim. DEF WINOG STRAS STRAS2 WINOGV STRAS3
L2 L3 L2 L3 L2 L3 L2 L3 L2 L3 L2 L3

50 0.087 7.5 0.055 6.5 0.039 12.0 0.034 11.7 0.015 8.5 0.010 7.7
100 0.103 11.1 0.060 7.1 0.061 15.4 0.060 14.1 0.019 10.0 0.026 7.8
200 0.120 18.8 0.150 12.4 0.130 15.6 0.096 15.4 0.023 11.5 0.042 8.3
300 0.130 19.4 0.160 15.7 0.140 16.9 0.107 18.8 0.138 12.1 0.089 10.4
400 0.160 19.7 0.170 16.1 0.170 18.0 0.158 18.9 0.144 12.4 0.130 11.7
500 0.170 20.2 0.180 19.6 0.176 19.2 0.160 19.0 0.157 12.7 0.147 12.1
600 0.179 22.5 0.192 21.1 0.196 20.0 0.196 19.2 0.149 13.0 0.158 12.1
700 0.192 22.9 0.196 21.6 0.217 20.6 0.223 19.7 0.151 16.0 0.180 13.9
800 0.210 24.4 0.205 21.7 0.254 22.4 0.235 20.9 0.191 16.4 0.174 14.4
900 0.219 24.7 0.217 21.8 0.254 22.7 0.254 20.8 0.204 17.5 0.183 16.6

1000 0.230 25.4 0.217 22.1 0.257 22.7 0.256 21.2 0.268 21.0 0.298 18.9
1100 0.242 25.4 0.220 23.7 0.266 23.4 0.266 23.0 0.375 22.1 0.302 19.2
1200 0.242 25.7 0.220 25.4 0.267 24.4 0.281 23.3 0.380 22.2 0.313 19.6
1300 0.294 26.0 0.235 25.8 0.297 24.4 0.293 23.7 0.427 22.2 0.318 19.7
1400 0.303 26.0 0.235 26.1 0.331 24.5 0.305 24.3 0.429 22.7 0.329 20.3
1500 0.363 27.5 0.250 26.2 0.331 24.7 0.326 25.0 0.430 22.7 0.370 20.3
1600 0.370 28.3 0.258 26.9 0.343 25.2 0.337 25.3 0.430 23.0 0.427 20.3
1700 0.381 29.2 0.260 27.0 0.353 26.1 0.348 25.5 0.433 23.6 0.437 21.1
1800 0.397 30.6 0.267 27.0 0.351 26.7 0.351 26.1 0.435 24.1 0.440 22.0
1900 0.400 30.6 0.273 27.1 0.405 28.1 0.362 26.5 0.439 24.6 0.447 23.0
2000 0.414 32.1 0.280 31.6 0.428 28.3 0.402 27.2 0.440 25.1 0.453 25.1
2100 0.422 36.3 0.331 34.5 0.434 36.0 0.424 32.5 0.450 32.5 0.450 28.7
2200 0.436 38.8 0.361 37.2 0.459 38.1 0.435 34.9 0.454 32.9 0.460 28.9
2300 0.476 39.2 0.383 38.5 0.463 39.2 0.455 35.1 0.455 36.5 0.500 29.8
2400 0.490 41.3 0.450 40.0 0.493 39.5 0.480 36.5 0.470 37.4 0.576 29.8
2500 0.620 41.8 0.455 40.1 0.542 40.1 0.520 38.8 0.489 37.7 0.590 30.7

An examination of the L3 misses for the upper part of the investigated range in
Figure 5 shows distinct surges around dimension 2000 (slightly later for STRAS3). Data
points at 2000 correspond to dense matrices of size 2048 for the divide-and-conquer methods
(sparse 3072 for STRAS3 at data point 2100). DEF and WINOG displayed similar behavior
around dimension 1900. As a reminder, the data suggested that the memory-optimized
divide-and-conquer showed 18–33% less power draw at the 2000 point (Table 7) relative
to WINOG. The figure seems to support a probable range of spillover to DRAM between
dimensions 1900 and 2100, as suggested by the energy and, to some extent, power data.
Memory bandwidth data in Figure 6 also show a significant increase in memory activity
in the probable region where the boundary between SRAM and DRAM may reasonably
be estimated to be.



Energies 2024, 17, 2225 17 of 22

Figure 5. Level 3 average cache miss ratios (PTI) reported as percentages.

The slightly later spillover of the block-oriented divide-and-conquer group may stem
from their superior locality management, which led to better utilization of the power-
efficient cache. The energy data, however, suggest that those methods experience a surge
in energy consumption initially, probably due to a runaway runtime overhead of recursion.
Eventually, the asymptotic time advantage catches up at sufficiently large matrices and,
with superior power, yields better energy performance. Optimizing memory may bring
that advantage to smaller dimensions.

Figure 6. Average read/write main memory bandwidth for DEF and WINOG superimposed on the
divide–conquer for comparison.

Furthermore, Figure 7 shows that the memory-optimized variants had better memory
performance. Better locality management is probably behind that edge in power and
the ensuing energy savings in STRAS2 and STRAS3 compared to STRAS and WINGV.
Conversely, poor cache performance may be behind the much worse surges in memory
activity that seem to occur significantly earlier in DEF and WINOG in Figure 6, which may
account for the degraded power performance for the same range (Figure 4).



Energies 2024, 17, 2225 18 of 22

Figure 7. Average read/write main memory bandwidth for the divide-and-conquer group.

L2 cache trends, in Figure 8, proved to be more subtle but still discernible. As ex-
pected, the divide-and-conquer methods tended to miss significantly out of L2 earlier at
around dimensions 700–900 compared to the other two at 1100–1200, with the memory-
optimized STRAS2 and STRAS3 lingering a little longer (closer to the 900 data point). The
700–1000 range corresponded to processing matrices of dimension 1024 with an upshift
to 2048 for the 1100 and 1200 points. This behavior corresponded to the second region of
interest identified in the power curve from Figure 4, where power efficiency was turning
away from DEF and WINOG. It seems to indicate that the computation size advantage of
DEF and WINOG was no longer yielding power savings. The superior block management
of the divide-and-conquer was starting to take over, perhaps. A glance at the probable
region of spillover from L2 to L3 in Figure 7 reveals that it was likely where STRAS and
WINOGV started to be less competitive with the memory-optimized variants in terms of
memory bandwidth. It is also where WINOG is superior to DEF but starts to lose its power
efficiency edge against the least-efficient divide-and-conquer methods, as Figure 9 shows.

Figure 8. Level 2 cache miss ratios (PTI) with the probable spillover region to the L3 cache indicated.



Energies 2024, 17, 2225 19 of 22

Figure 9. Detailed view of the main memory bandwidth showing the probable L2–L3 spillover range.

To conclude this discussion, the authors note that the observed fluctuations in memory
behavior data perhaps highlight the complex interplay between the algorithms and the
memory subsystem. Nevertheless, the memory interactions did offer the insights needed
to explain the observed energy behaviors. More notably, they supported expectations from
prior knowledge of how the algorithms worked and how that was supposed to impact
those behaviors.

6. Conclusions and Future Work

This study investigated the energy behavior of a selection of standard matrix multipli-
cation algorithms for advantages, in terms of their total energy and power draw budgets,
that one may attribute to their design and hardware use patterns. It also examined cache
misses to make sense of consumption patterns and to determine the effects of interactions
with the memory.

The immediate conclusion was that, at least from a power viewpoint, the Wino-
grad variant of Strassen’s original algorithm (WINOGV) should be the baseline for the
divide-and-conquer method. The baseline should include at least in-place temporary block
scheduling like STRAS2, which involves minimal effort. Also, switching to a fast, non-
recursive procedure should be a must for the best effect. Either DEF or WINOG would
do for such a procedure. This baseline implementation should yield slightly better per-
formance than that reported in this paper for STRAS2. Timing and power data suggest it
will not suffer computationally but could be significantly more power efficient (see data
points 1000–1100).

However, for the best power and energy performance, a high-performance algorithm
for large matrix sizes should go for the full extent of memory optimizations described in [6]
on top of WINOGV. It should perhaps detect recursions that yield zero blocks in sufficiently
large sparse cases. WINOG is preferable to DEF here for a fast procedure for appropriately
small dimensions. The choice of the point at which the algorithm switches to that procedure
should be custom-optimized for a system. That is not as open-ended as it may sound.
The state-of-the-art in technology and the tight design trade-offs between hit times vs. miss
rates often lead to similar configurations within a generation of processors, which likely
lead to the same ends. The complexity of such an undertaking could be offset by including
it in a system-wide library for frequent reuse. A multicore parallel implementation should
probably also start from the previous guidelines.

The study also found the usage patterns of energy-significant functional and memory
units to be reasonably good predictors of what to expect in terms of power and energy
behavior. Improving energy budgets through optimizing the runtime under the same
power draw is perhaps expected. However, optimizing hardware usage was also found
to improve the power performance. For some applications, lower power budgets may be
more critical. Reducing those budgets, in turn, also boosts energy gains as well. The power



Energies 2024, 17, 2225 20 of 22

advantage may be more valuable for a ubiquitous computation that is likely to make up a
significant fraction of a large workload on a high-performance system where the savings
may accumulate. Classical algorithm design keeps an eye on the growth of a dominant term
of a function that expresses the relation of the repetitions of the most frequent operations
with the input size. Similarly, an analysis based on the most frequently used hardware-
significant units could guide the design of algorithms with better energy profiles. Moreover,
this could lead to rethinking the design of those units to increase the savings.

The findings from the simulated case using STRAS3 seem to encourage an examination
of a full implementation to better assess its advantage in a more realistic setting, especially
in terms of power consumption. In particular, a study should perhaps focus on in-place
calculations that minimize memory motion. Moreover, the SIMD architecture of GPUs
makes them a natural fit for matrix multiplication. These platforms are now primary
environments for applications that rely on that vital computation. It would be interesting to
replicate the study on a popular GPU setting like those from Nvidia or AMD. It would also
be interesting to formalize a framework for power complexity like that for time and space.
Additional studies along the suggested lines may lend further support for seeking the
efficiency inherent in algorithms by design. In particular, this may be useful for designing
algorithms that manage the use of hardware with a critical influence on energy behaviors.

Author Contributions: Conceptualization, M.A.-H. and S.A.; methodology, S.A. and M.A.-H.; soft-
ware, M.A.-H.; validation, S.A. and M.A.-H.; formal analysis, M.A.-H.; investigation, S.A.; resources,
M.A.-H.; data curation, S.A.; writing—original draft preparation, M.A.-H. and S.A.; writing—review
and editing, M.A.-H.; visualization, M.A.-H. and S.A.; supervision, M.A.-H.; project administration,
S.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HPC High-performance computing
SMT Simultaneous multithreading
PTI Per thousand instruction
DEF Standard definition-based [matrix multiplication]
WINOG Winograd’s improvement on the standard
k-Block k× k submatrix block
STRAS Naive Strassen’s divide–conquer
WINOGV Naive Winograd’s divide–conquer variant
STRAS2 Memory-optimized Strassen (in-place temps calculation schedule)
STRAS3 STRAS2 + return product matrix in-place

References
1. Kouya, T. Accelerated multiple precision matrix multiplication using Strassen’s algorithm and Winograd’s variant. JSIAM Lett.

2014, 6, 81–84. [CrossRef]
2. Winograd, S. A New Algorithm for Inner Product. IEEE Trans. Comput. 1968, C-17, 693–694. [CrossRef]
3. Strassen, V. Gaussian elimination is not optimal. Numer. Math. 1969, 13, 354–356. [CrossRef]
4. Probert, R.L. On the Additive Complexity of Matrix Multiplication. SIAM J. Comput. 1976, 5, 187–203. [CrossRef]
5. Fog, A. Instruction Tables: Lists of Instruction Latencies, Throughputs and Micro-Operation Breakdowns for Intel, AMD and VIA CPUs;

Technical Report; Technical University of Denmark: Kongens Lyngby, Denmark, 2022. Available online: https://www.agner.org/
optimize/instruction_tables.pdf (accessed on 14 April 2024).

6. Boyer, B.; Dumas, J.G.; Pernet, C.; Zhou, W. Memory efficient scheduling of Strassen-Winograd’s matrix multiplication algorithm.
In Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, Seoul, Republic of Korea, 28–31
July 2009; pp. 55–62.

http://doi.org/10.14495/jsiaml.6.81
http://dx.doi.org/10.1109/TC.1968.227420
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1137/0205016
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf


Energies 2024, 17, 2225 21 of 22

7. Ren, D.; Suda, R. Power efficient large matrices multiplication by load scheduling on multi-core and GPU platform with CUDA.
In Proceedings of the 2009 International Conference on Computational Science and Engineering, Vancouver, BC, Canada, 29–31
August 2009; IEEE: New York, NY, USA, 2009; Volume 1, pp. 424–429.

8. Ren, D.Q.; Suda, R. Modeling and optimizing the power performance of large matrices multiplication on multi-core and GPU
platform with CUDA. In Proceedings of the International Conference on Parallel Processing and Applied Mathematics, Wroclaw,
Poland, 13–16 September 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 421–428.

9. Yan, Y.; Kemp, J.; Tian, X.; Malik, A.M.; Chapman, B. Performance and power characteristics of matrix multiplication algorithms
on multicore and shared memory machines. In Proceedings of the 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, Salt Lake City, UT, USA, 10–16 November 2012; IEEE: New York, NY, USA, 2012; pp. 626–632.

10. Legaux, J.; Jubertie, S.; Loulergue, F. Experiments in parallel matrix multiplication on multi-core systems. In Proceedings of
the Algorithms and Architectures for Parallel Processing: 12th International Conference, ICA3PP 2012, Fukuoka, Japan, 4–7
September 2012; Proceedings, Part I 12; Springer: Berlin/Heidelberg, Germany, 2012; pp. 362–376.

11. Lai, P.W.; Arafat, H.; Elango, V.; Sadayappan, P. Accelerating Strassen-Winograd’s matrix multiplication algorithm on GPUs. In
Proceedings of the 20th Annual International Conference on High Performance Computing, Pune, India, 18–22 December 2013;
IEEE: New York, NY, USA, 2013; pp. 139–148.

12. Sheikh, H.F.; Ahmad, I.; Fan, D. An evolutionary technique for performance-energy-temperature optimized scheduling of parallel
tasks on multi-core processors. IEEE Trans. Parallel Distrib. Syst. 2015, 27, 668–681. [CrossRef]

13. Zhang, P.; Gao, Y. Matrix multiplication on high-density multi-GPU architectures: Theoretical and experimental investigations.
In Proceedings of the High Performance Computing: 30th International Conference, ISC High Performance 2015, Frankfurt,
Germany, 12–16 July 2015; Proceedings 30; Springer: Berlin/Heidelberg, Germany, 2015; pp. 17–30.

14. Kouya, T. Performance evaluation of multiple precision matrix multiplications using parallelized Strassen and Winograd
algorithms. JSIAM Lett. 2016, 8, 21–24. [CrossRef]

15. Jakobs, T.; Hofmann, M.; Rünger, G. Reducing the power consumption of matrix multiplications by vectorization. In Proceedings
of the 2016 IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and
Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering
(DCABES), Paris, France, 24–26 August 2016; IEEE: New York, NY, USA, 2016; pp. 213–220.

16. Muhammad, A.; Islam, M.A. Performance evaluation of matrix multiplication in Virtual Machine. In Proceedings of the 2017
International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 8–9 March 2017;
IEEE: New York, NY, USA, 2017; pp. 205–210.

17. Haidar, A.; Jagode, H.; Vaccaro, P.; YarKhan, A.; Tomov, S.; Dongarra, J. Investigating power capping toward energy-efficient
scientific applications. Concurr. Comput. Pract. Exp. 2019, 31, e4485. [CrossRef]

18. Fahad, M.; Shahid, A.; Manumachu, R.R.; Lastovetsky, A. A comparative study of methods for measurement of energy of
computing. Energies 2019, 12, 2204. [CrossRef]

19. Oo, N.Z.; Chaikan, P. The Effect of Loop Unrolling in Energy Efficient Strassen’s Algorithm on Shared Memory Architecture.
In Proceedings of the 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications
(ITC-CSCC), Jeju, Republic of Korea, 27–30 June 2021; IEEE: New York, NY, USA, 2021; pp. 1–4.

20. Kung, H.T.; Natesh, V.; Sabot, A. CAKE: Matrix Multiplication Using Constant-Bandwidth Blocks. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, St. Louis, MI, USA, 14–19
November 2021; SC ’21. [CrossRef]

21. Oo, N.Z.; Chaikan, P. Power Efficient Strassen’s Algorithm using AVX512 and OpenMP in a Multi-core Architecture. ECTI Trans.
Comput. Inf. Technol. (ECTI-CIT) 2023, 17, 46–59. [CrossRef]

22. Jammal, F.; Aljabri, N.; Al-Hashimi, M.; Saleh, M.; Abulnaja, O. A Preliminary Empirical Study of the Power Efficiency of Matrix
Multiplication. Electronics 2023, 12, 1599. [CrossRef]

23. Dasgupta, S.; Papadimitriou, C.; Vazirani, U. Algorithms, 1st ed.; McGraw-Hill Education: New York, NY, USA, 2006. Available
online: http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf (accessed on 14 April 2024).

24. Aljabri, N.; Al-Hashimi, M.; Saleh, M.; Abulnaja, O. Investigating power efficiency of mergesort. J. Supercomput. 2019,
75, 6277–6302. [CrossRef]

25. Ghose, S.; Yaglikçi, A.G.; Gupta, R.; Lee, D.; Kudrolli, K.; Liu, W.X.; Hassan, H.; Chang, K.K.; Chatterjee, N.; Agrawal, A.; et al.
What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study. Proc. ACM Meas. Anal.
Comput. Syst. 2018, 2, 1–41. [CrossRef]

26. Free Software Foundation. A GNU Manual (3.11 Options That Control Optimization). 2021. Available online: https://gcc.gnu.
org/onlinedocs/gcc-11.4.0/gcc/Optimize-Options.html (accessed on 26 April 2024).

27. AMD. AMD µProf. 2023. Available online: https://www.amd.com/en/developer/uprof.html (accessed on 4 August 2023).
28. AMD. AMD µProf User Guide, Rev 4. November 2022. Available online: https://www.amd.com/content/dam/amd/en/

documents/developer/uprof-v4.0-gaGA-user-guide.pdf (accessed on 4 August 2023).
29. Lane, P.A.; Lobrano, J. The AMD Rome Memory Barrier. arXiv 2022, arXiv:2211.11867.

http://dx.doi.org/10.1109/TPDS.2015.2421352
http://dx.doi.org/10.14495/jsiaml.8.21
http://dx.doi.org/10.1002/cpe.4485
http://dx.doi.org/10.3390/en12112204
http://dx.doi.org/10.1145/3458817.3476166
http://dx.doi.org/10.37936/ecti-cit.2023171.248320
http://dx.doi.org/10.3390/electronics12071599
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://dx.doi.org/10.1007/s11227-019-02850-5
http://dx.doi.org/10.1145/3224419
https://gcc.gnu.org/onlinedocs/gcc-11.4.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-11.4.0/gcc/Optimize-Options.html
https://www.amd.com/en/developer/uprof.html
https://www.amd.com/content/dam/amd/en/documents/developer/uprof-v4.0-gaGA-user-guide.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/uprof-v4.0-gaGA-user-guide.pdf


Energies 2024, 17, 2225 22 of 22

30. Lu, J.; Zhang, J.; Tan, S.X.D. Real-time Thermal Map Estimation for AMD Multi-Core CPUs Using Transformer. In Proceedings
of the 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Francisco, CA, USA, 28 October–2
November 2023; pp. 1–7. [CrossRef]

31. Chakraborty, S.; Deb, D.; Buragohain, D.; Kapoor, H.K. Cache capacity and its effects on power consumption for tiled chip
multi-processors. In Proceedings of the 2014 International Conference on Electronics and Communication Systems (ICECS),
Coimbatore, India, 13–14 February 2014; IEEE: New York, NY, USA, 2014; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICCAD57390.2023.10323817

	Introduction
	A Literature Review
	The Algorithms
	Materials and Methodology
	Experimental Environment and Procedures
	Test Datasets
	Executables
	Profiling Tools

	Results and Discussion
	Main Results
	Energy Consumption
	Power Performance Analysis
	Closing Notes

	Cache Miss Analysis and Other Memory Trends

	Conclusions and Future Work
	References

