
Citation: Li, X.; Duan, L.; Zhou, S.;

Liu, X.; Yao, Z.; Yan, Z. Freeze-Casting

of Alumina and Permeability Analysis

Based on a 3D Microstructure

Reconstructed Using Generative

Adversarial Networks. Materials 2024,

17, 2432. https://doi.org/10.3390/

ma17102432

Academic Editor: Francesco Baino

Received: 23 April 2024

Revised: 16 May 2024

Accepted: 17 May 2024

Published: 18 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Freeze-Casting of Alumina and Permeability Analysis Based on a
3D Microstructure Reconstructed Using Generative
Adversarial Networks
Xianhang Li 1, Li Duan 1, Shihao Zhou 1, Xuhao Liu 1, Zhaoyue Yao 2 and Zilin Yan 1,*

1 School of Science, Harbin Institute of Technology, Shenzhen 518055, China; 22s058085@stu.hit.edu.cn (X.L.);
23b958017@stu.hit.edu.cn (L.D.); 19b958012@stu.hit.edu.cn (S.Z.); liudong1xh@outlook.com (X.L.)

2 Education Center for Experiment and Innovations, Harbin Institute of Technology, Shenzhen 518055, China;
yaozhaoyue@hit.edu.cn

* Correspondence: yanzilin@hit.edu.cn

Abstract: In this study, alumina ceramics with hierarchical pores were successfully fabricated using
freeze casting. Experimental studies show that both the solid loading of the slurry and the thermal
insulation layer at the interface of the slurry and cooling plate can influence the pore characteristics of
cast samples. In order to examine the pore characteristics and evaluate the permeability of the freeze-
cast samples fabricated under different conditions, a generative adversarial network (GAN) method
was employed to reconstruct the three-dimensional (3D) microstructure from two-dimensional (2D)
scanning electron microscopy (SEM) images of the samples. Furthermore, GAN 3D reconstruction
was validated against X-ray tomography 3D reconstruction results. Based on the GAN reconstructed
microstructures, the permeability and pore distribution of the various samples were analyzed. The
sample cast with 35 wt.% solid loading shows an optimal permeability.

Keywords: freeze casting; porous ceramic; microstructure; generative adversarial networks; permeability

1. Introduction

Porous ceramics are a unique class of ceramics that possess open and percolated pore
structures, allowing for the flow of gases and liquids through their solid matrix. Due
to their high surface area, thermal stability, and permeability, they find uses in various
applications including water purification and filtration [1,2], gas storage [3], thermal insu-
lation [4], artificial bones [5], energy conversion, and storage devices [6]. Porous ceramics
can have tailored properties by controlling porosities, pore sizes, shapes, orientations, and
distributions. Porous ceramics can be fabricated using several different methods, including
the sol–gel method [7], foam template replication method [8], powder sintering with pore
formers [9], and freeze casting method [10]. In the freeze-casting method, a ceramic slurry
is frozen and then freeze-dried to create a porous structure. The frozen structure is then
sintered to form the final porous ceramics. Because of its unique nature, freeze casting is a
highly promising technique for the manufacturing of porous ceramics with hierarchical
microstructures [10]. These unique straight porous structures make them have great poten-
tial for applications in the electrodes in electrochemical devices, such as solid oxide fuel
cells [11], solid oxide electrolyzers [12], and lithium batteries [13]. By carefully controlling
processing parameters such as cooling temperature, dispersion media, solid loading, and
additives like binder and their amount and temperature gradient, diverse microstructures
can be achieved [14,15]. Therefore, the formulation of the slurry should take into account
all the aforementioned conditions.

For electrochemical device applications, the permeability property is a crucial prop-
erty that can directly influence the performance of electrochemical devices. Although
experiments on microstructural characterization and gas permeation performance of freeze-
cast alumina ceramics have been conducted [16], measuring the permeability requires
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significant efforts. Typically, the permeability experiments were conducted with certain
equipment varying by the measuring methods like the steady-state method [17,18] and
pulse-test method [19]; both devices measure the permeability by recording the pressure
change or the variation in the flow on both sides of inlet and outlet, requiring that the
sample has a specific shape and can be placed in the cell of the equipment where the gas
flows through. Alternatively, the permeability of the porous media can be assessed through
mechanistic model-based numerical simulations in methods like the lattice Boltzmann
method (LBM) [20], finite element method (FEM) [21], finite volume method (FVM) [22],
and computational fluid dynamics (CFD) [23]. The numerical method relies on accu-
rate 3D microstructure reconstruction of the porous structures. Therefore, obtaining the
three-dimensional structure of porous ceramics is crucial for comprehensively studying
their properties. Traditional methods for microstructure reconstruction, such as focused
ion beam-scanning electron microscope (FIB-SEM) [24] and X-ray computed tomography
(XCT) [25], are cost-prohibitive; the FIB-SEM method is especially limited in its ability to
reconstruct microstructure exceeding 10s of micrometers. Alternatively, there has been
considerable interest in reconstructing the 3D microstructure utilizing 2D SEM images. For
example, the stochastic reconstruction algorithm has been applied, showing promising
results [26]. However, its low efficiency and extensive computational requirements have
limited its applications. With the advancement of machine learning-based image processing
technology, it is now possible to utilize these techniques for reconstructing materials’ 3D
microstructure [27].

In this paper, we explored the fabrication of hierarchically porous alumina ceramics
using the freeze-casting method, involving optimizing the slurry formulation and freeze-
casting treatments. The effects of slurry’s solid loading and a thermal insulation layer on
pore’s characteristics during freeze-casting were investigated. A generative adversarial
network (GAN) [28] algorithm was used to reconstruct the anisotropic 3D microstructure
with 2D cross-sectional SEM images of the freeze-cast samples for permeability analysis.
An XCT reconstruction test was conducted to verify the accuracy of the GAN reconstruction
algorithm. Finally, permeability simulations were conducted with Avizo software version
9.0.1 [29] on both GAN- and XCT-reconstructed samples.

2. Materials and Methods
2.1. Preparation of the Slurry and Freeze Casting

In this study, aqueous alumina slurries were adopted for freeze casting using commer-
cial α-alumina powder (D50 = 0.2 µm, 99.99%, Aladdin, Shanghai, China). Polyacrylic acid
(PAA, Macklin, Shanghai, China), polyvinyl alcohol (PVA, Aladdin, Shanghai, China), and
glycerol (≥99.5%, Macklin, Shanghai, China) were employed as dispersants, binders, and
defoaming agents, respectively, for the slurry making.

Zeta potential tests were conducted using a Nano-ZS90 zeta meter (Zetasizer, Malvern,
Malvern, UK) on a slurry with 0.2 wt.% solid loading to determine the appropriate pH
value for achieving optimal dispersion of alumina particles. The pH value of the suspension
was tuned by adding 28% ammonia water into it. As shown in Figure 1a, an increase in pH
led to an increase in the absolute value of zeta potential, indicating improved dispersion of
alumina particles. However, when the pH exceeded 11, the addition of excessive amounts
of ammonia water introduced extra water into the slurry. Consequently, the pH of the
slurry was set to 11. Sedimentation tests were also performed with different additions
of PAA and the slurries were allowed to sediment for 24, 36, and 72 h to observe the
sedimentation height. Figure 1b demonstrates that a PAA percentage of 0.5 wt.% resulted
in well-dispersed slurry.
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Figure 1. Experiments used to determine slurry formulations: (a) Zeta potential test for different pH
values and (b) sedimentation tests for different amounts of dispersants.

After adding the alumina powder, deionized water, and dispersant, the pH was
adjusted to 11. The slurry was then ball milled in a planet ball mill machine (MSK-SFM-1,
Hefei Kejing Material Technology, Hefei, China) for 12 h. Subsequently, the binder and
an appropriate amount of defoaming agent were added to the slurry and ball milling
was carried out for an additional 12 h. After ball milling, the slurry was degassed in a
vacuum mixer (TP-1, Bejing Orient Sun-Tec, Beijing, China) for at least 1 h. Subsequently,
the slurry was carefully poured into a precisely engineered 5 mm × 5 mm × 5 mm
cavity within a 3D-printed ABS (acrylonitrile butadiene styrene) plate of dimensions
10 mm × 10 mm × 5 mm, facilitating the fabrication of a 5 mm × 5 mm × 5 mm cubic
freeze-cast sample. Additionally, the mold had a 5 mm thick wall to ensure good lateral
thermal insulation and that the temperature gradient occurred solely in the vertical
direction. The mold was positioned atop a copper plate fastened to a cold plate of a
thermoelectric cooler (TECA LHP-1200CAS, TECA Corp., Chicago, IL, USA), with the
temperature set at −20 ◦C. The entire freeze-casting process is illustrated in Figure 2.
Afterward, the mold was placed inside a freeze dryer and underwent vacuum drying
(LC-10N-50A, LiChen, Shanghai, China) at a pressure of 3 Pa to 5 Pa and a temperature
of −40 ◦C for a minimum of 36 h, until the sample could be easily peeled away from the
mold. The samples were then heated at a rate of 5 ◦C/min to 500 ◦C and held at that
temperature for 60 min to remove the additives. Finally, the samples were heated to
1400 ◦C at the same heating rate and held at that temperature for 3 h for sintering; all
these procedures were performed in a muffle furnace (KSL-1500X, Hefei Kejing Material
Technology, Hefei, China).

Three different sets of cast samples were prepared by following the aforementioned
procedures using slurries with solid loadings of 35 wt.%, 40 wt.%, and 45 wt.%. In order to
investigate the effect of the thermal gradient at the interface of slurry and cooling plate,
another set of samples was fabricated with 35 wt.% solid loading slurry and a thin plastic
film insulation layer being placed between the slurry and cooling plate to create a thermal
gradient during the freeze casting.
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Figure 2. Schematic illustration of the freeze-casting process.

2.2. Acquisition of Cross-Sectional SEM Images

As freeze-cast materials usually have transversely isotropic microstructures, two
cross-sectional SEM images are sufficient to capture the microstructures of freeze-cast
alumina ceramics. In order to acquire the 2D SEM images, two samples from each set
were utilized and the cross-sectional SEM images of the two samples were captured along
and perpendicular to the freezing direction, respectively. To prepare the samples for SEM
observations, they were immersed in epoxy resin and subjected to vacuum impregnation
for a duration of 24 h, ensuring complete resin curing. Subsequently, the samples were
polished with sandpaper to expose their cross-sections. Then, a backscatter electron (BSE)
detector (TM4000Plus, Hitachi, Tokyo, Japan) was utilized to capture images of these
cross-sections. Figure 3 displays the SEM images of typical cross-sections of samples with
varying solid loadings. In order to differentiate between alumina and resin, we employed
threshold segmentation to binarize the grayscale images. Both the grayscale and binarized
SEM images are shown in Figure 3. From the SEM images obtained from the cross-sections
along the freeze-casting direction, it can be seen that the microstructure has typical straight
pore channels separated by particulate “walls” (Figure 3a,c,e,g,i,k). The “walls” formed
during freezing are predominantly parallel to the freezing direction, displaying straight
pores between them, except in the case of samples treated with an insulation film. The
straight pore features indicate excellent permeability of the samples along the freezing
direction. From the SEM images acquired from the cross-sections perpendicular to the
freezing direction, it can be seen that the porous microstructure is isotropic in the plane
perpendicular to the freezing direction for the samples prepared without an insulation layer
treatment (Figure 3b,d,f,h,j,l,n,p). However, for the samples prepared with an insulation
film, the walls appear more curved and disorganized (Figure 3m,o) in the freezing direction
compared to the other samples. It is also noted that the microcultures in the freeze-
cast sample treated with insulation thin film are much coarser than those of samples
prepared without an insulation layer. This is attributed to the film’s impact on reducing
the temperature gradient along the freezing direction during the freezing process. Higher
magnification (1000×) SEM images of the wall microstructures were taken and typical
microstructures are shown in Figure 4, with the 35 wt.% solid loading sample as a showcase.
Notably, this sample was not impregnated with resin to ensure that the original pores were
all preserved for observation. It is shown that the walls are not fully dense but possess
some fine pores. However, in order to acquire an adequately large area to represent the
entire microstructure for 3D reconstruction, lower magnification SEM images (150×) were
used and the fine pores within the walls were missing from the SEM images, resulting in
under-estimated porosity by the image method.
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sample with an insulation layer are presented in (m,n), along with their binarized versions in (o,p).
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Figure 4. SEM images with higher magnification of a 35 wt.% solid loading sample. (a) Along the
freezing direction and (b) along the direction perpendicular to the freezing direction.

2.3. Three-Dimensional Microstructure Reconstruction with Two-Dimensional SEM Images

Three-dimensional microstructure was reconstructed using the GAN deep learning
algorithm. A typical GAN is composed of two neural networks, namely the generator
network and the discriminator network. These two networks are trained in a competitive
fashion: the generator creates synthetic data and the discriminator aims to discriminate it.
The aim of the GAN is to improve the ability of the generator until the discriminator is no
longer able to distinguish the generated synthetic data from the real data. A 3D generative
adversarial network was invented to generate a 3D structure from 2D pictures [30]. In their
approach, a 200-dimentional latent vector sampled from a probabilistic latent space was
mapped to a 64 × 64 × 64 tensor in the generator, representing the reconstruction of the
3D structure. In this study, we used a similar generator to generate a 3D structure and,
by changing the hyperparameters of the generator, we can generate a bigger or smaller



Materials 2024, 17, 2432 6 of 16

structure. Notably, the unstable learning problem was avoided by introducing the loss
function used in the improved training of Wasstertain GAN (IW-GAN) [31], which has been
confirmed to be able to generate higher quality 3D structures compared to the traditional
loss function [32]. The loss function is expressed as follows:

Ex̃∼pg [D(x̃)]− Ex∼pr [D(x)] + λEx̂∼px̂ [ (||∇x̂D(x̂)||2 − 1) 2], (1)

where λ, pg, pr, and px̂, are the gradient penalty, the generator and target distribution, and
the distribution sampling uniformly on a straight line between pg and px. D(x) is the output
scaler, which stands for the possibility of x being sampled from the training dataset, in
which x is the real instance input for the discriminator. x̂ and

∼
x are samples from pg and px̂,

respectively. The loss function is used to measure the difference between generated and
real data and provide a goal for optimization.

The GAN used in this study is similar to the Slice-GAN used by Kench et al. [33]. Specifi-
cally, the GAN used in this work is composed of a 6-layer generator and a 7-layer discriminator.
The architecture of this network is demonstrated as Figure 5. In the generator, a 32-dimensional
latent vector is fed into it and finally transformed into a 128 × 128 × 128 × 2 tensor, which
represents a binarized three-dimensional structure with 128 pixels in three directions, by
means of a series of transpose convolutional operations. A softmax layer was used as a
classifier of the generator to distinguish pore and solid phases by probability, so that a ‘real’
microstructure with solid and pores can be generated. The hyperparameters for the gen-
erator are listed in Table 1. The resulting 3D structure is sliced into 2D images along three
different axes and fed into corresponding discriminators. In the discriminator, binarized 2D
images from the generator and training set will be discriminated between real and fake. The
hyperparameters for the generators are listed in Table 2.
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Table 1. The architecture of the generator.

Layer Kernel Stride Padding Output Shape

z - - - 4 × 4 × 4 × 64
1 4 2 2 6 × 6 × 6 × 512
2 4 2 2 10 × 10 × 10 × 128
3 4 2 2 18 × 18 × 18 × 64
4 4 2 2 34 × 34 × 34 × 32
5 4 2 2 66 × 66 × 66 × 16
6 4 2 3 128 × 128 × 128 × 2

softmax - - - 128 × 128 × 128 × 2
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Table 2. The architecture of the discriminator.

Layer Kernel Stride Padding Output Shape

Input - - - 128 × 128 × 2
1 4 2 1 64 × 64 × 32
2 4 2 1 32 × 32 × 64
3 4 2 1 16 × 16 × 128
4 4 2 1 8 × 8 × 256
5 4 2 1 4 × 4 × 512
6 4 2 0 1 × 1 × 1

A batch size of 8 was adopted for both the generator and discriminators. The Adam
optimizer [34] was used and the Adam optimizer parameters were α = 0.0001, β_1 = 0.9,
and β_2 = 0.999. The gradient penalty coefficient is set to λ = 10. Two graphics processing
units (GPU) (GeForce RTX 3090, NVIDIA, Santa Clara, CA, USA) were enabled for the
acceleration of the training.

2.4. X-ray Computed Tomography Reconstruction

To evaluate the accuracy of the 3D microstructure reconstructed by the GAN algorithm,
X-ray computed tomography (XCT) was employed. A sample with a 35 wt.% solid loading
was used for XCT scanning. The source-to-sample distance was D1 = 14.662 mm, while
the source-to-detector distance was D2 = 265.000 mm. The sample was scanned using
a 40 keV X-ray. The voxel size was 2.802 × 2.802 × 2.802 µm3. Binary segmentation
and pore analysis were conducted using version 9.1 Avizo software. A cubic region
containing 291 × 291 × 291 voxels, approximately 0.512 mm3 in size, was extracted from
the reconstructed structure. This region size provides sufficient representation of the overall
structure, while also expediting the calculation of absolute permeability in subsequent
analysis. The schematic diagram of the XCT procedure is depicted in Figure 6. After
post-processing, the scanned radiographs were saved as grayscale images and the pore and
solid phases were delineated through thresholding.
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2.5. Permeability Simulation of the 3D Microstructure

To investigate the influence of solid loading on microstructure permeability, we utilized
Avizo software for permeability calculation. The setup for permeability test simulation
within Avizo is shown in Figure 7. The calculation of absolute permeability was determined
using Darcy’s law [35], as shown in Equation (2), as follows:

Q
S

= − k
µ

∆P
L

, (2)

where Q is the global flow rate that goes through the microstructure, S is the area of the
cross-section of the pores that the fluid goes through, k is the absolute permeability, µ is the
dynamic viscosity of the fluid, ∆P is the pressure difference applied around the sample, and
L is the length of the sample in the direction of flow. Once the pressure difference, viscosity,
and the reconstructed structure are provided, the absolute permeability can be calculated.
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Figure 7. Schematic of Avizo absolute permeability simulation.

The 3D segmented binary microstructure was used for permeability calculation in
Avizo. By setting the pressure difference and the viscosity of the fluid or gas we can acquire
the absolute permeability. A typical 10−5 viscosity of hydrogen gas was used. The input
pressure and the output pressure were set at 20,000 Pa and 10,000 Pa, respectively. The
whole calculation was performed on a GPU (GeForce RTX 1660Super, NVIDIA, Santa Clara,
CA, USA).

2.6. Archimedes Method for Porosity

The porosity of porous material is normally measured by the Archimedes method;
since our sample contains mostly open pores, a test method for apparent porosity by boiling
water was used to determine the porosity [36]. Firstly, three 35 wt.% solid loading samples
were dehydrated at 110 ◦C for 10 min and then the dry weights were measured. Secondly,
samples were hung in the boiling water for 2 h and cooled down to room temperature;
then, they were immersed in water for another 12 h and the samples’ weight in water was
measured. Lastly, samples were taken out of the water and all drops of water on the surface
were wiped off with a moistened cotton cloth and then the saturated weight was measured.
The apparent porosity was calculated by Equation (3), as follows:

P =

(
W − D
W − S

)
× 100% (3)



Materials 2024, 17, 2432 9 of 16

In which P, W, D, and S are the apparent porosity, saturated weight, dry weight, and
weight in water, respectively. The mean porosity of three 35 wt.% solid loading samples is
76.6%. It should be noted that during our reconstruction with both XCT and GAN methods,
the pores in the walls were ignored and they are mainly open pores according to Figure 4.
The porosity calculated by the Archimedes method will therefore be very different from
that calculated by the image methods (see later Section 3.2).

3. Results
3.1. Three-Dimensional Reconstruction with the GAN and XCT

The GAN reconstructed microstructures have 448 × 448 × 448 voxels, as depicted
in Figure 8. The voxel size is 1.82 × 1.82 × 1.82 µm3, corresponding to a microstructural
volume of approximately 0.512 mm³, equivalent to the size of the XCT reconstruction. It is
evident that as the solid loading increases, the size of the pores tends to decrease. However,
the visual distinction is not clearly discernible, necessitating the use of a quantitative tool
to measure pore shrinkage. From the GAN reconstructed image, we observe orthogonal
anisotropic structures that closely resemble those reconstructed by the XCT, along with the
presence of wall-like structures. This indicates that the GAN reconstruction can reproduce
the realistic anisotropic microstructure from 2D cross-sections of the freeze-cast samples.
Further analysis of the GAN reconstruction reveals that as the solid phase content of the
slurry increases and the straight pores progressively reduce in size and density. Detailed
analysis of specific pores will be discussed later. It should be noted that the pores within
the wall structures were ignored due to the resolution of both XCT and SEM images, so the
porosity was calculated under the assumption that the walls are dense.
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Figure 8. Results of XCT and GAN reconstruction: (a) XCT reconstructed sample prepared with
35 wt.% solid loading, (b) GAN reconstructed sample prepared with 35 wt.% solid loading, (c) GAN
reconstructed sample prepared with 40 wt.% solid loading, (d) GAN reconstructed sample prepared
with 45 wt.% solid loading, and (e) GAN reconstructed sample prepared with 35 wt.% solid loading
and thermal insulation film treatment.

3.2. Pore Structure Characterization

During the freezing process, the ice growth process can be divided into five re-
gions [37,38], as illustrated in Figure 9. (1) Region 1 represents the bottom part of the
sample when the copper surface reaches the frozen temperature, crystals with random
orientation began to grow so the microstructure formed here is chaotic and (2) in Region 2,
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as the crystals grow, the temperature gradient effect becomes more and more important
and crystals not only grow along the freezing direction but crystals also grow along the
x-y plane. Both vertical and horizontal pores are formed in this region; (3) in Region 3,
the horizontal crystals grow preferentially along the temperature gradient; (4) in Region 4,
only vertical crystals grow and no horizontal crystals grow and the microstructure becomes
more stable; and (5) in Region 5, particle redistribution occurs in the x-y plane and is
mastered by the particles fraction only and growth of the crystals achieved a steady state, as
demonstrated. The regions we reconstructed are all in the upper part of the samples since
the SEM images used for reconstruction were all from this section and represent Region 5.
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Figure 9. Schematic and SEM images of the ice crystals’ growth.

Figure 10 shows the areal porosity along the freezing direction. It was found that the
porosity differences in the microstructure reconstructed by the GAN and XCT methods
were quite small, while there was still a slight increase in the porosity of the XCT sample
along the freezing direction. The cross-sectional images of the bottom and top of the
extracted XCT sample were also shown in Figure 10a,b, the black phase represents pores
and the white phase represents the alumina phase. Pore growth can be easily observed
by comparing these two pictures. This is consistent with the ice crystal growth pattern
described above.

The porosities of various samples have been precisely quantified based on 3D binary
images. For the sample prepared with 35 wt.% solid loading via slurry freeze-casting,
the XCT reconstruction (porosity of 41.3%) displays a near-identical porosity to the GAN
reconstruction (porosity of 41.4%), indicating that the GAN reconstruction method is
capable of accurately capturing the porosity of the freeze-cast alumina samples. Although
the image-based porosity is much lower than that measured by the boiling water method,
we think the image-based method for porosity measurement can be further improved by
acquiring a higher magnification and large area SEM images, which was not in the scope of
this study.

Based on the GAN reconstruction, the sample prepared with 35 wt.% solid loading and
treated with a thermal insulation film exhibits a reduced porosity of 33%. This indicates that
the application of a thermal insulation layer can significantly impact the pore characteristics
of the freeze-cast alumina. Based on the GAN-reconstruction, samples freeze-cast with
35 wt.%, 40 wt.%, and 45 wt.% solid loading slurries display porosities of 41.4%, 40.0%, and
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38.0%, respectively. This trend suggests that a higher solid loading slurry leads to a more
compact structure with fewer pores, resulting in a lower overall porosity.
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bottom of the extracted XCT reconstructed sample, (b) binarized images at the top of the extracted
XCT reconstructed sample, and (c) porosity of GAN and XCT (extracted region) samples along the
freezing direction.

In order to give a more intuitive representation of the pores in the XCT reconstructed
as well as GAN reconstructed samples, we also used Avizo software to skeletonize the
pores in the samples and characterize the size of the pores at each area with the width
of the skeletonized pores as shown in Figure 11. The thickness of the bones as well as
the color shades represent the size of the pores. Since the pores in the structure are very
dense, we took 90 × 90 pixels for the XCT sample and 139 × 139 pixels for the GAN sample
(approximately 253 × 253 µm2) section in the x-y plane, which contains enough straight
pores to observe the orientation and size variation in the pores. Figure 11 shows a typical
pore network in three samples (XCT and GAN reconstructed 35 wt.% solid loading sample
and film treated 35 wt.% solid loading sample reconstructed by GAN).
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Figure 11. Skeletonized pores of samples prepared with slurry solid loading = 35 wt.% (the in-
tensity of the color represents pore size), (a) XCT reconstructed sample (without film treatment),
(b) GAN reconstructed sample (without film treatment), and (c) GAN reconstructed sample (with
film treatment).

It can be seen from Figure 11 that the pores of the samples without insulation film
treatment show a very clear directionality, with the large pores basically along the freezing
direction and very small pores in the horizontal direction. This is reflected in the results
of both XCT and GAN reconstructions. For samples padded with an insulation film, the
pore distribution is not as ordered as the pores in samples freeze-cast without an insulation
film. This is mainly due to the presence of thin film causing the temperature gradient to
be reduced, resulting in Region 2 mentioned above being elongated [37], which is obvious
both in 2D SEM images and 3D-reconstructed microstructures. However, in comparison
to the pores in the XCT and GAN samples, it is seen that there are many fine pores in the
GAN reconstructed microstructure; the presence of such fine pores may have an impact on
the calculation of permeability. We consider that the presence of these small pores comes
from the higher resolution of the SEM shot compared to the XCT scan, which results in the
extra small pores existing in the GAN reconstructed microstructure compared to the XCT
reconstructed microstructure.

3.3. Absolute Permeability Analysis

In Avizo, we calculated the absolute permeability; the results of a 35 wt.% solid
loading’s different directions are depicted in Figure 12a and both XCT and GAN results
are demonstrated. It can be seen that the difference in permeability in different directions
is obvious and that permeability in the x and y directions (perpendicular to the freezing
direction) has a slight difference, which is quite small compared to the permeability along
the Z axis (parallel to the freezing direction). As for the difference in permeability of
the XCT and GAN samples, the difference could come from the difference in resolution
since SEM images have higher resolutions than XCT, meaning structures smaller than
XCT’s resolution were ignored, resulting in higher permeability in the XCT sample than
the GAN sample. The permeability of samples prepared with different solid loading was
also presented in Figure 12b; as the solid loading increased, the permeability decreased
and the permeability in different directions shows an anisotropy in each case, while the
calculated permeability for the film-treated sample is much smaller than for the unpadded
one. However, upon examination, we observe a significant reduction in the permeability
of the 45 wt.% solid loading sample across all three directions. Furthermore, there is a
substantial increase in the permeability difference between the x and y directions. It is
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reported by Shanti et al. [39] that a breakthrough concentration lies in the solid loading
of slurry. At the breakthrough concentration, the capillary pressure exceeds the osmotic
pressure and the solid–liquid interface breaks through the spaces between the concentrated
particles, so that no particle redistribution occurs. If the solid loading of slurry is too close
to the breakthrough concentration, the growth of ice crystals will be greatly affected [40],
which explains the great reduction in absolute permeability of the 45 wt.% solid loading
sample with 5 wt.% solid loading increase, compared to the 40 wt.% solid loading sample.
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and another 35 wt.% solid loading sample treated with film.

Figure 13 shows the streamlines of gas flow in the GAN-reconstructed 35 wt.% solid
loading sample with varying colors indicating the magnitude of the flow velocity for
permeability test in different directions. It is evident that the streamlines perpendicular to
the freezing direction (along the x-axis, as depicted in Figure 13a) exhibit a greater degree
of skewness compared to those aligned with the freezing direction (along the z-axis, as
depicted in Figure 13b). Furthermore, it is noteworthy that the magnitude of flow velocity
in the freezing direction is significantly higher than that in the direction perpendicular to it.
These observations serve as direct evidence that the hierarchical porous structure created
using the freeze-casting technique is highly effective in enhancing gas transportation along
the freezing direction.
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4. Conclusions

In this study, we devised a precise formulation of alumina slurry for freeze casting of
porous ceramics. Freeze casting of alumina was successfully carried out using a homemade
apparatus. The freeze-cast alumina sample’s microstructure features hierarchical porous
structures with straight pores in the cross-sections perpendicular to the cooling plate and
isotropic pores in the cross-sections parallel to the cooling plate. It was found that solid
loading of the slurry and thermal gradient design can both affect the microstructure of
the freeze-cast alumina ceramics. Based on 2D cross-sectional SEM images of the freeze-
cast alumina ceramics, a GAN deep learning algorithm was utilized to reconstruct the 3D
microstructure of the freeze-cast ceramics. The comparison between the GAN reconstructed
microstructure and the XCT reconstruction has proven that the GAN reconstruction can
serve as a low-cost 3D reconstruction method, in contrast to the conventional XCT and
FIB-SEM reconstruction, for accurate reconstruction of the isotropic microstructure of
the freeze-cast alumina ceramics. Based on GAN-reconstructed 3D microstructures, the
permeabilities of the various samples were calculated and compared. Pore analyses were
also conducted to determine the pore distribution in the samples, demonstrating that all
samples exhibited better permeability along the freezing direction than in the direction
perpendicular to it. Absolute permeability calculations revealed that as the solid loading
increased, the permeability decreased. A formula with a solid loading of 35 wt.% has
proven to be a good formula for the slurry for achieving the best permeability of the
freeze-cast alumina ceramics among all the samples we made. Furthermore, the decrease
in temperature gradient significantly contributed to the reduction in permeability due to
the growth of horizontal ice crystals. The current findings can be a good basis for the
fabrication of alumina support with hierarchical pores for the application of solid oxide
fuel cells (SOFC)/solid oxide electrolysis cells (SOEC).
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