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Abstract: This comprehensive review delves into the world of hyaluronic acid (HA) hydrogels,
exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out
among natural polysaccharides due to their distinct features. Their exceptional biocompatibility
makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously
with living cells and tissues. Furthermore, their biodegradability permits their gradual breakdown
by bodily enzymes, enabling the creation of temporary frameworks for tissue engineering endeavors.
Additionally, since HA is a vital component of the extracellular matrix (ECM) in numerous tissues,
HA hydrogels can replicate the ECM’s structure and functions. This mimicry is pivotal in tissue
engineering applications by providing an ideal setting for cellular growth and maturation. Various
cross-linking techniques like chemical, physical, enzymatic, and hybrid methods impact the mechani-
cal strength, swelling capacity, and degradation speed of the hydrogels. Assessment tools such as
rheological analysis, electron microscopy, spectroscopy, swelling tests, and degradation studies are
employed to examine their attributes. HA-based hydrogels feature prominently in tissue engineering,
drug distribution, wound recovery, ophthalmology, and cartilage mending. Crafting HA hydrogels
enables the production of biomaterials with sought-after qualities, offering avenues for advancements
in the realm of biomedicine.

Keywords: hyaluronic acid; hydrogel; extracellular matrix; biomedicine; cross-linking technique

1. Introduction

A hydrogel is a gel-like material consisting of interlinked hydrophilic polymer chains
that exhibit exceptional water absorption and retention capabilities. When hydrated, it
swells and forms a three-dimensional network, showcasing its distinctive properties [1].
Hydrogels can be derived from either natural or synthetic polymers, and their physical
and chemical attributes can differ depending on the precise composition and cross-linking
of the polymer chains [2,3]. Capitalizing on their biocompatible nature, soft and flexible
characteristics, and ability to replicate certain properties of biological tissues, hydrogels
have gained extensive utilization across various domains [4,5].

Natural polymer hydrogels, such as gelatin, collagen, alginate, chitosan, hyaluronic
acid (HA), and cellulose, undergo cross-linking through physical or chemical interactions,
leading to the formation of hydrogels with a wide range of mechanical, chemical, and
biological properties [6,7]. These hydrogels find extensive application in various biomedical
fields, including drug delivery systems [8], tissue engineering [9], wound healing [10],
scaffolds for promoting cell growth [11], and tissue regeneration [12]. Their inherent
biocompatibility and similarity to the extracellular environment have generated significant
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interest in research and development activities focused on medical and pharmaceutical
hydrogel applications [13].

The HA hydrogel, primarily comprised of endogenous HA, embodies a gel-like struc-
ture [14]. HA hydrogels can be synthesized using different methods, including chemical
cross-linking, physical cross-linking, and enzymatic cross-linking. Chemical cross-linking
involves using chemical agents like glutaraldehyde, carbodiimides, divinyl sulfone, di-
maleimide, etc., to create covalent bonds between HA molecules. Physical cross-linking,
on the other hand, uses physical stimuli such as temperature, pH, and ionic strength
to induce gelation of HA. Enzymatic cross-linking uses enzymes like transglutaminase
to form covalent bonds between HA molecules [6,9]. The synthesis method chosen can
affect the mechanical properties, swelling behavior, and degradation rate of the result-
ing hydrogel. Additionally, the characteristics of HA hydrogels, such as their molecular
weight, degree of cross-linking, and concentration, can also influence their properties and
applications. Higher molecular weight HA hydrogels tend to have higher viscosity and
slower degradation rates, while lower molecular weight HA hydrogels tend to have lower
viscosity and faster degradation rates [9,14]. Remarkably versatile, they boast widespread
utilization across diverse biomedical domains encompassing drug delivery systems, tis-
sue engineering, wound healing, and scaffolds to support and foster cellular growth and
regeneration [15–17]. Notably, HA hydrogels have garnered substantial research interest
within the field of regenerative medicine, owing to their remarkable capability to mimic
the intricacies of the extracellular matrix (ECM), incite cell proliferation, and promote the
regeneration of tissues [18,19]. Overall, the synthesis and characteristics of HA hydrogels
are crucial in determining their properties and potential applications in tissue engineering
and regenerative medicine.

This review article serves as a valuable resource for researchers and scientists to stay up-
to-date with the latest advancements in their field. It can offer a broad perspective on new
synthesis methods, characterization techniques, and emerging applications. Additionally,
it can provide a thorough understanding of the properties and characteristics of HA
hydrogels, which can aid in exploring their potential applications. By identifying areas that
require further research, the review article can facilitate progress in the field and encourage
innovation.

2. Synthesis of HA Hydrogels

HA is a fascinating and versatile macromolecule found in nature, intricately in-
tertwined in the ECM. Known for its natural compatibility, biodegradability, and non-
immunogenic properties, HA is an ideal building block for creating hydrogels for various
biomedical purposes. The extensive network of HA bulk hydrogels serves as excellent
scaffolds for applications like tissue engineering, promoting cell infiltration, and nutrient
diffusion crucial for activities like skin and cartilage regeneration [20]. On the other hand,
microscopic HA hydrogel particles, such as HGPs, microgels, and nanogels, are perfect
for targeted drug and gene delivery as they can encapsulate therapeutic agents and guide
them to specific tissues or cells. The choice of synthesis method impacts the characteristics
and utility of the resulting hydrogels. Chemical cross-linking offers adjustable mechanical
strength and degradation properties but involves complex steps and chemicals. Physical
gelation, while simpler, produces fewer durable gels. For injectable HA hydrogel particles,
techniques like click chemistry, such as Diels–Alder reactions, are commonly used to create
cross-linked networks rapidly at body temperatures. Enzymatic cross-linking ensures excel-
lent biocompatibility but may introduce variability in gelation kinetics across batches. The
selection of the synthesis approach depends on factors like the intended scale of application,
release profile, and stability requirements in vivo. Further details on synthesis techniques
are elaborated in the subsequent sections [21]. Table 1 provides a comparative summary of
various chemical, physical, and enzymatic cross-linking methods that have been utilized
for forming HA hydrogels, listing the specific reagents/conditions used, representative
applications, and relevant references for each method.
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Table 1. Cross-Linking Methods for Forming HA Hydrogels: A Comparative Summary.

Cross-Linking
Method

Reagents/Conditions
Used Applications References

Carbodiimide
cross-linking EDC Tissue engineering, drug

delivery [22]

Diisocyanate
cross-linking

HDI, bis (β-
isocyanatoethyl) disulp

hide

Tissue engineering,
wound healing, drug

delivery
[23]

Michael addition Thiol groups (cysteine,
DTT), -VS, -MAL, -AC

Tissue engineering, drug
delivery, controlled
drug/gene release

[24–28]

Esterification EDC/HOBt
Drug delivery, wound

healing, tissue
engineering

[29,30]

Diels–Alder reaction Norbornene, tetrazine,
furan, maleimide

Injectable hydrogels,
photo-degradable

hydrogels, controlled
drug release

[31,32]

Photo cross-linking Photo-initiator, UV, or
visible light

Tissue engineering,
wound healing,

controlled drug release
[33,34]

Thiol-ene click

(Meth)acrylate and thiol
functional groups

without initiators under
physiological conditions

cell culture, contact lenses [35,36]

Ether reaction BDDE; DVS under room
temperature conditions Drug delivery [36]

Amidation
EDC,

CMPI,
CDMT

Drug delivery [35,36]

Hydrazone linkage

Hyaluronic acid Adipic
acid dihydrazide

(HA-ADH) reacted with
aldehydes or ketones

Drug delivery [37–39]

Temperature-induced
gelation

Thermo-responsive
polymers (PNIPAAm)

Injectable hydrogels,
tissue engineering [40,41]

Covalent
augmentation PEGDA

Enhanced mechanical
properties, controlled

drug delivery
[42]

Freeze–thawing Repeated freezing and
thawing

Porous structure,
controlled drug release [43,44]

Enzymatic
cross-linking

Horseradish peroxidase,
tyramine

Tissue engineering, drug
delivery, wound healing [45,46]

2.1. Chemical Cross-Linking

Chemical cross-linking is a method used to create stable three-dimensional networks
in HA hydrogels. It involves the formation of covalent bonds between HA chains [47]. By
cross-linking HA, the mechanical properties and stability of the hydrogel are improved,
making it suitable for a wide range of biomedical applications [48]. There are several
commonly used methods for the chemical cross-linking of HA hydrogels.
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2.1.1. Carbodiimide Cross-Linking

A carbodiimide compound such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDC) is a widely used activating agent for cross-linking HA, which is often employed
to establish stable covalent bonds between carboxyl groups found in biopolymers and
primary amines. To initiate the reaction, the biomolecules intended for cross-linking are
dissolved in a buffer solution with a slightly acidic pH (around pH 5–6) [49,50]. The
reaction mixture is then supplemented with EDC, which reacts with the carboxyl groups in
the biopolymers to form an activated intermediate. For the cross-link to occur, the active
intermediate (such as O-acylisourea) is displaced via a nucleophilic attack from primary
amines (-NH2) of cross-linkers to form amide bonds [22]. The reaction mixture is incubated
at room temperature or a slightly elevated temperature for a specific duration, allowing the
cross-linking reaction to take place. Once the cross-linking reaction is complete, purification
steps such as dialysis, chromatography, or precipitation are typically performed on the
resulting cross-linked biomolecules or complexes to remove excess reagents and unreacted
biomolecules. The observed phenomenon can be elucidated by examining the reaction
mechanism between the carboxyl groups of HA and amine groups of diamines through
carbodiimide conjugation, as illustrated in Figure 1.
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Figure 1. Exploring the reaction mechanism between HA and EDC.

2.1.2. Diisocyanate Cross-Linking

The method of diisocyanate cross-linking HA involves the use of diisocyanate com-
pounds to create a hydrogel network [49] (Figure 2). This method is commonly employed
in wound healing and drug delivery applications due to the exceptional biocompatibility
and biodegradability of HA [51].

Here is a step-by-step breakdown of the procedure:
HA solution preparation: A solution of HA is prepared by dissolving it in a solvent

such as water or an aqueous buffer. The concentration of HA can be adjusted according to
desired hydrogel properties [52].

Addition of diisocyanate cross-linker: A diisocyanate compound, such as hexam-
ethylene diisocyanate (HDI) [23] is added to the HA solution. The diisocyanate functions
as a cross-linker, forming covalent bonds between the HA chains [52]. The HA solution
and diisocyanate cross-linker are thoroughly mixed to achieve uniform distribution. The
cross-linking reaction occurs between the diisocyanate functional groups and the hydroxyl
groups present in HA molecules.

Gelation and solidification: As the cross-linking reaction progresses, the HA solution
gradually undergoes gelation, transforming into a hydrogel structure. The gelation time
can be controlled by factors such as HA concentration, cross-linker concentration, and
reaction conditions [52].

Characterization and application: The resulting diisocyanate-cross-linked HA hydro-
gel can be characterized using techniques such as rheological analysis, swelling studies,
and mechanical testing. It can then be utilized for various applications, including tissue
engineering scaffolds, drug delivery systems, and regenerative medicine [52,53].
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Figure 2. Schematic reaction between HA and BIED and a representative image of BIED-cross-
linked HA gels with MW of 1.2 MDa. (a) Cross-linked HA demonstrates the formation of urethane
bonds between the isocyanate and hydroxyl groups. (b) Formulation four maintains its shape.
(c) Formulation three shows inadequate structural stability. (d) Representative FTIR spectra of HA
and HA-BIED-cross-linked gel displaying characteristic urethane bridges. Reprinted with permission
from ref. [52]. 2020, Elsevier.

2.1.3. Michael Addition

The Michael addition method is a technique used to produce hydrogels through a
chemical reaction called the Michael addition. This method involves linking HA molecules
together to create a three-dimensional network, resulting in the formation of a hydrogel
with desirable properties [24,54]. In this process, cross-linkers containing thiol groups,
such as cysteine or dithiothreitol (DTT) [25,26], react with HA modified with acrylate
groups. The reaction occurs between the thiol functional groups of HA and another reac-
tive molecule, typically a cross-linker with vinyl sulfone (-VS) [55], maleimide (-MAL) [27],
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or acrylate (-AC) [28] reactive groups. By adjusting the HA concentration, cross-linker
concentration, or the ratio between them, the hydrogel’s properties, such as mechanical
strength and degradation rate, can be controlled. These parameters influence the density
of cross-linking points within the hydrogel network, ultimately impacting its physical
characteristics [55]. Yoo et al. demonstrated the synthesis of cross-linked hydrogels by
combining three components: HA-Mal, Gel-Mal, and a cross-linker known as PEGDSH
(PEG-dithiol). These components were utilized to create a network comprising macromolec-
ular polysaccharides and proteins, as visualized in Figure 3. The cross-linking process in
this biomaterial relies on the Michael addition reaction, involving the thiolated groups on
the PEG and the maleimide groups on the HA-Mal and Gel-Mal [27].
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2.1.4. Esterification

Esterification is a chemical reaction that involves the formation of an ester by react-
ing an alcohol with a carboxylic acid. In this case, esterification is used to cross-link HA
molecules by forming ester bonds between them [36,56]. The process of esterification trans-
forms HA into a hydrogel material by adding ester groups, creating cross-links that give it a
gel-like texture. Bedini et al. used EDC/hydroxybenotriazole (HOBt) under heterogeneous
conditions to cross-link HA networks, reducing byproducts and allowing various HA forms
to be processed prior to cross-linking while retaining the initial molecular weight. This
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approach was expected to better exploit HA’s bioactivity for tissue regeneration compared
to current methods [30]. Larrañeta et al. [29] prepared the creation of HA-based hydrogels
cross-linked with poly (methyl vinyl ether alt-maleic acid) (Gantrez® S97) using thermal
and microwave methods (Figure 4). These hydrogels show great potential as materials for
wound care, drug delivery, and medical applications. A solvent-free process produces HA
hydrogels without using any solvents. In this process, solid HA powder is mixed with
a cross-linking agent and other components under specific conditions like temperature,
pressure, shear, etc.
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2.1.5. Diels–Alder (D-A) Cross-Linking

The D-A cycloaddition is a method of biomaterial conjugation used to create tools for
applications [57]. It is a biocompatible one-step reaction that makes use of unique functional
groups not found in natural biopolymers. It does not need catalysts and avoids generating
side products, making it an ideal “click reaction” [58]. The D-A reaction involves conjugated
dienes reacting with molecules containing double or triple bonds to form hexatomic cyclic
compounds. Researchers have utilized aqueous D-A chemistry to conjugate a natural
polysaccharide hydrogel for charged drug delivery through electrostatic interactions [31].
In their study, FA-conj-HA polymers were created by linking furfuryl amine (FA) onto HA
chains, as shown in Figure 5. An injectable FA-conj-HA gel was produced by cross-linking
FA-conj-HA solution with 4-arm-PEG2000-Mal. After injection, the D-A reaction between
FA-conj-HA polymers and 4-arm-PEG2000-Mal was sped up at body temperature, leading
to the formation of non-flowing viscoelastic hydrogels at the administration sites. The
reactivity of the furan diene in the D-A reaction depends on its electron density. Furans
with higher electron density, being more electron-rich, will be more reactive as dienes.
Conventional furans contain an oxygen atom within the five-membered ring, which is
electron-donating via its lone pair electrons, thereby enhancing the reactivity of the diene.
This is in contrast to the case in which dienes that contain electron-withdrawing groups
would not be favorable for reaction with electron-poor dienophiles. This results in furans
typically displaying only moderate reactivity. However, adding an electron-donating
methyl group increases the furan’s electron density. The methyl group donates electrons to
the furan ring via an inductive effect, upregulating the electron density at the diene site. A
furan with elevated electron density functions more effectively as a diene, undergoing the
D-A reaction more readily with various dienophiles [59,60]. This translates to augmented
reactivity and improved gelation properties when polymerizing methyl-substituted furans
compared to unmodified furans. The precise placement and number of methyl groups
allow for the tuning of the D-A reaction kinetics and products formed by rendering the
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furan more or less reactive as needed [61]. Recently, click chemistry has been seen as a
promising approach to designing covalently cross-linked hydrogels [62]. Specifically, the
inverse electron demand Diels–Alder (IEDDA) reaction between Nb functional groups
and Tz functional groups is seen as a highly biocompatible method for creating hydrogels.
Researchers have showcased the creation of photodegradable hydrogels and the mechanism
of drug release [32,63]. The IEDDA click reaction between HA-Nb and DCOUM-PEG-DTz
cross-linker yielded injectable hydrogels [64]. The coumarin linkages could be broken
down after NIR irradiation, undoing the cross-linking or degrading the hydrogels, and
releasing the encapsulated DOX.
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2.1.6. Photo Cross-Linking

Photo cross-linking HA hydrogel is a technique that utilizes photochemical reactions
to create a three-dimensional network of HA chains [65]. By introducing a photo-initiator
into an HA solution, this process harnesses light-activated chemical reactions to form
cross-links among HA molecules, resulting in the formation of a hydrogel [33]. Specifically,
the photo-initiator absorbs light, typically ultraviolet (UV) or visible light, and undergoes
activation, generating reactive species. These reactive species then engage in reactions with
functional groups on HA chains, establishing new covalent bonds and thereby constructing
a robust, intricate cross-linked framework within the hydrogel [34,66]. The resulting HA
hydrogel boasts high water content and biocompatibility, rendering it suitable for an array
of biomedical [66,67] and tissue engineering [68] applications. Significantly, the hydrogel
matrix can offer structural support for cells, emulate the characteristics of the ECM, and
facilitate the controlled release of bioactive molecules. Ma et al. discuss the effects of
photo-cross-linked hydrogels on promoting wound healing and provide details about the
animal model used for verification, as depicted in Figure 6 [66].
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2.1.7. Miscellaneous Cross-Linking Methods
Thiol-ene Click

Thiol-ene “click” chemistry has been extensively studied and proven to be a potent
method for creating innovative materials in polymer chemistry and nanotechnology as
well as for crafting multifunctional surfaces in a modular manner. Many drawbacks have
been tackled using thiol-ene click chemistry under gentle conditions with high efficiency.
The benefits of using this method include resistance to oxygen, no need for initiators (e.g.,
photo-initiators or other free-radical initiators), operation in aqueous solutions (e.g., water
and buffers) under physiological conditions, and the creation of harmless byproducts
that are safe for cells. Specifically, a type of Michael-type thiol-ene click chemistry that
relies on (meth)acrylate and thiol functional groups introduced into the polymer backbone,
known as “thiol-(meth)acrylate” addition, is highlighted. It can be utilized as a mild and
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biocompatible reaction to fabricate “clickable” hydrogels in situ, which are favorable for
cell culture and beneficial for biomedical applications [36,69]. Korogiannaki et al. enhanced
the quality of poly (2-hydroxyethyl methacrylate)-based contact lenses through surface
modification by grafting a hydrophilic HA layer. The modification process involved the
covalent bonding of thiolated HA to acrylated poly (2-hydroxyethyl methacrylate) via
nucleophile-initiated Michael addition thiol-ene click chemistry. This alteration decreased
the contact wetting angle, dehydration rate, and non-specific sorption of lysozyme and
albumin on the lenses compared to unmodified lenses. In vitro tests also demonstrated
the increased viability of human corneal epithelial cells on HA-modified substrates. These
developed systems may enhance the surface characteristics of contact lenses and alleviate
dryness and discomfort associated with their use [70]. Soiberman et al. formulated a gel for
subconjunctival injection based on Hydroxyl-terminated Polyamidoamine (G4-PAMAM)
dendrimer and HA cross-linked through thiol-ene click chemistry. The resulting gel con-
tained dendrimer conjugates with dexamethasone, leading to a significant enhancement in
the distribution of the glucocorticoid and resulting in improved clinical results [71].

Etherification

The synthesis of ethers is quite limited to a few examples due to the harsh reaction
conditions (pH 13–14) often necessary for ether formation. When in contact with high pH,
almost all hydroxyl groups are deprotonated and become more nucleophilic compared to
deprotonated carboxyl groups. This is why various epoxides preferably react with hydroxyl
groups. Currently, 1,4-butanediol diglycidyl ether (BDDE) stands out as the most promising
diepoxide for forming ether linkages due to its easy availability and ability to break down
into non-cytotoxic fragments. The benefit of the reaction with divinyl sulfone (DVS) is
that it occurs at room temperature, minimizing the degradation in alkaline solutions when
compared to higher temperatures. One of the most commonly used reagents for creating
ethers, apart from reactions with bisepoxides, is DVS [36]. DVS is fascinating due to its high
reactivity, leading to the formation of ether bonds through a simple, easy, and reproducible
process without the need for organic solvents. Andrade del Olmo et al. prepared injectable
hydrogels of HA-DVS to study the release of various antibiotics with acetylsalicylic acid
(ASA) from biocompatible injectable hydrogels, aiming to reduce bacterial infections caused
by Staphylococcus aureus [72,73]. Zhang et al. devised a method to produce the HA-L-
cysteine conjugate to create hydrogels in situ through native chemical ligation. The process
of hydrogel formation entailed activating the -COOH group of Boc-protected L-cysteine
with NHS to create the active ester. The resulting ester facilitated a reaction with cystamine
dihydrochloride in an aqueous solution to form a disulfide. The reduction of the disulfide
with NaBH4 led to a compound containing a free thiol group that was highly reactive with
epoxides. The interaction with BDDE produced a compound containing an epoxide group
that could react with HA hydroxyl groups via an ether linkage. This approach of obtaining
HA-L-cysteine conjugates allows the retention of the free carboxyl group of HA, potentially
enabling the modification of HA with bioactive molecules to create hydrogels suitable for
tissue engineering and repair applications [25].

Amidation

Amidation is a common reaction used to synthesize conjugates of various bioactive
molecules with HA. Activators like carbodiimides, 2-chloro-1-methylpyridinium iodide
(CMPI), 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT), etc., are often employed. Micale
et al. developed bioconjugates of HA and pentamidine for targeted drug delivery in treating
leishmaniasis. They utilized a “triazine-activated amidation” method with CDMT and 4-
methylmorpholine (NMM) as activators for binding to amino groups, testing the conjugates
against the parasite [35]. Another technique involves amidation using CMPI as an activator
described by Magnani et al. The reaction takes place in anhydrous dimethylformamide to
minimize hydrolysis. The HA sodium salt is converted to TBA for solubilization, reacting
with CMPI to form an amide bond and a cross-linking agent. Despite the need for an
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organic solvent and additional steps, this method is efficient due to requiring a small
number of reagents [74]. Conversely, amidation with EDC is pH-sensitive. It activates
the carboxyl group in a mild acidic environment and works best at a high pH. However,
the hydrolysis of EDC at high pH can hinder the reaction, especially when conjugating
high-pKa amines. The advantage of the EDC method is its ability to be carried out in
water without pretreatment, maintaining the molecular weight and avoiding polymer
chain cleavage [36]. The options for the modification of the carboxyl group HA’s amidation
are displayed in Figure 7.
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Hydrazone Linkage

A hydrazone linkage in HA, also known as HA hydrazide, is a type of chemical
modification used to add specific functionalities or create conjugates for different biomed-
ical applications. Hydrazone linkages are created via the reaction between a hydrazide
group (-NHNH2) and an aldehyde or ketone group, resulting in a stable covalent bond
(Figure 8) [75,76]. The original hydrazide modification used adipic acid dihydrazide (ADH)
initially, followed by other mono- and polyhydrazides, to develop living HA derivatives.
HA-ADH is commonly used as it can form hydrazone linkages with ketones and aldehydes,
as well as acylhydrazides with acylating agents, allowing for cross-linking, the incorpo-
ration of hydrophobic groups, the attachment of drugs or polypeptides, and shows great
potential in biomedical applications due to its non-cytotoxic nature [37]. To prepare HA for
hydrazone cross-linking, it can be modified with either aldehyde groups or ADH functional
groups (HA-ADH). To introduce aldehyde groups to HA, the polymer undergoes oxidation
in the presence of sodium periodate (NaIO4). Alternatively, to attach ADH to HA, HA is
mixed with ADH in the presence of EDC at a pH of 4.75. Zhang et al. utilized quaternized
carboxymethyl chitosan, aldehyde hyaluronic acid, ADH, and anhydrous calcium chloride
as raw materials to produce injectable multifunctional hydrogels with remarkable mechani-
cal properties, self-healing abilities, pH responsiveness, antibacterial properties, and a high
drug loading capacity due to the synergistic effects of their imine bonds, acylhydrazone
bonds, and coordination bonds [39].
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2.1.8. Identification and Quantification of Functionalized HA
Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR is a technique employed for the analysis of the molecular structure and compo-
sition of substances, including HA hydrogels [77]. In the context of HA hydrogels, FTIR
plays a crucial role in providing insightful information about chemical bonds, functional
groups, and overall molecular characteristics [78]. By exposing the HA hydrogel sample to
infrared radiation, FTIR measures the absorption and transmission of radiation at varying
wavelengths. This enables the identification of distinct molecular vibrations and bonds
within the hydrogel [79,80]. Researchers can compare the FTIR spectra of HA hydrogels
with reference spectra or control samples to evaluate the impact of different preparation
methods, modifications, or environmental conditions on the hydrogel’s molecular structure
and properties.

Proton Nuclear Magnetic Resonance (1H NMR)

NMR is an invaluable tool for elucidating the structure and makeup of polymers,
encompassing the identification of functional groups, monomer sequences, stereochemistry,
conformations, and bonding configurations. This aids in the thorough characterization of
synthesized polymers [64,81]. 1H NMR plays a pivotal role in the detection and identifi-
cation of residual monomers, solvents, catalysts, or other impurities within synthesized
polymers. The in situ 1H NMR monitoring of reactions facilitates step-by-step observation,
offering valuable insights into reaction mechanisms and intermediates during polymer
synthesis [63,82]. Jo et al. [83] functionalized HA with 5-norbornene-2-methylamine by
employing a carbodiimide coupling reaction using EDC and NHS. The resulting HA-Nb
precursor is primed for an IEDDA click reaction. The structure of the synthesized HA-Nb
was probed using 1H NMR. The degree of substitution (DS) of Nb was assessed by integrat-
ing the protons of the Nb moiety and the methyl protons of the HA moiety. By analyzing
the 1H NMR spectrum (Figure 9), the DS of Nb was determined to be 20% based on the
integration of the Nb protons from 5.9 to 6.3 ppm and the methyl protons of HA at 2.0 ppm.
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Carbon-13 Nuclear Magnetic Resonance (13C NMR)
13C NMR is a powerful analytical technique used to investigate the carbon envi-

ronment in molecules, including complex polymers like HA. The 13C NMR spectrum of
HA provides a wealth of information about the structure and composition of this crucial
biomolecule. The anomeric carbon signals confirm the presence and identity of the re-
peating disaccharide units, made up of N-acetyl-D-glucosamine and D-glucuronic acid.
By examining the positions and chemical shifts of these anomeric signals, the glycosidic
linkages between the monosaccharide units can be understood [84,85]. Additionally, the
distinct signals corresponding to the acetyl carbon and the carboxyl carbon enable the
identification of the key functional groups, the N-acetyl and carboxyl groups which are
fundamental to the structure and properties of HA. Moreover, the 13C NMR spectrum offers
insights into the chemical environment and substitution patterns of the monosaccharide
rings, providing a comprehensive understanding of the structural features of the complex
polysaccharide [84]. Yu et al. modified HA by introducing furan and tyramine (TA) func-
tional groups. The HA/PEG hydrogel was created through enzymatic cross-linking and
sequential D-A click chemistry [86] (Figure 10).
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Titration

The titration of HA involves a careful addition of a titrant, such as an acid or base
solution, to analyze its acid–base properties by tracking pH changes. HA, a polyelectrolyte,
has multiple ionizable carboxyl groups along its polymer structure. These groups can
either accept or donate protons, giving HA both acidic and basic characteristics [87,88].
Through titration, we can identify the pKa values of these carboxyl groups, shedding light
on HA’s ionization behavior and pH-dependent charge. The procedure entails adding
precise amounts of an acid or base solution to the HA solution and monitoring pH changes
using a pH meter. The resulting titration curve, which shows pH against titrant vol-
ume, reveals information about HA’s buffer capacity, charge density, and pH-responsive
properties. Variations in the titration curve for HA may stem from factors like molecular
weight, cross-linking level, and environmental factors. By analyzing the curve and deter-
mining the endpoint titrant volume, the original HA concentration in the solution can be
calculated [89].

2.2. Physical Cross-Linking

The physical cross-linking of HA hydrogel involves the creation of a 3D network
in the hydrogel matrix using non-covalent interactions. Unlike chemical cross-linking,
which relies on covalent bonds, physical cross-linking utilizes reversible interactions like
hydrogen bonding, electrostatic interactions, and polymer chain entanglements. These
interactions give the hydrogel matrix its structural integrity and determine mechanical
properties like stiffness and elasticity [90]. Physical cross-linking enables the production
of hydrogels with adjustable characteristics, making them suitable for diverse biomedical
applications such as tissue engineering, drug delivery, and wound healing. This approach
also offers the potential for a more biocompatible environment [91].

2.2.1. Temperature-Induced Gelation

Temperature-induced gelation is a fascinating phenomenon observed in hydrogels,
particularly HA hydrogel, wherein a transition occurs from a liquid to a gel state in response
to changes in temperature [77]. During this process, the polymer chains of HA are altered
or cross-linked, leading to the formation of a three-dimensional network structure. Unlike
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chemical reactions, physical interactions, such as hydrogen bonding and hydrophobic inter-
actions, play a crucial role in achieving this cross-linking. Initially, at lower temperatures,
the HA solution remains in a liquid state as the polymer chains lack sufficient entanglement
or association. However, as the temperature rises, these chains gradually interact and entan-
gle with each other, resulting in the gelation process and the creation of a gel network [92].
Remarkably, this process is reversible, allowing the gel to transform back into a liquid
state when the temperature drops below the critical gelation temperature. In their study,
Ekerdt et al. introduced an adaptable biomaterial with thermos-responsive properties,
which comprises HA and PNIPAAm (refer to Figure 11). The key characteristic of this
biomaterial is its lower critical solution temperature (LCST), representing the temperature
at which the polymer blend becomes insoluble in water. When the temperature surpasses
the LCST, the PNIPAAm polymer blocks undergo microphase separation, leading to the
formation of a hydrogel [40,41]. This property proves advantageous for applications that
necessitate injectability or the ability to reshape the gel material. HA hydrogels formed
via temperature-induced gelation exhibit a range of desirable characteristics, including
high water content, biocompatibility, and ease of manipulation [93]. On the other hand,
methylcellulose, derived from plant sources, is a modified cellulose polymer that exhibits
thermo-reversible or “inverse-thermal” gelation properties. Specifically, it liquefies at
lower temperatures and gels at higher temperatures near body temperature. By combin-
ing methylcellulose with HA in optimal ratios, their individual characteristics combine
to produce a co-polymer blend that also demonstrates inverse-thermal gelation. At low
temperatures, the HA/methylcellulose mixture remains freely flowable, allowing it to be
conveniently injected or administered surgically. However, as its temperature rises towards
37 ◦C or body heat, it starts to physically cross-link and forms a gel scaffold [94,95]. This
temperature-induced transition permits the co-polymer blend to be delivered minimally
invasively in liquid form, after which it sets into a three-dimensional network within
the body, which is well suited for tissue regeneration applications [96]. Investigations
into tissue regeneration [97], wound healing [96], and drug delivery [77] have utilized
this inverse-thermal HA/methylcellulose system, owing to its gelation behavior and HA
content producing a supportive scaffold conducive to tissue growth.
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Figure 11. The schematic of HA-PNIPAAm demonstrates the amide groups of PNIPAAm forming
hydrogen bonds with water below the LCST (lower critical solution temperature) and forming
hydrogen bonds with each other above the LCST, thereby the formation of hydrophobic microdomains
and the transformation of the material into a physically cross-linked hydrogel. Reprinted with
permission from ref. [41]. 2018, Wiley.
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2.2.2. Covalent Augmentation

Covalent augmentation refers to a method of enhancing the physical properties of
HA through chemical modifications or cross-linking [98]. This process involves intro-
ducing chemical changes or cross-linking agents to the HA hydrogel. By incorporating
functional groups or reactive molecules into the HA matrix, they can interact and form
covalent bonds with each other [99]. These connections between the HA chains improve
the mechanical characteristics of the hydrogel, such as its strength, elasticity, and stabil-
ity [100]. For instance, by using cross-linking agents like polyethylene glycol diacrylate
(PEGDA) in the presence of a radical initiator, the mechanical properties of the hydrogel
can be enhanced [42,101]. Another related study by Loebel et al. [102] explored creating
a self-healing hydrogel for the controlled release of therapeutic agents by modifying HA
with β-cyclodextrin and adamantine. The prepared hydrogel acted like a polymer melt
when passed through a syringe, demonstrating shear thinning properties where viscosity
was reduced. Additionally, after removing the shear forces, the hydrogel was able to
reassemble and self-heal, with viscosity returning to its original value. To enable secondary
cross-linking, HA-based polymers were further modified with methacrylate groups. This
modified hydrogel showed the ability to flow when mechanical forces were applied but
rapidly self-heal and regain viscosity once forces were removed, making it promising for
applications requiring the controlled release of proteins and growth factors [103]. This
approach allows researchers and engineers to customize the physical attributes of the HA
hydrogel for specific applications. For example, covalent augmentation can elevate the
load-bearing capacity of HA hydrogel for tissue engineering scaffolds [104] or enhance its
viscosity for controlled drug delivery systems. Meanwhile, the modified hydrogel retains
its inherent biological properties while offering improved mechanical features. Overall, the
covalent augmentation of HA hydrogels holds great promise in optimizing their physical
properties and expanding their potential applications in various fields of biomedicine
and biomaterials [99]. Ye et al. conducted a comprehensive review of hydrogels that
utilize dynamic covalent bonding, with a focus on their promising potential for biomedical
applications, which is shown in Figure 12 [105].
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2.2.3. Freeze–Thawing

Freeze–thawing is a physical technique employed for modifying HA hydrogels. The
procedure entails placing the HA solution or hydrogel in a freezer, lowering the temperature
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below freezing point to solidify it [43,106]. Subsequently, the solution or hydrogel is
thawed by raising the temperature, usually to room temperature or higher, facilitating the
melting process [107]. This freeze–thaw cycle is repeated multiple times, involving the
successive freezing and thawing of the hydrogel [43,107]. As a result of this freeze–thaw
process, the HA/PVA hydrogels undergo physical transformations, leading to the creation
of interconnected networks and modifying their properties [43,44]. These alterations
can impact the structure, porosity, mechanical strength, and release characteristics of
the hydrogel. Gelation during the freeze–thaw process occurs via phase separation as
the solution transitions between liquid and solid states. As water crystallizes into ice
crystals during freezing, solutes such as polymer molecules are expelled from the ice
phase and become concentrated in the remaining liquid fraction. This increase in polymer
concentration leads to stronger polymer–polymer interactions and, in some cases, cross-
linking reactions. During thawing as the ice melts, the polymer solution gels into a hydrogel
network held together with physical or chemical bonds [108,109]. Cryogels are hydrogels
specifically formed using this freeze–thaw or cryogelation technique. In the cryogelation
process, a precursor polymer solution is frozen and then thawed to produce a gel with an
interconnected porous structure. When chemical cross-linking is employed, a cross-linking
agent is added to the polymer solution before freezing. During freezing, the polymers
and cross-linker become concentrated in the unfrozen liquid portion as water crystallizes
out. Upon thawing, the cross-linker chemically reacts with the polymer chains, covalently
linking them together into a solidified, porous gel network. Cryogels synthesized via
chemical cross-linking possess a high surface area and easily tunable porosity characteristics.
These properties make cryogels well suited for applications such as tissue engineering,
drug delivery, wound dressings, and other biomedical uses [43,110].

2.3. Enzymatic Cross-Linking

The enzymatic cross-linking of HA hydrogels involves the utilization of enzymes to
establish chemical bonds within the HA molecules, resulting in the creation of a stable
hydrogel structure [111,112]. This process significantly enhances the mechanical properties
and stability of the hydrogel, making it highly applicable in various biomedical fields.
Enzymatic cross-linking offers several advantages compared to traditional methods like
chemical or physical cross-linking [113,114]. One significant advantage is its biocompat-
ibility since enzymes are typically non-toxic and naturally present in the body. Multiple
methods exist for the enzymatic cross-linking of HA hydrogels, with horseradish peroxi-
dase (HRP) [45] and tyramine [46] being commonly used enzymes for this purpose. These
enzymatically cross-linked HA hydrogels find suitability in tissue engineering [86,115],
drug delivery systems [116], and wound healing [117] applications.

3. Techniques Used to Investigate the Properties of HA Hydrogels

Characterization techniques play a crucial role in comprehending the properties of
HA hydrogels, which are networks of cross-linked HA molecules [118,119]. The following
techniques are commonly employed to investigate these hydrogels:

3.1. Rheological Analysis

The rheological analysis of HA hydrogels involves the examination of their mechanical
and flow characteristics. Rheology, a branch of physics, focuses on the deformation and flow
of materials [120,121]. Conducting rheological analysis aids in understanding the viscoelas-
tic behavior of HA hydrogels. It helps assess stability, integrity, and response to external
forces [122]. Gulfam et al. reported that a chemically cross-linked hydrogel can be created
using a click reaction. The time it takes for hydrogels to undergo sol–gel transformation
can be accurately determined by analyzing their storage modulus (G′) and loss modulus
(G′′) as a function of step time using a rheometer. Varying the mole ratio of the cross-
linker was found to alter the gelation times of the hydrogels. As shown in Figure 13, the
hydrogel HA/Coumarin-25 (with 25% cross-linking and a 10:2.5 Nb/Tz ratio) took about
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20.12 ± 5.78 min to gel, as determined via the intersection of G′ and G′′ in Figure 13a.
Conversely, the gelation times for hydrogel HA/Coumarin-100 (Figure 13b) decreased to
5.22 ± 0.64 min due to their higher degree of cross-linking (100%). These observations indi-
cate that the hydrogels are injectable, providing ample time for the mixing and subsequent
injection of the pre-gel solution into the body followed by solid gel formation. Further-
more, when analyzed for extended periods of time at a constant strain of 1% and angular
frequency of 10 rad/s, the hydrogels showed a consistent trend in their G′ values, with a
higher concentration of cross-linker leading to increased mechanical strength. Figure 13c,d
displays the G′ variations of hydrogels with oscillation frequency. It is observed that in-
creasing the feed ratios of the cross-linker resulted in an increase in the G′ of hydrogels.
In Figure 13c,d, the G′ values at the initial frequency were noted as 346 and 1380 Pa for
HA/Coumarin-25 and HA/Coumarin-100, respectively [64].
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two ways. Firstly, their moduli were measured as a function of step time (a,b), and secondly, their
moduli were measured as a function of angular frequency (c,d). Reprinted with permission from
ref. [64]. 2023, Elsevier.

3.2. Swelling Behavior

Swelling studies are conducted to evaluate the water absorption and retention capa-
bilities of HA hydrogels [123]. When HA hydrogels come into contact with an aqueous
environment, they absorb water and undergo expansion or swelling [124]. Multiple factors
influence the swelling behavior, such as the molecular weight and concentration of HA,
cross-linking density [125], pH [126], temperature [127], and the presence of ions. The
behavior of HA hydrogels is also affected by pH and temperature. pH variations can impact
the ionization state of HA, affecting its hydrophilicity and swelling capacity. Changes in
temperature can influence the kinetic energy of water molecules, affecting their movement
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within the hydrogel network and consequently influencing the swelling behavior [128].
Cross-linking density significantly contributes to the swelling behavior of HA hydrogels. A
higher cross-linking density restricts the motion of polymer chains, resulting in reduced
swelling capacity. On the other hand, a lower cross-linking density enables increased water
absorption, leading to enhanced swelling [129]. The swelling ratios of hydrogels are shown
in Figure 14. Both of the tested hydrogels swelled dynamically during the initial first
hour. This initial rapid swelling could be due to the porous or sponge-like structures of the
hydrogels, which facilitated the diffusing of water molecules into the hydrogels, as Gulfam
et al. reported previously [64].
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3.3. Morphology Examination

There are several techniques available for examining the morphology of HA hydrogels.
Some commonly used methods include scanning electron microscopy (SEM), transmis-
sion electron microscopy (TEM), atomic force microscopy (AFM), and X-ray diffraction
(XRD). SEM [130,131] enables the capture of high-resolution images depicting the surface
morphology of the hydrogel. This technique facilitates the visualization of the topography,
porosity, and surface characteristics of the hydrogel structure. Luo et al. utilized SEM
images to analyze the surface of HA hydrogel films. Samples of the HA hydrogel films were
prepared in both dried and hydrated states, and the resulting SEM images are displayed in
Figure 15. The cross-sectional image of dried HA films, shown in Figure 15a, appears flat
and featureless, indicating a condensed structure when dry. On the other hand, Figure 15b
displays the cross-sectional images of freeze-dried HA hydrogel films after rehydration,
revealing a highly porous structure in the swollen hydrogel [132].

On the other hand, TEM [133] is employed to investigate the internal structure of
HA hydrogels at higher magnifications. It provides detailed information regarding the
arrangement, distribution, and possible presence of internal structures or particles within
the gel matrix. AFM [134], operating at the nanoscale, allows for the imaging of surface
morphology and topography and offers insights into properties such as surface roughness,
gel structure, and interactions with other materials. XRD [135] is capable of analyzing the
crystallographic structure of HA hydrogels, providing valuable data about the composition
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of crystalline and amorphous phases present in the gel matrix. Yang and colleagues
investigated the use of carboxymethyl chitosan microsphere-loaded HA/gelatin hydrogels
for controlled drug delivery. They analyzed the XRD patterns of HA, gelatin, carboxymethyl
chitosan, and hydrogels within the 2θ range of 2–40◦, as depicted in Figure 16. The XRD
profile of gelatin and carboxymethyl chitosan polymers showed a broad peak at 20◦. The
XRD scanning of gelatin revealed a wide diffraction peak near the 2θ of 21◦, indicating its
amorphous nature. However, the crystal structure of HA and gelatin was disrupted after
the preparation of the composite gel, demonstrating the cross-linking reaction between HA
and gelatin [79].
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3.4. Thermal Analysis

Thermal analysis is a process used to examine the physical and chemical properties of
HA hydrogels as they are exposed to temperature variations [46]. Two common techniques
employed in thermal analysis are differential scanning calorimetry (DSC) and thermo-
gravimetric analysis (TGA). DSC [136] measures the heat flow during thermal transitions
within the hydrogel, providing insights into changes in heat content (Enthalpy) concerning
temperature. This reveals important phase transitions like gelation, melting, or degrada-
tion. On the other hand, TGA [80,137] tracks changes in a sample’s weight as temperature
changes, enabling the assessment of thermal stability and decomposition characteristics
of HA hydrogels [138]. The thermogravimetric tests were conducted on the samples to
assess their water content and degradation process as performed by Khaliq et al. The TGA
curve of HA (Figure 17) showed a weight decrease between 75 and 100 ◦C, indicating
water loss of 15%. At 250 ◦C, thermal modification began and resulted in a significant mass
loss (20%) until approximately 300 ◦C. A third-phase weight loss of approximately 40%
is observed at temperatures above 300 ◦C, which corresponds to residual decomposition.
Both DSC and TGA analyses revealed the typical thermal behavior of polysaccharides, with
an endothermic peak due to water evaporation and a peak indicating degradation [139].
These thermal analysis methods facilitate a comprehensive understanding of the thermal
behavior, stability, and overall performance of HA hydrogels for research purposes.
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4. Utilization of Hydrogels Based on HA

Due to its biocompatible nature, adjustable characteristics, biodegradability, and
inherent bio-functionality, HA hydrogels have gained significant prominence in various
biomedical domains. In tissue engineering applications, HA hydrogels can be utilized as
scaffolds to facilitate cartilage, bone, skin, and nerve regeneration. Their tunable properties
allow for the mimicking of the mechanical and biochemical cues of native ECM. HA
hydrogels have immense potential and play a crucial role in materials for regenerative
medicine. As drug delivery vehicles, HA hydrogels offer the protected encapsulation of
labile therapeutics and the ability to control release kinetics. They have been explored to
deliver anti-inflammatory drugs for arthritis treatment, antibiotics for wound healing, and
chemotherapeutics for cancer. HA hydrogels also show promise in ophthalmic applications
such as artificial tear substitutes to lubricate dry eyes and as cell carriers for corneal
tissue regeneration following injuries. Their moisturizing ability aids wound healing by
maintaining a hydrated environment. Furthermore, HA hydrogel dressings have been
developed for chronic wounds like pressure ulcers and diabetic foot ulcers. The dressings
provide a protective barrier while promoting the autolytic debridement of non-viable tissue
and cell repopulation. Their tunable properties are conducive to personalized wound
care needs. HA hydrogels also enable biofabrication through additive manufacturing
techniques like the 3D bioprinting of complex tissues [117,140].

4.1. Tissue Engineering

Traditional tissue engineering involves two main approaches: (1) transplanting in vitro-
grown tissue made up of an artificial matrix with cells and growth factors and (2) regenerat-
ing tissue in situ using an artificial matrix and growth factors as a template to stimulate host
cell regeneration within the living organism [12,139,141] (see Figure 18). Among the various
biomaterials employed in tissue engineering, HA-based hydrogels have garnered consid-
erable attention, owing to their exceptional properties and versatile applications [142].
HA-based hydrogels offer several advantages in the context of tissue engineering. Primar-
ily, they create a supportive microenvironment conducive to cell adhesion, proliferation,
and differentiation [143,144]. HA molecules also interact with cell surface receptors, in-
fluencing cellular behavior such as migration and signaling pathways. Moreover, HA
hydrogels can be customized to exhibit distinct physical and biochemical attributes, such as
stiffness, porosity, and degradation rate, to accommodate specific tissue requirements [145].
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They can be combined with bioactive molecules, growth factors, and cells to augment
tissue regeneration potential. In the field of tissue engineering, HA-based hydrogels have
been extensively explored across diverse applications, including cartilage [146], skin [139],
bone [147], and nerve [148] tissue engineering. These hydrogels have showcased promising
outcomes in fostering cell viability, tissue formation, and seamless integration with the
host tissue. Nevertheless, challenges persist with HA-based hydrogels, such as achieving
optimal mechanical properties, controlling degradation rates, and ensuring long-term
stability. Over the past decade, advancements in tissue engineering have introduced in-
novative cell sources, engineering materials, and tissue architecture techniques. These
developments have resulted in the creation of engineered tissues that more effectively
restore, maintain, enhance, or substitute biological tissues. Current research endeavors are
focused on refining the design and functionality of HA-based hydrogels to enhance their
performance and broaden their range of applications in tissue engineering and regenerative
medicine [149,150]. Also, HyStem is a hydrogel containing HA as a key ingredient. It was
one of the first commercially available HA hydrogels used in tissue engineering [151]. HyS-
tem was introduced utilizing thiol-modified HA for cross-linking to create hydrogels. The
innovative thiol-HA chemistry of HyStem allows it to be injected or applied locally, trans-
forming into a gel at the site. Its cross-linking capabilities enable HyStem to be delivered
as a liquid before gelling in place, offering minimally invasive treatment to target tissues.
This sets it apart from previous HA hydrogels that required preformation [152–154].
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Figure 18. Tissue engineering strategies for regeneration can involve different approaches. In acellular
methods, recipient-derived or artificial biomaterial structures without any cells are placed into the
patient’s body to enhance natural regeneration processes. Cellular techniques utilize patient-specific
or donor cells to populate and develop a framework before implantation. Cell therapy, on the other
hand, involves administering intended cell types and biological populations directly to the patient
without the use of scaffolds. Reprinted with permission from ref. [141]. 2020, Elsevier.
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4.2. Drug Delivery Systems

HA hydrogels have attracted considerable interest and focus in the field of drug deliv-
ery systems due to their exceptional characteristics and wide range of applications [155].
They play diverse roles in drug delivery systems, including enhancing drug stability [139],
enabling controlled drug release [138], and facilitating targeted delivery [64]. HA, a natu-
rally occurring biomolecule in the body, contributes to the high biocompatibility and low
immunogenicity of the derived hydrogels. This biocompatibility minimizes the risk of
adverse reactions and ensures safe and well-tolerated drug delivery [142]. The incorpora-
tion of drugs into the hydrogel matrix provides protection against degradation, enzymatic
activity, and rapid clearance, resulting in improved drug stability and sustained release. Tai-
loring the porosity and swelling properties of the hydrogel allows for precise control over
the release kinetics, enabling gradual drug distribution over an extended period [156,157].
Moreover, HA hydrogels can be functionalized with specific targeting ligands or antibodies
to achieve targeted drug delivery. By attaching these elements to the hydrogel structure,
the drug-loaded hydrogel particles selectively bind to receptors on target cells or tissues,
concentrating the drug at the desired site and reducing off-target effects [158]. This targeted
approach enhances drug efficacy and minimizes potential side effects. In summary, HA
hydrogels possess unique properties that make them highly suitable for drug delivery
systems. Their versatility and ability to improve drug stability, control release, and enable
targeted delivery make them a promising avenue in pharmaceutical development. Parisi
and colleagues outlined the proper procedure for loading and administering the medication
shown in the illustration [159] (Figure 19).
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4.3. Wound Healing

Wound healing typically involves the coagulation, inflammation, proliferation, and
remodeling phases, representing a complex and gradual process. Factors like scalding
burns, mechanical damage, diabetes, vascular diseases, and malignant tumors can easily
lead to skin trauma [6]. Hydrogel stands out as the most popular material for wound
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dressings due to its exceptional properties, offering substantial research potential in the
development of new dressing types. However, traditional single-component hydrogel
dressings often lack adequate mechanical strength, hydrophilicity, and versatility, which
restrict their utility in wound care [160]. To address this, integrating modified or composite
hydrogel matrices with bioactive substances, medications, and nanomaterials through
thoughtful design and preparation can yield innovative multifunctional hydrogel dressings
with superior characteristics to enhance wound healing [161]. During the early stages of
healing, the presence of HA facilitates keratinocyte migration and proliferation, aiding
in nutrient transport and waste removal. HA plays a vital role in maintaining proper
wound hydration through its affinity to water [162]. Studies have demonstrated that
HA can expedite the healing process of skin wounds in various animal models and even
in challenging chronic wounds like diabetic foot ulcers in humans. Wang et al. [163]
successfully synthesized HA-Dopamine@recombinant human collagen type-III (rhCol)
hydrogel, leveraging the catechol group oxidation via an H2O2/HRP catalytic system. This
unique hydrogel, combining the benefits of HA-Dopamine (HA-DA) and rhCol, exhibited
exceptional properties. In Figure 20, Long et al. [164] demonstrate a remarkable injectable
hydrogel endowed with self-healing properties, antibacterial and antioxidant activities,
and tissue adhesion. This achievement was realized through the utilization of HA-DA and
methylcellulose grafted with phenylboric acid.
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4.4. Ophthalmology

HA hydrogels have garnered significant interest in the realm of ophthalmology, ow-
ing to their exceptional properties that find extensive application in medical contexts
(Table 2) [48]. These hydrogels have been extensively investigated for their use in corneal
tissue engineering and regeneration. By providing a supportive structure, the hydrogel
scaffold facilitates the growth of corneal cells, thereby aiding in corneal wound healing
and tissue restoration [47,165]. Moreover, HA hydrogels exhibit great promise as drug
delivery vehicles for ophthalmic medications. With the ability to encapsulate drugs, they
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can be applied to the ocular surface, enabling controlled release over an extended period.
This controlled-release mechanism enhances drug efficacy while reducing the frequency
of administration [166,167]. Additionally, HA hydrogels can be incorporated into contact
lenses to improve comfort and alleviate dryness experienced by contact lens wearers. The
hydrogel’s capability to retain water helps prevent corneal dehydration and enhances the
overall lens-wearing experience [48]. HA, being a natural component of tear film, plays
a vital role in maintaining ocular surface health. Therefore, HA hydrogels can serve as
artificial tear substitutes by providing lubrication and retaining moisture on the ocular
surface, offering relief to individuals with dry eye syndrome [167,168]. Ongoing research
and development in the realm of HA hydrogels for ophthalmology strive to explore new
applications and optimize their properties to achieve improved clinical outcomes. It is im-
portant to note that the specific utilization of HA hydrogels may vary based on individual
patient conditions and the intended therapeutic objectives.

Table 2. Applications of HA in Ophthalmology.

Ophthalmology Application Target HA Function

Artificial tear and eye drops Ocular surface

1. Increase the moisture
retention [99]

2. Better tear film stability,
ocular surface regularity, and
quantity of conjunctival goblet

cells [166]

Tissue engineering Corneal Benefit of cell growth and
wound healing [163]

In situ gel Ocular surface

1. Help the drug absorption
and drug delivery [47]

2. Adjust the viscosity and
degradation time [48]

4.5. Three-Dimensional Bioprinting

In the world of 3D bioprinting, HA hydrogels play a vital role. They can be filled
with cells, growth factors, and bioactive molecules, enabling the creation of intricate living
tissues and organ structures. The precision offered through 3D bioprinting allows for the
meticulous placement of cells and biomaterials, resulting in complex tissue architectures
that closely resemble natural tissue environments [169]. Using HA hydrogel in 3D bioprint-
ing offers numerous advantages: it promotes cell adhesion, proliferation, and migration;
enhances mechanical properties; and boosts the overall functionality of printed constructs.
Furthermore, HA is a naturally occurring substance in the body, which lowers the chances
of immune rejection or adverse reactions when employed in tissue engineering [170–172].
The utilization of HA hydrogels in 3D bioprinting holds great promise in fields like tissue
engineering, regenerative medicine, drug screening, and disease modeling. Researchers
are actively seeking ways to enhance the mechanical properties, degradation kinetics,
and bioactivity of HA hydrogels to mimic native tissue properties better and improve
bioprinted construct functionality. Antich et al. highlighted the potential of HA hydrogel
as a sought-after biomaterial for engineering articular cartilage using 3D bioprinting as
depicted in Figure 21 [172].
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4.6. Three-Dimensional Culture and Disease Modeling

HA hydrogels offer a 3D environment that more closely mimics the natural extracellu-
lar surrounding matrix compared to conventional two-dimensional cell tradition schemes.
This three-dimensional formation permits cells to communicate with one another and their
conditions in a more physiologically related way. Researchers leverage HA hydrogels
to develop three-dimensional cell tradition models for examining cell behavior, tissue
formation, drug response, and disease progression [173,174]. These models are important
for comprehending intricate biological processes and for drug-screening applications. Also,
HA hydrogels are utilized to cultivate disease models that replicate the micro-setting of var-
ious illnesses, such as cancer, tissue scarring, and inflammatory disorders. By incorporating
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distinct cell types, growth factors, and other bioactive molecules within the HA hydrogel
matrix, scientists can simulate facets of the pathology of disease in a controlled laboratory
setting [175,176]. Disease models founded on HA hydrogels are valuable tools for studying
disease mechanisms, testing potential therapies, and customized medical approaches.

5. Conclusions and Prospects

While HA hydrogels present endless customization options and have proven useful
in various biomedical applications, hurdles remain in their production and analysis. The
creation of HA hydrogels has emerged as an exciting avenue in biomaterials, offering
tailor-made possibilities for a wide range of biomedical uses. These gels can be customized
to fulfill precise needs in tissue engineering, drug delivery, and wound healing, thanks to
their adjustable traits like strength, swelling, and breakdown speed. Different techniques,
from chemical cross-linking to physical gelation, can be utilized to craft HA hydrogels,
adding flexibility to their manufacture. Yet, making HA hydrogels frequently involves
numerous intricate steps, making the production process inherently demanding. This might
be time-consuming and demand specialized knowledge. Variability between batches is a
concern as gel properties can fluctuate based on factors such as the source of HA, synthesis
conditions, and cross-linking agents employed. This presents difficulties in maintaining
uniformity and reliability. Characterizing HA hydrogels is also challenging, as each analysis
approach has constraints and may not entirely capture the intricacies of gel properties.
Achieving ideal mechanical traits such as long-term stability, precise degradation rates,
and understanding cell/tissue interactions continue to be obstacles affecting effectiveness.
Although HA boasts biocompatibility, degradability, and moisture retention, optimizing
stability and degradation speed is crucial for ensuring prolonged safety in vivo. Moving
forward, there is enormous potential for the creation of innovative synthesis methods and
characterization techniques to tackle these limitations.
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