
Citation: Xue, S.; Wu, C.; Han, J.;

Zhan A. PDASTSGAT: An

STSGAT-Based Multipath Data

Scheduling Algorithm. Algorithms

2024, 17, 145. https://doi.org/

10.3390/a17040145

Academic Editors: Enrico Corradini

and Domenico Ursino

Received: 28 February 2024

Revised: 25 March 2024

Accepted: 27 March 2024

Published: 30 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

PDASTSGAT: An STSGAT-Based Multipath Data
Scheduling Algorithm
Sen Xue 1 , Chengyu Wu 2 , Jing Han 3 , Ao Zhan 2,*

1 School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
202120503050@mails.zstu.edu.cn

2 School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
jerry916@zstu.edu.cn

3 Hangzhou Mergex Technology Co., Ltd., Hangzhou 310053, China; jing.han@synway.cn
* Correspondence: zhanao1983@zstu.edu.cn

Abstract: How to select the transmitting path in MPTCP scheduling is an important but open problem.
This paper proposes an intelligent data scheduling algorithm using spatiotemporal synchronous
graph attention neural networks to improve MPTCP scheduling. By exploiting the spatiotemporal
correlations in the data transmission process and incorporating graph self-attention mechanisms,
the algorithm can quickly select the optimal transmission path and ensure fairness among similar
links. Through simulations in NS3, the algorithm achieves a throughput gain of 7.9% compared to
the PDAA3C algorithm and demonstrates improved packet transmission performance.

Keywords: MPTCP; graph neural networks; self-attention mechanisms

1. Introduction

Given the rapid development of communication and networking technologies, it has
become customary for mobile devices to be equipped with multiple network interfaces,
which cater to a wide range of network access technologies. Furthermore, in light of emerg-
ing technologies such as virtual reality and real-time streaming, there is a growing need
among users for enhanced network bandwidth and minimized end-to-end transmission
latency. To achieve multi-link transmission, the Internet Engineering Task Force (IETF)
has introduced the Multipath TCP (MPTCP) protocol [1,2]. As an extension of the tradi-
tional transmission control protocol (TCP), the MPTCP protocol is compatible with existing
network architectures and protocols. It provides the ability to aggregate capacity across
multiple links and maintain connectivity in the event of a single path failure.

Data scheduling plays a fundamental role in the Multipath TCP protocol [3,4], as it
governs the packet transmission flow and guarantees equitable treatment across various
links. In order to enhance both subflow throughput and fairness within the Multipath TCP
framework, several conventional scheduling algorithms have been introduced, such as
round-robin [5], Fastest-RTT, and Average-RTT [6]. The round-robin algorithm divides
the incoming data at the application layer into individual packets and assigns them to
available subflows in a round-robin fashion for transmission. The Fastest-RTT algorithm
is an extension of the round-robin approach, wherein packet allocation is determined by
the ordering of round-trip time (RTT) values associated with each available subflow. This
algorithm prioritizes assigning packets to the subflow with the minimum RTT until its
congestion window reaches capacity. Subsequently, it continues to allocate packets to the
subflow with the next lowest RTT value. Average-RTT, an improvement over Fastest-RTT,
assigns packets based on the order of the average RTT of each available subflow, making
the packet allocation more intelligent. These packet scheduling strategies frequently exhibit
throughput fluctuations in networks with high packet loss rates, thereby leading to a
notable escalation in end-to-end latency, even in scenarios characterized by low loss rates.

Algorithms 2024, 17, 145. https://doi.org/10.3390/a17040145 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17040145
https://doi.org/10.3390/a17040145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0002-2190-3463
https://orcid.org/0000-0002-7467-2737
https://orcid.org/0009-0002-6456-8511
https://orcid.org/0000-0003-0581-9384
https://doi.org/10.3390/a17040145
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17040145?type=check_update&version=2


Algorithms 2024, 17, 145 2 of 11

Indeed, in certain heterogeneous multi-link network environments, there are signifi-
cant differences among various service metrics such as bandwidth, round-trip time (RTT),
packet loss rate, and throughput between different links. Each link may have different
transmission efficiencies. If MPTCP scheduling strategies do not consider the influence of
these complex factors in heterogeneous networks and continue to schedule based on ideal
conditions, It can give rise to substantial performance concerns. For instance, in a heteroge-
neous network environment where packets undergo multiplexing across multiple paths,
exhibiting notable latency discrepancies (e.g., WiFi and LTE), improper packet scheduling
can give rise to the issue of head-of-line (HOL) blocking [7]. Another example occurs when
packets allocated to low-latency paths encounter delays due to the necessity of waiting for
packets transmitted over high-latency paths, thereby ensuring ordered delivery. Therefore,
it is crucial in the field of network communication to develop appropriate scheduling
strategies for MPTCP packets that enhance bandwidth, reduce end-to-end latency, and
maximize network resource utilization.

Researchers have employed heuristic algorithms to design data scheduling algorithms
for heterogeneous network environments. One such algorithm is SB-FPS (subflow-based
fair packet scheduling) [8]. SB-FPS allocates data based on the window size variations of
each subflow, enabling more accurate scheduling of data in shared bottleneck scenarios.
Simulation results and real network tests have demonstrated that SB-FPS outperforms the
default MPTCP algorithm, achieving a 6% increase in throughput. Additionally, it has
validated the correctness of allocating data packets based on channel conditions.

With the development of artificial intelligence, there has been an increasing number of
studies applying deep reinforcement learning techniques to computer network optimization
research. Luo et al. [9,10] utilized the DQN framework to enhance the performance of
MPTCP by analyzing path information and using the transmission results as parameters
for the reward function.

However, these deep reinforcement learning methods overlook the spatiotemporal
correlation during the MPTCP transmission process. The link contains valuable channel
data information at each moment, and the channel data exhibit temporal correlation along
the time axis. From a vertical perspective, there are differences between the subflow states
at each moment. We can abstract each subflow as a node on the graph and extract the
spatial correlation between subflows based on their abstract relationships. For example,
when a data packet arrives at a certain moment, the relationship between subflows can
serve as the basis for selecting the link for the packet. The correlation between links can
optimize the network environment as a whole and improve overall transmission efficiency.
Graph neural networks are well-suited for this task requirement.

Therefore, within the scope of this research article, we introduce a novel multipath
scheduling algorithm, namely PDASTSGAT (path diversity-aware spatial–temporal graph
attention network), which leverages spatial–temporal synchronous graph convolutional
networks [11]. It addresses the network scenario where packets of different sizes traverse
the links by using a graph convolutional neural network to analyze the current state of the
links in real time and allocate different-sized packets. This improves the utilization of link
resources and enhances the throughput and stability of MPTCP links. The design objectives
of PDASTSGAT are as follows: (1) Utilize graph attention neural networks to analyze packet
sizes and link states and allocate transmission resources to the corresponding links, thereby
enhancing link throughput. (2) Address fairness issues in link performance by distributing
transmission resources appropriately and balancing the throughput of each link. We evalu-
ated the proposed PDASTSGAT algorithm through simulations. The results demonstrate that
when there are significant performance differences among links, PDASTSGAT outperforms
scheduling algorithms such as round-robin, Average-RTT, Fast-RTT, and PDAA3C [12] in
terms of transmission performance. It achieves throughput improvements ranging from 8%
to 14% compared to PDAA3C. One of the characteristics of STSGAT is its ability to ensure
subflow fairness by selecting the optimal subflow based on the current subflow quality and
the learned experiences of the model when data packets need to be transmitted.



Algorithms 2024, 17, 145 3 of 11

2. System Model

Figure 1 illustrates the structure of the PDASTSGAT-MPTCP algorithm, which consists
of an MPTCP server, a link splitting mechanism, an MPTCP client, N links, and their
corresponding link states. To select the optimal subflow, the packet-splitting mechanism
utilizes the link states of the individual subflows and determines the best link choice for
the current data packet. The notations for this article are shown in Table 1.

…

Subflow

…

Receive buffer

MPTCP

Receiver

MPTCP

Sender

N

1

Diversion mechanism

Subflow state

Figure 1. System model.

Table 1. Notations.

Notation Meaning

N The number of nodes
C The number of features
T The length of time slots
A ∈ RN×N The adjacency matrix of the spatial graph
A
′ ∈ R3N×3N The adjacency matrix of the localized spatiotemporal graph

XG ∈ RN×C×T The spatiotemporal network sequence
Temb ∈ RC×T The learnable time embedding matrix
Semb ∈ RN×C The learnable spatial embedding matrix
eij The correlation between node j and node i
−→a ∈ R2F

′
The weight vector employed in the same self-attention mechanism

αk
ij The correlation between node j and node i within the kth self-attention mechanism

Wk The linear transformation matrix within the kth self-attention mechanism−→
h K

i The output feature in the multi-headed attention mechanism STSGAT network

The primary objective of the overall system design is to determine the optimal trans-
mission path from a set of multiple subflows. The exposition pertaining to the management
and scheduling of multiple paths is as follows:

1. Obtaining the subflow state: The MPTCP server concurrently distributes packets to
established subflows and transmits them to the MPTCP client [10]. At the MPTCP
client, we can retrieve the current state matrix for each individual subflow.

2. The mechanism for packet-splitting: The current state matrix, obtained for each
subflow, combined with the localized spatiotemporal graph, A

′
, representing the local

spatial–temporal graph and the transmitted packet information, forms the input at
the current time step. By utilizing the learned link graph spatial–temporal features
through the packet-splitting mechanism, the optimal link selection for the current
packet is determined.

3. Updating the subflow state: The packets are distributed to the optimal subflow, and
the MPTCP client updates the current state of each subflow and the subsequent
subflow state matrix for the next time step.



Algorithms 2024, 17, 145 4 of 11

3. PDASTSGAT

In response to the problem described in Section 2, we propose a diversion mechanism
called the spatiotemporal synchronous graph attention neural network (STSGAT). STSGAT is
based on spatiotemporal graph neural networks and leverages the spatiotemporal correlations
during data transmission. By incorporating graph self-attention mechanisms, STSGAT selects
the optimal transmission path. We summarize the core ideas of PDASTSGAT (Figure 2)
as follows:

• In the previous and following steps, we connect each node to itself, constructing a
localized spatiotemporal graph.

• We employ the spatiotemporal synchronized graph attention module to capture local
spatiotemporal correlations.

• We deploy multiple modules to model the heterogeneity of the spatiotemporal net-
work sequence.

⨁

⨁

⨁

Input Pretreatment STSGAT1
Aggregating
Cropping

STSGAT2 FN2 Sigmoid

Figure 2. PDASTSGAT architecture. Our PDASTSGAT consists of an input layer, an output layer, and
multiple spatiotemporal synchronous graph attention neural networks (STSGATs) with aggregating
and cropping layers.

3.1. Pre-Treatment

We initialize spatiotemporal embeddings to connect nodes at different time steps
into a single graph, which can blur the temporal attributes of each node. In this local-
ized spatiotemporal graph representation, nodes originating from various time steps are
situated within a shared context, devoid of any temporal differentiation. Through the
utilization of ConvS2S [13], we incorporate a spatiotemporal self-attention matrix into
the spatiotemporal link state sequence, thereby equipping the model with the ability to
simultaneously consider spatial and temporal information. This augmentation signifi-
cantly enhances the model’s capacity to capture and model spatiotemporal correlations.
For the spatiotemporal network sequence, XG ∈ RN×C×T , we introduce a learnable time
embedding matrix, Temb ∈ RC×T , and a learnable spatial embedding matrix, Semb ∈ RN×C.
We incorporate these two embedding matrices into the spatial–temporal network series
through a broadcast operation, yielding updated representations of the network series,
as follows:

XG+Temb+Semb = XG + Temb + Semb (1)

where N denotes the number of nodes, C represents the number of features, and T indicates
the length of time slots.

3.2. Spatiotemporal Synchronous Graph Attention Neural Networks

Assuming the MPTCP subflows are feature-rich nodes, we establish a model capable
of directly capturing the influence exerted by each node on its neighbors, including those



Algorithms 2024, 17, 145 5 of 11

in the current time step as well as adjacent time steps. The most straightforward approach
to accomplish this is to establish connections between each node and its counterparts
in the neighboring time steps. By establishing connections between each node and its
corresponding self in the preceding and subsequent time steps, a localized spatiotemporal
graph can be formed. Leveraging the topology of this localized spatiotemporal graph, we
can directly extract the correlations between each node and its spatially and temporally
adjacent neighbors [14].

The adjacency matrix of the spatial graph is denoted as A ∈ RN×N . Meanwhile, the ad-
jacency matrix of the localized spatiotemporal graph, which is constructed by considering
three consecutive spatial graphs, is represented as A

′ ∈ R3N×3N . For a given node, i, within
the spatial domain graph, its updated representation in the localized spatiotemporal graph
can be computed using (q− 1)N + i, where t(0 < q ≤ 3) denotes the time step within the
localized spatiotemporal graph. If there exists a substantial correlation between two nodes
within the localized spatiotemporal graph, the corresponding entry in the adjacency matrix
tends to approach a value of 1, A

′
i,j ∈ [0, 1).

The adjacency matrix, A
′
, comprises 3N nodes. The diagonal elements of the adjacency

matrix represent the adjacency matrices of the spatial networks encompassing three consec-
utive time steps. Additionally, the off-diagonal regions of the matrix depict the connectivity
between each node and itself across the neighboring time steps.

Compared to previous spatial–temporal synchronous graph convolutional networks,
directly analyzing features using a mask matrix [11] consumes significant computational
resources, especially when the number of nodes reaches a certain level and the spatial
structure becomes complex. This results in increased training time and a higher number of
iterations. To optimize spatial feature analysis, we introduce a graph attention network to
model spatial features. The attention mechanism is formulated as follows [15]:

eij = LeakyReLU(−→a T(W
−→
h i ∥W

−→
h j)) (2)

A = [αij] = so f tmax(eij) =
exp(eij)

∑j∈Ni
exp(eij)

(3)

where eij represents the correlation between node j and node i, αij represents the result of
eij normalization. −→a denotes the weight vector utilized within the identical self-attention
mechanism to calculate the attention coefficients pertaining to neighboring nodes with

respect to a specific node, −→a ∈ R2F
′
. W corresponds to the trainable parameter matrix

within the neural network, and it performs a linear transformation on all inputs (node

feature matrix), W ∈ RF
′×F. F

′
represents the node feature matrix with a consistent

dimension after the linear transformation.
−→
h i is the node feature matrix of one node in the

STSGAT network,
−→
h i ∈ RF.

−→
h j is the feature matrix of the neighbor nodes of the node,

−→
h j ∈ RF. F denotes the initial dimension of the node features and || represents the matrix

concatenation operation.
In order to calculate the attention coefficients of neighboring nodes with respect to

the central node, the attention obtained from the self-attention mechanism is subjected to
nonlinearity through the application of the LeakyReLU function. To ensure comparability
among the attention coefficients of neighboring nodes with regard to the central node, we
employ the softmax function to normalize these coefficients. The output features of each
node are computed using the normalized attention coefficients, as follows:

−→
h i = σ( ∑

j∈Ni

αijW
−→
h j) (4)

where σ(•) is the ELU nonlinear activation function, and
−→
h i is the output feature of the ith

node in the STSGAT.



Algorithms 2024, 17, 145 6 of 11

To enhance the stability of the self-attention mechanism, we incorporate the multi-head
attention mechanism [16] for spatial feature extraction. This integration serves to mitigate
any potential loss in the spatial information captured by the graph attention network (GAT),
ensuring a more robust and reliable performance. The output features acquired from the K
attention heads are concatenated according to the following expression:

−→
h K

i = ||Kk=1σ( ∑
j∈Ni

αk
ijW

k−→h j) (5)

where
−→
h K

i denotes the output feature of node i in the multi-head attention mechanism of
the STSGAT network. K represents the number of self-attention mechanisms, αk

ij signifies

the correlation between node j and node i under the kth self-attention mechanism, and Wk

denotes the weight matrix corresponding to the kth self-attention mechanism.

3.3. Aggregating and Cropping

Max pooling is employed as the aggregation operation, which involves applying a
max pooling operation to the outputs of all graph convolutions in STSGAT. To ensure
compatibility with max pooling, it is necessary for all outputs to possess the same size.
Consequently, in a module’s graph convolution operation, the number of kernels should be
equal. The max pooling aggregation operation can be expressed as follows:

H
′
AGG = max(

−→
h K

1 ,
−→
h K

2 , ...,
−→
h K

L ) (6)

The cropping operation selectively preserves nodes from the intermediate time step.
It discards features associated with nodes from the preceding and succeeding time steps.
This approach is adopted due to the inherent capacity of the graph convolution operation
to assimilate information from both preceding and subsequent time steps.

Even with the cropping of two time steps, each node still retains local spatiotemporal
correlations. If multiple layers of STSGAT are sequentially stacked, while retaining features
from all neighboring time steps, it would lead to a substantial redundancy in the model,
thereby significantly jeopardizing its overall performance.

The complete details of the PDASTSGAT-MPTCP algorithm design are presented in
Algorithm 1. The training process for the data is as follows:

1. For the spatiotemporal network sequence, we first incorporate packet-level features
to obtain XG ∈ RN×C×T . We create a learnable time embedding matrix, Temb ∈ RC×T ,
and a learnable spatial embedding matrix, Semb ∈ RN×C. We then incorporate these
two embedding matrices into the spatiotemporal network sequence through matrix
operations, updating XG.

2. By applying a fully connected neural network, we transform the feature dimension of
XG, resulting in XG ∈ RN×F×T .

3. We construct the weight matrix, A
′
, to represent the localized spatiotemporal graph,

where A
′

is the adjacency matrix A of the spatial network from three consecutive time
steps. The regions adjacent to the diagonal illustrate the connectivity of each node over

neighboring time steps, including its connection with itself, A = [αij] =
exp(eij)

∑j∈Ni
exp(eij)

.

4. The convolution operation between the spatial weight matrix A and the feature vector
−→
h i yields the output, which is stored in

−→
h i.

5. The maximum pooling aggregation operation is applied to the outputs of all graph
convolutions in STSGAT. The maximum pooling aggregation can be represented as
H
′
AGG = max(

−→
h K

1 ,
−→
h K

2 ,. . . ,
−→
h K

L ). To isolate the nodes at the intermediate time step,
the features corresponding to the preceding and subsequent time steps are excluded.
Finally, the result is passed through a fully connected layer, and the training result is
activated using the sigmoid function to obtain the sub-flow selection sequence.



Algorithms 2024, 17, 145 7 of 11

Algorithm 1 Path dynamics assessment with the spatial–temporal synchronous graph
convolutional network algorithm.

Input: Subflow state features XG ∈ RN×C×T , graph A, Packet time series cpacket ∈ RCp×T ,
path choose series pchoose, weight matrices W, time embedding matrix Temb and spatial
embedding matrix Semb.

Output: Vector the optimal transmission path p
′
choose

Initialization: NHead represents the initial number of self-attention mechanisms; N denotes
the total number of nodes.

1: XG = (XG | cpacket) ∈ RN×(C+Cp)×T

2: XG = XG+Temb+Semb = XG + Temb + Semb
3: Transform the input features, XG→Fully-connected Layer
4: for i = 1 to N do
5:

−→
h 1

i = XG[i]
6: To be continued.
7: for j = 1 to N do
8: if Node i is connected to node j then
9:

−→
h 1

j = XG[j]
10: else
11: break
12: end if
13: for k = 1 to NHead do
14: connect = Wk−→h i ∥Wk−→h j

15: eij = LeakyReLU(−→a kT(connect)

16: A = [αij] =
exp(eij)

∑j∈Ni
exp(eij)

17:
−→
h i = σ(∑j∈Ni

αk
ijW

k−→h j)

18: end for
19: end for
20: end for
21: Pooling: H

′
AGG = max(

−→
h K

1 ,
−→
h K

2 , ...,
−→
h K

L )
22: Cropping: crop HAGG and retain the nodes at the intermediate time step.
23: Map the representations into the output space after fully connected Layer: p

′
choose ←

(h1
AGG, h2

AGG, . . . , hn
AGG)

24: return p
′
choose

4. Evaluation
4.1. Simulation Environment

The performance evaluation was carried out using NS3.29 and PyCharm 2020.3.5
x64 as the development environment. The NS3 implementation encompasses the funda-
mental MPTCP module along with the round-robin algorithm, Average-RTT, Fastest-RTT,
and PDAA3C scheduling algorithms. The PyCharm implementation involves a deep
learning packet scheduler based on a spatiotemporal graph convolutional neural network
algorithm. The simulated topology consists of a client and a server. The client and server
are connected through four asymmetric and independent paths. Path 1, Path 2, and Path 4
are configured with a bandwidth of 2 Mbps and a delay of 10 ms, while Path 3 is configured
with a bandwidth of 4 Mbps and a delay of 10 ms. The remaining configurations of the
links are provided in Table 2.



Algorithms 2024, 17, 145 8 of 11

Table 2. Link performance parameters.

Parameter Path 1 Path 2 Path 3 Path 4

Bandwidth 2 Mbps 2 Mbps 4 Mbps 2 Mbps
Delay 10 ms 10 ms 10 ms 10 ms

Packet Loss Rate 3%
Accept cache 128,000 Bytes
Send cache 128,000 Bytes
Packet size 1 kb, 5 kb, 10 kb

To reflect the reliability of addressing the low link resource utilization issue in an
asymmetric path environment in this experiment, a pointer was set in the MPTCP module
of NS3 to capture the link status and ensure data integrity. Additionally, the congestion
control algorithm used in the experiment was the MPTCP-BBR algorithm, which prevents
data unreliability caused by severe congestion on the paths.

4.2. Simulation Results

Figure 3 presents the simulation results of subflow throughput, wherein a comparison
is made among the MPTCP-RLDS, MPTCP-round-robin, MPTCP-Fastest-RTT, MPTCP-
PDAA3C, and MPTCP-PDASTSGAT algorithms. In the figure, the subflow throughput of
the MPTCP-PDASTSGAT algorithm outperforms the MPTCP-PDAA3C algorithm by 8.6%,
outperforms the MPTCP-RLDS algorithm by 8.9%, surpasses the MPTCP-round-robin
algorithm by 49.6%, exceeds the MPTCP-Fastest-RTT algorithm by 52.6%, and approaches
the theoretically optimal value of throughput. In the multipath transmission simulation
experiment, PDASTSGAT selects the optimal path by combining packet information and
the overall spatiotemporal characteristics of the links when transmitting data packets.
Therefore, MPTCP-PDASTSGAT achieves higher throughput. We utilize the Jain fairness
index to compare the fairness of the links [12]. Figure 4 presents a comparison of sub-
flow fairness values among MPTCP-RLDS, MPTCP-round-robin, MPTCP-Fastest-RTT,
MPTCP-PDAA3C, and MPTCP-PDASTSGAT. Due to the consideration of spatiotemporal
data relationships during data transmission, MPTCP-PDASTSGAT exhibits slightly better
subflow fairness compared to the other approaches.

0.0 2.5 5.0 7.5 12.5 15.0 17.5 20.0

0

200

400

600

800

1000

1200

  10.0 
time-s

th
ro

ug
hp

ut
 k

b/
s

MPTCP-Round-Robin
MPTCP-Fastest-RTT
MPTCP-RLDS
MPTCP-PDAA3C
MPTCP-PDASTSGAT
Theoretically Optimal

Figure 3. Comparison of the subflow throughput results of the five algorithms. In our simulation
setup, the throughput is sampled at regular intervals of 100 ms, resulting in a subflow selection
process occurring at both the sender and receiver sides every 100 ms. The specific interval for
capturing subflow throughput can be flexibly configured within the NS3 framework.



Algorithms 2024, 17, 145 9 of 11

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time-s

0.0

0.2

0.4

0.6

0.8

1.0

 

 

 

 

MPTCP-Round-Robin
MPTCP-Fastest-RTT
MPTCP-RLDS
MPTCP-PDAA3C 
MPTCP-PDASTSGAT 
Theoretically Optimal

Ja
in

s 

Figure 4. Subflow fairness simulation results of the five algorithms. The value range of Jain’s fairness
index is [1/n, 1]. When the value is 1, it indicates absolute fairness. When the value is 1/n, the entire
system is completely unfair. n denotes the number of subflow.

4.3. Model Complexity Comparison

This article constructs a graph neural network model based on PyTorch. The cross-
entropy loss function is used for loss calculation, and the Adam optimizer is employed
to update the parameter matrices of the network. The learning rate is set at 0.003. The
following figure presents a comparison of different approaches for model training. Graph
WaveNet [17] incorporates two distinct modules to effectively capture spatial dependencies
and temporal correlations in a separate manner, resulting in inferior training performance
compared to STSGCN and PDASTSGAT. By introducing graph attention mechanisms, our
model can achieve faster convergence.

As shown in Figure 5, it can be observed that the loss value stabilizes when the
number of iterations reaches 48. This indicates that the graph neural network architecture
we constructed performs well in classifying feature subgraphs, with fast convergence speed
and high training efficiency.

0 20 40 60 80 100 120 140 160
epoch

18

20

22

24

26

28

30

32

34

Lo
ss

PDASTSGAT
STSGCN 
GraphWaveNet

Figure 5. Loss value—iteration number curve. In our study, we employ the cross-entropy loss function
to compute the discrepancy between the predicted subflow and the optimal subflow. A smaller value
of the loss function indicates a reduced disparity between the predicted results and the ground truth
values, thereby indicating the superior performance of the model.



Algorithms 2024, 17, 145 10 of 11

In summary, PDASTSGAT outperforms round-robin, Average-RTT, FastRTT, RLDS
and PDAA3C scheduling algorithms in MPTCP transmission simulations, achieving better
transmission performance. It exhibits significant improvements in throughput and ensures a
relatively fair allocation of transmission resources among links. In model training experiments,
PDASTSGAT outperforms Graph WaveNet and STSGCN in the classification of feature
subgraphs, thanks to its incorporation of a multi-head attention mechanism. Furthermore,
PDASTSGAT exhibits fast convergence speed and high training efficiency.

5. Conclusions

This study integrates graph neural networks with the MPTCP protocol and conducts
simulations to implement it. A novel multipath scheduling algorithm, namely PDASTSGAT,
is proposed, leveraging the graph neural network algorithm. The algorithm focuses on
augmenting the throughput of multipath transmission while ensuring fairness among
links. Compared to MPTCP, MPTCP-PDASTSGAT incorporates a packet scheduler called
PDASTSGAT based on a graph convolutional neural network algorithm, which utilizes
the spatiotemporal characteristics of links to distribute and send packets to the optimal
subflow path within the link. It optimizes the spatial structural relationships to facilitate
the selection of the optimal subflow path. Simulation results demonstrate that under
asymmetric path conditions, MPTCP-PDASTSGAT outperforms other traditional methods
in terms of transmission performance. However, it is worth noting that PDASTSGAT has
certain limitations. For instance, its performance may be influenced by specific network
topologies or traffic patterns, and further investigation is needed to assess its effectiveness
in such scenarios. Despite these limitations, PDASTSGAT has shown promising results
in extracting spatiotemporal feature directions. These findings will contribute to the
improvement and expansion of MPTCP data scheduling in the future.

Author Contributions: Conceptualization, S.X., C.W. and A.Z.; Methodology, S.X.; Software, S.X.;
Validation, C.W.; Formal analysis, S.X.; Investigation, J.H.; Data curation, J.H.; Writing—original
draft, S.X.; Writing—review & editing, C.W. and A.Z.; Visualization, J.H.; Supervision, A.Z.; Project
administration, A.Z.; Funding acquisition, C.W. and J.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Open Fund of the Key Laboratory of Big Data Intelligent
Computing, Chongqing University of Posts and Telecommunications, under grant no. BDIC-2023-B-002.

Data Availability Statement: Data available on request from the authors.

Conflicts of Interest: Author Jing Han was employed by the company Hangzhou Mergex Technology
Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Li, M.; Lukyanenko, A.; Ou, Z.; Ylä-Jääski, A.; Tarkoma, S.; Coudron, M.; Secci, S. Multipath Transmission for the Internet:

A Survey. IEEE Commun. Surv. Tutorials 2016, 18, 2887–2925. [CrossRef]
2. Raiciu, C.; Barre, S.; Pluntke, C.; Greenhalgh, A.; Wischik, D.; Handley, M. Improving datacenter performance and robustness

with multipath TCP. In Proceedings of the ACM SIGCOMM 2011, Toronto, ON, Canada, 15–19 August 2011; pp. 266–277.
[CrossRef]

3. Kimura, B.Y.; Lima, D.C.; Loureiro, A.A. Packet scheduling in multipath TCP: Fundamentals, lessons, and opportunities. IEEE
Syst. J. 2020, 15, 1445–1457. [CrossRef]

4. Asiri, M.Y. A survey of multipath TCP scheduling schemes: Open challenges and potential enablers. TechRxiv 2023. [CrossRef]
5. Paasch, C.; Ferlin, S.; Alay, O.; Bonaventure, O. Experimental evaluation of multipath TCP schedulers. In Proceedings of the 2014

ACM SIGCOMM Workshop on Capacity Sharing Workshop, Chicago, IL, USA, 18 August 2014; pp. 27–32. [CrossRef]
6. Lübben, R.; Morgenroth, J. An Odd Couple: Loss-Based Congestion Control and Minimum RTT Scheduling in MPTCP.

In Proceedings of the 2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck, Germany, 14–17 October
2019; pp. 300–307. [CrossRef]

7. Lim, Y.s.; Nahum, E.M.; Towsley, D.; Gibbens, R.J. ECF: An MPTCP Path Scheduler to Manage Heterogeneous Paths. In Proceed-
ings of the 13th International Conference on Emerging Networking EXperiments and Technologies, Incheon, Republic of Korea,
12–15 December 2017. [CrossRef]

http://doi.org/10.1109/COMST.2016.2586112
http://dx.doi.org/10.1145/2018436.2018467
http://dx.doi.org/10.1109/JSYST.2020.2965471
http://dx.doi.org/10.36227/techrxiv.14659350.v1
http://dx.doi.org/10.1145/2630088.2631977
http://dx.doi.org/10.1109/LCN44214.2019.8990831
http://dx.doi.org/10.1145/3143361.3143376


Algorithms 2024, 17, 145 11 of 11

8. Wei, W.; Xue, K.; Han, J.; Xing, Y.; Wei, D.S.L.; Hong, P. BBR-Based Congestion Control and Packet Scheduling for Bottleneck
Fairness Considered Multipath TCP in Heterogeneous Wireless Networks. IEEE Trans. Veh. Technol. 2021, 70, 914–927. [CrossRef]

9. Luo, J.; Su, X.; Liu, B. A Reinforcement Learning Approach for Multipath TCP Data Scheduling. In Proceedings of the 2019
IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019;
pp. 0276–0280. [CrossRef]

10. Wu, H.; Alay, Ö.; Brunstrom, A.; Ferlin, S.; Caso, G. Peekaboo: Learning-based multipath scheduling for dynamic heterogeneous
environments. IEEE J. Sel. Areas Commun. 2020, 38, 2295–2310. [CrossRef]

11. Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for
Spatial-Temporal Network Data Forecasting. Proc. Aaai Conf. Artif. Intell. 2020, 34, 914–921. [CrossRef]

12. Liang, T.; Zhan, A.; Wu, C.; Wang, Z. Teng, L.; Ao, Z.; Chengyu, W.; Zhengqiang, W. PDAA3C: An A3C-Based Multi-Path Data
Scheduling Algorithm. IEICE Trans. Inform. 2022, E105-D, 2127–2130. [CrossRef]

13. Kameoka, H.; Tanaka, K.; Kwaśny, D.; Kaneko, T.; Hojo, N. ConvS2S-VC: Fully Convolutional Sequence-to-Sequence Voice
Conversion. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1849–1863. [CrossRef]

14. Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of
the AAAI conference on artificial intelligence, New Orleans, LA, USA, 2–7 February 2018.

15. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph Attention Networks. Stat 2017, 1050, 10-48550.
16. Zhang, Q.; Li, C.; Su, F.; Li, Y. Spatiotemporal Residual Graph Attention Network for Traffic Flow Forecasting. IEEE Internet

Things J. 2023, 10, 11518–11532. [CrossRef]
17. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph WaveNet for Deep Spatial-Temporal Graph Modeling. arXiv 2019,

arXiv:1906.00121

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVT.2020.3047877
http://dx.doi.org/10.1109/CCWC.2019.8666496
http://dx.doi.org/10.1109/JSAC.2020.3000365
http://dx.doi.org/10.1609/aaai.v34i01.5438
http://dx.doi.org/10.1587/transinf.2022EDL8052
http://dx.doi.org/10.1109/TASLP.2020.3001456
http://dx.doi.org/10.1109/JIOT.2023.3243122

	Introduction
	System Model
	PDASTSGAT
	Pre-Treatment
	Spatiotemporal Synchronous Graph Attention Neural Networks
	Aggregating and Cropping

	Evaluation
	Simulation Environment
	Simulation Results
	Model Complexity Comparison

	Conclusions
	References

