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Abstract: In a multi-objective optimization problem, a decision maker has more than one objective
to optimize. In a bilevel optimization problem, there are the following two decision-makers in a
hierarchy: a leader who makes the first decision and a follower who reacts, each aiming to optimize
their own objective. Many real-world decision-making processes have various objectives to optimize
at the same time while considering how the decision-makers affect each other. When both features are
combined, we have a multi-objective bilevel optimization problem, which arises in manufacturing,
logistics, environmental economics, defence applications and many other areas. Many exact and
approximation-based techniques have been proposed, but because of the intrinsic nonconvexity and
conflicting multiple objectives, their computational cost is high. We propose a hybrid algorithm
based on batch Bayesian optimization to approximate the upper-level Pareto-optimal solution set.
We also extend our approach to handle uncertainty in the leader’s objectives via a hypervolume
improvement-based acquisition function. Experiments show that our algorithm is more efficient than
other current methods while successfully approximating Pareto-fronts.

Keywords: multi-objective bilevel optimization; Bayesian optimization; hypervolume improvement;
Gaussian process; decision-making under uncertainty

1. Introduction

Bilevel optimization is a specific class of optimization problems consisting of the
following two levels: the upper (leader) and lower (follower) levels. The lower-level
problem is a constraint of the upper-level problem. It appears in the early 1950s in the
context of Stackelberg game theory [1]. Because of the increasing complexity and size of
bilevel problems, there is increasing interest in designing efficient algorithms to solve them
in recent years. Bilevel problems may have single or multiple objectives at either or both
levels. In the case of multiple objectives at the lower-level, a set of good solutions exists
for each upper-level variable xu. So the upper-level decision maker observes the lower-
level decision maker’s decisions via the xu decision variable. There are several domains
where multi-objective bilevel optimization is used to solve real-world problems, such as the
manufacturing industry [2,3], environmental economics [4,5], logistics [6,7] and defence [8].
In some applications, a solution must be found in real time so computational efficiency is
crucial. Military applications and global security are examples of areas in which time is
crucial and a hierarchy exists at each stage of the decision-making process.

Hierarchical decision-making under uncertainty with noisy objectives becomes more
interesting in a bilevel structure. The follower can observe the leader’s decisions, but the
leader may have no idea how the follower is going to respond. Previously observed de-
cisions are therefore important. Most studies in the multi-objective bilevel optimization
literature focus on solving the optimization problem without addressing the impact of
uncertainty. In practical problems, noise in the leader’s objectives might represent environ-
mental uncertainty, for example, in a meta-learning regime [9] that can be mathematically
formulated as bilevel programming [10]. As another example, a government might need to
prevent terrorist attacks using information from unreliable sources. Yet another example
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occurs in computing optimal recovery policies for financial markets [11]. Bilevel optimiza-
tion problems are computationally expensive to solve because of their nested structure,
and they become even more complex when there are multiple objectives and uncertainty
(possibly at both levels).

Standard Bayesian optimization (BO) is a sequential experimental design framework
for efficient global optimization of expensive-to-evaluate black-box functions, and has also
been applied successfully to standard bilevel problems [12,13]. Multi-objective Bayesian
optimization (MOBO) combines a Bayesian surrogate model with an acquisition func-
tion specifically designed for multi-objective problems. Hypervolume-based acquisition
functions seek to maximize the volume of an objective space dominated by Pareto-front
solutions. Expected hypervolume improvement (EHVI) [14] is a natural extension of the ex-
pected improvement acquisition function to multi-objective optimization. Single-objective
problems can be derived from multi-objective problems by scalarizing objectives, for exam-
ple, in ParEGO [15], which maximizes the expected improvement using random augmented
Chebyshev scalarizations. MOEA/E-EGO [16] extends ParEGO to a batch setting using
multiple random scalarizations and a genetic algorithm to optimize them in parallel. In [17],
another batch variant of ParEGO was proposed. Called qParEGO, it uses compositional
Monte Carlo objectives and a sequential greedy candidate selection process.

In this work, we first focus on solving multi-objective bilevel problems with a Gaussian
process (GP) and a batch Bayesian approach in a noise-free setting. Then we extend
the approach to handle the uncertainty in the leader’s objectives. We treat upper-level
multi-objective problems as black-box functions and optimize them using Bayesian batch
optimization with a multi-output GP as a surrogate model. Batch Bayesian optimization
aims to query multiple locations at once. The benefit of this approach is that it makes
parallel evaluations possible. Parallel evaluations are a vital part of various kinds of
practical applications such as product design in the food industry, which can be modelled
as bilevel problems with multiple objectives [18]. One can only produce a relatively small
batch of different products at one time. Product quality, especially for foods, is usually
highly dependent on the processing time since production. It is usually best to evaluate a
batch immediately. So the next batch of products should be designed based on the feedback
so far.

Many approaches have been developed for solving multi-objective bilevel problems.
A particle swarm optimization algorithm is used to compute optimistic and pessimistic
solutions in [19], who also developed a differential evolution algorithm to compute the
four extreme solutions in [20]. Ref. [21] develop a nested differential evolution-based
algorithm for multi-objective bilevel problems (DBMA). However, the necessary number
of function evaluations is high, due to the nature of evolutionary algorithms. Satisfactory
solutions are computed using leader preferences in [22]. Ref. [23] propose a hybrid
evolutionary algorithm (H-BLEMO) but again gigantic computational cost was a problem.
Ref. [24] develop a hybrid particle swarm optimization algorithm. Ref. [25] use a multi-
objective particle swarm optimization algorithm and efficiently computes lower-level
solutions (OMOPSO-BL). More details can be found in [20] on optimistic multi-objective
bilevel problems.

Much work has been performed in the Bayesian literature on batch selection, and many
developed specialized acquisition functions for batch Bayesian optimization. Some, such as
qEI [26], qKG [27] and local penalization [28] methods, search for optimal batch selection.
We use tailored acquisition functions to optimize the design space for multi-objective prob-
lems with fewer expensive function calls. To the best of our knowledge, there is no previous
work on a batch Bayesian optimization approach to multi-objective bilevel problems [29].
The closest work is that of [30], which uses multiple Gaussian models for multiple objec-
tives to solve robot and behaviour co-design, but not with batch selection during Bayesian
optimization with upper-level objective uncertainty or with hypervolume improvement.

The aim of this paper is to improve computational efficiency to solve multi-objective
bilevel problems while using hypervolume improvement to approximate the leader’s
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Pareto-optimal solution set. We compare the proposed algorithm with some existing
algorithms in terms of function evaluations and hypervolume improvement. Moreover, we
show how batch selection affects performance in batch Bayesian optimization. We propose
two hybrid algorithms with a multi-objective Bayesian optimization approach to solve noise-
free and noisy multi-objective bilevel problems, using two different acquisition optimizers
specifically designed for multi-objective optimization. We use a non-dominated sorting
genetic algorithm (NSGA-II) [31] to solve the lower-level multi-objective problems, with a
crossover operator to decrease lower-level function evaluations. Using Bayesian batch
optimization via a multi-output GP surrogate model in a multi-objective bilevel setting
allows us to measure and handle uncertainties in the multi-objective upper-level design
space. Selecting multiple points rather than one point at a time makes the optimization
process more efficient. Moreover, the multi-output GP allows us to work with several
kernels that worked well in the literature while optimizing the multi-objective upper-level
design space.

The contribution of this work is threefold. First, we present two hybrid algorithms for
solving multi-objective bilevel problems with noise-free settings, which is an extension of
the workshop paper [32], and a noisy setting is added using Bayesian batch optimization.
Second, batch Bayesian optimization allows us to use batch selection during optimization
rather than just once per iteration. It provides information on how batch selection affects
the whole bilevel optimization process at both levels. Third, we use the qNEHVI acquisi-
tion function and consider hypervolume improvement for solving the following q-batch
decision points at the upper-level. This provides an approximation to the Pareto-optimal
solutions with less expensive function evaluations.

2. Preliminaries

BO is a method to optimize expensive-to-evaluate black-box functions. It uses a
probabilistic surrogate model, typically a GP [33] p( f |D) to model the objective function
f based on previously observed data points D = {(x1, y1), . . . , (xn, yn)}. GPs are models
that are specified by a mean function µ(x; {xn, yn}, θ) : Rd −→ R and predictive variance
function σ(x; {xn, yn}, θ) : Rd × Rd −→ R. A surrogate model p( f |D) is assisted by an
acquisition function α : X −→ R. We represent acquisition functions depending on the
previous observations as α(x; {xn, yn}, θ), where θ is Gaussian parameters such as a kernel
for the model. Because the objective function is expensive-to-evaluate and the surrogate-
based acquisition function is not, it can be optimized more easily than the true function to
yield xnew. The acquisition function selects the point xnew that maximizes the acquisition
function xnew = argmaxx∈X α(x). It then evaluates the objective function ynew = f (xnew)
and updates the data set with new observations D ←− D ∪ (xnew, ynew). In the GP, µ(x) can
be viewed as the prediction of the function value, and σ(x) is a measure of the uncertainty
of the prediction.

Multi-objective BO tackles the problem of optimizing a vector-valued objective f(x):
Rd → Rd with f(x) = ( f1(x), . . . , fd(x)) for a vector-valued decision variable x ∈ Rd.
Because of the nature of multi-objective black-box problems, we assume that there is no
known analytical expression. Multi-objective optimization problems generally do not
have a single best solution, so we must find a solution set instead of a single solution;
thus, the set of Pareto-optimal solutions. We say that f(x) dominates another solution
f(x′) if f (i)(x) � f (i)(x′) for all i = 1, 2, . . . , M and there exists i′ ∈ {1, 2, . . . , M} such

that f i
′
(x) � f i

′
(x′). So we can express the Pareto-optimal solution set by P∗ = {f(x) s.t.

@x′ ∈ X : f(x′) � f(x)} and X∗ = {x ∈ X s.t. f(x) ∈ P∗}. After obtaining the Pareto
solution set, which is called the Pareto-front, the decision maker can make decisions using
the trade-off between objectives, or any known preferences. In general, multi-objective
optimization algorithms try to find a set of distributed solutions that approximate the
Pareto-front.

Hypervolume improvement (HVI) is often used as a measure of improvement in
multi-objective problems [34]. HVI is the volume that is dominated by the new point in
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the outcome space. It is generally nonrectangular and it can be computed efficiently by
partitioning the non-dominated space into separate hyper-rectangles. This makes it a good
candidate for seeking improvement in the outcome search space for the Pareto-optimal front.
Figure 1 illustrates the hypervolume improvement in a 2 dimensional setting. The red area
in the left graph represents the dominated solutions while the white area represents non-
dominated solutions, and the green area in the middle graph represents the hypervolume
improvement after the first point selection. The right graph illustrates the HVI in the q = 2
setting where q represents that batch selection in batch Bayesian optimization. Several
methods have been proposed. EHVI is an updated version of expected improvement (EI)
to HVI and determined by J(x) = Ep( f (x)|Dn)[HVI( f (x))]. Previous work has considered
unconstrained sequential optimization with ParEGO [15]. ParEGO is often optimized
with gradient-free methods. qParEGO supports parallel and constrained optimization [17],
and exact gradients are computed via auto-differentiation for acquisition optimization. This
approach enables the use of sequential greedy optimization of q candidates with proper
integration over the posterior at the pending points.
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Reference PointReference Point ff22(x)(x)

SS11

ff11(x)(x)

Reference PointReference Point

F(xF(x11))

ff22(x)(x)

SS11
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Figure 1. An illustration of the dominated (red) and non-dominated (white) space. The green and
blue area on the graphs represents the hypervolume improvement of the new points.

Multi-objective bilevel optimization problems have two levels of multi-objective op-
timization, such that a feasible solution to the upper-level problem must be a member
of the Pareto-optimal set of lower-level optimization problems. Each level has its own
variables, objectives and constraints. For the given upper-level vector xu the evaluation of
the upper-level function is valid only if the xl is an optimum of the lower-level problem. A
general multi-objective bilevel optimization problem can be described as follows:

minimize
xu∈Xu ,xl∈Xl

{F1(xu, xl), ..., FMu (xu, xl)}

subject to xl ∈ argmin
xl

{ f1(xu, xl), ..., fMl (xu, xl); gj(xu, xl) ≤ 0, j = 1, 2, . . . , J}

Gk(xu, xl) ≤ 0, k = 1, 2, . . . , K.

(1)

In Equation (1) the upper-level objective functions are Fi(xu, xl), i = 1, 2, . . . , Mu and the
lower-level objective functions are fi(xu, xl), i = 1, 2, . . . , Ml , where xu ∈ Xu and xl ∈ Xl .
Gk(xu, xl) and gj(xu, xl) represent upper- and lower-level constraints, respectively. j and K
values represent the number of constraints at the upper- and lower-level. The lower-level
optimization problem is optimized with respect to xl considering xu as a fixed parameter.

3. Methodology

In this work, we solve a multi-objective upper-level problem with both noise-free and
noisy settings by treating it as a black box. We solve a vector-valued upper-level problem,
F(xu, xl) : Rd × Rv → RMu , where d and v are number of upper-level and lower-level
decision variable dimensions.

We assume that we have the upper-level multi-objective problem and use GP to model
the objective functions F = {F1(xu, xl), ..., FMu(xu, xl)} where Mu is the number of upper-
level objective. Let us assume that we have the observed upper-level and lower-level deci-
sions and upper-level objective values, D = {(xu1 , xl1 , F(xu1 , xl1)), . . . , (xun , xln , F(xun , xln))},



Algorithms 2024, 17, 146 5 of 22

where n is the number of observations. The GP model is constructed with mean function
and predictive variance function as follows, respectively:

µ(x; {xun , xln , F(xun , xln}, θ)

σ(x; {xun , xln , F(xun , xln}, θ)
(2)

where θ is the model parameters. The acquisition function selects the next upper-level
decision by x∗u = arg maxx∈X α(x). Then we evaluate the lower-level optimization and,
after finding the optimum lower-level decision x∗l regarding the upper-level decision, we
update the data set with new observations D ←− D ∪ (x∗u, x∗l , F(x∗u, x∗l )). As in the GP,
µ(·) can be viewed as the prediction of the function value and σ(·) is a measure of the
uncertainty of the prediction.

3.1. Noise-Free Setting

An acquisition function for multi-objective Bayesian optimization (MOBO) is expected
hypervolume improvement. Maximizing hypervolume (HV) is a procedure for finding
the maximum coverage with Pareto-fronts [35]. We use the q-expected hypervolume
improvement acquisition function (qEHVI) for a MOBO procedure at the upper-level.
qEHVI computes the exact gradient of the Monte Carlo estimator using auto-differentiation,
allowing it to employ efficient and effective gradient-based optimization methods. More
details about the qEHVI can be found in [17]. Another acquisition optimizer we use
is an extended version of a hybrid algorithm with on-line landscape approximation for
expensive multi-objective optimization problems (ParEGO) [15]. It is extended to the
constrained setting by weighting the expected improvement by the probability of feasibility,
which is called qParEGO [36]. qParEGO uses a Monte Carlo-based expected improvement
acquisition function, where the objectives are modelled independently and the augmented
Chebyshev scalarization [15] is applied to the posterior samples as a composite objective.
More details can be found in [17].

The proposed algorithm for a noise-free setting is a hybrid method for solving multi-
objective bilevel optimization problems. Briefly, it works as follows: a population of the
size of Nu initial decisions, xu, is randomly selected from upper-level decision set Xu.
We used Sobol sampling for the initial random selection. For each upper-level decision,
the lower-level problem is optimized using a non-dominating sorting genetic algorithm
with population size Nl . For a given xu, a Pareto-optimal solution set is obtained by the
NSGA-II algorithm. Lower-level decision values are selected randomly from the Pareto-
front obtained by the NSGA-II algorithm. We decided to use the random selection from
the Pareto-optimal solution set following the work [37]. The solution set obtained after
lower-level optimization iteration (xu, x∗l ) is used to find upper-level fitnesses Fi(xu, x∗l )
for i = 1, 2, . . . , Mu. We train the GP model with the data set (xu, yi) where yi = Fi(xu, x∗l ).
We use batch Bayesian optimization to choose the next candidates with the n-batch, which
declares the number of the batch. In each Bayesian optimization iteration, the qEHVI and
qParEGO acquisition optimizers suggest n-batch (q) candidates.

The lower-level optimization process is repeated for each candidate of the upper-level
batch decision candidate xu. It is important to note that dealing with constraints is the most
challenging aspect of bilevel problems. There are various approaches developed over the
years, such as optimistic and pessimistic approaches regarding lower-level decision-making
strategies; please see [38] for more details. While in the optimistic approach, the lower-
level decision maker deals with the constraints and makes decisions considering the most
favourable decision for the upper-level decision maker, the pessimistic approach assumes
the least favourable decision for the upper-level. In this work, we considered the optimistic
multi-objective bilevel problems and dealt with the constraints regarding the best interest
of the leader. To avoid upper-level constraint violation, we made the random selection
from lower-level Pareto-front considering the upper-level constraints. The algorithm runs
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for 50 iterations for the whole multi-objective bilevel optimization process. The details of
the algorithm can be found in Algorithm 1.

Algorithm 1 Upper-level Optimization
Inputs: Fu(xu, xl) : xu ∈ Xu, xl ∈ Xl ,
Batch points per epoch q,
Number of iteration n,
Reference point

1: Initial decision data set D = {xui , Fu(xui , x∗li
)}n

i=1 with size of n,
2: x∗l : Initialize best lower-Level decisions as parameters from NSGA-2 Algorithm,
3: Initialize multi-objective Gaussian model with observations {xu, Fu(xu, x∗l )}
4: for i = 0 : N do
5: Suggest new q-batch points by optimizing q-EHVI and qParEGO acquisition functions
6: for j = 0 : q do
7: For each upper-level decision xu, find optimal x∗l by applying NSGA-2 algorithm
8: Calculate fitness scores F∗u and f∗u
9: end for

10: Update the data set D = (xui , Fu(xui , x∗li
))n

i=1
11: end for
12: Return Pareto-front F∗u and corresponding optimum variables x∗u, x∗l

3.2. Noisy Setting

We consider a case that is crucial in practice, in which the leader must make decisions
under uncertainty based on noisy observations Fi = f(xui , xli ) + ξi, where ξi ∼ N (0, Σi)
and Σi is the noise covariance and xu, xl are upper and lower decision variables, respectively.
We reformulate the leader’s objective with noisy observations as

minimize
xu ,xl

{F1(xu, xl) + ξ1, ..., Fi(xu, xl) + ξi} (3)

where ξi ∼ N (0, Σi). Figure 2 represents the Pareto-front of noisy upper-level objective.
We can observe that it is important to obtain a true Pareto-front with the uncertainty at
upper level. The hypervolume indicator measures the volume of space between the non-
dominated front and a reference point, which we assume is known by the upper-level
decision-maker. The selection of reference points is tricky. In this work, it is chosen to be
an extreme point of the Pareto-front, because reference points should be dominated by all
Pareto-optimal solutions.
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Figure 2. Decision making under upper-level uncertainty.
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Hypervolume improvement of a set of points P ′ is defined as HVI(P ′|P , r) =
HV(P ∪ P ′|r)− HV(P|r), where P represents the Pareto-front and r the reference point.
Given observations of the upper-level decision-making process, the GP surrogate model
provides us with a posterior distribution over the upper-level function values for each
observation. These values can be used to compute the expected hypervolume improvement
acquisition function defined by

αehvi(xu|P) = E[HVI(Fu|P)]. (4)

So the expected hypervolume improvement iterates over the posterior distribution, an ap-
proach that worked well in [39].

After n observations of the leader’s decisions and the follower’s response, the pos-
terior distribution can be defined by the conditional probability p(F(xun , xln)|Dn) of the
leader’s objective values given decision variables (xun , xln) based on noisy observations
Dn = xui , Fi(xui , xli ), (Σi)

n
i=1. NEHVI is defined as

αNEHVI(xu) =
∫

αehvi(xu|Pn)p(F|Dn)dF (5)

where Pn denotes the Pareto-optimal front optimal decision set over the leader’s objectives
Fn. The aim is to improve the efficiency of the optimization, and the handling of noise in
the leader’s objective, by using the approach above and reformulating the bilevel multi-
objective optimization problem. The algorithm details can be found in Algorithm 2.

Algorithm 2 Proposed Algorithm
Inputs: Fu(xu, xl) : xu ∈ Xu, xl ∈ Xl ,
Batch points in each iteration Q,
The number of iterations for BO: N,
Reference point

1: xl : Find the best lower-level response as parameters with NSGA-II algorithm,
2: Initial decision data set with the objective noise

D = xui , Fu(xui , xli ), (Σi)
n
i=1 with size of n,

3: Initialize the GP model with the observations and the objective noise
4: for i = 0 : N do
5: Suggest new q-batch points by optimizing qNEHVI
6: for j = 0 : q do
7: For each upper-level decision xu, find optimal x∗l by applying the NSGA-II
8: Calculate fitness scores with noise Fu(xu, x∗l ) + ξ
9: end for

10: Update the data set D with new observations
11: end for
12: Return Pareto-optimal front F∗u and (xu, x∗l )

4. Experiments

We share the details of the experiments for the proposed approach in this section.

4.1. Noise-Free Experiments

First we consider noise-free settings.

4.1.1. Parameters

We use the Python programming language to implement the problems. BoTorch li-
brary [40] is used for the upper-level optimization problem. qEHVI and qParEgo acquisition
functions for multi-objective optimization problems can be found in the library. SobolQM-
CNormalSampler is used for random sampling for starting the optimization. The main
reason for choosing this sampling method is its popularity in the multi-objective Bayesian
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optimization literature. 2(d + 1) random upper-level decision points are selected, where d
represents the dimensions of the problem for constructing the GP model as recommended
in [14]. MaternKernel is used as it is the default selection. During acquisition optimization,
we selected the number of starting points num_restarts = 10 and raw_samples = 512 as
suggested in [14] for both the qEHVI and qParEGO acquisition functions. The multi-start
optimization of the acquisition function is performed using LBFGS-B with exact gradients
computed via auto-differentiation. Other parameters are set as default for Bayesian opti-
mization to observe the performance. Lower-level optimization problems are solved using
a genetic algorithm. For the implementation of the problems the PyMOO library [41] is
selected. We use NSGA-II proposed in [31] with the following parameters. We selected
pop_size = 50 to represent the population size, and the number of generations is set to 50.
The main purpose of this selection is to make a fair comparison with other evolutionary
methods, i.e., [25]. The real_random sampling method is used for sampling. After we
obtained the Pareto-optimal solution set, we used a uniform random selection from the
Pareto-optimal solution set. The algorithm is executed 10 times for each test function with
different batch sizes.

4.1.2. Performance Measures

The multi-objective algorithms are assessed in terms of convergence to the Pareto-front
and with respect to the diversity of the obtained solutions. In order to examine the proposed
algorithm’s performance, we compare it with the OMOPSO-BL and H-BLEMO algorithms
in terms of the hypervolume (HV) indicator and the inverted generational distance (IGD).
We present our results in terms of function evaluations and compare them with DBMA and
H-BLEMO. We use the same number of final sample sizes of the Pareto-optimal solution
set to compare HV and IGD values with the other algorithms. HV measures the volume of
the space between the non-dominated front obtained and a reference point. It is a common
metric for comparing the performance of the obtained solutions with the true Pareto-front
published for the problems. IGD calculates the sum of the distances from each point of the
Pareto-front to the nearest point of the non-dominated set found by the algorithm. More
details can be found for the metric in [42]. The IGD values of the DBMA algorithm are not
reported [21] but we compare the results with the HV metric. Both HV and IGD measure
the convergence and the spread of the obtained set of solutions.

4.1.3. Test Problems

We discuss the numerical experiments using the proposed algorithm on three different
benchmark problems from [25], including quadratic unconstrained and linear constrained
problems. Furthermore, we applied the proposed algorithm to the popular CEO problem
from [24].

Problem 1

The problem has a total of three variables and is linear and constrained at both levels.
The formulation of the problem is given in Table 1. Both upper- and lower-level optimiza-
tion tasks have two objectives and the reference point for the problem is xre f = (−1, 0). The
linear constraint in the upper-level optimization task does not allow the entire quarter circle
to be feasible for some y. Thus, at most a couple of points from the quarter circle belong to
the Pareto-optimal set of the overall problem. Reported Pareto-optimal solutions for the
problem are in the third column of Table 1. Figure 3 on the left graph shows the Pareto-front
solutions for Problem 1. Note that in this problem there exists more than one lower-level
Pareto-optimal solution such as A in Figure 3. Therefore, in this problem finding the right
Pareto-optimal lower-level solution is important for finding the correct bilevel decision set.
Finding a solution like A makes the lower-level task useless, and this is the challenging part
of the problem. Dashed lines represent the lower-level Pareto-fronts and B and C points as
the two most Pareto-optimal solutions for the upper-level decision y = 0.9.
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Table 1. Description of the selected test problems including Pareto-optimal solutions with xu as
upper-level vector and xl as lower-level vector.

Problem Formulation Pareto-Optimal Solutions

Problem 1
n = 1
m = 2

Minimize
(xu ,xl)

F(xu, xl) =

(
xl1 − xu

xl2

)

subject to xl ∈

 argmin
xl

f(xu, xl) =

(
xl1
xl2

)
g(xu, xl) = x2

u − x2
l1
− x2

l2 ≥ 0


G(xu, xl) = 1 + xl1 + xl2 ≥ 0

0 ≤ xu ≤ 1, xl1 ≥ −1, xl2 ≤ 1

{
x ∈ R3| xl1 = −1− xl2 , xl2 = −

1
2
∓ 1

4

√
8x2

u − 4,

xu ∈
[

1√
2

, 1
]}

Problem 2
n = 1
m = 2

Minimize
(xu ,xl)

F(xu, xl) =

(
(xl1 − 1)2 + x2

l2 + (xu)2

(xl1 − 1)2 + x2
l2 + (xu − 1)2

)

subject to xl ∈
(

argmin
xl

f(xu, xl) =

(
x2

l1
+ x2

l2
(xl1 − xu)2 + x2

l2

))
− 1 ≤ (xu, xl1 , xl2 ) ≤ 2

{
x ∈ R3| xu = y, xl1 = xl2 = 0, xu ∈ [0.5, 1.0]

}

Problem 3
n = 1

m = K

Minimize
(xu ,xl)

F(xu, xl) =

(
(xl1 − 1)2 + ∑K

i=2 xli
+ (xu)2

(xl1 − 1)2 + ∑K
i=2 xli

+ (xu − 1)2

)
subject to xl ∈

(
argmin

xl

f(xu, xl) =

(
xl1 + ∑K

i=2 x2
li

xl1 − xu + ∑K
i=2 x2

li

))
− 1 ≤ (xu, xl1 , xl2 , ..., xlK ) ≤ 2

{
x ∈ RK+1|xu = y, xli

= 0, xu ∈ [0.5, 1.0],

i = 2, . . . , K

}
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Figure 3. Pareto-optimal fronts of upper-level problem and some representative lower-level optimiza-
tion tasks are shown for Problem 1 (Left) and Problem 2 (Right) with upper-level decision variable y
and lower-level decision xi for i = 1, . . . , K.

Problem 2

The problem is quadratic and unconstrained at both levels. The formulation of the
problem is given in Table 1. The reference point for the problem is xre f = (1, 0.5). The
upper-level problem has one variable and the lower-level has two variables. For a fixed
xu the Pareto-optimal solutions of the lower-level optimization problem are given as
{xl ∈ R|xu ∈ [0, y], xl1 = xl2 = 0}. For the upper-level problem, the Pareto-optimal
solutions are reported in Table 1. As we can see in Figure 3 on the right, if an algorithm fails
to find the true Pareto-optimal solutions of the lower-level problem and finds a solution,
such as a point C, then it might dominate a true Pareto-optimal point such as point A. So
finding true Pareto-optimal solutions is a difficult task in this problem.

Problem 3

We increase the dimension of the variable vector of Problem 2. The formulation of
the problem is given in Table 1. The reference point for the problem is xre f = (1, 0.5). The
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upper-level problem has one variable and the lower-level is scalable with K variables. For
this work, K is set to 14 and the total number of variables is 15 in this problem. For a
fixed xu, the Pareto-optimal solutions of the lower-level optimization problem are given
as follows: {xl ∈ RK|xu ∈ [0, y], xli = 0, for i = 2, ..., K}. For the upper-level problem,
the Pareto-optimal solutions are formulated in Table 1.

Practical Case: CEO Problem

This case is taken from [24]. In a company, the CEO has the leader problem of
optimizing net profit and the quality of products. The branch head has the follower
problem of optimizing its own profit and worker satisfaction. According to the scenario
above, the problem itself can be modelled as a multi-objective bilevel optimization problem.
The deterministic version of the problem can be formulated as in Equation (6). Let the
CEO’s decision variable be xu = (xu1 , xu2) and the branch head’s decision variable be
xl = (xl1 , xl2 , xl3). The constraints model requirements, such as material, marking cost,
labour cost and working hours.

Maximize
(xu ,xl)

F(xu, xl) =

(
xu1 + 9xu2 + 10xl1 + xl2 + 3xl3

9xu1 + 2xu2 + 2xl1 + 7xl2 + 4xl3

)

subject to xl ∈


argmax

xl

f(xu, xl) =

(
4xu1 + 6xu2 + 7xl1 + 4xl2 + 8xl3
6xu1 + 4xu2 + 8xl1 + 7xl2 + 4xl3

)
g1(xu, xl) = 3xu1 − 9xu2 − 9xl1 − 4xl2 − 61 ≤ 0

g2(xu, xl) = 5xu1 + 9xu2 + 10xl1 −−xl2 − 2xl3 − 924 ≤ 0
g3(xu, xl) = 3xu1 + 3xu2 + 1xl2 − 5xl3 − 420 ≤ 0


G1(xu, xl) = 3xu1 + 9xu2 + 9xl1 + 5xl2 + 3xl3 − 1039

G2(xu, xl) = −4xu1 − 2xu2 + 3xl1 − 3xl2 + 2xl3 − 94

(xu1 , xu2 , xl1 , xl2 , xl3) ≥ 0.

(6)

While the CEO’s objective is to maximize the quality of the product and the net profit,
the objective of the branch heads is to maximize worker satisfaction and branch profits.

4.1.4. Results and Observations

The statistics on function evaluations, hypervolume difference and inverted genera-
tional distance from Pareto-optimal are given in Tables 2 and 3. The HV and IGD values
are shared with the standard deviations of 21 runs. The standard deviations come from
Bayesian optimization. It is clear from Table 2 that most computational effort is spent on the
lower-level problem. Because of the nested structure of bilevel problems, the lower-level
problem must be solved for every upper-level decision, so it is vital to improve upper-
level performance for efficiency. We can observe that the upper-level function evaluations
decreased significantly compared to DBMA and H-BLEMO. We could not compare the
function evaluations with the OMOPSO-BL algorithm because of unavailability in [25]. We
compare HV and the IGD values with DBMA, OMOPSO-BL and H-BLEMO algorithms in
Table 3. It also includes the HV difference graph for different batch sizes. Although Bayesian
optimization is not generally effective on high-dimensional problems, we nevertheless
obtain results that are better than the other tested methods.

Problem 1

As shown in Table 2, function evaluations decreased significantly compared with
DBMA and H-BLEMO algorithms for Problem 1. We observe that in Table 3, the hyper-
volume obtained by the proposed algorithm is slightly better than DBMA, H-BLEMO
and OMOPSO-BL. We also show hypervolume values for different batch sizes of 2, 4, 8.
Because of a lack of observations for a batch size of q = 1 as we ran the algorithm for
50 iterations, the algorithm could not find better hypervolume values. The IGD values of
observed values are not better than the OMOPSO-BL and H-BLEMO algorithms for this
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specific problem with batch sizes 2, 4, 8, as we can observe from Table 3. We think that as
the problem is linear, and because of limited iteration numbers, the algorithm could not
get as close as the others. There were no reported IGD values for the DBMA algorithm on
this comparison.

Table 2. Function evaluation comparison table for different batch sizes (q = 1, q = 2, q = 4, q = 8).

Proposed Algorithm DBMA H-BLEMO

(q) UL LL UL LL UL LL

Problem 1

1 4500 27,000

22,229 312,500 14,163 629,5902 6500 54,000
4 11,500 108,000
8 18,500 216,000

Problem 2
(K = 3)

1 2700 14,580

12,028 312,500 16,146 700,6342 4300 28,620
4 7200 38,880
8 9900 48,060

Problem 3
(K = 14)

1 2675 57,780

N/A N/A 18,733 319,4992 1575 34,020
4 6575 142,020
8 3125 67,500

Table 3. Medium hypervolume (HV) and inverted generational distance (IGD) comparison table for
different batch sizes (q = 1, q = 2, q = 4, q = 8) with the standard deviation.

Proposed Algorithm DBMA OMOPSO-BL H-BLEMO

(q) HV IGD HV IGD HV IGD HV IGD

Problem 1

1
0.3524
±0.0003

0.0143
±0.0005

0.3075 N/A 0.3068 0.0156 0.3024 0.0113
2

0.3632
±0.005

0.0138
±0.002

4
0.3621
±0.012

0.0126
±0.005

8
0.3773
±0.019

0.0119
±0.009

Problem 2
(K = 3)

1
0.2067
±0.005

0.0105
± 0.006

0.2069 N/A 0.2074 0.0102 0.2067 0.0063
2

0.2097
±0.0005

0.0068
±0.002

4
0.2125
±0.002

0.0045
±0.0005

8
0.2144
±0.0004

0.0032
±0.0002

Problem 3
(K = 14)

1
0.2026
±0.004

0.0105
±0.006

N/A N/A 0.2018 0.0312 0.2059 0.0105
2

0.1915
± 0.023

0.0147
± 0.002

4
0.2089
±0.009

0.0141
± 0.001

8
0.2241
±0.042

0.0138
± 0.0087

Problem 2

We can observe from Table 2 for Problem 2 that the proposed algorithm improves
computational performance and decreases the function evaluations significantly compared
to DBMA and H-BLEMO. The HV values are much better than DBMA, OMOPSO-BL and H-
BLEMO algorithms as we can see from Table 3. Note that because of the unavailability of
OMOPSO-BL and H-BLEMO experiment data, the results shown for these algorithms are
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taken from [25]. The IGD results in Table 3 show that the proposed algorithm approximates
successfully to the Pareto-optimal solutions.

Problem 3

Table 2 shows that the proposed algorithm significantly decreases function evaluations
during the optimization while approximating the Pareto-optimum solutions for Problem
3. We compare our results with DBMA and H-BLEMO algorithms, but not OMOPSO-BL
because they did not share this information (as mentioned above). The HV value for batch
size 1 is better than OMOPSO-BL but not H-BLEMO, as we can see in Table 3. However,
the proposed algorithm reached better HV for batch size 8. IGD values are shown in
Table 3 and we can observe that the approximation solution sets are not as close as the
other algorithms. However, we think that considering the significant decrease in function
evaluations, it shows good performance.

Practical Case: CEO Problem

For the CEO problem, they use a weighted sum method to obtain a single optimal
solution xu = (146.2955, 28.9394)> and xl = (0, 67.9318, 0)> in [24]. They use a hybrid
particle swarm optimization algorithm with a crossover operator in [24]. Ref. [43] present
Pareto-front solutions and extreme points using CMODE/D algorithm. We present the
extreme points of our results in Table 4. The proposed algorithm can obtain the Pareto-front
containing the single optimal solution obtained in [43]. We focused on the extreme points
on the Paret-front solution set to make the comparison with the solutions in [43]. As we
can observe, the obtained optimal solutions in Table 4 cover more broadly in terms of the
objectives. We also share the optimal decisions for the leader and the follower for better
comparison. The experiments use both qNEHVI and qParEGO and all batch sizes. Table 4
presents the best results obtained.

Table 4. Extreme points(EP) in obtained Pareto-front for the practical case by the proposed algorithm
(1) and comparison with CMODE/D (2).

Exteme
Point

Leader’s
Objective

(F1, F2)

Follower’s
Objective

( f1, f2)

Leader’s
Optimal Decision

(xu)

Follower’s
Optimal Decision

(xl)

(1)EP1 (529.86, 1480.09) (3554.98, 5266.08) (46.82, 25.02)> (0, 24.83, 0)>

(1)EP2 (964.41, 264.74) (533.02, 646.19) (53.61, 66.81)> (4.72, 0, 0)>

(2)EP1 (474.48, 1849.36) (1030.12, 1468.39) (146.30, 28.92)> (0, 67.84, 0)>

(2)EP2 (1038.90, 307.90) (830.79, 523.31) (0.03, 107.75)> (0, 0, 23.01)>

4.2. Noisy Experiments

The test problems are selected from the literature [44], to test scalability in terms of
decision variable dimensionality. The results are compared with state-of-art evolutionary
algorithms m-BLEAQ [45] and H-BLEMO [23]. The Pareto-optimal front is independent
of the parameters. Furthermore, we use a real-world problem from the environmental
economics literature, which considers a hierarchical decision-making problem between an
authority and a gold mining company [46].

4.2.1. Performance Metrics

We compare our results in terms of upper-level function evaluations (FE) to determine
the efficiency of the algorithm as Bayesian optimization aims to minimize the function
evaluations while optimizing the expensive black-box functions. Hypervolume improve-
ment [47] and inverted generational distance [42] are used to evaluate the success of
approximation to Pareto-optimal fronts in terms of convergence and diversity. HV mea-
sures the volume of the space between the non-dominated front obtained and a reference
point. IGD calculates the sum of the distances from each point of the true Pareto-optimal
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front to the nearest point of the non-dominated set found by the algorithm. Therefore,
a smaller IGD value means approximated points are closer to the Pareto-optimal front of
the problem.

4.2.2. Parameters

We fixed the number of Bayesian optimization iterations to N = 50 and repeated
our experiments 21 times to obtain median results for making the comparison fair. We
use the independent GP model with Matern52 kernel and fit the GP by maximizing the
marginal log-likelihood. The method is initialized with 2× (d + 1) Sobol points where d
represents the dimension of the problem to construct the initial GP model. All experiments
are conducted using the BoTorch [40] library. We solved the follower’s problem with the
popular NSGA-II [31] and chose the population size 100 and number of generations 200.
We choose the follower’s decisions from the obtained Pareto-optimal front at random, as all
solutions in the Pareto-optimal front are feasible.

4.2.3. Test Problems
Example 1

The first example is a bi-objective problem that is scalable in terms of the number of
follower decision variables. The formulation of the problem is given in Table 5. We choose
K = 14 and K = 19, giving 15 and 20 follower variables, respectively, with 1 leader decision
variable. We choose the reference point required to measure hypervolume improvement
to be (1.0, 0.5). The Pareto-optimal decision sets for this specific bilevel decision-making
problem can be found in [45].

Example 2

The second test problem is the modified test problem with 10 and 20 variable instances.
The formulation of 264 the problem is given in Table 5. We choose the required reference
point to be (1.1, 1.1). The Pareto-optimal front for a given leader is defined as a circle of
radius (1 + r) with center ((1 + r), (1 + r)). We choose K = 5 for our experiments, with
parameters r = 0.1, τ = 1 and α = 1, following [45] so that our results can be compared
with those for m-BLEAQ and H-BLEMO.

Example 3

The third test problem is the modified test problem with 10 and 20 variable instances.
The formulation of 264 the problem is given in Table 5. We choose the required reference
point (0.8, 0.0) for measuring the hypervolume improvement during the optimization.
Details on the Pareto-optimal solutions are given in [48].

Practical Case: Gold Mining in Kuusamo

The Kuusamo region is a popular tourist destination known for its natural beauty.
There is a lot of interest in this region cause it contains a huge amount of gold deposits and
is considered to be a “highly prospective Paleoproterozoic Kuusamo Schist Belt” [49]. The
expected gold amount in the ore is around 4.9 g per ton according to an Australia-based
gold mining company. Even though there is a big potential in terms of providing lots of
jobs in the region and leading to a great amount of gold resources, there are concerns about
harming the environment. The first of them is that mining operations may cause pollution
of the river water in the region. This concerns environmentalists. Second, the ore in the
region contains uranium and, if it is mined, it might harm the reputation of nearby tourist
resorts. Another is the open pit mines around the area called Ruka, which will affect nearby
skiing resorts and hiking routes and reduce tourist interest. The regulating authority, which
is the government, acts as a leader, and the mining company is the follower, which reacts
rationally to the decisions of the leader in order to maximize its own profit. The leader
should find an optimal strategy assuming that he holds the necessary information about the
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follower. In the situation explained above, the government has a decision-making problem,
which is whether to allow mining and to what extent.

Table 5. Selected test problem from the literature for multi-objective bilevel optimization.

Problem Formulation

Example 1
n = 1

m = K

Min
(xu ,xl)

F(xu, xl) =

(
(xl1 − 1)2 + ∑K

i=2 xli
+ (xu)2 + ξ

(xl1 − 1)2 + ∑K
i=2 xli

+ (xu − 1)2 + ξ

)
subject to xl ∈ argmin

xl

f(xu, xl) =

(
xl1 + ∑K

i=2 x2
li

xl1 − xu + ∑K
i=2 x2

li

)
− 1 ≤ (xu, xl1 , xl2 , ..., xlK ) ≤ 2

ξ ∼ N (0, Σξ), Σξ =

[
0.01 0

0 0.01

]

Example 2
n = K
m = K

Min
(xu ,xl)

F(xu, xl) =

 (1 + r− cos(απxu1 )) + ∑K
j=2(xuj −

j−1
2 )2 + τ ∑K

i=2(xli
− xui )

2 − r cos(γ π
2

xl1
xu1

) + ξ

(1 + r− sin(απxu1 )) + ∑K
j=2(xuj −

j−1
2 )2 + τ ∑i=2 K(xli

− xui )
2 − r sin(γ π

2
xl1
xu1

+ ξ)


subject to xl ∈ argmin

xl

f(xu, xl) =

(
x2

l1
+ ∑K

i=2(xli
− xui )

2 + ∑K
i=2 10(1− cos(π

K (xli
− xui ))

∑K
i=2(xli

− xui )
2 + ∑K

i=2 10| sin(π
K (xli

− xui ))|

)
xli
∈ [−K, K], i = 1, . . . , K

xu1 ∈ [1, 4], xuj ∈ [−K, K], j = 2, . . . , K

ξ ∼ N (0, Σξ), Σξ =

[
0.25 0

0 0.16

]

Example 3
n = K
m = K

Min
(xu ,xl)

F(xu, xl) =

v1(xu1 ) + ∑K
j=2(x2

uj
+ 10(1− cos(π

K xui )) + τ ∑K
i=2(xli

− xui )
2 − r cos(γ π

2
xl1
xu1

) + ξ

v2(xu1 ) + ∑K
j=2(x2

uj
+ 10(1− cos(π

K xui )) + τ ∑K
i=2(xli

− xui )
2 − r sin(γ π

2
xl1
xu1

) + ξ


where v1(xu1 ) =

{
cos(0.2π)xu1 + sin(0.2π)

√
|0.02 sin(5πxu1 )|, for 0 ≤ xu1 ≤ 1

xu1 − (1− cos(0.2π)), for xu1 ≥ 1

v2(xu1 ) =

{
− sin(0.2π)xu1 + cos(0.2π)

√
|0.02 sin(5πxu1 )|, for 0 ≤ xu1 ≤ 1

0.01(xu1 − 1)− sin(0.2π), for xu1 ≥ 1.

subject to xl ∈ argmin
xl

f(xu, xl) =

(
x2

l1
+ ∑K

i=2(xli
− xui )

2

∑K
i=2 i(xli

− xui )
2

)
xli
∈ [−K, K], i = 1, . . . , K

xu1 ∈ [0.001, K], xuj ∈ [−K, K], j = 2, . . . , K

ξ ∼ N (0, Σξ), Σξ =

[
0.09 0

0 0.09

]

In the problem above, the leader has two objectives while the follower has one. The
first objective is the maximization of revenues coming from the project and the second
objective is to minimize the environmental harm, which is a result of the mining. The
mining company also aims to maximize its own profit. While the government is optimizing
its own taxation strategy, it needs to model how the mining company reacts to any given
tax structure. Therefore, the authority makes an environmental regulatory decision instead
of solving the problem to optimality. Clearly, the objectives are conflicting, such as the fact
that large profits may affect the environment by increasing the damage, which follows with
a bad public image. The mathematical formulation of this hierarchical decision-making
problem can be found in Table 6. More details can be found about the bilevel modelling of
the problem in [45,46]. Figure 4 presents the Pareto-optimal frontier of the given problem
for the government according to the formulation in Table 6. We can observe that increasing
the tax revenue decreases the environmental damage.
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Table 6. Gold mining in Kuusamo.

Category Level Formulation

Variables Upper level τ [per unit tax imposed on the mine]
Lower level q [amount of metal extracted by the mine]

Objectives
Upper level F1(τ, q) = E(τ, q) = τq [tax revenue]

F2(τ, q) = −D(q) = −kq [environmental damage]

Lower level f1(τ, q) = π(τ, q) = (α− βq)q− (δq2 + γq + φ)− τq [profit]

Constraints Upper level q ≥ 0, τ ≥ 0
Lower level π(τ, q) ≥ 0

Uncertainty Upper level ξ ∼ N(µξ , Σξ), µξ = (1, 1), Σξ =

[
0.25 0

0 0.25

]
Parameters k = 1, η = 1

α = 100, β = 1, δ = 1, γ = 1, φ = 0
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Figure 4. Pareto-optimal frontier for the government representing the trade-off between tax revenues
and environmental pollution.

4.2.4. Results of Test Problems

The performance of the proposed algorithm is compared with that of m-BLEAQ
and H-BLEMO in Table 7, showing computational expense and convergence. The FE is
calculated by Ninitial + (Nbatch ×Niter ×Nrestarts) for the leader problem, where Ninitial is the
number of initial decisions for starting the algorithm, and Nrestarts is the parameter for
Gaussian process declaring the number of restarts to avoid becoming trapped in local
optima. We choose it to be 2× (d + 1), where d is the dimension of the decision variable.
We run the experiment for different batch numbers q = 1, q = 2, q = 4, q = 8 to test the
effect on performance. The HV difference is shown in Figure 5 for 15 and 20 variables,
and 10 variables for Examples 1 and 2, respectively. While increasing the batch size,
decreasing the HV difference, as presented in Figure 1, shows the convergence of the
proposed algorithm. Because of a lack of information in the reference paper, we could not
obtain the FE results for Example 1 with 20 variables.

Example 1

We can see from Table 7 that the required upper-level FE is significantly lower, and the
algorithm approximates successfully to the Pareto-optimal front while handling the uncer-
tainty at the leader’s objective. For 15 variables, our proposed algorithm achieves ≈ 38%
improvement in terms of FE compared to m-BLEAQ and a ≈89% compared to H-BLEMO.
The IGD values in Table 7 for 15 and 20 variables show that it successfully approximates
the Pareto-optimal front of the problem while handling the uncertainty of the leader’s
objective for both. We show the HV difference between the Pareto-optimal front solutions
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and approximated decisions algorithm in Figure 5. Again we tried different batch sizes for
the experiment, and it can be seen that a batch number of 8 is best for this specific example
at both dimensions. We could not compare the 20-dimensional version of the problem with
the selected algorithms because of a lack of information in [45].

Table 7. FE and IGD values for the examples with the number of variable dimensions for the batch
size q = 8.

Number of
Variables

Proposed Algorithm m-BLEAQ H-BLEMO

IGD FE IGD FE IGD FE

Example 1 15 0.0044 4032 0.0013 6464 0.0046 39,818

Example 2 10 0.0051 4022 0.0069 22,223 0.0134 106,003

Example 3 10 0.0076 4022 0.0079 25,364 0.0134 132,907

Example 1 20 0.0105 4042 - - - -

Example 2 20 0.1032 4042 0.0435 34,110 0.1106 191,357

Example 3 20 0.0924 4042 0.0623 36,439 0.1321 216,083

Example 2

Table 7 shows that our proposed algorithm obtains the best IGD results compared to
the other algorithms. In terms of FE, it significantly improves the state of the art, with an
≈81% improvement for 10 variables and an ≈88% improvement for 20 variables compared
to m-BLEAQ. We also show the HV difference in Figure 5, and we can observe that, for this
specific example, the batch number of 8 is the best selection for both 10 and 20 dimensional
versions.

Example 3

Table 7 shows that our algorithm obtains the best IGD value compared to m-BLEAQ
and H-BLEMO while improving efficiency in terms of FE: ≈84% and ≈97% with 10 vari-
ables, and ≈89% and ≈98% with 20 variables.

Figure 5 shows that a batch size q = 8 gives the best results. In summary, our proposed
algorithm is successful on the selected test problems while handling noisy objectives with
less computational cost. Noise in the leader’s objective makes the problem harder to solve
but more realistic for modelling practical problems, because of real-world uncertainty. We
show the proposed algorithm works well on these test benchmark problems.

Practical Case: Gold Mining in Kuusamo

In this section, we present the results obtained using the proposed algorithm on
the analytical model of the problem proposed in Table 6. Figure 4 shows the Pareto-
optimal front obtained using our approach. The plot gives the idea to the authority how to
consider the trade-off between its own objectives. We used 50 iterations for upper-level
optimization using a batch Bayesian approach with a batch size of 4. For lower-level
optimization, the NSGA-II algorithm is implemented with the same parameters specified
in Section 4.2.2. We can observe that with the proposed method, the obtained results are
distributed around the true Pareto-optimal frontier and approximate to it successfully.
We also run the experiments for the batch size q = 1, q = 2 and q = 4 for testing if
the algorithm converges to the Pareto-optimal front. The IGD value is 0.0494 for q = 1,
0.0033 for q = 2 and 0.0021 for q = 4. We can see from the decreasing IGD values that,
as we increase the batch number, the selected points more closely approximate the true
Pareto-optimal front. The increasing batch size provides us with parallel evaluations
during upper-level optimization, which decreases the needed execution time. It is also
important to handle environmental uncertainty, represented by ξ in Table 6, which may
be an uncontrollable parameter, such as inflation, during the time period of taxation or
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unexpected environmental damage during the mining process. We can observe that the
proposed method is successfully approximated even handling the uncertainty of objectives.

We believe that our proposed algorithm can be applied to several practical bilevel
problems successfully applied in the machine learning community, such as image classifica-
tion [50], deep learning [51], neural networks [52] and hyperparameter optimization [53].
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Figure 5. Hypervolume difference graph (log scale) with different batch sizes (q = 1, q = 2, q = 4,
q = 8) for Example 1 with 15 (top-left) and 20 (bottom-left) dimensions, for Example 2 with 10
(top-middle) and 20 (bottom-middle) dimensions, for Example 3 with 10 (top-right) and 20 (bottom-
right) dimensions.

5. Discussion

Compared with the evolutionary algorithms for the noise-free setting of the bilevel
problem, approaching the upper-level problem as a black box obtains the Pareto-optimal
front with much fewer function evaluations. For instance, when we look at Problem 2
in Table 2, the necessary function evaluation number decreased by almost %64 for the
upper-level, and %91 for the lower-level problem compared with the DBMA method for the
batch size of 4 setting of the proposed method. It implies that unnecessary evaluations can
be significantly decreased by assuming we do not know the exact problem characteristics
of upper-level decision-makers. Furthermore, the proposed algorithm can achieve better
HV and IGD values for all theoretical problems compared to the rewarding solutions. In
Problem 1, the HV value for Problem 1 is 0.3773, while the closest one is DBMA with 0.3075
for the batch number of 8. Note that with the other batch numbers, even the sequential
(q = 1) setting reached better results than the evolutionary algorithms. When we look at
the high-dimensional problem, the results for Problem 3 in Table 3 show that the proposed
algorithm successfully approximated the Pareto-optimal front for the upper-level problem.
We should note that the theoretical problems are relatively simple but, as we can see from
the CEO problem, real-world problems can be modelled in this manner, and they can reflect
the decision-making problems where there is no uncertainty.

In addition, the importance of uncertainty cannot be underestimated regarding real-
world decision-making problems, especially given the hierarchy between decision-makers.



Algorithms 2024, 17, 146 18 of 22

Compared with the evolutionary algorithms, the proposed Bayesian optimization approach
to uncertain upper-level problems approximates successfully to the true Pareto-optimal
front. For instance, the final solution set of Examples 1, 2 and 3 with a smaller number
of variables is well-distributed to the true Pareto-optimal front with much fewer function
evaluations, please see Table 7. For the gold mining problem, the final obtained solution
is distributed successfully as well, as we can see in Figure 4. The gold mining problem is
relatively simple compared with the test problems and we can see that it can deal with both
linear and quadratic problems.

Batch selection is also important for batch Bayesian optimization, and the experiments
show that there is no single optimum batch number for all problems. For example, con-
sidering Problem 3 with q = 8 setting, the proposed algorithm approximated the true
Pareto-optimal front with less function evaluation than the q = 4 setting while it is not
the case on other problems. When we consider the collaboration of followers and leaders,
it implies that the algorithm converges much faster than evolutionary algorithms when
the problem dimension increases and collaboration of lower-level decisions increases,
respectively.

In general, there is no single optimum batch number for solving upper-level problems
during multi-objective Bayesian optimization, and the participation of lower-level decisions
in upper-level problems should be considered. We can also conclude that either with
or without uncertainty, the black-box approach performs better than existing exact and
evolutionary approaches. Moreover, this development has the potential to explore more
analyses of how problem characterization affects the surrogate model-based approaches,
and to apply to many more real-world applications while leveraging the benefit of not
necessarily knowing the specification of the mathematical model.

5.1. Limitations

Multi-objective bilevel problems are computationally expensive to evaluate. Even
without uncertainty at the upper-level, there may be a lack of performance during the
acquisition optimization process of the proposed algorithm. Furthermore, the Pareto-
optimal solution set may not always provide the optimal solution for all objectives. Another
limitation of the proposed algorithm is the lack of success of the Bayesian optimization
with a high-dimensional search space. Even though there are some works in the literature
on black-box optimization for high-dimensional data, this still limits the computational
performance given the millions of variables. However, as we can see from Section 4.2.4,
when approximating the Pareto-front in fairly high dimensions, the black-box approach
improves performance compared with various existing methods.

6. Conclusions

Multi-objective bilevel optimization problems constitute one of the hardest classes of
optimization models known, as they inherit the computational complexity of the hierarchi-
cal structure and optimization. We propose a hybrid algorithm, based on batch Bayesian
optimization to reduce the computational cost of the problem.

Our contribution is three-fold in the literature of multi-objective bilevel optimiza-
tion. First, we embed two specifically designed acquisition function optimizers for multi-
objective problems based on hypervolume improvement and parallel evaluations during
optimization to approximate the leader’s Pareto-front solutions. The proposed algorithm
is explained in Section 4.1. Second, we discussed bilevel multi-objective optimization
under upper-level uncertainty and presented another hybrid algorithm based on batch
Bayesian optimization with noisy hypervolume improvement in Section 4.2. Moreover,
we explore how batch size selection affects the optimization process for each of the pro-
posed approaches. Third, we evaluate our proposed algorithm on six numerical and two
real-world problems selected from the environmental economics literature, which is a
decision-making problem between an authority and the followers, and compare our results
with state-of-the-art algorithms. The results show that the proposed algorithm improves
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efficiency by significantly reducing computational cost. The proposed algorithm performed
very competitively in terms of necessary function evaluation and convergence considering
hypervolume improvement and IGD values.

Future Work

The preferences of decision are important when we consider the hierarchical decision-
making processes. For instance, the follower’s decision from the Pareto-optimal front
affects the leader’s problem and final solution set. In future work, we shall explore the
decision-making from the Pareto-optimal front and how preference learning might affect the
process. It would also be interesting to apply the proposed algorithm to the problems in the
automated machine learning literature. For example, integrating the upper-level problem
as a neural architecture search with considering multiple neural network models and lower-
level problems to search the optimum hyperparameters for the candidate neural networks.
As we mentioned with regard to the high-dimensional search space problem in Section 5.1,
it might be interesting to explore how the proposed algorithm can be improved by using a
high-dimensional Gaussian process [54] during the upper-level optimization. Moreover, we
will look to gain some information by analyzing the relationship between the acquisition
selection and the whole bilevel optimization results to observe how acquisition function
selection affects the performance for obtaining the Pareto-optimal front at each iteration.
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