
Citation: Wu, S.; Guan, J. Fault

Location Method Based on Dynamic

Operation and Maintenance Map and

Common Alarm Points Analysis.

Algorithms 2024, 17, 217. https://

doi.org/10.3390/a17050217

Academic Editor: Frank Werner

Received: 10 April 2024

Revised: 11 May 2024

Accepted: 14 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Fault Location Method Based on Dynamic Operation and
Maintenance Map and Common Alarm Points Analysis
Sheng Wu 1,2 and Jihong Guan 1,*

1 College of Electronic Information and Engineering, Tongji University, Shanghai 201804, China;
1711022@tongji.edu.cn

2 ICBC Data Center, Shanghai 200131, China
* Correspondence: jhguan@tongji.edu.cn

Abstract: Under a distributed information system, the scale of various operational components
such as applications, operating systems, databases, servers, and networks is immense, with intricate
access relationships. The silo effect of each professional is prominent, and the linkage mechanism is
insufficient, making it difficult to locate the infrastructure components that cause exceptions under
a particular application. Current research only plays a role in local scenarios, and its accuracy and
generalization are still very limited. This paper proposes a novel fault location method based on
dynamic operation maps and alarm common point analysis. During the fault period, various alarm
entities are associated with dynamic operation maps, and alarm common points are obtained based
on graph search addressing methods, covering deployment relationship common points, connection
common points (physical and logical), and access flow common points. This method, compared
with knowledge graph approaches, eliminates the complex process of knowledge graph construction,
making it more concise and efficient. Furthermore, in contrast to indicator correlation analysis
methods, this approach supplements with configuration correlation information, resulting in more
precise positioning. Through practical validation, its fault hit rate exceeds 82%, which is significantly
better than the existing main methods.

Keywords: fault location; dynamic operation and maintenance map; common alarm points

1. Introduction

In distributed information systems, the dependencies and connectivity access relation-
ships between data center infrastructure, servers, storage, networks, systems, databases,
and applications become exceedingly complex and invisible due to factors such as resource
pooling and insufficient cross-discipline operational and maintenance data sharing. Each
professional monitoring system runs independently, resulting in a prominent silo effect
and insufficient linkage mechanisms, making it difficult to accurately locate the underlying
objects that cause exceptions under a particular application. Current research focuses
on knowledge graph and indicator correlation analysis methods. However, knowledge
graph technology has a high complexity and is only effective in local scenarios such as
networks, and therefore, it is still not ready for practical use. Indicator correlation analysis
lacks configuration correlation information between objects, thus its accuracy is limited.
This paper proposes a basic fault location method based on dynamic operation maps and
alarm common point analysis. First, a distributed information system dynamic opera-
tion map is constructed, including topology information, node mutual visits, application
high-availability deployment, covering applications, systems, and networks, providing
topological relationships for fault location. Meanwhile, the troubleshooting process trig-
gered by a single abnormal business flow is studied, including database access flows,
read/write I/O flows, and basic component mutual visits. During the fault period, various
alarm entities are associated with dynamic operation maps, and alarm common points are

Algorithms 2024, 17, 217. https://doi.org/10.3390/a17050217 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17050217
https://doi.org/10.3390/a17050217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0001-2355-2727
https://doi.org/10.3390/a17050217
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17050217?type=check_update&version=1


Algorithms 2024, 17, 217 2 of 13

obtained based on graph search addressing methods, covering deployment relationship
common points, physical and logical connection common points, and access flow common
points, thus positively locating the possible root cause of the fault. This method is sim-
pler and more efficient than knowledge graph methods and more accurate than indicator
correlation analysis methods due to the addition of configuration correlation information.

2. Research Background

Due to the complexity of distributed information system architecture, when a business
application encounters an exception, a large number of alerts from different levels such as
the operating system, network, and database are usually received at the infrastructure level,
making it difficult to focus on the cause of the failure in the first place, and it is difficult to
drill down from the abnormal application to analyze and locate the faulty operation and
maintenance object at the infrastructure level.

There are currently two main types of research. One is based on knowledge graphs [1–4],
involving multiple steps such as knowledge graph construction, knowledge learning,
and knowledge reasoning. Key technologies include ontology modeling of domain knowl-
edge, graph mining algorithms, and logical reasoning algorithms based on fast graph search.
The technical complexity is high. This method has strong generalization but insufficient
accuracy, and there are no mature cases of practical application.

The knowledge graph technology has been used by Tsinghua University in the field of
basic-level fault location in the vertical direction, applied to alarm traceability research [5–7].

Another type is based on root cause similarity analysis, such as the CoFlux algo-
rithm [8] and FluxInfer algorithm [9]. Due to the lack of topological relationship knowledge,
only based on algorithm analysis of the shape changes of indicator data, the accuracy is not
good in the distributed architecture.

A comparison of commonly used basic-level fault location methods is shown in Table 1.

Table 1. Comparison of commonly used basic-level fault location methods.

Method Type Method Core Idea Existing Problems

Knowledge Graph

Build a knowledge graph
based on operation

experience and topology
relationships, and achieve

location through knowledge
fusion and fault reasoning.

The construction of the
knowledge graph is relatively
complex and effective in local
scenarios, but there is still a

gap from practical use.

1-3 Similarity Analysis

After applying anomalies,
directly compare the

mutation patterns of a large
number of indicators in the

basic layer to locate.

Lack of configuration
relationships in the basic
layer, limited accuracy.

It can be seen that there is insufficient accuracy in basic-level fault location technology,
which is effective in local scenarios but still has a gap from practical use.

Take the distributed financial information system as an example. Considering the
extremely strict stability guarantee and regulatory requirements brought by the character-
istics of a financial business, the ideal emergency response time requirement is to detect
anomalies within 1 min, provide the scope of the object of fault location within 5 min,
and complete isolation, switching, expansion, restart and other emergency response op-
erations within 10 min. The overall business impact time is controlled within 20 min.
Against this background, fault location requires accuracy and efficiency, firstly, the cover-
age of fault types is sufficiently complete, and secondly, it meets the time requirement of
fast location in minutes.

As the financial distributed information system architecture evolves towards infrastruc-
ture cloudification, containerization of runtime environments, and microservice-oriented



Algorithms 2024, 17, 217 3 of 13

business systems, the mutual invocation of IT components has become increasingly com-
mon and complex. However, the current widely established Configuration Management
Database (CMDB) primarily focuses on the management of configuration items, with re-
lational databases serving as the primary means to store static configuration information,
making it difficult to dynamically reflect the topological relationships between configu-
ration items. Graph databases, on the other hand, are inherently suited for expressing
topological relationships between objects. Therefore, there is a need to establish a dy-
namic operational maintenance map based on a graph database to reflect the configuration
topology between various operational maintenance objects in real-time.

This map encompasses topological information, node inter-access, application high-
availability deployment and more, covering the dynamic operational maintenance map of
distributed information systems across applications, systems, and networks. It provides
real-time updated topological relationships for fault localization. The map construction
primarily involves the establishment of a unified data model, targeting various types of
information such as CMDB, PaaS cloud configuration centers, and specialized configura-
tion ledgers. The primary approach is rule-based processing, supplemented by machine
learning methods, to achieve entity alignment and association relationship construction.
Compared to knowledge graph construction methods, this approach is more concise,
eliminating the need for complex methods such as knowledge annotation and ontology
construction. The dynamic map reflects more precise associations, without the partial
ambiguity introduced by knowledge graph reasoning, making it more suitable for the
precision requirements in the operational maintenance field.

The focus of this research is on the construction of a dynamic operational maintenance
map and a fault localization method based on this map.

3. Model Architecture

Due to the extremely large scale of operation and maintenance objects involved in
the same business, the method of directly analyzing the fault location conclusion from
the data source has become feasible. It is necessary to rely on the accurate abnormal
perception of each operation and maintenance object to carry out analysis and location
for the abnormal alarm of each operation and maintenance object. Therefore, this method
relies on rich and complete alarm sources, including the system, network, application,
equipment, and other professional monitoring alarms. The key technical point is to screen
multiple source alarms and construct key features. Based on the complete and accurate
dynamic operation and maintenance map data and various professional alarm data, this
method studies the troubleshooting process triggered by an abnormal business flow, mainly
including database access flow, read-write I/O flow, and microservice access flow. The
business flow is shown in Figure 1. Through the analysis of the commonalities of various
data flows (deployment relationship commonalities, connection commonalities (physical,
logical), access flow commonalities), triggered by abnormal business flow, the possible root
cause of the failure is located forwardly.

Figure 1. Business flow.

The model architecture is shown in Figure 2.



Algorithms 2024, 17, 217 4 of 13

Figure 2. Model architecture.

The model is divided into three main modules: dynamic operation and maintenance
map construction, multi-source alarm screening and feature extraction, and map addressing
and common point analysis. This method is based on dynamic operation and maintenance
maps and various professional alarm source data, with complete fault coverage types.
Compared with methods that lack topological information and indicator correlation analy-
sis, it has obvious advantages in accuracy. At the same time, due to the aggregation and
simplification of alarm redundancy information in the alarm feature extraction process,
the common point analysis logic itself is relatively concise, leading to this method having
obvious advantages over knowledge graphs and other methods.

4. Dynamic Operation and Maintenance Map Construction

The overall architecture of the dynamic operation and maintenance map is shown in
Figure 3, which is divided into the data layer and service layer.

Figure 3. Dynamic map architecture.

The data layer includes data modeling, data access, data processing, and other steps,
while the service layer provides data interfaces and visual displays.

1. Unify map data modeling [10–13]: The data model is divided into node and edge
design. In terms of the node model, clarify the node types and attributes of each node
type, including unique KEYs (this method uses IPs for alarm point attachment). Node
types are obtained by refining and combing the operation and maintenance object di-
rectory of distributed information systems, covering applications, systems, networks,
devices, etc., including but not limited to applications, application groups, middle-
ware, PODs, virtual machines, physical machines, network devices, etc. In terms of
the relationship model, it is mainly divided into two categories, one is the application
access level topology, as shown in Figure 4. It mainly describes the call relationship
between applications, groups, and services. The other is the vertical resource depen-
dency vertical topology, as shown in Figure 5. It mainly describes the deployment and
operation dependency relationship from large to small at the resource level.



Algorithms 2024, 17, 217 5 of 13

Figure 4. Application access level topology data model.

Figure 5. Resource-dependent vertical topology data model.

2. Data access [14,15] mainly includes four types of data, of which configuration manage-
ment and network management mainly provide static basic device information data,
used to build the “skeleton” of the basic environment, while network TCP flow and
microservice call logs provide IP-level IT component intercommunication, as well as
dynamic information of business calls, used to reflect the actual business deployment
situation on top of the “skeleton”.

3. Data processing [16,17]: According to the four layers defined by the data model
and the constraints between objects, information extraction and entity alignment are
completed based on the multi-source data of the access module. In the process of
data fusion, potential relationships are mined through intelligent algorithms for some
missing relationships. Taking network switches as an example, some old devices
cannot support neighbor discovery protocol (LLDP/CDP) data collection, resulting
in missing topology connections. However, after introducing a similarity judgment
intelligent model, the port connection relationship can be established by calculating the
similarity of traffic rate trends on different ports. After introducing network simulation
capabilities, cross-network connection relationships between system nodes can also
be established through route table entry calculations. With the help of algorithms,
the integrity of map data can be further improved, and self-learning capabilities can
be built.

4. Data interface access and visualization display [18,19]: Based on graph query, they
provide data access interfaces and provide view display.



Algorithms 2024, 17, 217 6 of 13

5. Multi-Source Alarm Screening and Feature Extraction

Providing various professional alarms presents the characteristics of multi-source het-
erogeneity. The financial industry represented by large banks has realized the aggregation
of various professional alarms through centralized monitoring. Centralized monitoring
uses complex redundant fields to accommodate various professional alarm information.
Taking the centralized monitoring of a bank as an example, there are more than 50 field
types, which bring redundant information. In addition, in daily operation, the average
daily alarm volume reaches thousands of levels. After an abnormal business, there are still
alarms unrelated to the business during the fault period, which brings interference. To ad-
dress the above issues, the methods in this section aim to screen and extract features [20,21]
for multi-source alarms.

(1) Filtering

Filtering refers to the process of identifying and selecting alerts that are relevant to
a particular anomalous business event within a fault period, utilizing a sliding window
approach, in order to mitigate interference from irrelevant alerts.

Sliding window technology [22] is a widely used technique in spatio-temporal se-
quence data processing. It can slide a fixed-length window in the data stream and perform
uninterrupted real-time processing. Generally speaking, by using sliding windows, we
can avoid computing or storing the entire data stream, thereby achieving efficient and
useful results.

It includes the following two steps:

a. Window sliding: based on a sliding window W (W = 15 min), scanning centralized
monitoring alarm information (x1, x2, ..., xn) at fixed intervals (every minute), mainly
selecting abnormal application-related alarms and infrastructure-level alarms related
to the application.

b. Data aggregation calculation: For selected alarms, we obtain the IP address cluster
where the alarm is located and perform deduplication processing on it.

(2) Feature structure

The goal is to construct key alarm features, which can not only avoid the interference
caused by redundant information, improve the performance of subsequent alarm analysis,
but also reflect various types of associated information of alarms, and improve the coverage
of fault types. Considering that fault localization is mainly used to find the IP information of
the faulty component that caused the problem, based on the high availability characteristics
of distributed architecture, through isolation, expansion, restart, and other emergency
operations, the stable operation of the business can be restored on the first attempt. This
scenario essentially defines a fault range (IP set), rather than finding the detailed root cause
of a certain operation and maintenance object. Based on this, the most critical thing is the
IP information of the alarm object. For the alarm description information of the object itself,
due to the vast differences in fault root causes, it is difficult to effectively analyze in a short
time, so this semantic information is excluded from the alarm features.

At the same time, in order to better express the correlation between alarm objects
and ensure the coverage of fault types, the methods in this section expand various related
operation and maintenance object IPs based on read-write I/O streams, database streams,
and basic component inter-access streams as features.

For read/write I/O streams, first, we deploy a relationship to investigate whether
the application side abnormal container is located on the same host machine. Second, we
investigate the connection relationship between the virtual machine and the centralized
storage to identify whether the virtual machine failure is caused by a storage node failure.
Third, we investigate the connection relationship between the leaf switch and the storage
to identify whether the network side switch failure is caused by storage node failure.

For database access flow, firstly, we deploy a relationship to investigate whether the
application side exception container is located on the same host machine. Secondly, we



Algorithms 2024, 17, 217 7 of 13

investigate whether the exception container is connected to a database through an access
relationship. Thirdly, we investigate whether different database servers are connected to
the same network switch through the connection relationship to investigate the failure of
the network side switch.

For the basic component intercommunication flow, firstly, we check whether the abnor-
mal container accesses the same basic component (message middleware, cache database)
by deploying the relationship. Secondly, we check whether different basic components
access the same leaf switch and check the failure of the network side switch.

In summary, the multidimensional characteristics of the designed alarm flow table
are shown in Table 2. It can be seen that the information about the associated objects in
this flow table is currently empty and needs to be obtained in real-time through dynamic
operation and maintenance maps in the future.

Table 2. Multi-dimensional feature table field.

Field Meaning

Timestamp Sliding window timestamp

Alarming IP The IP address where the alarm occurred

Application of The application to which the alarm IP address belongs

Container vessel IP Container IP address

virtual machine IP Virtual machine IP address

host machine IP IP address of the host

Storage pool ID Distributed storage information associated with the
virtual machine

Information of the leaf switch connected to the application server
SW1 IP Uplink switch of application server

Database accessed by the application server IP Database information accessed by the application server

Uplink leaf switch information of the accessed database server
SW2 IP The uplink switch of the database being accessed

SW1 is directly connected to spine switch SW3 IP Spine switchboard SW3

SW2 is directly connected to spine switch SW4 IP Spine switchboard SW4

Cache database accessed by application server IP Redis

Message-oriented middleware accessed by application servers IP Kafka

6. Fault Location Based on Map Addressing and Alarm Commonality Analysis

This section enriches the information of the associated objects in the alarm sequence
flow table by querying the dynamic operation and maintenance map in real-time, and per-
forms commonality analysis on them to obtain the final ranking of the fault objects.

Considering that the map is 2D, it primarily comprises nodes and edges. Nodes
represent entities such as containers, virtual machines, servers, databases, and switches,
uniquely identified by IP addresses. Edges represent various relationships including access,
operation, and dependency. Map addressing refers to the process of querying the map
based on an alarm IP to obtain associated node IPs, thereby enriching the alarm flow table.

The input for commonality analysis is the enriched alarm flow table. Drawing inspi-
ration from word frequency statistics, a sliding window approach is adopted to conduct
statistical analysis based on the frequency of IP occurrences, outputting the top-ranked IPs.
These IPs are then checked for alarms, and if any are found, the final localization ranking is
the output. See Algorithm 1 for details.



Algorithms 2024, 17, 217 8 of 13

Algorithm 1 Common point analysis of map addressing and alarming

Input: Original alarm flow table: Torigin;
Dynamic operation and maintenance map: M;
Time window: W;
The number of common value columns to be detected: n

Output: Abnormal IP ranking collection
1. Initialization: Before each round of algorithm iteration, initialize the alarm flow

table with some field alarm table sets in Tini <= Torigin
2. while True do
3. Take the initialized original alarm flow table Tini at the current time
4. Extract the “IP address” field of the alarm in the alarm flow table T
5. Query the dynamic operation and maintenance map based on the “IP address” field

of the alarm, and obtain the associated information table.
6. Combine the original alarm flow table Tini and the associated information table

Trelationd to obtain Tall
7. According to the time window W
8. For i = 1 to n do
9. Query the common value of each attribute from the merged alarm flow table Tall,

and obtain the set attribute: attribute1, IP: count, ..., attribute: attribute n, IP: count S.
10.For the set S, for attributes 1 to n, find out whether the corresponding IP address

appears in the alarm IP
11.If it exists, it hits an exception
12.For the results with abnormal hits, the ranking of abnormality degree is based on

the number of times the IP appears
13.end for

return Return Abnormal IP ranking collection

7. Experiment and Analysis
7.1. Experimental Environment

Three servers are used: Intel(R) Xeon E5-2650v2 mailto: CPU@2.60 GHz, 32 GB mem-
ory; operating system: CentOS 7.3; Inspur, Jinan, China. one for deploying the anomaly
localization model, which is implemented in Python and divided into four program mod-
ules according to algorithm logic: alarm monitoring and scanning, flow table insertion, map
addressing and flow table enrichment, and flow table common point search, with anomaly
localization result output; one for deploying the graph database Neo4j to save dynamic
operation and maintenance map topology relationship data; and one for deploying MySQL
to save alarm flow tables. See Table 3 for details.

Table 3. Environment configuration.

Serial Number Type Configure Component Deployment

1 Virtual Machine 16C/32G memory storage/500G MySQL
2 Virtual Machine 16C/32G memory storage/500G Neo4j
3 Virtual Machine 16C/32G memory storage/500G Deploy positioning model

7.2. Data Set

This study focuses on a pivotal payment-related business system of a bank based on
the microservice architecture. Utilizing a chaos engineering platform in a test environment,
nine infrastructure failures (encompassing network, system, database, and storage) were
simulated. The system’s components, including applications, operating systems, networks,
databases, and storage, are equipped with individual monitoring systems, and all moni-
toring alerts converge into a centralized monitoring system. The dataset for this research
comprises the centralized monitoring alert events from the 15-min period preceding the oc-
currence of the aforementioned nine types of failures. The test dataset essentially represents



Algorithms 2024, 17, 217 9 of 13

a tabular record of various component alert information during fault periods. The fields
within this table encompass critical information such as time, the IP address of the alerting
node, the object of the alert, and a descriptive narrative of the alert event itself.

Details are shown in Table 4.

Table 4. Data set.

Fault Type Data Set Failure Cases CData Scale

Networking Core switch hardware failure 1.32 Ten thousand/15 min
Hardware failure of aggregation switch 1.41 Ten thousand/minutes

Firewall exception 1.25 Ten thousand/minutes
Abnormal hardware of access switch 1.18 Ten thousand/minutes

Load balancing failure 1.25 Ten thousand/15 min

The system Abnormal computing node 1.51 Ten thousand/minutes

Database Mutual visit database exception 1.18 Ten thousand/minutes
Cache exception 1.23 Ten thousand/15 min

Storage area Distributed storage exception 1.33 Ten thousand/minutes

7.3. Evaluation Indicators

The fault location mainly focuses on the hit rate, which is the ratio of hits to all faults.
In addition, the fault location also focuses on timeliness, which is the time consumption of
analysis. Therefore, the main indicators are the hit rate and analysis time consumption.

7.4. Experimental Protocol and Analysis

(1) Experiment Triggering

To facilitate the experimentation, the test dataset encompassing the aforementioned
nine fault categories was imported into the backend’s historical alert table. Concurrently,
a real-time alert table with an identical table structure was established. Upon commencing
the testing of a specific fault type, a timed script, running every minute, was utilized to
sequentially select the minute-by-minute test data for that fault type and insert it into the
real-time alert table. Additionally, the actual insertion time was updated in the timestamp
field of the real-time alert table.

The proposed model in this paper scans the real-time alert table every minute, retrieves
the latest one-minute alert events, and performs fault localization analysis. Through this
approach, the simulation of faults is achieved, thus triggering the experimental procedures.

(2) Scene Design

Design the following two experimental scenarios, focusing on comparing hit rates and
positioning timeliness.

Scenario 1: Pay attention to the module for filtering and screening multiple source
alarms, and compare the timeliness of the fault localization program running under the
condition of canceling the module and under normal conditions.

Due to the alarm storm problem during business failures, it will cause performance
pressure on the troubleshooting system. Therefore, before the alarm data are accessed by
the troubleshooting system, the screening and filtering of alarms is critical. Time T is the
trigger time of the business alarm.

For this scenario, we utilized the test dataset pertaining to Fault Case 4, which focuses
on the anomaly of an access switch. The experiment was conducted in two phases, with each
phase utilizing the fault data to simulate fault recording and playback by inserting an empty
real-time alert table for a duration of 15 min. In the first phase, the alert filtering logic was
omitted from the model program. Subsequently, in the second phase, the alert filtering logic
was incorporated into the model program, enabling a comparative analysis of the results.

The test results are shown in Table 5, Figures 6 and 7.



Algorithms 2024, 17, 217 10 of 13

Figure 6. Request time comparison.

Figure 7. Number of alarms comparison.

Table 5. Data set

Time (Minutes)

Original Alarm
Quantity

(Canceling the
Multi-Source

Alarm Screening
Step)

Compressed
Alarm Volume

(Adding Multiple
Source Alarm

Screening Steps)

Compression
Ratio

Cancel the
Multi-Source

Alarm Screening
Step Request

Time (ms)

Increase the
Request Time for
the Multi-Source
Alarm Screening

Step (ms)

T-10 58 5 8.6% 2030 174
T-9 88 7 7.9% 2992 238
T-8 73 6 8.2% 2701 198
T-7 25 4 16% 873 136
T-6 4248 131 3.1% 152,928 4847
T-5 2658 97 3.6% 98,124 3492
T-4 1118 86 7.7% 42,484 3096
T-3 869 71 8.2% 38,642 2698
T-2 2094 52 2.5% 81,608 1820
T-1 150 11 7.3 5551 374
T 11,381 470 4.1% 427,933 17,073

Test conclusion: At time T, the business-level life and death indicator alarm was
triggered. Tracing back 10 time slices from time T, statistical analysis showed that the
multi-source alarm screening step was canceled. At time T, the fault localization program



Algorithms 2024, 17, 217 11 of 13

received a total of 11,381 alarms, taking a total of 428 s. If the multi-source alarm screening
step was added, the localization program received a total of 470 alarms at time T, taking
a total of 17 s. Through comparison and verification, the alarm screening achieved an
alarm compression ratio of 3.99%, with the time consumption falling from 428 s to 17 s,
a reduction of 96%. This greatly improved the program’s performance.

Scenario 2: Remove some topological relationship data from the dynamic operation
and maintenance map and run the positioning program.

This experiment analyzed a total of nine failure case data covering four categories:
network, system, database, and storage. Among them, the relationship data of aggregation
switches were removed from test case 4 to construct test case 4#, the relationship data of
core switches were removed from test case 5 to construct test case 5#, and the relationship
data of cache were removed from test case 7 to construct test case 7#. The location program
was then run.

In this scenario, nine fault case datasets were employed, among which the datasets of
Fault Case 4, 5, and 7 required repeated recording and playback, twice each. During the
second playback of these fault cases, the topological data related to the dynamic map was
excluded. Therefore, a total of 12 rounds of experiments were conducted, each lasting
15 min, to facilitate the analysis and comparison of experimental data.

The test results are shown in Table 6.
Test conclusion: From the 12 test cases, it can be verified that whether the test results

are successfully located depends directly on whether the dynamic map provides the
configuration topology data corresponding to the fault type. The type of dynamic map
topology data directly determines the fault types covered by the location.

(3) Experimental analysis conclusion

In summary, the two key modules of this model—alarm screening and dynamic map
addressing are extremely critical. Alarm screening effectively improves the timeliness
of hits, while the completeness of the topology data type of the dynamic map directly
determines the fault coverage and hit rate. The experimental results demonstrate the
effectiveness of this model method.

Table 6. Scenario 2 test results.

Test Case
Computa-

tional
Node

Distri-
buted
Block

Storage

Access
Switch

Converged
Switch

Core
Switch DataBase Cache

Memory FireWalls Load
Balancing

Failure
Scenario

Posit-
ioning
Success

Testing 1 Yes Yes Yes Yes No No No Yes Yes
comput-
ational
node

Yes

Testing 2 Yes Yes No Yes No Yes Yes Yes No

Distri-
buted
block

storage

Yes

Testing 3 No Yes Yes No No No No No No access
switch Yes

Testing 4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Converged
switch Yes

Testing 4# Yes Yes Yes No Yes Yes Yes Yes Yes Converged
switch No

Testing 5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Core
switch Yes

Testing 5# Yes Yes Yes Yes No Yes Yes Yes Yes Core
switch No

Testing 6 Yes Yes Yes Yes Yes Yes Yes Yes Yes
mutual

visit
database

Yes

Testing 7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Cache
memory Yes



Algorithms 2024, 17, 217 12 of 13

Table 6. Cont.

Test Case
Computa-

tional
Node

Distri-
buted
Block

Storage

Access
Switch

Con-
verged
Switch

Core
Switch DataBase Cache

Memory FireWalls Load Bal-
ancing

Failure
Scenario

Posit-
ioning
Success

Testing 7# Yes Yes Yes Yes Yes Yes No Yes Yes Cache
memory No

Testing 8 No Yes Yes Yes Yes Yes Yes Yes No Firewalls Yes

Testing 9 Yes Yes Yes Yes Yes Yes No Yes No Load
balancing No

7.5. Application Effect Analysis

This method has been applied in a bank’s key personal settlement business, analyzing
real-time alerts related to the business, providing timely positioning results of abnormal
objects during malfunctions and sending them to operation and maintenance personnel
via email. In addition, a large-screen view has been developed, which supports drilling
down to view the running details of suspicious objects. The actual positioning accuracy
rate of this method is about 82%, and the analysis time is less than 2 min.

8. Conclusions

In the distributed architecture, due to resource pooling, the vertical mapping relation-
ship between applications and the infrastructure layer is extremely complex, making it
difficult to effectively drill down from the abnormal application to locate the abnormal
object in the infrastructure layer, thus reducing the efficiency of the emergency response.
This paper studies a model method of vertical infrastructure-level localization and provides
a systematic solution. In terms of positioning the longitudinal foundation layer, current
research focuses on methods such as knowledge graph and indicator correlation analysis.
Knowledge graph technology has high complexity and is only effective in local scenarios
such as networks, leaving a gap between practical use. Indicator correlation analysis lacks
configuration correlation information between operation and maintenance objects, limit-
ing accuracy. This paper proposes a foundation layer fault positioning method based on
dynamic operation and maintenance maps and alarm commonality analysis. During the
fault period, various alarm entities are associated with the dynamic operation and mainte-
nance map, and the commonality of alarms is obtained based on graph search addressing,
covering deployment relationship commonality points, connection commonality points
(physical, logical), access flow commonality points, etc., thus positively locating the possi-
ble root cause of the fault. This method is more concise and efficient than the knowledge
graph method and is more accurate than the indicator correlation analysis method due to
the addition of configuration correlation information. It has been implemented in a key
business scenario of payment type in a bank’s actual production environment, with an
alarm positioning accuracy rate of over 82% and an analysis time of less than 2 min.

Author Contributions: Conceptualization, S.W.; Methodology, S.W.; Software, S.W.; Resources, J.G.;
Writing—original draft, S.W.; Writing—review & editing, J.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets presented in this article are not readily available because
the data are from a 3rd party business.

Conflicts of Interest: The authors declare no conflicts of interest.



Algorithms 2024, 17, 217 13 of 13

References
1. Li, S.; Wang, J.; Rong, J. Design-Oriented product fault knowledge graph with frequency weight based on maintenance text. Adv.

Eng. Inform. 2023, 58, 102229. [CrossRef]
2. Subagdja, B.; Shanthoshigaa, D.; Wang, Z.; Tan, A.-H. Machine Learning for Refining Knowledge Graphs: A Survey. Acm Comput.

Surv. 2024, 56, 1–38. [CrossRef]
3. Li, Z.; Li, Y.; Sun, Q.; Qi, B. Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph.

Entropy 2022, 24, 1589. [CrossRef]
4. Zhou, Y.; Lin, Z.; Tu, L.; Song, Y.; Wu, Z. Big Data and Knowledge Graph Based Fault Diagnosis for Electric Power Systems. EAI

Endorsed Trans. Ind. Netw. Intell. Syst. 2022, 9, e1. [CrossRef]
5. Li, M.; Li, Z.; Yin, K.; Nie, X.; Zhang, W.; Sui, K.; Pei, D. Causal Inference-Based Root Cause Analysis for Online Service Systems

with Intervention Recognition. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’22, Washington, DC, USA, 14–18 August 2022; pp. 3230–3240. [CrossRef]

6. Sun, S.; Chai, Z.; Wu, R.; Jin, J.; Wang, Y.; Xu, W.; Qi, G. Customer Complaint Guided Fault Localization Based on Domain
Knowledge Graph. In Proceedings of the Database Systems for Advanced Applications: 28th International Conference, DASFAA
2023, Tianjin, China, 17–20 April 2023; pp. 568–579. [CrossRef]

7. Zhuang, B.; Shen, C.; Reid, I. Training Compact Neural Networks with Binary Weights and Low Precision Activations. arXiv
2018, arXiv:1808.02631.

8. Su, Y.; Zhao, Y.; Xia, W.; Liu, R.; Bu, J.; Zhu, J.; Cao, Y.; Li, H.; Niu, C.; Zhang, Y.; et al. CoFlux: Robustly Correlating KPIs by
Fluctuations for Service Troubleshooting. In Proceedings of the 2019 IEEE/ACM 27th International Symposium on Quality of
Service (IWQoS), Phoenix, AZ, USA, 24–25 June 2019; pp. 1–10. [CrossRef]

9. Liu, P.; Zhang, S.; Sun, Y.; Meng, Y.; Yang, J.; Pei, D. FluxInfer: Automatic Diagnosis of Performance Anomaly for Online Database
System. In Proceedings of the 2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC),
Austin, TX, USA, 6–8 November 2020; pp. 1–8. [CrossRef]

10. Brenner, M.; Gillmeister, M. Designing CMDB data models with good utility and limited complexity. In Proceedings of the 2014
IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–15. [CrossRef]

11. Saenz-Core, J.; Vicente, E.J.F.; de la Cámara, M. A CMDB Meta Model Based on Services. In Integrated Spatial Databases; Springer:
Berlin/Heidelberg, Germany, 2011.

12. Bonifati, A. The Quest for Schemas in Graph Databases (keynote). In Proceedings of the International Workshop on Data
Warehousing and OLAP, Santiago, Chile, 22–26 May 2023.

13. Crowe, M.K.; Laux, F. Graph Data Models and Relational Database Technology. arXiv 2023, arXiv:abs/2303.12376.
14. Luaces, D.; Viqueira, J.R.R.; Cotos, J.M.; Flores, J.C. Efficient access methods for very large distributed graph databases. Inf. Sci.

2021, 573, 65–81. [CrossRef]
15. Vela, B.; Barca, J.M.C.; Cáceres, P.; Sierra-Alonso, A.; Cuesta, C.E. Using a NoSQL Graph Oriented Database to Store Accessible

Transport Routes. In Proceedings of the EDBT/ICDT Workshops, Vienna, Austria, 26 March 2018.
16. Eldin, A.N.; Assy, N.; Kobeissi, M.; Baudot, J.; Gaaloul, W. Enabling Multi-process Discovery on Graph Databases. In Proceedings

of the International Conference on Cooperative Information Systems, Bozen-Bolzano, Italy, 4–7 October 2022.
17. Adoni, H.W.Y.; Nahhal, T.; Krichen, M.; Aghezzaf, B.; Elbyed, A. A survey of current challenges in partitioning and processing of

graph-structured data in parallel and distributed systems. Distrib. Parallel Databases 2019, 38, 495–530. [CrossRef]
18. Klein, K.; Sequeda, J.; Wu, H.Y.; Yan, D. Bringing Graph Databases and Network Visualization Together (Dagstuhl Seminar

22031). Dagstuhl Rep. 2022, 12, 67–82.
19. Wu, H.Y.; Klein, K.; Yan, D. Effective Network Analytics: Network Visualization and Graph Data Management. IEEE Comput.

Graph. Appl. 2023, 43, 10–11. [CrossRef]
20. Kuraku, N.V.P.; He, Y.; Ali, M. Comparative Analysis of the Fault Diagnosis in CHMLI Using k-NN Classifier Based on Different

Feature Extractions. In Machine Learning Paradigms; Springer: Berlin/Heidelberg, Germany, 2018.
21. Kaplan, K.; Kaya, Y.; Kuncan, M.; Mínaz, M.R.; Ertunc, H.M. An improved feature extraction method using texture analysis with

LBP for bearing fault diagnosis. Appl. Soft Comput. 2020, 87, 106019. [CrossRef]
22. Zeng, Z.; Cui, L.; Qian, M.; Zhang, Z.; Wei, K. A survey on sliding window sketch for network measurement. Comput. Netw. 2023,

226, 109696. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.aei.2023.102229
http://dx.doi.org/10.1145/3640313
http://dx.doi.org/10.3390/e24111589
http://dx.doi.org/10.4108/eetinis.v9i32.1268
http://dx.doi.org/10.1145/3534678.3539041
http://dx.doi.org/10.1007/978-3-031-30678-5_43
http://dx.doi.org/10.1145/3326285.3329048
http://dx.doi.org/10.1109/IPCCC50635.2020.9391550
http://dx.doi.org/10.1109/NOMS.2014.6838375
http://dx.doi.org/10.1016/j.ins.2021.05.047
http://dx.doi.org/10.1007/s10619-019-07276-9
http://dx.doi.org/10.1109/MCG.2023.3267210
http://dx.doi.org/10.1016/j.asoc.2019.106019
http://dx.doi.org/10.1016/j.comnet.2023.109696

	Introduction
	Research Background
	Model Architecture
	Dynamic Operation and Maintenance Map Construction
	Multi-Source Alarm Screening and Feature Extraction
	Fault Location Based on Map Addressing and Alarm Commonality Analysis
	Experiment and Analysis
	Experimental Environment
	Data Set
	Evaluation Indicators
	Experimental Protocol and Analysis 
	Application Effect Analysis

	Conclusions
	References

