
Citation: Withaningsih, S.; Malik,

A.D.; Parikesit, P. Aboveground

Spatiotemporal Carbon Storage

Model in the Changing Landscape of

Jatigede, West Java, Indonesia. Forests

2024, 15, 874. https://doi.org/

10.3390/f15050874

Academic Editors: Leiguang Wang,

Guanglong Ou and Yihang Zhang

Received: 24 March 2024

Revised: 13 May 2024

Accepted: 15 May 2024

Published: 17 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Aboveground Spatiotemporal Carbon Storage Model in the
Changing Landscape of Jatigede, West Java, Indonesia
Susanti Withaningsih 1,2,3,* , Annas Dwitri Malik 3 and Parikesit Parikesit 1,2,3

1 Sustainability Science Program, Graduate School, Universitas Padjadjaran, Jl. Dipati Ukur No. 35,
Bandung 40132, Indonesia

2 Department Biology, Faculty of Mathematics and Natural Sciences Natural Science,
Universitas Padjadjaran, Jl. Raya Bandung–Sumedang Km. 21, Andir 45363, Indonesia

3 Center for Environment and Sustainability Science, Universitas Padjadjaran, Jl. Sekeloa Selatan 1 No. 1,
Bandung 40132, Indonesia

* Correspondence: susanti.withaningsih@unpad.ac.id; Tel.: +62-22-250-2176

Abstract: Land use and land cover (LULC) change is the variable with the maximum influence on
carbon storage in terrestrial ecosystems, due to a fundamental alteration of the ecosystem, structure,
function, and variability over time. Understanding the dynamics of aboveground carbon stocks in
underway constructions and urban expansions is crucial to provide a basis for land use management
and planning. The objective of this study was to analyze the spatiotemporal dynamics of aboveground
carbon storage and assess how the LULC change is affected by human intervention, as well as how
aboveground carbon stocks respond to these changes in the tropical highland landscape of Jatigede.
In this study, changes in aboveground carbon stocks were investigated between 2014 and 2021 by
using the integrated valuation of ecosystem services and tradeoffs (InVEST) model. The results
revealed that the total aboveground carbon stock decreased between 2014 and 2021. Forests showed
the greatest decline in the aboveground carbon stock in terms of space. The primary cause of the
reduction in the aboveground carbon stock was the conversion of vegetated land to agricultural
and urban land cover. The aboveground carbon stock change was also caused by the continuing
construction, which resulted in the extension of construction zones. However, an increase in the
aboveground carbon stock was mostly observed in mixed gardens that were close to forest areas. The
preservation of mixed gardens as a tree-based agroforestry system can be suggested for enhancing
the aboveground carbon stock, as mixed gardens play a significant role in carbon storage in the midst
of the increasingly massive deforestation due to the expansion of urban areas.

Keywords: aboveground; carbon; dynamics; land use changes; InVEST model

1. Introduction

Atmospheric mean temperature increases of 1.4–2.0 ◦C by 2050 and 1.8–3.7 ◦C by
2070 are predicted under different future climate change scenarios [1]. Over time, this
condition may have an effect on the Earth’s ecosystems, endangering people and other
living things [2]. Global warming is mainly caused by an increase in greenhouse gas
concentrations in the atmosphere, and CO2 is considered one of the largest contributors
to this climate phenomenon [3,4]. Changes in some environmental factors in the long
run denote climate change. These changes have an impact on the agriculture industry,
animals, the hydrological cycle, wind patterns, rainfall distribution, and plant growth
and development, and since plants are the primary producers on Earth, the entire food
chain will be affected as well [5]. The Paris Agreement’s goal, which states that efforts
should be made to prevent the rise in global average temperature to 1.5 ◦C above preindus-
trial levels and to keep it well below 2 ◦C, reflects the increased ambition of the interna-
tional climate policy [6]. Sequestering the carbon concentrated in the atmosphere to the
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Earth’s terrestrial ecosystems might be the key aspect in mitigating the increase in global
temperatures [7].

Given its strong relationship with both the productivity of terrestrial ecosystems and
climate control, carbon storage is a crucial indication of the functioning of ecosystem
services [8]. In order to remove a significant amount of CO2 from the atmosphere, it is
practical to ensure that it is absorbed by the physiological system, where it is first stored
as biomass through photosynthesis and then becomes a component of the soil [9,10]. It is
widely known that forests have the potential to store high amounts of carbon in terrestrial
ecosystems. Because of their high resilience and reduced risk of the quick release of carbon
into the atmosphere, trees and soil in forests that are maintained well have been found to
have significant potential for sequestering carbon [11,12]. Carbon sequestration services are
more prominent in some tropical regions because of the high plant diversity and massive
carbon storage provided by tropical rainforests [2,13,14]. About 37% of the estimated
1150 Gt of carbon stored in forests worldwide comes from tropical forests [15,16].

Land use and land cover (LULC) change is the variable with the maximum influence on
carbon storage in terrestrial ecosystems, due to a fundamental alteration in the ecosystem,
structure, function, and variability over time [17]. Between 2000 and 2030, the loss of
carbon in living biomass from the habitat loss caused by urban expansion is estimated to
be 299–633 million tons C and the emission to the atmosphere is expected to be around
1.9 gigatons C [18], which is slightly lower than the urban carbon emitted due to energy
consumption [19]. A change from the forest landscape to non-vegetated land would
obviously release carbon into the atmosphere and reduce the carbon storage in terrestrial
ecosystems, which would, in turn, increase the CO2 concentration in the atmosphere [20].
Therefore, carbon storage valuation in terrestrial ecosystems is a prominent issue since
carbon stocks tend to vary in different types of land use and land cover. Moreover, the
spatial and temporal dynamics of LULC change interactions and their resultant shaping
of the ecosystem service supply potential in dynamic landscapes continue to be essential
aspects in evaluating carbon sinks in such ecosystems over time [21].

Relying only on field inventory data through destructive sampling to estimate plant
biomass and the carbon stored is not efficient and consumes a lot of time and resources.
Non-destructive methods, such as the allometric equation to estimate biomass, remote
sensing, and spatial modeling, are more effective in evaluating the carbon storage in such
ecosystems over large areas. With the development of remote sensing and geographic
information systems, many scholars have developed tools for estimating carbon storage
based on land use and land cover (LULC). These include the Carnegie–Ames–Stanford
approach (CASA), which is frequently used in net primary productivity (NPP) estimation,
especially for various types of vegetation in North America [22]; the carbon exchange
between vegetation, soil, and atmosphere (CEVSA) model, which requires further high-
degree technical analysis of CO2 assimilation and stomatal conductance based on soil,
water and climate factors for carbon sequestration assessment [23]; and the land utilization
and capability indicator (LUCI), which provides more detailed carbon storage information
for each soil type and LULC combination but cannot split this into each carbon pool [24,25].
The integrated valuation of ecosystem services and tradeoffs (InVEST) is a sophisticated,
up-to-date, and easily accessible model for evaluating the dynamics of carbon storage in
terrestrial ecosystems over time or the ecosystem service assessment [10,26,27]. The InVEST
carbon storage and sequestration model performs better when studying and evaluating
how climate change and LULC change affect carbon storage [28,29]. The InVEST model
provides spatially explicit data (using spatial data), resulting in spatial and statistical data
in terms of tons of carbon sequestered [30]. Such a model is effective in evaluating carbon
storage in the landscape using carbon pool and LULC change data [31]. Therefore, this
is a powerful model for providing carbon storage dynamics over a large landscape for
spatiotemporal analysis [24].

Over the past few decades, Indonesia, as a developing country, has seen a notable
increase in its population and in urban expansion that have had an impact on both urban
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and rural regions, especially Java, the fastest-growing island [32]. With this increase in the
urban landscape, natural ecosystems endure significant pressure. Land use conversion
to built-up areas, such as industrial, residential, and agricultural land, at the expense
of natural ecosystems is the most prominent issue in the majority of developing urban
areas [33]. A reduction in the regulation of ecosystem services, such as carbon sequestration,
is generally caused by the conversion of the natural landscape to agricultural land, both for
commercial and for subsistence purposes, and this trend is exacerbated by the increased area
of construction land [34]. In the past decade, a tropical highland landscape that is situated
in Jatigede, Sumedang Regency, West Java, has experienced forest cover degradation.
These land deteriorations include alterations of protected forests and production forests of
7817 ha between 2015 and 2017, which conflicts with the regional planning of Sumedang
Regency [35]. In recent years, the national strategic project of the Jatigede Reservoir
and Hydropower Plant, which is expected to produce 110 MW of electricity and raw
water for agriculture irrigation, has likely significantly degraded the forest cover. In turn,
the carbon sequestration potential of vegetated ecosystems in this area would likely be
diminished. Determining the relationship between LULC change and carbon storage in this
area is crucial since changing LULC classes have different impacts on carbon stocks [36],
and this large-scale construction is still underway. This study focuses on analyzing the
spatiotemporal dynamics of the aboveground carbon storage in the tropical highland
landscape of Jatigede between 2014 and 2021 and assessing how the LULC change is
affected by human intervention, as well as how aboveground carbon stocks respond
to these changes, by using the InVEST model for the assessment of the carbon storage
capability and resilience of the landscape to the undergoing rapid LULC change.

2. Materials and Methods
2.1. Study Area

This study was conducted in Jatigede Subdistrict, which is situated in Sumedang, West
Java, Indonesia. Sumedang Regency is dominated by an agricultural area that consists of
rainfed rice fields, irrigated rice fields, plantations, mixed gardens, and upland fields [37].
Before the Jatigede Reservoir was built, 53.93% of the land around it was used for agri-
culture, while 46.07% was for non-farmland use. Following the building of the Jatigede
Reservoir, agricultural land use dropped from 44.36% to 9.56% [38]. Regarding livelihood,
most of the residents of Jatigede Subdistrict work in the agricultural sector, either as farm-
ers or as farm laborers. This is related to the condition of the region, which supports the
agricultural sector. A small number of others work in the government, industrial, trade,
and self-employed sectors. The study area is presented in Figure 1.

2.2. Data Collection

Field measurements and geographic information system (GIS) measurements were
conducted in this integrated approach in order to aggregate primary and secondary data.
The primary data of carbon storage were collected from the direct inventory of a tree stand’s
diameter at breast height (DBH) and tree height. Purposive sampling was used to sample
and quantify the tree stands in the research region, while taking topographic, climatic, and
safety considerations into account. The sample size of 30 × 30 m2 corresponds to a pixel size
of about 30 m in medium-resolution satellite imagery. The secondary data consisted of the
worldwide geographical distribution of agricultural yields of all commodities in Jatigede
in ton/ha, such as sweet potato, maize, groundnut, banana, cassava, and rice. These data
were considered as biomass of nontimber plants in the study area and were converted to
the mass of carbon/carbon contents. The agricultural yields were obtained from Global
Agro-ecological Zones+ (GAEZ+) data on global crop yields [39]. Medium-resolution
multispectral satellite imageries were downloaded from the United States Geographical
Survey (USGS) website (earthexplorer.usgs.gov, accessed on 3 October 2023 and 25 Febru-
ary 2024) and were analyzed using ArcMap 10.6.1 software. The satellite imagery data

earthexplorer.usgs.gov
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required for spatial analysis, including the reference years of data obtained, are detailed in
Table 1.
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Figure 1. Map of the study area location in Jatigede Subdistrict in West Java, Indonesia.

Table 1. Satellite imagery data used in this study.

Year Data Imagery Date Bands Resolution (m) Source

2014 Landsat 8 OLI TIRS C2 L1 5 August 2014 Multispectral 30 https://earthexplorer.usgs.gov
(accessed on 25 February 2024)

2021 Landsat 8 OLI TIRS C2 L1 5 June 2021 Multispectral 30 https://earthexplorer.usgs.gov
(accessed on 3 October 2023)

2.3. Methods
2.3.1. Preprocessing

Satellite imagery correction was required to reduce atmospheric disturbance. The
preprocessing consisted of two steps, namely radiometric calibration and atmospheric
correction. All preprocessing steps were executed in the Semiautomatic Classification
Plugin (SCP), which is integrated in the QGIS 3.16 spatial analysis data software. The free
QGIS plugin called SCP makes it easier to convert satellite images to reflectance, which
improves the state of the Earth’s surface by decreasing atmospheric disturbance. In all
steps of calibration and correction, dark-object subtraction (DOS1) was applied.

2.3.2. Land Use and Land Cover Classification

LULC classification was conducted for the satellite products of both imagery dates
(2014 and 2021). The Landsat OLI 8 data allow image enhancement in the pan-sharpened
process to produce a higher-resolution image. To obtain LULC classification maps, the

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov


Forests 2024, 15, 874 5 of 19

maximum likelihood–supervised classification was applied in ArcMap 10.6.1. On each
satellite imagery that represented the LULC classes, a certain number of training samples
were selected (buildings/settlements, forests, upland fields, paddy fields, mixed gardens,
bare lands, and water bodies). Recommendations of the Ministry of Forestry and Environ-
ment and Regional Planning Agency of Sumedang for the remote sensing technique for
medium-resolution satellite imaging data were followed in choosing this nomenclature
variant of LULC classes. Training samples in the multispectral image data were determined,
assisted by ground-truthing on the research site and Google Earth satellite imagery. The
number of training datasets and their distribution in each LULC class are presented in
Tables 2 and 3. The best combination of spectral bands that could be applied in this study
for Landsat 8 OLI was band 4–3-2 [40]. Moreover, the band combination for false color
(5-4-3) was the best band combination to map the vegetation covers in the study area.
Tree leaves contain a lot of chlorophyll, which makes them stronger in absorbing red light
from the infrared spectrum, making the false color band combination the most suitable
for vegetation cover mapping [41]. Subsequently, an accuracy evaluation was carried out
to reduce LULC classification mistakes due to the sampling technique and the possibility
of pixel values in the imaging data being misinterpreted. All random training sample
points were taken from the result of image classification, and stratified random sampling
was used in the accuracy assessment. The area-based proportion for each LULC class
using the overall expected standard error of 0.014 was applied for both LULC maps, which
resulted in 51 sample points on the 2014 LULC map and 50 sample points on the 2021
LULC map. The producer’s accuracy, the user’s accuracy, and the overall accuracy, along
with the kappa coefficient, were calculated in the Accuracy Assessment of Thematic Maps
(AcaTaMA), which is also integrated in QGIS 3.16. The higher the accuracy of kappa, the
higher the accuracy of the LULC mapping (>85%) [10].

Table 2. The number of training samples for the 2014 LULC classification.

Class Name Area (m2) Count

Forests 3,319,568.373 3688
Water bodies 59,244.24933 66
Buildings/settlements 281,645.0885 313
Mixed gardens 5,663,479.708 6293
Paddy fields 3,423,530.412 3804
Dryland 3,477,032.264 3863
Bare lands 189,613.258 211

Table 3. The number of training samples for the 2021 LULC classification.

Class Name Area (m2) Count

Forests 1,318,722.53 1465
Built-up areas 15,023.65651 17
Buildings/settlements 2,365,091.795 2628
Water bodies 6,671,714.647 7413
Paddy fields 128,032.3131 142
Bare lands 94,210.19243 105

2.3.3. Vegetation Index Mapping

The direct biomass and carbon stock inventory of tree stands were extrapolated from
the plot scale to the landscape scale using a vegetation index distribution map. Finding the
index value of the vegetation cover that was present at the research location was another
helpful application of this index. The Normalized Difference Vegetation Index (NDVI) is the
most widely used spectral vegetation index. Landsat 8 OLI image data were transformed
into a raster map with the values of the vegetation index in order to determine the present
condition of the vegetation in the study area. The NDVI was used in this study to obtain
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data on the canopy and vegetation coverage, which was then represented on a map of
the distribution of vegetation [42]. In this study, the most recent available Landsat 8 OLI
multispectral imagery was used to generate the NDVI. The multispectral image’s NDVI
is a partition of the red and near-infrared bands, which correspond to bands 5 and 4 in
Landsat 8 OLI. The following formula was used to obtain the NDVI map:

NDVI = (NIR − RED)/(NIR + RED) (1)

where NDVI is the Normalized Difference Vegetation Index, NIR is spectral band number 5
(near infrared) in Landsat 8 imagery, and RED is spectral band number 4 (red) in Landsat 8
imagery. A map of the NDVI distribution was generated after being processed in the Raster
Calculation feature of ArcMap 10.6.1 software. The NDVI ranges between −1.0 and 1.0,
where negative values indicate an area of water bodies or open area and positive values
represent some area with vegetation [43]. An area of vegetation is said to have increased
photosynthetic activity if its NDVI value is higher [44].

2.3.4. Biomass and Carbon Stock Inventory

In this study, due to the significant impact of LULC changes on deforestation and
considering that vegetation is the most active carbon reservoir in the carbon cycle, only
the vegetation’s aboveground biomass was assessed [45]. Non-destructive sampling was
conducted in the study area. Sample plots with a size of 30 × 30 m2, similar to the pixel
size of Landsat 8 OLI (~30 m), were distributed across 50 sampling points in the study
area. This sampling size was based on the calculation of a 1% proportion of the total
vegetated area at the study site. In each sample plot, the species were identified and
the diameter at breast height (DBH) and the tree height were measured. In this non-
destructive sampling technique, an allometric equation was used to estimate tree biomass.
This allometric equation and the coefficient developed by [46] were used since the most
significant predictive factors for aboveground biomass estimation in most tropical wet
regional areas are tree height, wood density, and diameter at breast height. The wood
density of all tree species measured at the study site was obtained from the Global Wood
Density Database [47]. The allometric model is as follows:

AGB = 0.0509 × ρ × DBH2 × T (2)

where AGB is the aboveground biomass of trees in kilograms (kg), DBH is the diameter of
trees measured at breast height in meters (m), ρ is the wood density of all measured trees in
grams/cubic centimeters (g/cm3), and T is the height of the measured trees in meters (m).

2.3.5. Carbon Stock Model Development

The total biomass was multiplied by 0.46 as the default value for the carbon content in
living biomass [48]. Using correlation analysis, carbon stocks from field observations were
projected to the landscape scale. Before conducting the analysis, Kolmogorov–Smirnov
and Shapiro–Wilk normality tests were performed for both the NDVI variable and the
field carbon inventory variable to make sure that all the data were normally distributed.
Regression analysis using a single explanatory variable was chosen to determine the
relationship between NDVI values and carbon stock measurements conducted in the field.
The NDVI value distribution map was the independent variable (X) in the regression model,
and the plot-level carbon stock inventory was the dependent variable (Y). To make sure that
the distribution of plot-level carbon stock data mirrored the trend of the NDVI, a scatterplot
of the NDVI values between the carbon stock measured in every permanent plot was
created. The regression analysis was executed using IBM SPSS Statistics 26 software. The
simple linear regression equation Y = a + bX was generated in the regression analysis, where
a determination coefficient (R2) of more than 50% would represent a strong correlation
between both variables in the regression analysis. Using the carbon stock model obtained
from the equation, a raster calculation analysis was used to generate the carbon model
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distribution map of the study area in GeoTIFF image format. In the output maps, each
grid cell of a region’s carbon concentration was informed based on the carbon density pool
measured on the permanent plots, which took the concentration of aboveground carbon
into account.

2.3.6. InVEST Model Development

An open-source model called the integrated valuation of ecosystem services and
tradeoffs (InVEST) modeling framework was used to map and value ecosystem services.
For simulations of carbon dynamics using the InVEST carbon storage model, identical area
pairs of LULC maps from successive dates and transition matrices for the carbon pool
measured in between need to be provided [49]. The InVEST carbon storage model is a
product of the Natural Capital Project, which is situated at Stanford University [26]. In this
study, raster data from the LULC classification dates of 2014 and 2021 were used, and the
aboveground carbon stocks were the only estimated carbon pool. The LULC and carbon
pool datasets were created in order to fulfill the needs of the model, and these were the
main sources of information used to calculate the amount of carbon stored in each grid cell.
Land use codes, LULC class names, and aboveground carbon contents were all included in
the matrix of datasets in comma-delimited (.csv) format. The raster imagery data obtained
from the preceding extrapolation process’s carbon stock calculation were transformed
into numerical values of carbon density for every LULC class. Buildings/settlements and
water bodies that have zero potential to store aboveground carbon stocks were represented
by a zero value in the aboveground carbon pool column. To start modeling the existing
aboveground carbon stock, all LULC raster images and .csv files were merged into InVEST
3.9.0 version software. Carbon storage distribution maps in a GeoTIFF file were included
in the final output.

3. Results and Analysis
3.1. The Changes in LULC during 2014–2021

Based on the result of land use and land cover classification, the study area consists
of seven land use and land cover types, namely buildings/settlements, forests, upland
fields, paddy fields, mixed gardens, bare lands, and water bodies. The kappa coefficient
for the classification result was 85.62% for the 2014 LULC and 90.32% for the 2021 LULC,
which indicates excellent accuracy. The number of training sample points and the results
of the accuracy test are presented in Tables 4 and 5. The spatial distribution of land use
and land cover classes is presented in Figure 2. Land use and land cover changes between
2014 and 2021 in Jatigede are presented in Table 6. As seen in Table 6, upland fields were
the main LULC type in 2014, followed by mixed gardens, which were the second-most
common LULC type in 2014, accounting for 2599.08 ha (23%). Meanwhile, in 2021, mixed
gardens and upland fields were the most common LULC types, accounting for 3495.06 ha
(31%) and 3281.30 ha (29%), respectively. As shown in Table 1, the LULC detection analysis
revealed that the LULC type that had declined the most was forests, with total declined
areas of 1777.19 ha (74%). Meanwhile, paddy fields were the second-most declined LULC
type, accounting for 459.32 ha (19%). In contrast, water bodies experienced the highest
expansion between 2014 and 2021, with a total increased area of 1192.34 ha (94%). This
trend was followed by mixed gardens, accounting for an increase of 895.98 ha (26%). In
this study, forests and mixed gardens could be considered as vegetated areas, which was
mainly attributed to vegetation that predominantly covered these LULC types. Vegetation
covered 4999.31 ha (45%) of these areas in 2014, while it covered 4118.09 ha (37%) in 2021,
indicating a decline of 881.21 ha (18%) in the vegetation cover. Both in 2014 and in 2021,
the areas covered by vegetation were less than the non-vegetated areas in Jatigede.



Forests 2024, 15, 874 8 of 19

Table 4. Confusion matrix for the 2014 LULC classification.

R
ef

er
en

ce
da

ta

Classes

Validation

Forests Mixed
gardens

Buildings/
settlements

Bare
lands

Paddy
fields

Upland
fields Total User

accuracy
Errors of
omission

Forests 9 1 0 0 1 0 11 0.81818 0.18182
Mixed

gardens 2 10 0 0 0 0 12 0.83333 0.16667

Buildings/
settlements 0 0 1 0 1 0 2 0.5 0.5

Bare lands 0 0 0 2 0 0 2 1 0
Paddy
fields 0 0 0 0 11 0 11 1 0

Upland
fields 0 0 0 0 2 11 13 0.84615 0.15385

Total 11 11 1 2 15 11 51

Producer
accuracy 0.82002 0.90806 1 1 0.72936 1 Overall

accuracy 0.86113

Errors of
omission 0.17998 0.09194 0 0 0.27064 0 Kappa

coefficient 0.82448

Table 5. Confusion matrix for the 2021 LULC classification.

R
ef

er
en

ce
da

ta

Classes

Validation

Forests Water
bodies

Buildings/
settlements

Mixed
gardens

Paddy
fields

Upland
fields

Bare
lands Total User

accuracy
Errors of
omission

Forests 6 0 0 0 0 0 0 6 1 0
Water
bodies 0 6 0 0 0 0 0 6 1 0

Buildings/
settlements 0 0 1 0 0 1 0 2 0.5 0.5

Mixed
gardens 0 0 0 13 0 0 0 13 1 0

Paddy
fields 0 0 0 0 7 2 0 9 0.77778 0.22222

Upland
fields 0 0 0 0 1 11 0 12 0.91667 0.08333

Bare lands 0 0 0 0 0 0 3 3 1 0
Total 6 6 1 13 8 14 3 51

Producer
accuracy 1 1 1 1 0.84748 0.86547 1 Overall

accuracy 0.93347

Errors of
omission 0 0 0 0 0.15252 0.13453 0 Kappa

coefficient 0.90327

From 2014 to 2021, LULC conversion occurred at a different rate, depending on the
type of LULC (Table 7). Forests were mainly converted to mixed gardens and upland fields.
Mixed gardens were mainly converted to upland fields and water bodies. The decrease in
paddy fields was mainly attributed to the conversion of this LULC type to upland fields,
water bodies, and mixed gardens. Conversely, the increase in water bodies was mainly
attributed to conversion from paddy fields, mixed gardens, and bare lands. The expansion
of water bodies mainly occurred at the expense of agricultural lands in the study area. The
expansion of bare lands was commonly due to conversion from mixed gardens and paddy
fields. The increase in upland fields was mainly attributed to conversion from paddy fields,
mixed gardens, and forests. The highest LULC conversion observed was from forests to
mixed gardens, accounting for 1268.37 ha (53%), followed by conversion from upland fields
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to paddy fields, accounting for 704.46 ha (24%). Undoubtedly, conversions across LULC
types have an impact on the composition and dynamics of ecosystems, as well as variance
in the total carbon storage.
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Table 6. Land use and land cover change trends during 2014–2021.
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Table 7. Land use and land cover conversion matrix during 2014–2021.

LULC 2014
(ha, %)

LULC Types

LULC 2021 (ha, %)

Bare Lands Buildings/
Settlements

Upland
Fields Forests Mixed

Gardens
Paddy
Fields

Water
Bodies

Bare lands 61.14, 23% 0.70,
0.3%

51.62,
20% 1.75, 0.7% 11.20,

4% 99.02, 38% 37.89, 14%

Buildings/
settlements

12.02,
3%

59.98,
13%

233.38,
51%

5.18,
1% 49.06, 11% 57.26, 13% 36.50, 8%

Upland
fields

79.67,
3%

2.94,
0.1%

1432.35,
49% 15.41, 0.5% 600.19, 20% 704.46, 24% 100.20, 3%

Forests 38.79,
2%

0.16,
0.01%

384.58,
16% 550.72, 23% 1268.37,

53% 76.05, 3% 81.55, 3%

Mixed
gardens 109.97, 4% 1.11,

0.04%
503.19,
19% 34.49, 1% 1290.90,

50% 239.51, 9% 419.91, 16%

Paddy fields 135.22, 6% 2.81,
0.1%

674.19,
28% 13.23, 0.5% 274.53, 11% 761.23, 31% 559.78, 23%

Water
bodies 14.30, 20% 0,

0%
2.00,
3%

2.23,
3%

0.81,
1% 24.15, 34% 27.55, 39%
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3.2. The NDVI Cover during 2014–2021

As shown in Figure 3, dense vegetation was found to be the most dominant NDVI
cover category in Jatigede, both in 2014 and in 2021. The highest value of the NDVI
decreased over time between 2014 and 2021, which indicates a decrease in the greenness
index over time. The highest NDVI value found in 2014 was around 0.89. Meanwhile,
the highest value of the NDVI found in 2021 was around 0.86. An NDVI value above 0.1
can be considered to indicate vegetation cover, and the higher the value of the NDVI, the
denser the vegetation cover in a typical area [50]. NDVI values between 0 and 0.1 represent
bare soil/rocks, and water bodies typically have an NDVI value below 0 [50]. As shown
in Figure 4, dense vegetation was calculated to cover an area of around 7429 ha in 2014
compared to 6213 ha in 2021, indicating a decrease in dense vegetation. The moderate
vegetation cover decreased from 3490 ha in 2014 to 3192 ha in 2021. A decrease in the
sparse vegetation (agriculture) cover was also observed from 2014 (224 ha) to 2021 (188 ha).
Meanwhile, unevenly distributed bare soil/rocks showed an increase in area between 2014
(20 ha) and 2021 (41 ha). Water bodies represented the highest expansion in Jatigede, with
an area increase of 1530 ha over time between 2014 and 2021. Mostly, the water body area
increased at the expense of the dense vegetation cover during 2014–2021.
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3.3. The Aboveground Carbon Stock Dynamics during 2014–2021

Kolmogorov–Smirnov and Shapiro–Wilk normality tests presented a normal distri-
bution of the NDVI and field inventory of aboveground carbon stock data. The results
showed that all NDVI data and aboveground carbon field inventory data were normally
distributed (Table 8). The results of simple linear regression analysis showed a strong
positive correlation between the field measurement of aboveground carbon stock and the
NDVI (Figure 5). The analysis revealed a determination value of 92.85%, which suggests
that the field carbon stock can be determined by 92.85% of NDVI data, while 7.15% is most
likely influenced by other parameters. A significant positive correlation means that an
increase in the NDVI will be followed by an increase in the aboveground carbon stock in the
study area. The LULC class with the greatest potential for carbon storage was determined
with the use of the InVEST carbon model. The InVEST spatial model identified that the
highest aboveground carbon stock value in the study area was 2.02 tons, both in 2014
and in 2021 (Figure 6). The maximum value of carbon stock could be identified in the
vegetated area. Meanwhile, the lowest aboveground carbon stock value was identified in
buildings/settlements, bare lands, and water bodies since these LULC classes do not have
the potential to hold aboveground carbon stock. Changes or LULC conversions in Jatigede
between 2014 and 2021 were detected, and these resulted in a decrease in the aboveground
carbon stock. The total aboveground carbon stock in 2014 was 187,073 tons and that in
2021 was 166,866 tons. Every LULC class had a different potential for aboveground car-
bon stocks (Figure 7). In 2014, the highest aboveground carbon stock was discovered in
forests, contributing 23.26 ton/ha of carbon stock, followed by mixed gardens, which had
an aboveground carbon stock of 23.16 ton/ha. Other agricultural lands, such as upland
fields and paddy fields, had aboveground carbon stocks of 13.61 ton/ha and 13.02 ton/ha,
respectively. Meanwhile, in 2021, the highest carbon stock potential was found in mixed
gardens, at 22.53 ton/ha. This was followed by forests, which contributed 21.85 ton/ha of
aboveground carbon stock; upland fields, at 15.03 ton/ha of aboveground carbon stock;
and paddy fields, at 13.04 ton/ha of aboveground carbon stock. Since it is believed that
buildings/settlements, bare lands, and water bodies lack the capacity to store aboveground
carbon over an extended period, the aboveground carbon stock of these LULC classes was
considered as zero for both 2014 and 2021.

Table 8. The results of the normality test on the NDVI and field carbon inventory data.

Test Number of
Samples

Asymptotic
Significance

(2-Tailed)
α Description

Kolmogorov–Smirnov
50

0.2
0.05

Normally distributed
Shapiro–Wilk 0.458602 Normally distributed

The InVEST statistical model indicated that the study area’s aboveground carbon stock
decreased by 20,207 tons between 2014 and 2021. The change in the aboveground carbon
stock for every LULC class between 2014 and 2021 is presented in Table 9. The aboveground
carbon stock significantly decreased in the forest LULC class. The carbon density decreased
from 23.26 ton/ha to 21.85 ton/ha. Mixed gardens also experienced a decrease in the carbon
stock, going from 23.16 ton/ha to 22.53 ton/ha. However, the aboveground carbon stocks
in upland fields and paddy fields increased, from 13.61 ton/ha to 14.03 ton/ha for upland
fields and 13.02 ton/ha to 13.04 ton/ha for paddy fields. Compared to other LULC classes,
vegetated areas are expected to have a higher potential aboveground carbon stock. Forests
and mixed gardens can be classified as vegetated areas because of the predominance of
vegetation stand coverage seen in both these LULC classes. The total aboveground carbon
stores in forests and mixed gardens were substantially greater than those in other LULC
classes, as Figure 7 illustrates. The forest cover was expected to have a higher aboveground
carbon stock compared to other agricultural areas, such as paddy fields and upland fields,
for both 2014 and 2021. However, as one of the types of agricultural areas, mixed gardens
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were identified to have significantly higher aboveground carbon stocks (22.53 ton/ha) than
forests (21.85 ton/ha) in 2021. As shown in Table 6, mixed gardens were the largest LULC
class in both 2014 and 2021, which is significantly larger than the forests class. Moreover,
a massive decrease in the forest cover in 2021 resulted in a significant reduction in the
aboveground carbon stock in this LULC class.
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Table 9. Aboveground carbon stock change in the reference years.

LULC Classes Year 2014 (tone/ha) Year 2021 (tone/ha) Change (tone/ha)

Forests 23.26 21.85 −1.41
Water bodies 0 0 0.00

Buildings/settlements 0 0 0.00
Mixed gardens 23.16 22.53 −0.63

Paddy fields 13.02 13.04 0.01
Upland fields 13.61 15.03 1.42

Bare lands 0 0 0.00
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4. Discussion
4.1. The Changes in the LULC in Jatigede between 2014 and 2021

This study developed a model based on the effect of land use and land cover changes
on the aboveground carbon stock as one of regulatory ecosystem services on a spatial
and temporal scale between 2014 and 2021. The land use and land cover change model
discovered that forests are the most degraded land cover class in Jatigede, with a 1777.19 ha,
or 74%, reduction between 2014 and 2021. Forests were mostly converted (1268.37 ha, 53%)
to mixed gardens, followed by the conversion of 600.19 ha (16%) to upland fields. The
visual features of forests and mixed gardens may have influenced the projected conversions
between these land use and land cover classes, possibly resulting in a misclassification.
While the mixed gardens in the research region may be viewed as an agroforestry system
managed by local populations, which participate as forest buffer zones, forests and mixed
gardens are visually comparable according to the remote sensing method used in this study.
Because of their function as buffer zones around forest covers, limited agricultural activities
were observed in such areas.

The NDVI also showed that the green density, which represents the vegetation cover,
is not significantly different between forests and mixed gardens. The density and health
of the vegetation cover gradually increased from the mixed-garden area to the forest area.
This may occur because the rate of forest cover change caused by human activities in
forests can be controlled. An increase in the percentage of forested area, including the
agricultural model in the form of agroforestry, has a positive correlation with the increase in
the ecosystem service percentage [51]. According to a study by [52], agroforestry techniques
(e.g., home gardens and the production of trees and coffee) and natural forests both preserve
a variety of woody vegetation in the agroforestry system. Agroforestry can be considered
as one of methods of conserving the forest cover, while enhancing benefits to the local
communities. The positive impacts of involving the community in managing forests on the
environment, the biodiversity, and local communities’ livelihood are more satisfactory than
restoring degraded forests without involving the community [53].

Conversely, there was one land cover type that had the highest increase in area: water
bodies were the only land cover that accounted for more than a 50% increase in area be-
tween 2014 and 2021. The results of land use and cover change analysis showed an increase
of around 1192.34 ha (94%) in the water body area from 2014 to 2021. This increase in
the water body area mostly occurred at the expense of paddy fields, which decreased by
559.78 ha, followed by the conversion of 419.91 ha of mixed gardens to water bodies. The
expansion of water bodies, which resulted in a significant decrease in these two agricul-
tural land covers (paddy fields and mixed gardens), was mainly caused by the strategic
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infrastructure project of the Jatigede Reservoir. This reservoir is known as a multipurpose
rock-fill dam and covers more than 5000 ha around five subdistricts in Sumedang Dis-
trict [38], including Jatigede Subdistrict, where water bodies covered 1263.38 ha in 2021
according to this study’s land use and land cover change detection. Construction began in
2007 and was completed in 2015, which coincided with the inundation of the reservoir [54].
The construction of the reservoir, especially during the land-clearing phase, resulted in
the deterioration of some type of land use and land cover. The land use change analysis
detected 263.31 ha of open areas or bare lands in 2014, which might be due to the land
being cleared for many purposes, such as temporary access roads, quarrying, and soil
banks. Between 2014 and 2021, the area of bare lands increased by 187.80 ha (42%). This
implies that land clearing was escalated for the construction, which resulted in an increase
in open area fragments in some locations. At present, the Jatigede Reservoir manage-
ment is completing the necessary arrangements to start the construction of the reservoir’s
110 megawatt turbines, which may contribute to the expanding bare lands in the study
area in the future [55]. Many residents were required to relocate in 2015 because of the
dam. It forced them to leave their agricultural land, resulting in a major decrease in paddy
fields (by 495.32 ha) between 2014 and 2021. A study by [38] revealed that residents in a
radius of 0–500 m from the reservoir, where rainfed rice fields were prevalent, experienced
a moderate-to-high socio-economic change. Many farmers changed their livelihood to
other occupations. Those among the local population who chose not to leave moved to
a higher-altitude area not impacted by the construction, tilling their land to the season,
resulting in an increase in upland fields in the Jatigede area by 346.97 ha between 2014
and 2021.

4.2. The Changes in LULC Effects on Aboveground Carbon Stocks

In 2014, the highest aboveground carbon stocks were identified in forests, which
contributed 23.26 ton/ha of the aboveground carbon stock. Although the amount of forest
cover was substantially smaller than that of other LULC classes combined, research by [27]
showed that carbon storage is significantly higher in natural forests than in agricultural
LULC classes. Furthermore, it has been demonstrated that sparse forests have a greater
capacity than agricultural land to store carbon [56]. According to [57], there is a significant
correlation between the degree of green density of plant growth, and carbon storage and
sequestration. This study discovered that the greenest density is found in dense forests.
However, the aboveground carbon stock in forests declined to 22.85 ton/ha in 2021. This
declined aboveground carbon stock potential resulted in a higher aboveground carbon stock
in mixed gardens (22.53 ton/ha) than that identified in the forest cover. In addition to the
massive reduction in the forest cover from 2400.22 ha to 623.04 ha between 2014 and 2021,
this prevalence is related to the nature and structure of these tree-based agricultural systems
that have similarities with forests. The LULC change model identified that the forest cover
was mostly converted to mixed gardens. A study by [58] found that the changing forest
cover has less impact on biodiversity and ecosystem services than converting natural
landscapes to agricultural or non-vegetated land uses (e.g., drylands, paddy fields, built-up
areas, and bare lands).

In this study, after the LULC changes during 2014–2021, mixed gardens were found
to be the largest contributor of the aboveground carbon stock. This increase was mainly
due to the expansion of mixed gardens between 2014 and 2021. However, carbon stock
measurements in mixed gardens may change due to the deposition of carbon during
the harvesting of vegetation stands. Uncertainty may arise regarding the changes in
aboveground carbon stores over time [59]. A study by [60] suggested that the carbon
sequestration and stocks in many agricultural types may have been overestimated due
to the possibility of offsets during harvesting. The higher carbon-storing capacity of
mixed gardens compared to that of forests is attributed to the form and composition of
the vegetation in this tree-based agricultural system. The findings regarding the poten-
tial of aboveground carbon stocks in mixed gardens were in line with the potential of
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other traditional agroforestry systems for carbon storage, which have higher values of
carbon stocks and are significantly affected by the basal area of tree species [61]. A study
by [62] also discovered that the carbon stocks in a small-scale agroforestry system are
significantly correlated with the basal area, and the greater the tree density, the greater the
carbon stocks.

Between 2009 and 2011, LULC changes resulted in the release of nearly 20,500 tons of
aboveground carbon stocks. The decline in carbon stocks was mainly caused by LULC con-
version from vegetated areas to agricultural and urban land cover. In the study area, a major
conversion of forests to upland fields by 384.58 ha significantly depleted the aboveground
carbon stocks in forests. Other studies have also revealed a decline in terrestrial carbon
stocks due to LULC changes mainly attributed to the loss of vegetation cover [9,10,30,63].
The carbon storage and sequestration capacity decreased significantly over time as agricul-
tural and urban land cover increased [64]. The decrease in the agricultural area has also
significantly depleted the aboveground carbon stock potential. In the study area, the decline
in the aboveground carbon stock potential in mixed gardens was considerably affected by
the conversion of this vegetated agricultural land cover to reservoirs. Furthermore, in [65],
the authors demonstrated that carbon stocks are significantly impacted by a shift from
agricultural to urban areas. The carbon stock reduction is also related to the construction of
the Jatigede Reservoir, which commenced in 2007. The research area’s aboveground carbon
stocks may have decreased as a result of this construction. According to LULC change
data from 2014 to 2021, LULC conversion from mixed-garden and other agricultural land
use classes caused a considerable expansion in bare lands and water bodies as a result of
land clearing and inundation of the reservoir. The impacts of construction on terrestrial
carbon stocks were also identified in [66], where the authors stated that road development
has a substantial isotropic influence on carbon stocks, significantly decreasing them. This
finding is also corroborated in [67], where the authors revealed that the increase in urban
construction has an indirect impact on the increase in carbon emissions.

4.3. Strengths, Limitations, and Implications of This Study

In this study, information regarding the potential for carbon storage in various LULC
classes may be obtained by creating a geographical distribution of aboveground carbon
storage within those classes. The spatial dynamics of aboveground carbon stocks show
how anthropogenic interventions, such as the expansion of constructions and agricultural
management, cause aboveground carbon stocks to change over time within various LULC
classes. By conducting the LULC change analysis using the maximum likelihood classi-
fication approach to the Landsat 8 satellite imagery, accurate land cover dynamics, that
is, the increase or decrease in such land use classes’ area because of the ongoing reservoir
construction within seven years, can be comprehensively depicted in the form of an LULC
map. The use of the InVEST model in this study offers a strong framework for measuring
aboveground carbon stock and improving our comprehension of how changes in land use
affect aboveground carbon dynamics.

Despite its strength, several limitations of this study should be acknowledged and,
hopefully, can be addressed in further studies. It is necessary to conduct additional research
on carbon stocks in other carbon pools, such as soil, litter, necromass, and belowground
biomass. This research should make use of higher-resolution remote sensing data and in-
crease the sample size at the plot level in order to map the dynamics of carbon sequestration
and carbon stock potential in the research area across a range of land uses. There is limited
access to the ongoing Jatigede hydropower blueprints and construction plans, and as the
construction can be considered the main direct driver of the carbon stock dynamics at the
study site, it is difficult to develop scenarios of LULC change in the future. Additionally, in
order to assess regional carbon storage, this research examined the carbon stock of several
LULC types based on the most active carbon pool in the terrestrial ecosystem. Because of
this, it is believed that the carbon stock calculations were only estimates and further study



Forests 2024, 15, 874 16 of 19

is needed to improve the accuracy by accounting for seasonal fluctuations and conducting
a local carbon estimate for each terrestrial ecosystem.

The results of this study are significant for Jatigede Subdistrict because they advance
understanding about how LULC changes affect carbon stock in the region. The outcomes
can help land management strategies and policies to reduce carbon emissions and protect
important ecosystems. A notable finding in this research is the significant potential of
tree-based agricultural systems to store carbon. Because of this, this type of agroforestry
system requires suitable management techniques to increase carbon storage capacity and
lower carbon emissions at the same time. Mixed gardens, a type of conservative farming
practice, should be improved to support subsistence farming without compromising this
agricultural landscape’s ability to help mitigate climate change and sequester carbon.

5. Conclusions

This study incorporated the field measurement of aboveground carbon stocks into GIS
and remote sensing methods to simulate the spatiotemporal dynamics of aboveground car-
bon stocks and analyze the impacts of agricultural expansion and ongoing construction on
carbon stocks in Jatigede Subdistrict. The results reveal that the total aboveground carbon
stocks decreased between 2014 and 2021. Spatially, the highest reduction in aboveground
carbon stocks occurred in forests. The present study also further investigated the effect of
land use and land cover change on the reduction in aboveground carbon stocks. The decline
in the aboveground carbon stocks was mainly attributed to the land use and land cover
conversion from vegetated areas to agricultural and urban land cover. In the study area,
the conversion of mixed gardens as vegetated agricultural land cover to a reservoir had a
significant impact on aboveground carbon stocks because mixed gardens store significant
amounts of carbon. The ongoing construction, resulting in the expansion of the construction
area, was also the main driver of aboveground carbon change. However, between 2014
and 2021, the increase in aboveground carbon stocks was mainly investigated in mixed
gardens adjacent to forest areas. This trend made the mixed gardens the largest contributor
of aboveground carbon stocks. Based on these results, in the midst of increasingly massive
deforestation due to the expansion of urban areas, mixed gardens play a significant role in
carbon storage and it is imperative to preserve this tree-based agroforestry system in the
long term.
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