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Abstract: Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the
needs of people with disabilities, some disabled people find it difficult to use regular EPWs that
are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology
present an efficient solution to this problem. This article presents a cutting-edge intelligent control
wheelchair that is intended to improve user involvement and security. The suggested method
combines facial expression analysis via a camera with EEG signal processing using the EMOTIV
Insight EEG dataset. The system generates control commands by identifying specific EEG patterns
linked to facial expressions such as eye blinking, winking left and right, and smiling. Simultaneously,
the system uses computer vision algorithms and inertial measurements to analyze gaze direction
in order to establish the user’s intended steering. The outcomes of the experiments prove that the
proposed system is reliable and efficient in meeting the various requirements of people, presenting a
positive development in the field of smart wheelchair technology.

Keywords: Electroencephalogram (EEG); facial expressions; Long Short-Term Memory (LSTM);
fusion data; convolutional neural network (CNN); control wheelchairs

1. Introduction

The utilization of assistive technologies, particularly electric wheelchairs, has experi-
enced a significant surge in recent decades, playing a pivotal role in supporting individuals
facing mobility challenges and enhancing their overall quality of life. The World Health
Organization (WHO) reports that over 1.3 billion people globally grapple with structural
or functional impairments, with at least 80 million necessitating the use of wheelchairs [1].
While conventional control methods like keyboards, mice, joysticks, or touchscreens are
effective for healthy users, they often prove impractical for those severely disabled due to
conditions such as spinal cord injuries, paralysis, muscular dystrophy, multiple sclerosis,
or stroke. Traditional control methods, such as joystick-based interfaces, exhibit limitations
in usability, particularly for those with severe motor disabilities [2]. Consequently, the
development of an efficient interface enabling users with physical disabilities to convey
their intentions or commands to assistive devices becomes imperative.

In response, researchers have turned to innovative technologies, notably BCIs, to
devise, design and propose alternative and more intuitive control strategies, as demon-
strated by Rebsamen, B. et al. [3]. BCIs establish a direct communication link between the
human brain and external devices, eliminating the reliance on traditional motor control
mechanisms [4]. This technology holds immense potential for transforming the lives of
individuals with limited mobility, granting them the ability to control assistive devices,
such as wheelchairs, through their brain activity as discussed in [5].
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Various techniques have been employed for wheelchair control, with low-level mo-
tion control systems converting EEG data into direct motion commands for wheelchair
operation as demonstrated in [5]. Pioneering in this field, Tanaka et al. [6] introduced an
electric wheelchair controlled by the user’s brain, pioneering a groundbreaking device.
By visualizing left or right limb movements during Motor Imagery (MI) tasks, users can
dictate the direction of the subsequent movement.

Several approaches have been explored in the realm of BCI-based wheelchair con-
trol. MI tasks, wherein users mentally simulate specific movements, have been lever-
aged to detect intention and initiate corresponding wheelchair motions, as reported by
Pires, C. P. et al. [7]. Additionally, Steady-State Visually Evoked Potentials (SSVEP) and
P300-based BCIs have been employed to achieve higher accuracy in control through visual
stimuli and attention-based paradigms, as proposed by Ortner, R. et al. [8].

Despite the promising results demonstrated by these BCI-based control methods,
there remain challenges that require attention for practical implementation. Issues such as
inter-subject variability in brain rhythms, the need for prolonged visual stimulation, and
the computational complexity of hybrid control approaches pose limitations to achieving
seamless and efficient wheelchair control [9].

In this paper, we present a human–machine interaction method for direct control of a
robotic wheelchair based on hybrid control using facial expressions captured by a webcam
and EEG signals. The main outcome of our research is the ability to recognize the user’s
control expression based on their gaze direction. This enables a more natural interaction
style that could help with continuous control of the wheelchair.

Specifically, our method is dedicated to wheelchair users who are severely disabled
but can perform basic tasks with the help of their eyes and heads to operate the wheelchair.
To do so, we collected EEG data with an Emotiv Insight headset and used machine learning
algorithms (e.g., CNN-LSTM) to recognize signal patterns triggered by various facial
expressions, such as Smile (Backward), Eye Blink (Stop), Wink Left (Rotation Left), and
Wink Right (Rotation Right). We used a forward-facing camera to track the user’s head
movements using computer vision methods.

This paper is structured as follows: Section 2 provides a review of related work, while
Section 3 details the proposed system architecture. Section 4 delves into our methodology,
offering insights into data acquisition, analysis, and classification algorithms. Tests and
results are presented and discussed in Section 5. Finally, Section 6 is dedicated to the
findings and conclusions of the article.

2. Related Work

On one hand, patients’ data are private but on the other hand, remote applications,
such as e-health ones, are becoming more and more common, and researchers’ primary
concern is improving user security. Furthermore, unauthorized users and even hackers
pose a major risk to security and privacy. As a result, it becomes extremely difficult to
provide effective e-health services while maintaining patient data availability, privacy, and
validity. Without a doubt, the first prerequisite is access control, which facial recognition
effectively ensures. This section examines related work from two perspectives: embedded
solutions for some secured applications and access control mechanisms.

In [10,11], the technique employed for electrophysiological measurements was LORETA
(Low-Resolution Electromagnetic Tomography of the Brain). LORETA is based on solving
inverse problems to calculate the three-dimensional distribution of neuronal electrical
activity. This method serves as a linear estimation technique for determining the sources
of signals in the human brain without requiring additional data to be added to the EEG
signal. In [10], the authors addressed the removal of biological artifacts, such as the sub-
jects’ anxious tics and short squinting of the eyelids. Furthermore, the authors of [12]
studied the most common type of Electrooculographic artifact, namely eye blinking. In [13],
authors combined an EEG with the power spectrum of eye blink artifacts to develop a
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brain–computer interface. They have further conducted a spectrum analysis of EEG data
for patients suffering from insomnia.

The authors of [14] focused on artifact reduction in the BCI hybrid. The researchers
developed an approach that combines stationary wavelet transforms with adaptive thresh-
olding to effectively remove artifacts from EEG signals. The study in [15] employed the IC
MARC classifier to investigate the impact of various artifacts on a motor imagery-based
Brain–Computer Interface (BCI) system. The findings demonstrated that when utilizing
all 119 EEG channels, muscle artifacts had a detrimental effect on BCI performance. This
was observed by comparing the results to a configuration with 48 centrally placed EEG
channels. In [16], the authors introduced a new method for automatically eliminating
eye-related EEG artifacts using independent component analyses and outlier identification
techniques. The OD-ICA method demonstrated effectiveness in removing Ocular Artefacts
(OA) while preserving significant EEG signals. Peak detection in online EEGs for BCIs,
explored in [17], addressed the impact of filtering on BCI performance, emphasizing peak
frequency detection. While peak detection improved with the filter, the BCI performance
suffered from movement and increased artifact removal. The issue of noisy EEG data was
resolved in [18] by employing the LombScargle periodogram for spectral power estima-
tion and a denoising autoencoder (DAE) for training, successfully decoding insufficient
EEG recordings.

Networks and highly classified expert systems, including AI solutions, are important.
In [19], a convolutional neural network (CNN) was employed to perform skin cancer classi-
fication. Furthermore, [20] utilized a deep neural network (DNN) to classify histopathologic
images of breast cancer. In contrast, ref. [21] employed a hybrid convolutional and recur-
rent deep neural network for classification purposes. Automation system control through
artificial intelligence was addressed in [22], presenting a method for controlling a robot
using an algorithm based on an artificial neural network.

Currently, several studies exist on deep learning theories, such as convolutional neural
networks (CNNs). These techniques prove their effectiveness. The authors of [23,24] sug-
gested a research strategy for producing 3D channel spectrograms that combines three dif-
ferent time–frequency representations (spectrograms, gamma-tone spectrograms, and con-
tinuous wavelet transform). Applications such as the automatic identification of phoneme
classes for phone attribute extraction and the diagnosis of speech impairments in cochlear
implant users have been successful.

In the context of wheelchair control, Ba-Viet et al. (2020) explored wheelchair naviga-
tion using EEG signals and 2D maps with a camera [25]. Other researchers investigated
an intelligent wheelchair using eye detection and visual systems (Dorian 2021 [26], Agnes
2022 [27]). Notably, these experiments revealed a notable disparity in perceived conve-
nience, referred to as preferred control, due to the inherent instability of photos influenced
by light and the sensitivity of the EEG signal to an individual’s state. Our study aims to
enhance control system performance through the combination of facial expressions and
neural signals.

3. Proposed System Architecture
3.1. System Architecture

Throughout this paper, we focus on the design and the implementation of a smart
EPW with hybrid control technologies that will enhance/improve the safety of those with
impairments. This EPW is composed of a webcam, an EEG headset, and two sensors.
Artificial intelligence techniques will be employed to amalgamate the data obtained from
the two sensors.

The architecture of our proposal/solution is illustrated in Figure 1. Data processing
and fusion-utilizing Python-developed deep learning algorithms constitute the first phase.
We employed the decision fusion technique, in which a directional choice (Forward, Rota-
tion Left, Rotation Right, Stop) is provided by each sensor. The embedded system in charge
of the wheelchair receives the final choice made by the fusion after that.



Future Internet 2024, 16, 158 4 of 16

Future Internet 2024, 16, x FOR PEER REVIEW 4 of 17 
 

 

phase. We employed the decision fusion technique, in which a directional choice (For-
ward, Rotation Left, Rotation Right, Stop) is provided by each sensor. The embedded sys-
tem in charge of the wheelchair receives the final choice made by the fusion after that. 

 
Figure 1. Architecture of the proposed system. 

Our method includes using EEG waves to interpret facial expressions. We chose four 
emotions to be represented by four specific movements, as indicated by the corresponding 
weights in Table 1, as our objective is the EPW command. 

The feelings sent by the headset are shown in the first column. The events linked to 
each emotion are listed in the second column. For instance, the Rotation Left movement 
and the Wink Left expression of number 1 match. 

Table 1. A table of feelings and the movements that go with them. 

Number Facial Expressions Movements 
1 Wink Right Rotation Right 
2 Wink Left Rotation Left 
3 Blink Stop 
4 Smile Forward 

3.2. Used Sensors 
3.2.1. The EEG Headset 

We employed the EMOTIV Insight headset in this study, which can be seen in Figure 
2a. This device has 5 electrode channels (AF3, T7, PZ, T8, and AF4). Figure 2b represents 
the location of all five channels in the brain. The data were sampled using a 16 bit analog-
to-digital converter at a frequency of 128 Hz [28]. 

(a) (b) 

Figure 2. (a) EMOTIV Insight headset; (b) location of channel. 

Figure 1. Architecture of the proposed system.

Our method includes using EEG waves to interpret facial expressions. We chose four
emotions to be represented by four specific movements, as indicated by the corresponding
weights in Table 1, as our objective is the EPW command.

Table 1. A table of feelings and the movements that go with them.

Number Facial Expressions Movements

1 Wink Right Rotation Right
2 Wink Left Rotation Left
3 Blink Stop
4 Smile Forward

The feelings sent by the headset are shown in the first column. The events linked to
each emotion are listed in the second column. For instance, the Rotation Left movement
and the Wink Left expression of number 1 match.

3.2. Used Sensors
3.2.1. The EEG Headset

We employed the EMOTIV Insight headset in this study, which can be seen in Figure 2a.
This device has 5 electrode channels (AF3, T7, PZ, T8, and AF4). Figure 2b represents the
location of all five channels in the brain. The data were sampled using a 16 bit analog-to-
digital converter at a frequency of 128 Hz [28].
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Brain waves are analyzed by the EEG headset, which then wirelessly transmits the
data to a computer via Bluetooth. EEG data gathering is made possible using the EMOTIV
(BCI-OSC) V3.5 software interface. Figure 3 represents the architecture of the headset for
the acquisition and processing of EEG signals from EMOTIV Insight.
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3.2.2. The Webcam

We used the integrated camera of our PC for quick validation purposes, which features
an advanced RGB HD configuration, ensuring outstanding image quality. With a high
resolution of 2 megapixels, it produces sharp and detailed still images and videos. The
camera boasts a resolution of 1280 × 720 pixels (HD). For video capture, it operates
seamlessly at 30 frames per second. Additionally, the camera’s wide-angle lens offers a
generous diagonal viewing angle of 74.9◦.

The webcam was used to identify the same four facial expressions (Smile, Blink,
Wink Left, and Wink Right) and equivalent commands (Forward, Stop, Rotation Left, and
Rotation Right).

4. Methodology

In the “webcam-based command” section, we will present the fundamental structure
of the 3D-CNN connected to image classification. Moving on to the “EEG headset-based
command” section, we will delve into the essential components of the 1D-CNN-LSTM
approach for processing EEG data. Lastly, in Section 3, we will introduce a feature fusion
network that combines the two aforementioned methods and elaborate on our selection
process for the network parameters.

4.1. Webcam Based Command
4.1.1. Detection of Face, Eye, and Mouth

The image acquisition and processing classification system, illustrated in Figure 4,
consists of three primary steps. The first step employs the Open-CV library for face
recognition. In the second step, learning takes place, followed by the third step, which
involves image classification. Deep learning algorithms, specifically convolutional neural
networks, are utilized for both learning and classification, enabling matching with the
database. Ultimately, the classification results are displayed to the user.
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4.1.2. Report of Closing and Opening Emotion

This method is used to separate the difference between blinking and winking left/right,
naturally or artificially. Blinking is the rapid closing and reopening of the human eye. Each
individual has a slightly different blinking pattern. The pattern differs in the speed of
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closing and opening, the degree of pressure on the eye, and the duration of blinking. The
eye blink lasts approximately 100 to 400 ms [29].

We used four expressions of Wink Right, Wink Left, Blink, and Smile with measure-
ments of the Eye Aspect Ratio (EAR). There are numerous algorithms for face recognition,
but we will only focus on Dlib’s method in this paper. Dlib uses the HOG (Histogram of
Oriented Gradients).

To do this, we must first localize the human face in the overall image. Face detection is
a technique that identifies a human face in an image and returns the value of the bounding
box or rectangle associated with the face in x, y, w, and h coordinates [29].

We must first determine the position of the face in the image before determining the
its smallest features, such as the lips and eyebrows. By using points within this rectangle,
the face recognition software can identify all the necessary features of a human face.

The 68-point model of Dlib is shown in Figure 5, where points from 1 to 68 are visible.
We will discuss how to recognize these emotions (Blink, Wink Left, Wink Right, and Smile)
and how to recognize the EAR.
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We used state-of-the-art facial feature recognition systems to localize the contours of
the eyes and eyelids. From the 68 points in the image, we derived the EAR, which was
used as a parameter to estimate the opening state of the eyes, as shown.

EAR =
||p2 − p6||+||p3 − p5||

2||p1 − p4|| (1)

where p1, p2, p3, p4, p5, and p6, shown in Figure 5b, are the same points found on the
circumference of the left eye, respectively 37, 38, 39, 40, 41, and 42 in Figure 5a. Using this
metric, a classifier was used to recognize eye blinks and left and right winks.

The distance between the corners of the mouth increased. However, since different
people have different mouth sizes, we normalized this metric by dividing it by the jaw
distance to obtain a general ratio that can be used on different people.

In our base detector, we will use the x-coordinates of points 49, 55, 3, and 15 to calculate
the EAR_Smile defined in Equation (2). p49, p51, p53, p55, p57, and p59 are the same points
found on the circumference of the mouth in Figure 6.

EAR_Smile =
||p51 − p59||+||p53 − p57||

2||p49 − p55|| (2)
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4.1.3. Algorithm of Classification

The task of emotion estimation is to determine whether an eye blinks, is winking left,
is winking right, or is smiling. In cases where faces are not fully frontal, the proposed CNN
was used to extract more features that are resilient and effectively classify four emotions.
To improve the performance of these methods, we tracked a sequence of images instead of
inputting a single image [31,32].

The neural network topology (3D-CNN) is depicted in Figure 6. CNN has extensive
applications in various domains, such as natural language processing, recommendation
systems, and image and video recognition. These networks were utilized in our situation
to process images for smiling, winking to the left or right, and blinking of the eyes.

Table 2 displays the architecture of our neural network. Filtering the input signals is
the responsibility of the convolutional layer. Its objective is to minimize training time and
minimize data volume while preserving quality. It has a max-pooling layer connected to it.
This process was performed three times on Layers 1, 2, and 3 as indicated in Figure 6. By
connecting to a fully connected class, this layer establishes the relationship between a class
and the positions of features in an image. Essentially, the thick layer modifies the size of
the tensor, which is the basic data structure that forms the basis of all machine and deep
learning methods.

Table 2. Characteristics of the 3D-CNN structure [30].

Layer Type Filter Shape Input Size

Convolution (ReLu) 3 × 3 × 3 × 128 227 × 227 × 128
Max-Pooling 2 × 2 225 × 225 × 128

Convolution (ReLu) 3 × 3 × 3 × 64 112 × 112 × 64
Max-Pooling 2 × 2 110 × 110 × 64

Convolution (ReLu) 3 × 3 × 3 × 32 55 × 55 × 32
Max-Pooling 2 × 2 27 × 27 × 32

Fully Connected 32 × 4 27 × 27 × 32
Dense (Sigmoid) 4 4 × 1

4.2. EEG Headset-Based Command
4.2.1. Data Acquisition

To obtain EEG data with the EMOTIV Insight headset, subjects were exposed to
4 different emotions (Smile, Blink, Wink Left, and Wink Right) for 5 min, so that EEG
data were available for each subject for a total of 20 min. A twenty-minute data collection
protocol was created, with the different emotions first recorded in a separate file. Subse-
quently, all emotions of each person were consolidated into one file to avoid interference
between different expressions and persons. This consolidation also ensured a balanced
distribution of each emotion and facilitated a more accurate analysis without compromising
the integrity of the dataset.
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The data collected in the different situations mentioned above need to be preprocessed
for later use in the machine learning component. To better understand the preprocessing,
the data source as well as the format and features are discussed below.

The 5-channel EEG device provided 128 samples for each channel in a second. After
transforming the collected data for the frequency domain, each collected datum is repre-
sented by the weighted and arithmetic mean for each of the 5 device channels and the
4 wave classifications.

4.2.2. Preprocessing

The process of modifying, resolving, and organizing data inside a dataset to make it
generally consistent and ready for analysis is known as data cleaning. To ensure the best
possible analysis, this entails purging any corrupted or unnecessary data and formatting
these in a computer-readable manner [33].

It is therefore important to carry out proper data cleaning to ensure that the best
possible results are obtained.

Data cleaning is composed of six steps:

• Remove irrelevant data;
• Duplicate data;
• Fix structural errors;
• Handle missing data;
• Filter outliers;
• Validate the data.

The process of making altered copies of a data set is known as data augmentation, and
it is a mean of artificially expanding the training set. This entails either creating new data
points via deep learning or making small adjustments to the dataset. We used the EEG
data to use this data augmentation method. To expand the breadth and diversity of the
training set, some small changes were made to the original data before generating these
new data. This included removing duplicate data and handling missing data by calculating
the average of the data before and after these data [33].

These data were derived from the original data, with some minor modifications
to increase the size and variety of the training set. These are examples of straightfor-
ward data augmentation techniques which include random swapping, insertion, and
synonym replacement.

4.2.3. Algorithm of Classification

Figure 7 represents the architecture of our system. In this work, we processed EEG
signals for the estimation of facial expressions using a CNN and LSTM combination [34].
The ability to extract robust features from CNNs and go beyond the drawbacks of conven-
tional techniques is a true advantage of CNN networks. Three layers make up the network:
LSTM, max-pooling, and convolutional. The convolutional layer filters the input signals.
The max-pooling layer reduces the size of the data while preserving their features, which
helps to shorten the training period. Using the EEG database, the LSTM layer trains the
model and performs classification [34].

Table 3 provides the specifics of our neural network’s construction. The EEG modali-
ties’ 1D-CNN-LSTM architecture is displayed. Sequence data include EEG recordings that
last one second. Two one-dimensional convolutional layers, Conv Layers 1 and 2, were
then applied to this sequence as is indicated in Figure 7. Max-pooling and ReLU activation
layers came next for each, allowing for the direct extraction of temporal properties from
the time series data. The collected features were then flattened for the LSTM layer. This
LSTM layer determines the order link between the gathered temporal features to categorize
time series data. Next, by connecting the layer to a fully linked class, the relationship
between the locations of features in the EEG data and a class was established. In essence,
the dimensions of the tensor are altered by the dense layer.
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Table 3. Characteristics of the 1D-CNN + LSTM structure [30].

Layer Type Filter Shape Input Size

Convolution (ReLu) 3 × 3 × 64 14 × 14 × 64
Max-Pooling 2 × 2 12 × 12 × 64

Convolution (ReLu) 3 × 3 × 32 6 × 6 × 64
Max-Pooling 2 × 2 4 × 4 × 32

LSTM 100 2 × 2 × 32
Fully Connected 32 × 4 2 × 2 × 100
Dense (Sigmoid) 4 4 × 1

The combination of Convolutional Neural Networks (CNNs) and Long Short-Term
Memory networks (LSTMs) offers several advantages in the processing of signals. CNNs
excel at extracting local features from inputs by utilizing convolution operations and
pooling layers. They are particularly adept at capturing patterns in spatial dimensions.
On the other hand, LSTMs possess exceptional capabilities when it comes to processing
sequential data, such as time series or EEG signals, due to their ability to handle long
dependencies through gated recurrent units.

4.3. Fusion of EEG Signals Decision and Image Processing Decision

Implementing layer fusion for decision-making involves combining the outputs of
multiple layers or models to arrive at a final decision. This fusion process can be achieved
using various techniques, such as voting, averaging, or weighted averaging. Here is an
example of implementing layer fusion for decision-making.

In this work, we first obtained the predictions from each model for the given input
data. Next, we performed fusion to combine these predictions and made a final decision
based on the fusion result.

Our goal was to increase the recognition accuracy of these emotions (Smile, WinkL,
WinkR, and Blink) by merging webcam images with EEG data. Webcams function as a
visual supplement to the EEG data, capturing the dynamic interaction of facial emotions
and eyebrow movements. The integration of the image processing classifier and the
EEG classifier is depicted in Figure 8. Before performing fusion between two of these
classifications, we worked on two classification algorithms: 1D-CNN-LSTM for processing
EEG signals from the EMOTIV Insight and 3D-CNN for analyzing pictures.

We use voting-based fusion to count the occurrences of each prediction and select the
one with the highest count as the fused prediction. Based on the fused prediction, we made
a decision by mapping it to the corresponding class label.

In a deep learning algorithm, the concatenation layer is used to combine the outputs
of multiple layers or branches of the network. This can improve the network’s ability to
learn complex relationships by allowing it to access features learned at different levels
of abstraction. Regularization techniques, such as dropout and Webcam/EEG signal
regularization, are used to prevent overfitting of the network to the training data. Exclusion
randomly removes some units from the network during training, forcing the network to
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learn redundant representations, which can improve its ability to generalize to the new data.
Overall, concatenation and regularization techniques are important tools in designing deep
learning algorithms that can learn complex relationships and generalize well to new data.
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We employed two layers; the concatenation layer typically refers to a neural network
layer that combines or fuses information from multiple sources or modalities. This is
common in multimodal deep learning when working with data from different sources such
as text, images, and audio and wanting to combine them for a specific task.

We first defined two sets of features as input layers (input_features1 for data from
the Webcam and input_features2 for data from EEG signals). We then used the regularizer
layer to combine the outputs of multiple layers, effectively fusing the information from the
two sets.

Additionally, it was important to adjust the number of features, activation functions,
and other hyper-parameters based on our use case (4 features in the first set (Webcam),
4 features in the second set (EEG Signals)). Synchronization was achieved with both the
headset and webcam operating at the same frequency; the webcam frequency as well as
the headset frequency remained the same.

5. Experimental Results and Discussion
5.1. Evaluation Metrics

At the experimental level, we carried out the data preprocessing and signal visualiza-
tion with the Python software V 3.8 (Jupyter Notebook, Anaconda) and used a PC with
16 GB RAM and an Intel CPU (GeForce GTX 1080) by the company Intel in Santa Clara,
California, United States.

Preparing the data for classification requires the following first step. Two portions of
the EEG and image dataset were isolated: the first was designated as the training data, or
“80%”, and the second as the test data, or “20%”, which was further subdivided into inputs
and outputs. This is consistent with the videos’ emotional moods and the EEG readings.
These are able to accept a value of either 0 or 1.

We distinguished four validation measures that can be used to assess a classification algorithm.
A model’s precision is its capacity to recognize only pertinent items. Equation (3)

provides the expression of the percentage of accurate positive predictions:

Precision =
TP

TP + FP
(3)

The capacity of a model to locate all pertinent cases is correlated with recall. Equation (4)
provides the expression of the percentage of true positives found among all pertinent field truths:

Recall =
TP

TP + FN
(4)

The accuracy is calculated according to the following Equation (5):

Accuracy =
TP + TN

TP + TN + FP + FN
(5)



Future Internet 2024, 16, 158 11 of 16

F1-score is calculated by Equation (6):

F1_score =
2 ∗ Precision ∗ Recall

Precision ∗ Recal
(6)

where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.

5.2. Evaluation Results

To evaluate the performance of our proposal we proceeded in three steps: First, we
performed an evaluation for the EEG. Next, we evaluated image processing performance
and finally, we carried out assessments for the fusion of these two sources. Next, we will
present the fusion results and compare the results of our technique with the existing tech-
niques. To prove the efficiency of our proposal/technique we will conduct a comparative
study with existing techniques.

5.2.1. Webcam Only Command Results

The first step consists of identifying the thresholds to be used. Indeed, we repeated
the same tests for a single user and calculated these values using Equations (1) and (2). For
eye state detection, the threshold was (0.15) whereas it was (0.35) for mouth state detection.

As shown in Figure 9a, if the EAR of the mouth is equal to (0.37) which exceeds the
threshold (0.35), the system detects the emotional expression of a smile. Conversely, in the
scenario depicted in Figure 9b, the ratio of the eye is (0.19) which falls over the threshold
(0.15), leading to the identification of the blinking emotion.

Future Internet 2024, 16, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 9. Experimental result of facial expressions with a webcam: (a) emotion Smile, (b) emotion 
Blink, (c) emotion wink Left, (d) emotion wink Right. 

5.2.2. EEG signals Only Command Results 
The results of facial expressions inferred from the EEG signals are presented in Figure 

10. They correspond to four distinct expressions, labeled from one to four, namely “Wink 
Left” (1), “Wink Right” (2), “Blink” (3), and “Smile” (4). Each expression is associated with 
values ranging from 0 to 1, which can be interpreted as percentages, representing the in-
tensity or level of the respective expression. 

 
Figure 10. Experimental result of facial expressions with EEG. 

Figure 9. Experimental result of facial expressions with a webcam: (a) emotion Smile, (b) emotion
Blink, (c) emotion wink Left, (d) emotion wink Right.

5.2.2. EEG Signals Only Command Results

The results of facial expressions inferred from the EEG signals are presented in
Figure 10. They correspond to four distinct expressions, labeled from one to four, namely
“Wink Left” (1), “Wink Right” (2), “Blink” (3), and “Smile” (4). Each expression is associated
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with values ranging from 0 to 1, which can be interpreted as percentages, representing the
intensity or level of the respective expression.
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To illustrate the effectiveness of our model in discerning and categorizing facial expres-
sions based on EEG signals, we can examine emotion number three, which corresponds to a
smile. To ensure the accuracy and consistency of our findings, we conducted a comprehen-
sive set of 400 measurements for each emotion category (1, 2, 3, and 4). In our experiments,
we obtained a precision value of 0.96 on the EEG for this particular emotion. The results of
these measurements were consistently and accurately classified, with minimal discrepan-
cies. This outcome provides strong evidence for the reliability of our model, confirming its
ability to accurately identify and categorize facial expressions using EEG signals.

5.2.3. Fusion Command Results

The study findings, depicted in Figure 11, demonstrated a consistent correlation
among the results obtained from the webcam, EEG signals, and their integrated fusion in
terms of accurately detecting and recognizing emotions. Additionally, the ear (action unit
for the recognition of expression) of emotion was also found to align consistently with the
outcomes obtained from the EEG signals and the webcam modalities. This convergence of
results across multiple modalities lends further support to the robustness and reliability of
our approach in capturing and interpreting emotional states.
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The alignment observed between facial expressions captured by the webcam and
neural activity monitored through EEG signals highlights the effectiveness of combining
these two modalities in the context of controlling a wheelchair.

Confusion matrices are a valuable tool for evaluating classification models by summa-
rizing the relationship between predicted and actual labels. They are structured as N × N



Future Internet 2024, 16, 158 13 of 16

tables, with one axis representing predicted labels and the other axis representing true
labels. In a multiple classification problem with N classes, confusion matrices provide
insights into the model’s classification accuracy and revealing its strengths and weaknesses.
In our multiple classification problem, N = 4.

Figure 12 shows the confusion matrix of the fusion algorithm for our classification.
Where the green color represents correct matrices and the green color represents incorrectly
classified matrices. It shows that out of the 400 samples, the actual states of the emotion
Wink Left are number 1 in this figure, and the model (fusion) was correctly classified (393)
and misclassified (7). Similarly, for these emotions (Wink Right “2”, Blink “3”, and Smile
“4”), 400 samples each (395, 396, 400) were correctly classified, however 5, 4, and 0 were
incorrectly classified.
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5.3. Comparison with Previous Works

The fusion method provides higher accuracy compared to EEG signals or a webcam.
The accuracy of the fusion method is always higher than that of the webcam and EEG
signals, as shown in Figure 13.
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For example, in epoch 11, the accuracy of fusion is up to 0.99 whereas the accuracy of
EEG signals and webcam are limited to 0.95; 0.98, respectively.

The combination of facial expressions and neural signals has the potential to improve
wheelchair control systems, offering intuitive interaction and precise control. This fusion
of parameters enhances responsiveness and personalization, empowering individuals to
navigate their surroundings with increased ease and independence.

A comparison of the proposed methodology with deep learning and other classifica-
tion algorithms from the literature [35–39] is presented in Table 4. The comparison focuses
on studies that were also evaluated in terms of precision, recall, accuracy, and F-score.

Table 4. Performance comparison of our proposed approach with state-of-the-art approaches.

Metric Precision Recall Accuracy F-Score

Roots, K. et al. [35] 74.45 74.47 74.5 74.46
Amin, S. U et al. [36] 84.1 83.8 84.1 84
Shankar, A. et al. [37] 93 - 93.05 -

Lin, L. C. et al. [38] 74.23 - 74.66 -
Goel, S. et al. [39] 98.15 - 98.21 -

Proposed 99.05 99.03 99 98.97

We have found that our proposed algorithm based on a fusion of CNN-LSTM outper-
forms the other works in both accuracy and precision. These results show the advantage of
our networks in predicting the four emotions based on EEG signals and video recognition.

Our network architecture essentially represents a comprehensive method of emotion
identification, seamlessly integrating the perceptive capabilities of image analysis with the
nuanced insights derived from EEG signal processing. Late fusion creates a cooperative
synergy that enables our model to overcome single-modality methods’ constraints.

6. Conclusions

This work lays the groundwork for the creation of cutting-edge assistive technology
and opens up new directions for investigating the potential of human–computer interaction.
We can gain a better knowledge of human cognition and behavior by combining the power
of facial expressions with EEG signals, which will ultimately improve the quality of life for
people who have mobility disabilities.

In this paper, we proposed a smart wheelchair control system designed to aid individ-
uals with physical impairments in their mobility. Our approach integrates fusion between
decision modes from an EEG signals sensor and a webcam images sensor, achieving an
outstanding accuracy level of up to 99% in emotion recognition. The incorporation of CNN
and LSTM architectures through a fusion algorithm exhibits superior performance, surpass-
ing single-modality methodologies. This comprehensive approach not only advances the
field of human–computer interaction but also contributes to assistive technologies, thereby
improving the quality of life of individuals with mobility impairments.

In future endeavors, we aim to validate our study’s findings by implementing our ap-
plication on an embedded system and deploying it in real-world scenarios, particularly in
the control of wheelchairs. Furthermore, we plan to introduce an additional control modal-
ity, such as voice control, expanding the versatility and practicality of our proposed system.
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Abbreviations

EPW Electric Powered Wheelchairs
BCI Brain–Computer Interface
EEG Electroencephalogram
LSTM Long Short-Term Memory
CNN Convolutional Neural Network
WHO World Health Organization
SSVEP Steady-State Visually Evoked Potentials
LORETA Low-Resolution Electromagnetic Tomography of the Brain
BCI-OSC Brain–Computer Interface Open Sound Control
EAR Eye Aspect Ratio
HOG Histogram of Oriented Gradients
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives
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