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Abstract: Charging stations and electric vehicle (EV) charging networks signify a significant advance-
ment in technology as a frontier application of the Social Internet of Things (SIoT), presenting both
challenges and opportunities for current 6G wireless networks. One primary challenge in this integra-
tion is limited wireless network resources, particularly when serving a large number of users within
distributed EV charging networks in the SIoT. Factors such as congestion during EV travel, varying
EV user preferences, and uncertainties in decision-making regarding charging station resources
significantly impact system operation and network resource allocation. To address these challenges,
this paper develops a novel framework harnessing the potential of emerging technologies, specifically
reconfigurable intelligent surfaces (RISs) and causal-structure-enhanced asynchronous advantage
actor–critic (A3C) reinforcement learning techniques. This framework aims to optimize resource
allocation, thereby enhancing communication support within EV charging networks. Through the
integration of RIS technology, which enables control over electromagnetic waves, and the application
of causal reinforcement learning algorithms, the framework dynamically adjusts resource allocation
strategies to accommodate evolving conditions in EV charging networks. An essential aspect of this
framework is its ability to simultaneously meet real-world social requirements, such as ensuring
efficient utilization of network resources. Numerical simulation results validate the effectiveness and
adaptability of this approach in improving wireless network efficiency and enhancing user experience
within the SIoT context. Through these simulations, it becomes evident that the developed framework
offers promising solutions to the challenges posed by integrating the SIoT with EV charging networks.

Keywords: reconfigurable intelligent surfaces; EV charging networks; SIoT; causal structure; A3C;
reinforcement learning; RIS phase shift; energy efficiency

1. Introduction

The implementation of a charging infrastructure and networks for electric vehicles
(EVs) encounters numerous challenges [1], particularly when serving distributed EV charg-
ing networks with limited wireless network resources [2,3]. Factors such as congestion
during EV travel, diverse preferences among EV users, and uncertainties in decision-
making regarding charging station (CS) resources profoundly impact system operation
and network resource allocation. Meanwhile, with the development of smart grids, electric
vehicle charging networks have also experienced rapid growth [4]. Also, current and
upcoming wireless networks, including 5G/6G and their subsequent versions, are expected
to provide significantly improved data rates, reduced latency, and expanded network
coverage compared to previous versions [5,6]. This progress in wireless networks stems
from new design principles, enabling them to support a large number of connected devices
simultaneously. Making sure things connect well and can share information easily is really
important, especially for the growing number of Social Internet of Things (SIoT) apps [7,8].
They need smooth interactions to continue getting better.
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In smart electric vehicle charging networks, the communication system adjusts mul-
tiple features to achieve desirable communication outcomes. For example, factors such
as communication power allocation at charging stations, the presence of active or passive
relays [9], the communication channel quality, and the presence of obstacles may affect
the overall communication conditions [10]. As actions are taken to optimize the commu-
nication network, the system’s communication state changes accordingly. In [11], this is
represented using Markov Decision Processes (MDPs), with the communication quality
serving as the reward factor. In this scenario, the numbers of interventions and states both
exponentially increase.

To address these challenges, this paper introduces a novel framework leveraging
emerging technologies, specifically reconfigurable intelligent surfaces (RISs) and causal-
structure-based reinforcement learning techniques.

1.1. Background

Reconfigurable intelligent surfaces (RISs) are a revolutionary technology in the field
of wireless communication and signal propagation [12]. The structure of RISs typically
includes a dielectric surface panel, which is a subgroup of periodic structures [13] com-
posed of repeating minimal geometric shapes called unit cells. Each unit cell contains
conductive printed patches, also known as scatterers, with sizes that are a small fraction of
the operating frequency wavelength. The macroscopic effect of these scatterers defines a
specific impedance surface [14], which, when controlled, can manipulate reflected waves
from the dielectric surface panel. Each scatterer or cluster of scatterers can be adjusted to
reconstruct electromagnetic waves with desired characteristics across the entire surface. By
intelligently controlling the phase, magnitude, and polarization of reflected or transmitted
waves, RISs can enhance wireless communication performance, improve signal coverage,
and reduce interference in various wireless systems.

Electric vehicles (EVs) are considered an emerging strategy to reduce the dependence
on oil and provide opportunities to reduce carbon emissions [15]. The main elements of
an EV system include EVs, charging stations equipped with charging points, and asso-
ciated communication systems. Managing EV charging and optimizing their interaction
with the power grid relies on appropriate communication infrastructure between EVs,
charging stations, and the power grid. EV charging communication networks play a
crucial role in promoting the widespread adoption of electric vehicles by providing reli-
able communication connections for EV owners, thereby contributing to the transition to
sustainable transportation.

In [16], social networks are utilized for searching internet resources, routing traffic,
or selecting effective content distribution strategies. The Internet of Things (IoT) [17]
integrates a vast array of technologies, envisioning various things or objects interacting
and cooperating with each other through a series of communication protocols to achieve
common goals. The convergence of the Internet of Things and social networks into the
Social Internet of Things (SIoT) [18] is anticipated to have many desirable impacts on the
future world. The SIoT aims to enhance the functionality, usability, and effectiveness of IoT
systems by leveraging social relationships. By enabling IoT devices to collaborate, share
information, and interact based on social context, the SIoT seeks to create more intelligent
and adaptable IoT environments capable of addressing diverse user needs and preferences.

Meanwhile, causal reinforcement learning (CRL) [19,20] is a branch of reinforcement
learning (RL) that incorporates causal reasoning into the decision-making process. Causal
structures in machine learning refer to the graphical representation of causal relationships
among variables in a given system. These structures capture the cause–effect relationships
between different variables, enabling the identification of causal factors and the prediction
of system behavior. Understanding causal structures is essential for making informed
decisions, conducting causal inference, and designing effective machine learning models
that can accurately capture and leverage causal relationships. In the complex communi-
cation environment considered in this paper, actions may not directly lead to observed
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outcomes. Instead, they may influence outcomes through intermediate variables, allowing
CRL algorithms to make wiser decisions.

Furthermore, asynchronous advantage actor–critic (A3C) [21] is a type of reinforce-
ment learning algorithm that combines the advantages of both policy-based and value-
based methods. A3C uses asynchronous training to update multiple agents concurrently,
allowing for more efficient exploration of the action space and faster convergence to op-
timal policies. By incorporating an actor–critic architecture, A3C can learn both action
policies and value functions simultaneously, leading to more stable and effective learning
in complex environments.

The framework proposed in this paper aims to optimize resource allocation, thereby
enhancing SIoT support within EV charging networks. By integrating RIS technology
for electromagnetic wave control and applying causal RL algorithms, the framework
dynamically adjusts resource allocation strategies to adapt to changing conditions in EV
charging networks.

1.2. Limitations of RISs and CRL

However, there are limitations of RIS technology as well as causal reinforcement learning.
Firstly, regarding RIS technology, its practical application may encounter some limita-

tions. For example, the deployment of RISs may require a substantial amount of hardware
equipment and a complex installation process, which could increase system costs and
deployment difficulties. Additionally, the performance of RISs may be influenced by en-
vironmental conditions, such as building structures or weather conditions, which could
affect the effectiveness of the RIS and consequently degrade the communication quality
and reliability.

As for causal reinforcement learning, its limitations primarily manifest in the model
complexity and training time. Causal reinforcement learning may necessitate a large
amount of data for training, and in complex environments, it may require significant time
to converge to optimal solutions. Furthermore, the design and optimization of causal
reinforcement learning algorithms may require specialized knowledge and expertise, po-
tentially limiting their application in practical systems.

Moreover, challenges may arise in the interaction and integration of both technologies
in practical applications. For instance, effectively integrating RIS technology and causal
reinforcement learning algorithms into smart electric vehicle charging communication
networks to achieve synergistic effects would require further research and optimization.

In summary, despite the potential advantages of RIS technology and causal reinforce-
ment learning in smart electric vehicle charging communication networks, they also face
practical limitations that need to be considered and addressed in real-world applications.

1.3. Related Studies

In a significant study [22], deep reinforcement learning (DRL) was utilized to dynam-
ically configure phase shifts in reconfigurable intelligent surfaces (RISs), leading to en-
hancements in signal coverage, a reduced interference, and an improved spectral efficiency.
Moreover, in one study [23], an exploration was conducted to leverage deep Q-networks
(DQNs) for enhancing RIS-supported massive multi-input multi-output (MIMO) setups.
This proposition centered on an adaptable control strategy, dynamically adjusting the
phase shifts and beamforming weights associated with the RIS. This adaptation resulted in
notable enhancements in the system’s capacity, coverage, and energy efficiency. In [24], the
author tackles resource allocation hurdles in vehicular communications. This is achieved
by employing a multi-agent deep deterministic policy gradient (DDPG) method, where
vehicle-to-vehicle (V2V) communications serve as agents utilizing non-orthogonal multi-
ple access (NOMA) [25] technology for spectrum sharing. By approaching the problem
as a decentralized discrete-time and finite-state Markov Decision Process (DFMDP) and
implementing the DDPG method, the suggested approach optimizes the sum-rate of V2I
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communications. It also guarantees the latency and reliability requirements are met for
safety-critical V2V transmissions amidst a dynamic vehicular setting.

In recent years, traditional social networking has evolved into more intricate social
internetworking, extending beyond human users to objects. Ref. [26] has explored the
Social Internet of Things (SIoT) and Multiple IoT (MIoT) paradigms, with the SIoT focusing
on technological challenges of interacting IoT devices, while the MIoT delves into data-
driven and semantics-based aspects of smart object interactions. This paper investigates
this concept of the scope in multi-IoT scenarios, proposing formalizations and applications,
followed by experiments evaluating its effectiveness compared to existing parameters
like the diffusion degree and influence degree. In [27], the author proposes a symbiotic
radio (SR) system that supports both Internet of Things (IoT) and cellular networks, allow-
ing multiple users to receive information from the base station while multi-IoT devices
backscatter their data via the same signal. Leveraging robust design methods, the system
minimizes the transmit power under cellular outage probability and multi-IoT transmission
rate constraints, addressing channel uncertainty and demonstrating effectiveness through
simulation results. Ref. [28] proposes an energy- and trust-aware opportunistic routing
approach for the cognitive radio Social Internet of Things (CR-SIoT), leveraging network
coding and game-theoretic allocation of trusted channels to enhance the network perfor-
mance, as validated by extensive simulation results. To improve the social edge service
(SES) in the Social Internet of Things (SIoT), Ref. [29] proposed a hybrid graph deep learn-
ing (HAD) approach that employs an adaptive trust weight (ATW) model and a quotient
user-centric coeval learning (QUCL) mechanism, achieving an improved communication
and computation performance and enhancing SES reliability.

Ref. [30] presents structural causal modeling (SCM) as a method for ecologists to
discern cause-and-effect relationships from observational data, overcoming biases common
in traditional statistical analyses like confounding. Utilizing directed acyclic graphs (DAGs)
and graphical rules like the backdoor and frontdoor criteria, SCM systematically estimates
causal effects between variables of interest in ecological studies, showing promise for
advancing causal inference without the need for randomized experiments.

However, there are few works that apply the causal structure in the field of communica-
tion. The application of causal reinforcement learning in RIS-assisted SIoT communication
systems is a promising research direction. RISs can be used to adjust the transmission char-
acteristics of signals to adapt to different communication environments and requirements.
Causal reinforcement learning can utilize historical data and environmental feedback to
provide intelligent decision support for an RIS, enabling it to adjust its operating mode and
parameter settings according to real-time demands and network conditions. By learning
based on causal relationships, the system can better understand the impact of RISs and
make decisions based on these causal relationships, thereby improving the performance of
the communication system.

1.4. Our Contribution

Compared to a previous work [31], this paper differs mainly in the following aspects:
Focus and Background:
This paper focuses on dynamic resource allocation in RIS-assisted electric vehicle

charging communication networks under cellular networks, with base stations as the core,
especially addressing the wireless communication environment within electric vehicle
charging networks. In contrast, the second summary emphasizes dynamic resource al-
location in RIS-assisted mobile ad hoc networks (MANETs), particularly in addressing
time-varying and uncertain wireless communication environments within multi-mobile ad
hoc wireless networks.
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Optimization Methods:
This paper proposes an asynchronous advantage actor–critic (A3C) algorithm based

on causal factors to optimize communication network resource allocation control. It learns
feature representations from incomplete communication environment states to accelerate
the training speed, understand the causal relationships in the environment, and transfer
training results to similar communication environments. On the other hand, the second
summary introduces an inner–outer joint online optimization algorithm for RIS-assisted
MANETs. It utilizes the D-UCB algorithm for RISs and spectrum selection in the outer
network and employs the TD3 algorithm to gain decentralized insights into RIS phase
shifts and power allocation strategies in the inner network.

Algorithmic Structure:
The CF-A3C algorithm in this paper first acquires causal factors, uses them as state

acquaintances of the A3C network, and updates the global network using experiences col-
lected by multiple worker threads, eliminating the need for a replay buffer and promoting
efficient exploration in resource allocation tasks. Conversely, the TD3 algorithm in the sec-
ond summary adopts an actor–critic structure with three target networks and two hidden
layer streams in each neural network to segregate state-value and action-value distribution
functions, accelerating convergence speed and enhancing the learning efficiency.

This paper presents a novel framework aimed at addressing the challenges associ-
ated with integrating the Social Internet of Things (SIoT) with connected electric vehicle
(EV) charging networks. This framework harnesses emerging technologies, including
reconfigurable intelligent surfaces (RISs), causal structures, and A3C-based reinforcement
learning techniques, to optimize resource allocation and enhance SIoT support within EV
charging networks.

By integrating RIS technology, which enables control over electromagnetic waves, and
applying causal RL algorithms, the framework dynamically adjusts resource allocation
strategies to accommodate the evolving conditions in distributed EV charging networks.
Importantly, this framework aims to simultaneously meet real-world social requirements,
such as fulfilling EV user charging needs, while ensuring efficient utilization of network
resources, thereby enhancing communication performance.

The primary achievements elucidated within this manuscript are as follows:

• Establishment of a model to represent the fluctuating and uncertain wireless com-
munication setting for managing dynamic resource allocation in RIS-assisted electric
vehicle charging communication networks. The model depicts the dynamic resource
allocation system operating within an electric vehicle charging network.

• Design of a causal inference model capable of reasoning about and addressing causal
relationships in the electric vehicle charging communication network by acquiring
effective representation distributions.

• Proposal of a causal-factor-based asynchronous advantage actor–critic (A3C) algo-
rithm based on the designed causal factor model for optimizing communication
network resource allocation control. The feature representations are derived from
learning the incomplete communication environment states. This method introduces a
novel approach to training actor–critic networks, known as A3C, by directly updating
global networks using experiences collected by multiple worker threads. By eliminat-
ing the need for a replay buffer, the method streamlines training and promotes efficient
exploration in resource allocation tasks. This advancement accelerates learning while
enhancing overall performance within the A3C framework.

The advantages of our work over existing contributions are presented in Table 1.
The results of experiments conducted in different environments demonstrate that

the CF-A3C algorithm is highly competitive with state-of-the-art resource optimization
algorithms across multiple evaluation metrics.
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Table 1. Comparison with existing contributions.

Aspect Existing Contribution Advancements in
Provided Algorithms

Encoder Simple encoder architectures
Utilization of a deep encoder

with the self-attention
mechanism

Captures non-linearity Linear or shallow
neural networks

Deep neural networks
capturing complex

relationships

Self-attention mechanism No or only basic
attention mechanisms

Integration of self-attention
for capturing dependencies

Causal factor extraction Manual feature
engineering approaches

Automatic extraction of causal
factors from state vectors

Resource allocation Fixed or rule-based
allocation methods

Dynamic allocation
optimization using the

CF-A3C algorithm

Scalability Limited scalability for
large systems

Scalable solutions suitable for
complex network scenarios

Real-world applicability Limited applicability in
practical settings

Practical solutions with a
demonstrated

real-world impact

2. System and Channel Model
2.1. Scenario Overview

In an electric vehicle charging communication network, there are two parts: uplink and
downlink communication between the base station and vehicles and uplink and downlink
communication between the base station and charging stations.

User demands are input information in the network, and this algorithm aims to opti-
mize the channel capacity between base stations and vehicles while maximizing energy
efficiency. By dynamically adjusting communication resource allocation strategies to meet
the changing needs of different users, the algorithm achieves more flexible and efficient
resource utilization by monitoring and analyzing changes in user demands and considering
the real-time status of network resources. Furthermore, the application of RIS technology
makes the utilization of network resources more flexible and efficient by adjusting the
direction and intensity of electromagnetic wave transmission, enhancing signal coverage
and the transmission accuracy and thus improving the network resource utilization effi-
ciency while meeting users’ charging service needs. Additionally, the algorithm optimizes
resource allocation strategies to avoid resource waste and overuse by integrating tech-
niques such as causal reinforcement learning, maximizing network resource utilization
while meeting user demands and thereby enhancing the overall network efficiency and
performance. In summary, the A3C resource allocation control algorithm, assisted by an
RIS, effectively balances user demands (electric vehicle charging) with network resource
utilization, thereby improving the performance and efficiency of smart electric vehicle
charging communication networks. This paper focuses on the downlink communication
process between the base station and vehicles. In this network, using RIS-assisted com-
munication can optimize the channel, enhance communication reliability, and improve
performance. The communication process in electric vehicle charging involves uplink and
downlink transmissions between vehicles and base stations, charging stations, and base
stations with reflective intelligent surface (RIS) assistance. We introduce the communication
between vehicles and the base station in the following.
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Uplink Communication Process

Vehicles Send Data to yjr Base Station: Vehicles transmit uplink data to the base station
through antennas based on their needs. These data may include the current status of the
vehicle, charging demands, vehicle location, etc.

Downlink Communication Process

The Base Station Sends Data to Vehicles: The base station transmits downlink data
to vehicles through antennas. These data may include the status information of charging
stations, charging plans, traffic information, etc. If RIS-assisted communication is available,
the base station can improve the channel quality and enhance the strength and reliability of
signals reaching the vehicles through RISs.

RIS Processing of Downlink Signals: An RIS receives downlink signals sent by the base
station and reflects the signals towards the direction of the vehicles based on pre-designed
reflection coefficients and phase adjustments to enhance signal reception.

Vehicles Receive Signals: Vehicles receive downlink signals from both the base station
and the RIS and utilize the received information to perform corresponding operations, such
as adjusting charging behavior, updating charging plans, etc.

Information Interaction:

During the communication process in both uplink and downlink transmissions, there
is interaction and processing of information among the base station, vehicles, and RISs.
The base station is responsible for scheduling charging stations, processing information
uploaded by vehicles, issuing charging plans, etc. Vehicles are responsible for uploading
their own status, location, and other information, as well as receiving charging plans issued
by the base station. RISs serve as an intermediary node, responsible for optimizing the
channel, enhancing communication reliability and performance, and reflecting signals from
the base station to vehicles or from vehicles to the base station. Through the above commu-
nication process and information interaction, the electric vehicle charging communication
network needs to achieve efficient communication between charging stations and vehicles,
providing support and optimization for the charging behavior of electric vehicles.

2.2. System Model

Exploring the RIS-enhanced electric vehicle charging network downlink procedure
depicted in Figure 1, we observe base stations (BSs) acting as transmitters, equipped with N
antennas, and one RIS composed of M element units for support, alongside L single-antenna
electric vehicle users (VUs). The communication landscape is challenging, characterized
by traffic congestion, buildings, and various obstacles, leading to blocked direct signal
links from BSs to electric vehicle users. Consequently, a two-hop communication system is
established, necessitating a BS to relay signals through an RIS to reach the users. For user k,
the received signal at time t is presented as:

yk(t) = (hBV + hRV,k(t)HΦk(t)HBR,k(t))x(t) + nk(t), (1)

In this scenario, the transmitted signal on the k-th subcarrier is represented as x(t) ∈
CM×1, the received signal is denoted by yk(t), and the additive white noise is represented
as nk(t), following a normal distribution CN (0, σ2

k ). At time t, the line-of-sight channel
gain is presented as hBV, and the non-line-of-sight channel gain is presented as the chan-
nel gain matrices from the base station to the RIS relay and from the RIS relay to the
vehicle as HBR,k(t) ∈ CN×M and hRV,k(t) ∈ C1×N , respectively. As Figure 1 shows, the
direct link is blocked by buildings or other obstacles, so the communication between the
base station and vehicle users is through the non-line-of-sight channel. Additionally, for
user k at time t, the RIS comprises M×M reflecting elements, represented by the diag-
onal matrix Φk(t), indicating their corresponding phases. Specifically, it is defined as
Φk(t) = diag[ejθ1,k(t), ejθ2,k(t), . . . , ejθM,k(t)] ∈ CM×M. Considering the transmit power pk(t)
from the base station to user k, the transmitted data sk(t), and the beamforming vector qk(t)
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at the base station antennas, the term x(t) is expressed as ∑K
k=1

√
pk(t)qk(t)sk(t), which is

the transmitted signal x(t) at time t. The following constraints are applied to the transmit
power at the base station:

E[|x(t)|2] = tr(P(t)WH(t)W(t)) ≤ Pmax, (2)

where P(t) = diag[p1(t), . . . , pL(t)] ∈ CK×K, W(t) is represented as W(t) = [w1(t), . . . ,
wK(t)] ∈ CM×K, and Pmax represents the maximum transmit power.

Figure 1. RIS-assisted wireless electric vehicle charging network.

2.3. RIS-Assisted Wireless Channel

We need to model two types of dynamic wireless channels in the system: one is the
channel from the base station to the RIS relay, denoted as HBR(t), and the other is the
channel from the RIS relay to individual vehicle users (VUs), denoted as hRV,k(t). The
base station to the RIS channel model and the RIS to vehicle user channel model can be
shown as:

Base station to RIS relay channel model:

HBR(t) =
√

βBR(t)× a(ϕR, θR, t)× aH(ϕBS, θBS, t) (3)

Here,
√

βBR(t) represents the time-varying channel gain from the base station to the
RIS relay. For the transmission data process from the BS to the RIS relay, the presentation of
the array response vectors for multi-RIS units is denoted as a(ϕBS, θBS, t) and a(ϕR, θR, t).
Specifically, a(ϕBS, θBS, t) = [a1(ϕBS, θBS, t), . . . , aN(ϕBS, θBS, t)]T ∈ CN×1 and a(ϕRIS, θR, t) =

[a1(ϕR, θR, t), . . . , aM(ϕR, θR, t)]T ∈ CM×1 . Next, the wireless channel model from the RIS relay
to the user equipment (VUk) is described as follows:

hRV,k(t) =
√

βRV,k(t)× aH(ϕRV,k, θRV,k, t) (4)

Here,
√

βRV,k(t) characterizes the time-varying channel gain from the RIS relay to
vehicle user k at time t (k ∈ [1, . . . , K]), and a(ϕRV,k, θRV,k, t) represents the multi-antenna
array response vector from the RIS relay to vehicle user k, defined as a(ϕRV,k, θRV,k, t) =
[a1(ϕRV,k, θRV,k, t), . . . , aM(ϕRV,k, θRV,k, t)]T ∈ CM×1.
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In the context of the non-line-of-sight (NLOS) situation of the communication sys-
tems, the time-varying signal-to-interference-plus-noise ratio (SINR) for user k (where
k ∈ (1, . . . , K)) can be obtained as follows:

γk(t) =
pk(t)|(hH

RV,k(t)Φk(t)HBR,k(t))qk(t)|2

∑K
j ̸=k pj(t)|hH

RV,k(t)Φk(t)HBR,k(t))qj(t)|2 + σ2
k

, (5)

Moreover, the spectral efficiency (SE) of the real-time system, measured in bps/Hz,
can be expressed as:

R(t) =
K

∑
k=1

log2(1 + γk(t)), (6)

2.4. Causal Factors in RL Structure
2.4.1. Causal Graph

A directed acyclic graph (DAG) [32] is a finite graph G = (V, E) consisting of a set
of vertices V and a set of directed edges E, where each edge e ∈ E is an ordered pair (u,v)
indicating a direct connection from vertex u to vertex v. A DAG does not contain any
directed cycles, meaning there is no sequence of edges that starts and ends at the same
vertex by following the direction of the edges. Assigning a value to a particular variable X
is denoted as an action or intervention. Let PaX denote the parent nodes of variable X; if
variable X undergoes an intervention, according to the backdoor criterion, all edges from
PaX to X are eliminated.

2.4.2. Structural Causal Model

The wireless environment exhibits ubiquitous causality, leading to causal changes
in the wireless channel over time. Obtaining the causality of the time-varying wireless
channel enables efficient modeling even with limited channel measurements. The key to
representing wireless channel causality lies in developing suitable structural causal models
(SCMs) [33]. In this paper, we denote the SCM as M, which is a tuple < U, V,F , P(u) >.
V = [V1, . . . Vn] represents a set of endogenous variables, i.e., variables influenced by
other variables in the study. U = [U1, . . . , Um] represents a set of exogenous variables,
i.e., variables in the study not influenced by other variables. A set of structural functions
determining V is defined as F = [ f1, . . . , fn]. P(u) represents the distribution over U.

Next, we formalize the multi-RIS assisted wireless system in the causal domain as
Figure 2 shows.

Figure 2. The causal graphs for both reward (left) and state (right) depict the situation of the state
st in the RIS-assisted wireless electric vehicle charging network. In this graphical representation,
all elements are classified into three tiers: the top layer corresponds to the outcome variables,
represented by the green text box; the bottom layer corresponds to exogenous variables U, consisting
of manipulable variables, depicted in blue text boxes (X); and the variables that have a direct impact
on the outcome variables (ZR and SR) are marked in orange, positioned between the green and blue
layers. These variables are related to the internal factors denoted by V. The interactions between
these tiers are depicted by gray arrows, illustrating the intricate causal relationships facilitated by the
structural functions F . At each time step t, controllers adjust the blue nodes, influencing subsequent
observations of values in the orange and green nodes.
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2.5. Analysis of Reinforcement Learning and the SCM

Structural causal models (SCMs) play a crucial role in causal reinforcement learning
(CRL) by providing a formal framework for representing the causal mechanisms underlying
the environment. SCMs encode how variables in the environment interact with each other
to produce observed outcomes, allowing agents to reason about causal relationships and
make informed decisions, as in Figure 3. The following is a detailed explanation of the role
of SCMs in CRL.

Figure 3. In the reinforcement learning structure (left), Θ denotes parameters concerning the environ-
ment. The agent receives feedback in the form of rewards. The agent’s utility is defined by the reward
function and it acts so as to maximize the expected rewards. In the causal reinforcement learning
structure (right), G denotes the causal diagram, and M denotes the structural causal model. The
environment and the agent will be linked through the combination of an SCM and a corresponding
causal graph.

Representation of Causal Mechanisms: SCMs define the structural relationships be-
tween variables in the environment, including actions, states, and rewards. They specify
how changes in one variable affect other variables, capturing the causal mechanisms that
govern the dynamics of the environment. For example, an SCM might describe how tak-
ing certain actions influences the subsequent states of the environment and the resulting
rewards received by the agent.

Causal Graph Construction: SCMs provide the foundation for constructing causal
graphs, which represent the causal relationships between variables in the environment.
Each node in the causal graph corresponds to a variable, and directed edges indicate causal
influences between variables. SCMs specify the structure of the causal graph by defining
the parents of each variable, reflecting the direct causal dependencies between variables.

Counterfactual Reasoning: SCMs enable counterfactual reasoning, allowing agents
to reason about alternative scenarios and assess the causal effects of different actions.
By manipulating the structural equations in an SCM, agents can simulate hypothetical
interventions and predict how the environment would have behaved under different
conditions. This allows agents to evaluate the causal consequences of their actions and
make decisions that maximize expected rewards.

Policy Evaluation: SCMs facilitate the evaluation of policies by estimating the expected
rewards associated with different action sequences. By simulating the causal mechanisms
specified in an SCM, agents can compute the expected cumulative reward obtained by
following a particular policy in a given environment. This allows agents to compare the
effectiveness of different policies and select the one that maximizes long-term rewards.

Causal Inference: SCMs support causal inference by providing a formal framework
for estimating causal effects from observational data or interventions. Agents can use
techniques such as do-calculus or structural equation modeling to infer causal relationships
from observed data and learn the structural parameters of the environment. This allows
agents to build accurate causal models of the environment and make better decisions based
on causal understanding.

In summary, SCMs play a central role in CRL by formalizing the causal relationships
between variables in the environment, guiding decision-making through counterfactual
reasoning and policy evaluation and facilitating causal inference from observational data.
By leveraging SCMs, agents can acquire a deeper understanding of the causal structure
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of their environment and make more informed and effective decisions in complex and
uncertain scenarios.

3. Problem Formulation

Developing an efficient resource allocation algorithm presents a considerable chal-
lenge, primarily attributed to the mobility of users and the inherent uncertainty of the
wireless channel. However, by integrating causality into the framework, we can potentially
alleviate these challenges, as causality provides a means to better capture and understand
uncertainties within the system.

Initially, we conduct an analysis of power consumption throughout the resource
allocation process and formulate the optimization problem with a focus on enhancing
energy efficiency. Subsequently, leveraging the causal structure within reinforcement
learning (RL), we reframe the problem into a causal Markov Decision Process (MDP). This
approach enables us to incorporate causal relationships among variables, facilitating more
informed decision-making in dynamic environments.

To address the resource allocation optimization dynamically, we propose an actor–
critic reinforcement learning algorithm tailored to the causal MDP framework. By iteratively
refining the policy through actor–critic updates, our algorithm aims to learn optimal
resource allocation strategies that balance energy efficiency and performance.

Furthermore, we delve into the intricacies of our proposed algorithm, providing
detailed explanations of its components, such as actor and critic networks, reward functions,
and exploration strategies. Additionally, we discuss the training procedure and potential
extensions or enhancements to our approach.

3.1. Power Consumption

The total power dissipated in the system, encompassing K users, comprises various
components, including the base station transmit power (pt), hardware static power at the
base station (PBS), power consumed by the RIS relay (PM), and power consumption at the
user equipment (PVU). With these components considered, the total power operating on
the RIS-assisted wireless network can be defined as follows

Ptotal(t) =
K

∑
k=1

(ξ pt(t) + PVU(t)) + PBS(t) + PR(t), (7)

where ξ ∼= ν with ν to evaluate the ability to effectively convert input electrical power into
output radio frequency (RF) power by the power amplifier.

Considering (7) as the denominator of the energy efficiency (EE) function, then the
EE performance ηEE ∼= (B · R)/Ptotal , with B presenting the bandwidth, can be obtained
using (6) and (7) as

ηEE(t) =
B ∑K

k=1 log2(1 + γk(t))
sumK

k=1(ξ pt(t) + PVU(t)) + PBS(t) + PR(t)
, (8)

3.2. Optimal Problem Formulation

As depicted in Figure 2, the goal is to maximize the energy efficiency ηEE(t) by jointly
optimizing the transmit power P = [p1(t), p2(t), . . . , pK(t)] from the BS, RIS selection and
the phase shift matrix Φ = [ϕ1(t), ϕ2(t), . . . , ϕM(t)] from the RIS.

Markov Decision Process (MDP) formulation encompasses essential components
including the state, action, transition probability function, reward, and environment. These
components are elucidated as follows:

• State space: Consider S as the state space, which comprises the following constituents:
(i) the channel gains for communication links: ht

k and gt
k, (ii) the velocity and position

of intelligent vehicle agents vk, pk, (iii) actions involving the configuration of phase
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shifting for the RIS components and power distribution of VUk implemented at time
t− 1, and (iv) the energy efficiency at time t− 1. Hence, S encompasses:

s(t) = {{ht
k, gt

k}k∈K, vk, pk, a(t−1), {ηt
EE,k}k∈K} (9)

• Action space: Symbolized as A, the action space encompasses the array of actions
available to the agent. It includes the manipulation of phase shifting for individual
RIS components and the adjustment of transmission power at the base station. The
action a(t) is expressed as:

a(t) = {Θ, {Wk}k∈K} (10)

• Transition Probability Function (P): This characterizes the likelihood of transitioning
between states and a particular action. Formally, it is represented as P(s′|s, a), where
s′ denotes the subsequent state, s denotes the current state, and a signifies the action.

• Reward function: The agent is provided with an immediate reward rt
i , representing

the energy efficiency as defined in Equation (8).

rt
k = ηt

EE,k (11)

• Value Function: This indicates the anticipated cumulative reward, originating from
a specific state according to a predetermined policy π. Employing Vπ

t to symbolize
the value function at time step t under policy π, it signifies the anticipated total of
rewards beginning from st = s and extending to the conclusion of the episode:

Vπ
t (P, Φ, t) = E

[
TF

∑
τ=t

R(sτ , π(sτ , τ)|st = s)

]
(12)

• The Q-value function denotes the anticipated return, commencing from a designated
state st = s, executing a particular action at = a, and subsequently adhering to policy
π. It is articulated as follows:

Qπ
t (s, a) = R(s, a) + E

[
TF

∑
τ=t+1

R(sτ , π(sτ , τ))|st = s, at = a

]
(13)

In line with the foundational principles of optimal control theory [34], the optimal
value function, along with the optimal policies for optimal resource allocation modulation,
can be derived as follows:

V∗(Φ, P, t) = max
uΦ ,uP

V(Φ, P, t) (14)

Here, uP ∈ CN×N and uΦ ∈ CM×M represent the resource allocation control policies.
Specifically, uP pertains to the transmit power control policy, while uΦ corresponds to the
RIS phase shift control policy.

Additionally, adhering to Bellman’s principle of optimality [35], the dynamic repre-
sentation of the finite horizon optimal cost function unfolds as follows:

V∗(Φ, P, t) = max
uΦ ,uP

{r(Φ, P, t)}+ V∗(Φ, P, t + 1) (15)

3.3. Causal MDP Formulation

In this section, we introduce causal factors that influence the state variables within
the framework. Actions in causal MDPs are depicted as interventions. At each state s, we
construct the reward graph GR(s). The variables representing rewards are R and states are
denoted by S. The agent can modify variables XI , but it is not allowed to intervene on the
parent variables of R (represented as ZR = PaR) or the parent variables of S (represented



Future Internet 2024, 16, 165 13 of 20

as ZS = PaS). As described in Section 3.3, an intervention applied to an action of size m is
symbolized as do(Xsub = x), where |Xsub| = m and x = [x1, . . . , xm].

At each state s, the causal graph GR(s) includes the variables XR = [XI , ZR, R]. It is
important to note that the identity of variables in the causal graphs remains consistent
across states, although the underlying distributions may vary. Detailed explanations of
these notations are provided in Figure 2. Utilizing this causal knowledge, we define
the transition probability function as P(z′ | z, a, s), and the reformulation of the reward
function becomes:

R(s, a) = ∑
z∈Z

R(s, Z = z)P(Z = z|s, a) (16)

Consider the function called R(s, Z = z), which tells us the expected reward when we
have a certain state and parent pair. Now, we will introduce another function called the
Q-value function, denoted as qπ

h : S× Z → R. This function is all about giving us the total
rewards we can expect under a policy π, starting from a given state st = s and a parent
state zt = z and continuing until the episode ends:

qπ
t (s, z) = R(s, z) + E

[
TF

∑
τ=t+1

R(sτ , π(sτ , τ))|st = s, zt = z

]
(17)

According to the Bayesian Law of total probability formula, Qπ
t (s, a) can be expressed

as the sum over all possible states z in Z of the conditional probability of Z being z given
the current state s and action a, denoted by P(Z = z|s, a), multiplied by the expected
reward qπ

t (s, z). Expressing Qπ
t (s, a) as ∑z∈Z P(Z = z | s, a)qπ

t (s, z) is a consequence of
considering an MDP enhanced with dynamic causal graphs GR and GS. This formulation
can be captured by a tuple MC = ⟨S, A, P, R, T, GR, GS⟩.

4. Causal MDP-Based RIS-Assisted Resource Allocation Optimization with Online
Reinforcement Learning

An ensemble DNN algorithm is provided to address the problem of the probability
distribution of the causal factor Z required in Equation (17). Then, based on the obtained
causal information, to tackle Equation (15), incorporating intervened actions from (10), we
employ the asynchronous advantage actor–critic(A3C) algorithm to optimize the entire
network output. The structure of our proposed algorithm is illustrated in Figure 4.

Figure 4. A3C network structure.

4.1. Causal Factor Encoder and Decoder with a Deep Neural Network

There are L electric vehicle (EV) users in the charging network and L corresponding
subcarriers in the network, where each subcarrier’s state information is represented as the
concatenation of si described in Equation (9) and a described in Equation (10), [si

t, at] ∈ Rd,
where i = 1, 2, . . . , L, and d is the dimensionality of the state features. The input sequence
is represented as S = [[s1

t , at], [s2
t , at], . . . , [sL

t , at]] ∈ Rd×L. The corresponding feature
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representation Zi
t ∈ Rd×1 can be regarded as the global environmental information for

subcarrier i, st
j is subcarrier j’s state and αij is a weight for sj

t:

zi
t = Softmax

(
hj

t

)
=

exp
(

relu
[
αT

[
hi

t||h
j
t

]])
∑v∈Ni

(
relu

[
αT

[
hi

t||hv
t
]]) , (18)

where α ∈ Rd×1 is the attention vector.
For the state set of the subcarrier i’s neighborhood Li, i.e., sLi

t = {st
j}j∈Ni, we employ

fully connected (FC) layers (i.e., a shared weight matrix Wi ∈ Rd×1, where d is set to 256 in
the simulation section) to transform the input state st

j of each subcarrier j and then obtain the

embedding zt
j ∈ Rd×1. Thus, there will be a total of |Li| embeddings, i.e., {zt

j}j∈Li . Finally,

an attention mechanism layer aggregates all these embeddings to obtain ZLi
t ∈ Rd×1, which

can be considered as the current global embedding of subcarrier i. The network architecture
is shown in Figure 5. The complementation is provided in Algorithm 1 below.

Algorithm 1 Causal factor extraction based on a self-attention mechanism

1: Input: State set of each subcarrier st
j, ∀j; subcarrier neighborhood sets Li, ∀i; weight

matrix Wi; attention vector l
2: Position Encoding:
3: Initialize the position encoding for each state vector to consider the sequence order.
4: Encoder:
5: for each time step do
6: Concatenate the state vectors of all subcarriers into a matrix X.
7: for encoder layer do
8: Pass the output through a feed-forward neural network layer to capture non-linear

relationships.
9: Compute the self-attention scores for each subcarrier’s state vector.

10: Apply the self-attention mechanism to obtain the weighted sum of each user’s
state representation.

11: end for
12: Obtain the causal factor for each subcarrier from the final encoder layer output.
13: end for
14: return Causal factor for each subcarrier.

Figure 5. Causal factor extraction network architecture.
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After the last hidden layer, the extracted causal factor representation for the system
can be utilized for subsequent tasks, which is the resource allocation optimization of the
communication network. The algorithm is provided in the following.

4.2. An Algorithm Utilizing Causal Factor-A3C for RIS Phase Shifting and Power Allocation

The overall concept is shown in Figure 6. The causal factor extraction network learns
from the SCM of the environment and trains on the agent networks.

Figure 6. Overall concept.

A3C facilitates parallel training by allowing multiple worker threads to interact with
their copies of the environment and update the global network asynchronously.

The A3C algorithm utilizes an asynchronous architecture, enabling parallel training
across multiple worker threads. Each worker thread interacts with its instance of the
environment and updates the global actor and critic networks asynchronously.

At the core of the A3C method lies the central actor network, responsible for determin-
ing which actions to take based on the current situation represented by z. Guided by its
parameters θactor, this network is fine-tuned to select the best possible action given the state,
denoted as a = π(z|θactor). Meanwhile, the critic network evaluates the value of chosen
actions by estimating the Q-value function Q(z, a|θcritic), where θcritic represents the critic
network’s parameters. These parameters are adjusted during training to capture the overall
long-term rewards represented by q(·).

In our A3C approach (Algorithm 2), we directly update the global actor and critic
networks based on experiences collected by multiple worker threads. Here is how the A3C
network would be regenerated without the replay buffer.

Algorithm 2 CF-A3C-based resource allocation optimization algorithm

1: Input: Global network parameters θglobal, number of threads Nthreads
2: Initialize global network parameters θglobal

3: for thread = 1 to Nthreads in parallel do
4: Initialize thread-specific environment and network parameters θlocal ← θglobal

5: Initialize episode counter episodes = 0
6: while not done do
7: Receive initial observation state s1
8: Put state st into the causal factor extraction network to obtain causal factor zt
9: for t = 1 to Tmax do

10: Select action at = π(zt|θlocal) using policy network
11: Execute action at and observe reward rt and new state st+1
12: Put state st+1 into the causal factor extraction network to obtain causal factor

zt+1
13: Perform gradient ascent on global network parameters using the observed

transition
14: Synchronize local network parameters with global network parameters
15: end for
16: Increment episode counter episodes
17: end while
18: end for
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Global actor and critic networks are initialized with parameters θactorglobal and
θcriticglobal. Multiple worker threads are created, each with its instance of the environment
and local actor and critic networks. Each worker thread interacts asynchronously with
its environment. At each time step t, the worker receives the current state st from the
environment and puts it into the causal factor extraction network to get the causal output
zt. They then select an action at according to the policy π(zt|θactor), execute the action at
and observe the reward rt and the next state st+1. Also, they obtain zt+1 through the same
process. They store the experience tuple (zt, at, rt, zt+1), calculate the advantage function
using the sampled batch, update the actor parameters θactor

global, and calculate the loss for the

critic network using the sampled batch to update the critic parameters θcritic
global.

The gradients computed by each worker are applied asynchronously to the global
actor and critic networks. The global networks are updated using the gradients from each
worker, ensuring that all workers are trained on the most recent version of the networks.

This approach eliminates the need for a replay buffer, allowing for direct updates
to the global networks based on fresh experiences collected by multiple workers. It pro-
motes efficient exploration, accelerates training, and improves the overall performance by
leveraging the A3C framework in optimizing resource allocation tasks.

5. Simulation
5.1. Simulation Setup

In this section, we reveal the results of our novel optimization technique using com-
puter simulations, focusing on addressing the resource allocation problem within commu-
nication networks for electric vehicle charging, enhanced by RISs. The results underscore
the efficacy of our approach in enhancing the aggregate transmission rate, thus highlighting
its competitive edge in addressing this pertinent issue.

We consider an RIS-assisted electric vehicle charging network communication system,
where a base station equipped with N = 4 antennas serves L = 4 vehicle users, and the
auxiliary RIS is equipped with M = 8 × 8 reflector elements. The vehicles are uniformly
distributed and move freely on a road with a width of 10 m and a length of 20 m at a
speed of vs. = 18 km/h. The carrier frequency and bandwidth are set to fc = 5.9 GHz
and B = 20 MHz, respectively. The channel matrices between the base station and RIS and
between the base station and users, denoted as HBR and HRR, respectively, follow dynamic
Rayleigh distributions. The system parameters are summarized in Table 2.

Table 2. Simulation parameters.

Parameter Value Parameter Value

BS antenna num. N 4 RIS element number 8 × 8

Number of electric
vehicle users 4 Bandwidth B 20 MHz

BS transmission
power 20 dBm VU hardware cost

power 10 dBm

RIS hardware power 10 dBm Path loss/1 m −30 dBm

Target SINR threshold 20 dBm Power of noise −80 dBm

Hidden layer
size (actor) 256 Hidden layer

size (critic) 256

learning rate (actor) 0.005 Learning rate (critic) 0.01

Discount factor 0.99 Optimizer Adam

Max training steps 10,000 Training batch size 54

For comparison, we employ four benchmark schemes: (1) a phase control scheme
based on deep deterministic policy gradient (DDPG) technology, (2) a phase control scheme
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based on joint transmit beamforming and a phase shift design method, (3) a random phase
shifting scheme, where the phase shifting of RIS reflector elements is randomly configured,
and (4) a traditional scheme without RISs, utilizing only direct links between the base
station and users.

5.2. Performance of the Online Causal-Factor-A3C-Based Algorithm for Optimal
Resource Allocation

We use the Rayleigh distribution [36] to simulate fading conditions in wireless chan-
nels, especially in scenarios where there is no line-of-sight path. Additionally, we adopt the
Monte Carlo method to simulate the dynamic behavior of channels in real-world scenarios,
as it can account for various uncertainty factors and generate random samples that follow
the expected distribution.

(1) Spectral Efficiency and Energy Efficiency with Optimal Resource Allocation vs. num-
ber of BS antennas and RIS units

The developed algorithm will optimize the control of RIS phase shifting and allocation
of transmit power to stimulate the full potential of multi-RIS-assisted wireless networks.
The performance of the developed reinforcement learning algorithm based on CF-A3C is
illustrated below. Figure 7 compares the different learning process numbers of RIS units
(M = 2, 4, 8, 12). As shown in Figure 8, increasing the number of RIS units can improve
energy efficiency, and the proposed CF-A3C algorithm significantly outperforms other
benchmark algorithms.

Figure 7. Average rewards vs. num. of RIS units with M = 2 × 2, 4 × 4, 8 × 8, 12 × 12.

Figure 8. Average EE vs. num. of RISx with different methods.

(2) Evaluation of Online Learning Performance

Subsequently, an assessment was conducted to observe the learning dynamics of the
average reward of the network across successive time steps. As depicted in Figure 9, there
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is a noticeable upward trend in the average reward as time progresses. Moreover, the
newly devised resource allocation algorithm, leveraging CF-A3C reinforcement learning,
showcases its ability to approach the optimal solution efficiently within a set timeframe.
This contrasts with the baseline algorithm, as our approach maintains convergence even
amidst the variability of wireless channels.

(a) (b) (c)
Figure 9. The average rewards vs. time steps. (a) Average rewards vs. time steps. (b) Average
rewards vs. time steps. (c) Average reward vs. time steps under different Pmax.

6. Conclusions

This paper introduces a pioneering causal-factor-based A3C learning approach tailored
for optimizing the communication system of RIS-assisted electric vehicle charging networks
within finite time constraints. Distinguished from conventional methods, our algorithm
leverages online causal learning to discern optimal RIS deployment and resource allocation
strategies. Through dedicated causal factor extraction networks, it distils pertinent causal
insights from the system state, enabling maximal exploitation of RIS potential. Subse-
quently, the A3C reinforcement learning algorithm, grounded on causal factors, adeptly
learns the optimal transmit power and RIS phase adjustments, thereby bolstering wireless
network performance metrics like energy efficiency, even amidst real-time uncertainties
and constrained training data. Simulation-based comparisons with existing algorithms
affirm the effectiveness of our proposed approach.
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