
Citation: Jawdhari, A.; Deák, G.;

Mihăilescu, D.F.; Crăciun, N.; Staicu,

A.C.; Stanca, I.; Cozorici, D.;

Fendrihan, S.; Pop, C.-E.; Mernea, M.

Ingested Microplastics Can Act as

Microbial Vectors of Ichthyofauna.

Microbiol. Res. 2024, 15, 614–625.

https://doi.org/10.3390/

microbiolres15020040

Academic Editors: Yang Wang and

Jiazhang Qiu

Received: 2 April 2024

Revised: 19 April 2024

Accepted: 22 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Ingested Microplastics Can Act as Microbial Vectors of Ichthyofauna
Abdulhusein Jawdhari 1,2,3 , György Deák 2 , Dan Florin Mihăilescu 1, Nicolai Crăciun 2,4,
Andrea Cristina Staicu 4, Ioana Stanca 5,6 , Derniza Cozorici 6,7, Sergiu Fendrihan 2,6 , Cristian-Emilian Pop 1,2,6,*
and Maria Mernea 1

1 Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest,
91–95 Splaiul Independent,ei Str., 050095 Bucharest, Romania; h.jawdhari20@s.bio.unibuc.ro (A.J.);
dan.mihailescu@bio.unibuc.ro (D.F.M.)

2 National Institute for Research and Development in Environmental Protection, 294 Splaiul Independent,ei Str.,
060031 Bucharest, Romania; dkrcontrol@yahoo.com (G.D.); nicolai.craciun@bio.unibuc.ro (N.C.);
ecologos23@yahoo.com (S.F.)

3 Department of Animal Production Techniques, Almussib Technical Instated, Al-Furat Al-Awsat Technical
University, Babylon-Najaf Street, Najaf 54003, Iraq

4 Zoology Section, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of
Bucharest, 91–95 Splaiul Independent,ei Str., 050095 Bucharest, Romania; cristina.staicu@bio.unibuc.ro

5 Department of Marine Biology, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4,
9747 AG Groningen, The Netherlands; i.c.stanca@student.rug.nl

6 Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania;
derniza.cozorici@stud.fim.upb.ro

7 Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest,
1–7 Gh. Polizu Street, 011061 Bucharest, Romania

* Correspondence: pop.cristian-emilian@s.bio.unibuc.ro

Abstract: Microplastics (plastic particles < 5 mm) are ubiquitous pollutants that have the ability to
carry microbiota, including pathogens. Microbial adhesion is usually a sign of pathogenicity; thus, we
investigated the adherent microbiota found on 4 mm nylon strips, which were ingested and excreted
by wild fish specimens. Retention times were recorded and the polymer analysis of the excreted
samples was performed, which showed no signs of degradation, nor did their controls, represented
by the nylon strips submerged in the same water tanks. Both the ingested samples and controls
presented pathogens in large quantities. Following Matrix-Assisted Laser Desorption/Ionization
Time-Of-Flight identification, the dominant genus was represented by Aeromonas, revealing the fact
that nylon microplastics can serve as undegradable physical carriers for this pathogen, among others,
in the aquatic environment.
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1. Introduction

Microplastics pollution has become ubiquitous, so much so that these particles are
now being unintentionally accumulated in both animals [1,2] and humans [3]. With the
rise in microplastic contamination, concerns have also risen regarding the potential health
risks of such exposure. While most recent scientific reports focused on microplastics’ (MPs’)
toxicity in terms of teratogenic effects [4], as well as their accumulation in organs such as
the placenta [5], lungs [6] or the intestinal tissues [7], including microplastic-related toxicity
represented by endocrine-disrupting effects [8–10], fewer scientific releases reported MPs
as potential microbial carriers, especially in the case of MPs that have lower density than
water, thus being concentrated in the neustonic layer [11].

The most frequent MP pollution occurs in the aquatic environment, due to anthro-
pogenic factors such as industrial activities and littering [12,13]. Nylon MPs are some
of the most prevalent contaminants in the aquatic environment, which result from lost
or discarded fishing gear, mainly represented by plastic monofilament lines and nylon
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nets [14,15], but also from everyday consumer products and improper waste manage-
ment [16,17]. Once the aquatic environment has been contaminated, MPs scale up the food
chain as they are mistakenly ingested as food by aquatic fauna or via trophic transfer [18,19].
Fish are the main consumers of MPs, with emerging evidence suggesting that MPs accumu-
late in the gastrointestinal tract of various fish species [20,21]. Sequeira et al. [22] reported
that predatory fish species, in particular, present higher MP accumulation compared to
omnivorous species; in a study that involved 198 species examined across 24 countries,
MPs were detected in 60% of wild-caught fish and 14% of aquaculture fish [22]. Indeed,
predators are hypothesized to ingest more MPs than other species [23]. However, an-
other study reported omnivorous fish are more prone to such events [24], while other
studies [25–27] report microplastics to directly and indirectly affect biotic and food web
interactions, revealing a much more complicated dynamic.

Once ingested, MPs can block the gastrointestinal tract, resulting in physical dam-
age [28] or the induction of fake satiation [29], resulting in the starvation or even potential
death of the animal [30,31]. Furthermore, MPs’ ingestion can induce intestinal dysbiosis in
both humans [30] and animals [32].

When MPs are excreted, they may carry along a bacterial load represented by the hosts’
intestinal microbiota. Although several reports have stated the interaction of MPs with the
intestinal microbiota in terms of its toxicological effects [33] and polymer degradation [34],
the colonization of MPs by bacteria, especially pathogens, should not be overlooked. In
a marine study, Zettler et al., 2010 [35] coined the term “plastisphere”, which represents
the diverse microbial community inhabiting plastic particles. MPs provide a hydrophobic
surface that supports the formation of microbial biofilms [36,37], with some inhabitants of
the plastisphere being opportunistic pathogens, such as members of the Vibrio genus, strains
of which are capable of reproducible biofilm formation on multiple types of polymers [38].

Members of the plastisphere are known to be released in the water column when MPs
reach a new environment [39]; furthermore, it was recorded that all surfaces of MPs in the
marine environment are rapidly colonized by bacteria [40], among which, fish pathogens
such as Aeromonas have a particularly high affinity [41]. It is also worth mentioning that
the biohazard aspect of MPs extends beyond natural environments, with MPs providing a
stable and protective habitat for diverse wastewater bacteria, including pathogenic and
antibiotic-resistant species [36,42].

Although evidence has been built up during the past decade, MPs have only recently
started to be in the spotlight as pathogens carriers [43], mainly due to the fact that pollution
with such agents is growing, and pathogens may use these durable fragments to hitchhike
long distances in water [44,45]. Therefore, the purpose of this study was to evaluate, under
controlled conditions, to what extent nylon MPs are colonized by bacteria, especially by
fish and waterborne pathogens, and to also evaluate if the digestion process affects the
structure of the polymer.

2. Materials and Methods
2.1. Specimens and Exposure

Wild specimens of Oreochromis niloticus (Nile tilapia) weighing ≈400 g each, were
grouped in groups of five in three water tanks of 300 L, under similar conditions
(Supplementary Table S1), and deprived of food for one week prior to the exposure. Wa-
ter was aerated via filtered (Midisart 0.2 µm PTFE filter, Sartorius, NY, USA) air pumping;
temperature, pH, and oxygen saturation were monitored daily using a portable multi-
parameter probe (HQ4300, Hach, Loveland, CO, USA). “Aller Futura” feed (Aller Aqua,
Christiansfeld, Denmark) was grinded and reformed into pellets, with each pellet contain-
ing one strip of thermo-resistant nylon 6 (known as polycaprolactam or polyamide 6) [46],
measuring 2 mm in width and 4 mm in length. Nylon 6 is an odorless and solid polymer
with the molecular formula (C6H11NO)n, capable of withstanding temperatures up to
215 ◦C [47,48]. The nylon-containing feed pellets were left to dry at room temperature for
24 h and then autoclaved (121 ◦C, 15 psi, 20 min). Control was represented by the same
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nylon-containing feed pellets, which were inserted in the water tanks in sieved recipients
that prevented their consumption, yet allowed contact with the aquatic environment.

Each group received and fully ingested 50 nylon-containing feed pellets, weighing ≈10 g.
After their ingestion, every 24 h, each group received 10 g of sterilized non-nylon feed
pellets to facilitate bowel movement and the excretion of the nylon strips over the course
of one week. The nylon strips were recovered immediately after excretion by individual
collection from the water tanks with the use of a large serological pipette attached to
a pipette pump (Hirschman pipetus, Hirschman, Germany) and stored at 4 ◦C prior
to analysis.

The statistical comparison of results obtained in the three groups was performed
using an ANOVA test. The number of nylon strips were mediated per day over the
three groups and standard deviations were calculated. The overall differences between
the numbers of nylon strips recovered after different time periods was addressed by the
ANOVA test. A pairwise comparison between the strips excreted at various times was
performed using t-tests.

No specimens were harmed during the experiment, and all actions were performed
in conformity with the Guide for the Use and Care of Laboratory Animals recommenda-
tions [49] regarding reductions in animal suffering.

2.2. Microbiota Recovery

The excreted nylon strips of the groups, as well as their respective controls, were
tapped dry using sterile paper and then bathed through three successive sterile water baths
to separate non-adherent microbiota.

In order to recover the adherent microbiota, the dried nylon strips were inserted in
liquid Amies media (Rmbio, Missoula, MT, USA), shaken, and incubated for 2 h at room
temperature prior to plate inoculations. Wet feces samples were also prelevated per group,
diluted in liquid Amies media (100 mg/mL), and inoculated on the same growth media as
nylon recovered samples, with the use of a 10 µL sterile loop.

All nylon recovered samples were spread at 100 µL on Chapman agar, 5% blood
agar, bile aesculin agar, Salmonella–Shigella agar, MacConkey sorbitol agar, DCL agar,
Yersinina agar, and xylose lysine deoxycholate agar plates (MLT, Arad, Romania), with the
use of a Drigalski spatula and a Petri dish turntable (Schuett-Biotec, Göttingen, Germany).
The media plates were incubated at 23 ◦C for 36 h, and the developed colonies were
counted under a manual colony counter (Schuett-biotec, Göttingen, Germany) and then
isolated on fresh media plates. Following a macroscopic observation of the colonies and
their morphology at 48 h post-incubation at 23 ◦C, the isolates were used for taxonomic
identification analysis.

2.3. Taxonomic Identification

Final taxonomic identification was performed with a Matrix-Assisted Laser Desorp-
tion/Ionization Time-of-Flight (MALDI-TOF) mass spectrometer (Bruker MALDI Biotyper,
Bruker Daltonics, Bremen, Germany); the data acquisition was performed using MBT
Compass IVD software (Server Version: 4.1.80 PYTH) coupled with the Species/Entry
List MBT IVD Library (Revision J, Bruker Daltonics, Bremen, Germany). To perform the
assay, MSP 96 target polished steel plate spots (Bruker Daltonics, Bremen, Germany) were
loaded with isolated colonies, and on each spot, α-Cyano-4-hydroxycinnamic acid (Bruker
Daltonics, Bremen, Germany) matrix was added, along with the stock solution (acetonitrile,
trifluoracetic acid, and distilled water).

MALDI-TOF technology identifies the distinctive proteomic signature of a microor-
ganism and compares its characteristic patterns with a reference database to establish
the taxonomic identity. The technology has been considered rapid and cost effective for
microbial identification in both clinical and research purposes [50]. Despite its limitations
(such as the requirement for an extensive database), the technology is favorable as culture
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conditions that could significantly impact microbial physiology and protein expression
profiles [51] do not affect microbial identification by MALDI-TOF [52,53].

2.4. Polymer Analysis
2.4.1. Differential Scanning Calorimetry Analysis

To investigate the thermal behavior of the excreted nylon strips versus controls, a
Differential Scanning Calorimetry (DSC) analysis was conducted using a Netzsch 204 F1
Phoenix instrument (Netzsch Gerätebau GmbH, Selb, Germany). The samples, weigh-
ing between 3.5 and 4 mg, were placed in individual aluminum pans and positioned on
the sample platform of the DSC instrument. The experiments were carried out in a con-
trolled nitrogen environment with a purity of 99.99%. The samples were heated from 0 to
250 ◦C at a heating rate of 5 ◦C/min, with a continuous nitrogen flow rate of 20 mL/min.
Two complete heating–cooling cycles were performed for each sample, and the resulting
thermograms were analyzed using Proteus analysis software (version 4.8.5).

2.4.2. Fourier-Transform Infrared Spectroscopy

Fourier-Transform Infrared Spectroscopy (FTIR) was performed on the negative con-
trol (NC) represented by a pristine nylon sample, the positive controls (PCs) represented
by nylon were kept under water, and the samples (S) represented by nylon pieces that
transited the digestive system of fish were recovered from the water tanks. Measurements
were performed on three nylon strips corresponding to each condition (NC, PC, and S)
using a Bruker Tensor 27 spectrometer (Bruker Optik GmbH, Ettlingen, Germany) with an
attenuated total reflection (ATR) module. The analyzed nylon strips were tightly pressed
on the ATR crystal in order to perform the measurement. The absorbance of samples was
recorded in the 4000–400 cm−1 range with a resolution of 4 cm−1 during 1 min. For an
easy comparison, spectra were normalized by 0 to 1. Spectra acquisition and analysis were
performed with OPUS software version 7.2 (Bruker Optik GmbH, Ettlingen, Germany).

Carbonyl indices (ICO) were calculated based on the measured spectra as the ratio
between the maximum absorbance of the carbonyl group found at ~1634 cm−1 and the
maximum absorbance of the C-H band at ~684 cm−1 [54]. The triplicate measurements
performed in each condition (CN, CP, and S) were used to calculate mean indices and their
standard deviations.

3. Results
3.1. Statistical Analysis of MPs Excretion

The mean numbers of nylon strips that were recovered from the three groups of
fish are shown in Figure 1a. From the 150 nylon strips that were fed to the three groups
of fish (50/group), only 6 strips were not recovered: 3 from the first group, 1 from the
second group, and 2 from the third group. The differences between the three groups of
fish were not statistically significant (the ANOVA test F value was 0.0053 and p-value
was 0.9946), showing the similar excretion rate of the nylon strips. When addressing the
differences between the numbers of nylon strips recovered in time, the ANOVA test showed
that there were significant differences between these datasets (the ANOVA test F value was
21.81 and p-value was <0.0001). By performing pairwise t-tests (Figure 1b), we identified
significant differences between the following numbers of strips: (i) those recovered after
24 h and those recovered after 48, 72, 96, and 148 h; (ii) those recovered after 48 h and those
recovered after 120 and 148 h; (iii) those recovered after 72 h and those recovered after
120 and 148 h; and (iv) those recovered after 96 h and those recovered after 148 h. If we
consider the number of strips recovered after 24 h (3.66 ± 1.53) as a reference, we observe
that the number of recovered strips increases after 48 h (13.66 ± 1.53), 72 h (13.00 ± 1.73),
and 96 h (11.00 ± 1.00). The numbers of strips excreted at 24 h and 120 h (5.66 ± 3.78) are
similar (not statistically significant, p-value = ~0.444 > 0.05). The number of strips recovered
after 148 h (1.00 ± 0.00) is the smallest and is statistically different from the numbers of
strips recovered after all time intervals except at 120 h.
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Figure 1. (a) Mean values and standard deviations calculated for the numbers of nylon strips
recovered over considered time ranges from the three groups of fish. (b) p-values obtained from
t-tests used to carry out a pairwise comparison between the numbers of nylon strips recovered from
the three groups of fish at different time intervals. The p-values are labeled on the figure. The values
associated with red and dark orange are statistically significant (p-values < 0.05).

3.2. Microbial Diversity

Aeromonas jandaei and Aeromonas hydrophila were the predominant species found on
all samples and controls. Pantoea agglomerans and Pseudomonas umsongensis were detected
only on group 1 samples and grew strictly on MacConkey sorbitol agar plates. Plesiomonas
shigelloides was detected on both group 1 samples and the group 1 control and grew on
xylose lysine deoxicolat. Compared to group 1 samples, control 1 was differentiated by
presenting Acinetobacter johnsonii colonies. No species grew on Chapman agar for all groups
and their controls, yet such growth was present from feces samples. The wet feces samples
revealed Staphylococcus xylosus on Chapman agar, Bacillus cereus on blood agar, A. jandaei on
bile aesculine agar, A. hydrophila on both Salmonella–Shigella and MacConkey sorbitol agar
plates, Aeromonas caviae only on DCS agar, Aeromonas veronii on Yersinia agar, and interestingly,
Edwardsiella tarda on xylose lysine deoxicholat agar (Figure 2). The detected species as well as
the CFU/mL of the initial inoculation are present in Supplementary Table S2.

3.3. Polymer Structural Integrity

In the DSC analysis, the first cooling and second heating cycles revealed no discernible
differences among the nylon samples excreted by the fish, their respective controls, and
the standard nylon. The phase transition was recorded at 214 ◦C during the first cooling
cycle, corresponding to the crystallization of the nylon polymer as it cooled down from
its melted state. This process involves the reorganization of polymer chains into a more
ordered, crystalline structure. The second heating cycle indicated a melting temperature of
around 220 ◦C for all samples and their controls. Only some slight changes were observed,
associated with the sample’s foil shape, which, due to its nature of having a thin and
irregular form, possessed the potential to introduce fluctuations in both heat transfer and
surface effects during the course of DSC analysis [55].
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The FTIR spectra recorded on the samples are presented in Figure 3. The spectrum
of the negative control is in good agreement with the FTIR spectra of nylon 6 that were
previously published [56–58]. Its main absorption peaks are located at 3296 cm−1 (N-
H stretching), 2933 cm−1 and 2866 cm−1 (C-H stretching), 1634 cm−1 (C=O stretching),
1537 cm−1 (deformation of N-H), 1199 cm1 (stretching of C-N), and 684 cm−1 (CH2 group
deformation). The peak assignment was performed according to [57]. In what concerns the
positive controls and samples, the spectra present the same peaks as the negative control,
without the occurrence of new peaks. This shows that no major transformations occurred
in the structure of nylon in these samples.

To assess the degradation of nylon strips, we used the measured spectra to calculate
the carbonyl index (ICO). These are based on the ratio between the height of the carbonyl
absorption band (~1634 cm−1) that is expected to increase if the samples are oxidized and
the height of one CH2 absorption band (like the one at ~684 cm−1) that is expected to remain
constant regardless of oxidation [54]. The results presented in the insert in Figure 2 show
that mean ICO values vary over the considered conditions. Pairwise t-tests conducted on
the negative control versus positive controls and samples returned p-values that exceeded
the confidence interval of 0.05. This shows that no statistically significant differences are
seen in the oxidation states of the nylon strips that underwent a type of treatment relative
to the pristine nylon strips.



Microbiol. Res. 2024, 15 620

Microbiol. Res. 2024, 15,  7 
 

 

the height of one CH2 absorption band (like the one at ~684 cm−1) that is expected to remain 
constant regardless of oxidation [54]. The results presented in the insert in Figure 2 show 
that mean ICO values vary over the considered conditions. Pairwise t-tests conducted on 
the negative control versus positive controls and samples returned p-values that exceeded 
the confidence interval of 0.05. This shows that no statistically significant differences are 
seen in the oxidation states of the nylon strips that underwent a type of treatment relative 
to the pristine nylon strips. 

Altogether, the results indicate that the polymer structure remained unchanged de-
spite the digestion and bacterial and aquatic environment exposure. 

 
Figure 3. FTIR spectra of the negative control (NC), positive controls (PC1, PC2, and PC3), and sam-
ples (S1, S2, S3). The functional groups that give rise to the main absorption bands are labeled on 
the figure. The variation of carbonyl indices (ICOs) over the samples is represented in the insert. 

4. Discussion 
The present study investigated the excretion rate of nylon MPs with a focus on their 

colonization by adherent bacteria, as well as polymer integrity. The microbial capability 
to adhere is a generally recognized pathogenicity factor [59], of current interest in regard 
to MP pollution. A recent report [60] indicated that microorganism–microplastic interac-
tion can lead to changes in the physical, structural, and functional characteristics of the 
microorganisms, raising concerns in the clinical sector, especially due to the fact that MPs 
can serve as carriers of antibiotic-resistant bacteria [61]. Our findings show that nylon MPs 
are robust carriers for an abundant microbial load, especially from the Aeromonas genus, 
as previous works revealed the presence of such pathogens on various different types of 
other polymers [41,62,63]. The excretion dynamics of nylon MPs by O. niloticus were ex-
amined over a one-week period, with the excretion rates varying significantly over time. 
The majority of nylon strips were not excreted within the first day but after 48 and 72 h, 

Figure 3. FTIR spectra of the negative control (NC), positive controls (PC1, PC2, and PC3), and
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Altogether, the results indicate that the polymer structure remained unchanged despite
the digestion and bacterial and aquatic environment exposure.

4. Discussion

The present study investigated the excretion rate of nylon MPs with a focus on their
colonization by adherent bacteria, as well as polymer integrity. The microbial capability
to adhere is a generally recognized pathogenicity factor [59], of current interest in regard
to MP pollution. A recent report [60] indicated that microorganism–microplastic interac-
tion can lead to changes in the physical, structural, and functional characteristics of the
microorganisms, raising concerns in the clinical sector, especially due to the fact that MPs
can serve as carriers of antibiotic-resistant bacteria [61]. Our findings show that nylon MPs
are robust carriers for an abundant microbial load, especially from the Aeromonas genus, as
previous works revealed the presence of such pathogens on various different types of other
polymers [41,62,63]. The excretion dynamics of nylon MPs by O. niloticus were examined
over a one-week period, with the excretion rates varying significantly over time. The
majority of nylon strips were not excreted within the first day but after 48 and 72 h, with a
gradual decrease observed thereafter, results that correlate with reports in the literature [64].
This indicates the retention or accumulation of MPs within the gastrointestinal tract of fish,
which merits further investigation; furthermore, it also strengthens the hypothesis that
MPs and the attached microbiota can be carried and spread by fish for long distances in
natural environments (i.e., during migration).
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The analysis of the microbiota recovered from excreted nylon strips as well as con-
trols revealed the presence of various pathogens, mainly A. jandaei and A. hydrophila, as
predominant species across all samples, as well as P. shigelloides.

The prevalence of A. hydrophila and A. jandei was the highest on bile aesculine agar,
although from a clinical point of view, such was expected on blood media [65] and/or
MacConkey and xylose lysine deoxycholate agar [66]. This event is in correlation with
Arcos et al. [67] who stated that there is a clear difference in medium selectivity depending
on the sample origin in regard to A. hydrophila. However, thus can be doubted, and further
research should be performed for the present context.

Additionally, P. agglomerans and P. umsongensis were detected only in excreted samples.
P. umsongensis has been shown to degrade polyaromatic hydrocarbons and petroleum [68];
a link between this species and nylon polymers should be further investigated before any
suppositions are to be made.

P. shigelloides (formerly known as Aeromonas shigelloides) [69] was detected in all of the
exposed groups as well as in all controls. It should be stated that the pathogen is commonly
found together with Aeromonadaceae family members [70], especially in intestinal infec-
tions [71–73]. P. shigelloides is identified as one of the main pathogens in various fish and
presents zoonotic significance, with the main exposure risk being via the consumption of
contaminated seafood [74]. The prevalence of P. shigelloides enteritis varies considerably,
with higher rates reported from Southeast Asia and Africa and lower numbers from North
America and Europe [75]; thus, its adherence on microplastics can be considered of high
public health concern.

DSC and FTIR analyses were conducted to assess the structural integrity of nylon
MPs following exposure to fish digestion and the aquatic environment. To the best of our
knowledge, this is the first study that aimed to evaluate polymers’ structural integrity after
their digestion by fish. The DSC results revealed no discernible differences in the thermal
behavior of excreted nylon MPs compared to controls and the reference sample, indicating
the preservation of polymers’ structures. Similarly, FTIR spectra demonstrated insignificant
alterations in the chemical composition of nylon MPs, further supporting the resilience of
polymer integrity.

Nylon MPs’ colonization by pathogens is of concern regarding their potential transmis-
sion through MP-contaminated aquatic environments. Given the widespread distribution
of microplastics in aquatic ecosystems, and the attachment of biofouling microorganisms
that can cause buoyant microplastics to sink [76,77], there is a heightened risk of microbial
dissemination for the above-stated pathogens in terms of health hazards for both aquatic
organisms and humans.

5. Conclusions

The results of this study enhance the findings that MPs can be colonized by diverse
bacterial species and raise concerns regarding the transmission of pathogens, especially
Aeromonas, through contaminated MPs. With its limitations, the present study only evalu-
ated the cultivable aerobic/facultative aerobic microbiota; the high-throughput sequencing
of 16S rDNA followed by qRT-PCR to confirm the actual number of species should be
performed in future studies for a more comprehensive observation. It should also be high-
lighted that the digestion process did not affect the structure of the polymers, nor did its
complete excretion took place on the first day; therefore, MPs and associated microbiota can
be carried over long distances by fish. With the widespread distribution of microplastics in
aquatic habitats, there is a pressing need for comprehensive risk assessment and mitigation
strategies to safeguard both public and environmental health.

In regard to such, this study contributes to the understanding of the complex inter-
actions between ichthyofauna, microplastics, and microbial communities, strengthening
the urgent need for interdisciplinary research and collaborative efforts to address the
challenges raised by microplastic pollution on aquatic ecosystems and, consequently, on
human health.
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