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Abstract: Background. Knee and hip arthroplasty are two of the most frequently performed pro-
cedures in orthopaedic surgery. They are associated with positive patient-reported outcomes and
significant improvements in quality of life for patients. Despite this, there may be room for further
progress by quantifying functional improvements with gait analysis. Our study therefore aims to
characterise the disease-specific gait pattern of participants with knee and hip osteoarthritis under-
going total joint replacement using a single chest-based wearable sensor. Methods. Twenty-nine
participants awaiting total hip replacement and 28 participants awaiting total knee replacement
underwent three-dimensional motion analysis with inertial wearable sensors. These gait metrics were
then compared with 28 healthy controls of similar ages. Differences in gait metrics were evaluated
using a T-test. The participants were recruited through a single centre to participate in this cross-
sectional observational study. Participants with osteoarthritis severity sufficient to warrant surgical
intervention were considered for inclusion in our study. The participants were instructed to walk
15–120 m in a hospital environment while fitted with a chest-based wearable sensor. Results. In total,
three domains were evaluated, including spatiotemporal, variability and asymmetry parameters.
There were marked variations in the gait asymmetry parameters and step length variation in both
the hip and knee osteoarthritis patients compared with the healthy controls. The magnitude of gait
deterioration in terms of step length asymmetry was greater on average in the hip osteoarthritis
group than the knee group. The hip osteoarthritis (+180%, p < 0.001) and knee osteoarthritis (+129%,
p = 0.001) groups demonstrated marked differences in step length asymmetry. Discussion. A single
chest-based sensor was found to be capable of detecting pathological gait signatures in osteoarthritis
patients when compared with age-matched controls. Future studies should compare pre- and post-
operative changes to disease-specific gait impairments to validate the use of wearable sensors as a
clinical adjunct.
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1. Background

Osteoarthritis (OA) is a disabling condition that affects a significant proportion of the
population, causing joint pain, muscle weakness, reduced quality of life and increased risk
of falls [1,2]. The global incidence of hip and knee OA was more than 300 million cases in
2017 [3]. Joint replacements are recommended for patients who suffer from end-stage OA
and are amongst the most common orthopaedic procedures performed [4,5]. The goal of
joint replacement is to improve the locomotive function of the joint, correct joint deformity,
reduce gait instability and alleviate pain [1,5–8]. There are a few methods for quantifying
the functional severity of OA, including patient-reported outcome measures such as the
Western Ontario McMaster Universities Osteoarthritis (WOMAC) Index questionnaire as
well as quantitative biomechanical gait analyses [8]. In this paper, we explore wearable
sensor technology as a convenient method of objective gait analysis.

In recent years, there has been a shift of interests from the gold-standard optoelectronic
camera with force plates to lightweight, portable, commercial-use wearable sensors [9–11].
Furthermore, commercialised and advertised wearable systems such as Nike+ and FitBit
have encouraged consumers to embrace the continuous tracking of daily activities [11].
Whilst gold-standard laboratory-based gait analysis is time-consuming and expensive to
set up, wearables sensors allow for easier follow-ups with patients’ post joint replacement
procedures [4,9]. Wearable sensors often have accelerometers, gyroscopes, magnetome-
ters, inclinometers and many more embedded functions [12–15]. The different types of
motion sensors can mimic camera motion capture systems to provide positional data [16].
Accelerometers provide information on body sway and inclination by measuring the dis-
placement from a reference point along the axes [17]. Gyroscopes estimate the angular
velocity by measuring the Coriolis force [12,14]. Meanwhile, the magnetometers provide a
sense of orientation by measuring the magnetic field towards the north pole [11]. However,
there are also trade-offs when it comes to motion sensors which affect their accuracy, and
these include noise, drift errors and distortion from local magnetic fields [11].

Previous research explored the postoperative outcomes of joint replacement in terms of
monitoring and assessing rehabilitation progress [18]. There is a need for further research
into preoperative gait patterns to understand disease progression and characterise the
disease-specific gait profiles for hip and knee osteoarthritis. Moreover, gait analysis data
may influence surgical planning, with Lofterod et al. (2007) finding a 13% reduction in
the total number of pre-planned surgical procedures in children with cerebral palsy upon
examining preoperative gait analysis data [19].

There is limited research that adopted solely wearable sensors as their mainstay
of gait analysis. Most previous research has involved wearable sensor placement on
the back or shank [9]. Within the studies conducted with wearable sensors, the mean
spatiotemporal parameters were most extensively studied [18,20]. Therefore, the purpose
of this study is to assess whether a single chest-based wearable sensor is sufficient to detect
differences in not only spatiotemporal gait metrics but also asymmetry and variability
metrics between a pathological (knee OA or hip OA) and normative gait (healthy age-
matched controls). Secondly, we also aim to characterise the preoperative gait profile in
participants undergoing total knee and hip replacement as a preliminary exploration of
feasibility in the clinical assessment of a pathological gait.

2. Methods
2.1. Objectives

The present study is a single-centre observational (case-control) study of participants
with hip and knee osteoarthritis awaiting total hip and total knee replacement, respectively.
Gait parameters across the domains of spatial, temporal, asymmetric and variability metrics
were collected using an inertial wearable sensor. The gait metrics were quantitatively
analysed (against the normative gait of the age-matched control participants) to profile the
pattern of gait deterioration.
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2.2. Ethics

Approval was obtained from the South Eastern Sydney Local Health District in New
South Wales, Australia (HREC 17/184, approved on 16 June 2021). All participants provided
written informed consent. The study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013).

2.3. Study Participants

The participants of this study were a sample of patients presenting to Prince of Wales
Hospital in Sydney, Australia between February 2021 and July 2021. During their clinic
visits, the study parameters and risks were discussed, and consent was obtained. Patients
with diagnoses of either hip osteoarthritis (THR) or knee osteoarthritis (TKR) and surgical
candidates for total joint replacement were considered for inclusion. The included patients
experienced relapses and prolonged knee or hip pain, warranting surgical intervention.
Patients of all severities were included as well as patients with prior arthroplasty (of the
contralateral joint). The exclusion criteria included prior replacement, infection, cancer
or the presence of other potentially gait-altering pathologies (e.g., spinal disease). The
participants completed a questionnaire to obtain demographic and clinical information.

2.4. Controls

Participants of a similar age bracket (50–70) with pain-free gaits were recruited from
the community as controls for this study, following a similar semi-structured interview
and questionnaire, and they were age-matched at a 1:1 ratio. Population screening was
conducted in an identical manner to Natarajan et al., 2022 [10]. Participants were not invited
into this study if the presence of other gait-altering pathologies was found. All participants
that met the eligibility criteria over the study period were included in our study, accounting
for uneven sample sizes (29 versus 28 versus 28). As there are no previous studies on this
patient population, there were no expected effect sizes on which to base the sample size
power calculations.

2.5. Procedure

Prior to the walk, the inertial measurement unit, a MetaMotion© (MMC) manufactured
by Mbientlab Inc. (San Francisco, CA, USA), was fitted on the skin immediately above the
sternal angle of the participants, as shown in Figure 1. The device was aligned vertically
with the line of gravity and secured firmly using medical tape. Following a short initial
pause to orient the MMC device, the participants walked a self-selected distance (15–120 m)
along an unobstructed hospital corridor pathway on level ground. Trials were discarded if
the patient did not (or could not) pause to orient the device or required a walking aid during
the walking bout. The MMC device’s position was confirmed before and after the procedure
by an engineer and assistant on site. Further information on wearable devices and data
processing can be found via Betteridge C. et al. (2021) and Natarajan et al. (2022) [10,21].
The MMC device was previously tested for accuracy and reliability in 22 healthy control
patients by Betteridge C. et al. (2021) [21].

2.6. Wearable Device

The wearable device (MMC) manufactured by Mbientlab Inc. contains a 16-bit 100 Hz
triaxial accelerometer, a 16 bit 100 Hz triaxial gyroscope and a 0.3 µT 25 Hz triaxial magne-
tometer. The signals received was processed with a Kalman filter, and captured data were
stored as a matrix of values corresponding to each time point (100 captures per second) for
up to 20 min of walking.
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Figure 1. A MetaMotionC wearable device (27 mm × 8 mm) was placed on the skin immediately 
superior to the sternal angle prior to the participant’s walking bout (not to scale). 
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The IMUGait Recorder application (version 1.0) is a piece of software developed for 

this study as an intermediary between the MMC device and IMUGaitPy program (a mod-
ified open-source Python program). The wearable device (MMC) recorded the entire 
walking bout, and captured data were transmitted via Bluetooth™ to an AndroidTM 
smartphone running IMUGait Recorder. The IMUGait Recorder application then up-
loaded the raw data to a centralised database for processing by the modified IMUGaitPy 
program. The program detected and extracted the gait features across three domains (spa-
tiotemporal, asymmetry and variability) to generate relevant gait metrics (such as gait ve-
locity, step length asymmetry and step length variation). The flow diagram in Figure 2 
demonstrates the data capturing process. 

Figure 1. A MetaMotionC wearable device (27 mm × 8 mm) was placed on the skin immediately
superior to the sternal angle prior to the participant’s walking bout (not to scale).

2.7. Data Processing

The IMUGait Recorder application (version 1.0) is a piece of software developed
for this study as an intermediary between the MMC device and IMUGaitPy program
(a modified open-source Python program). The wearable device (MMC) recorded the
entire walking bout, and captured data were transmitted via Bluetooth™ to an AndroidTM

smartphone running IMUGait Recorder. The IMUGait Recorder application then uploaded
the raw data to a centralised database for processing by the modified IMUGaitPy program.
The program detected and extracted the gait features across three domains (spatiotemporal,
asymmetry and variability) to generate relevant gait metrics (such as gait velocity, step
length asymmetry and step length variation). The flow diagram in Figure 2 demonstrates
the data capturing process.
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Figure 2. Flow diagram of data capture and processing. Gait features extracted from detection of
initial (green) and final contact (orange) based on acceleration changes (blue).

2.8. Statistical Analysis

Data analyses were performed using Prism 9 (GraphPad Software, Version 9.5.1).
Normality was assessed using Shapiro–Wilk tests and inspection of the histograms where
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necessary, and statistical significance was considered for a p value < 0.05. Descriptive
statistics were calculated for demographic variables including age, gender, height, body
mass, BMI, presence of diabetes and smoking. The spatiotemporal parameters of the
gaits were calculated, and step measurements (rather than stride) were chosen for the
calculations of gait asymmetry [22]. Differences in gait metrics between the participants
with osteoarthritis and the control participants were calculated using Mann–Whitney U
tests or independent sample (two-tailed) t-tests.

3. Results

A total of 29 participants awaiting total hip replacement, 28 awaiting total knee
replacement and 28 control participants met the eligibility criteria and consented for
inclusion over the five-month study period spanning February–June 2021.

3.1. Participant Characteristics

All participants (THR, TKR and control participants) included were of similar age
((mean +/− standard deviation): 60 +/− 10 versus 63 +/− 15 versus 57 +/− 9.8 years).
There were generally no significant differences in the THR and TKR participants’ demo-
graphic and clinical characteristics such as age, body mass index, smoking and diabetes
when compared with the controls, as seen in Tables 1 and 2 below.

Table 1. Characteristics of THR and control participants.

THR Controls p Value

N 29 28 N/A

Age 60.1 ± 10.0 57.2 ± 9.77 9.578

Female (%) 18 (62) 18 (64) N/A

Height (m) 1.69 ± 10.0 1.65 ± 9.34 0.143

Body Mass (kg) 80.2 ± 18.2 71.4 ± 12.1 0.071

BMI 27.8 ± 4.46 26.2 ± 4.15 0.238

Smoking (%) 0 (0) 3 (11) N/A

Diabetes (%) 3 (10) 0 (0) N/A

Daily Step Count 3500 ± 2200 N/A N/A
Note: Values presented as mean +/− SD for normal and median (range) for metrics with non-normal distributions.
Here, p value represents statistical significance of group difference from independent sample (two-tailed) t-tests.
THR = total hip replacement participants; N = number of participants; BMI = body mass index; m = metres;
kg = kilograms; % = percentage.; N/A = not applicable.

Table 2. Characteristics of TKR and control participants.

TKR Controls p Value

N 28 28 N/A

Age 62.5 ± 15.2 57.2 ± 9.77 0.050

Female (%) 15 (54) 18 (64) N/A

Height (m) 1.71 ± 9.48 1.65 ± 9.34 0.024

Body Mass (kg) 82.9 ± 17.8 71.4 ± 12.1 0.009

BMI 28.2 ± 5.4 26.2 ± 4.15 0.147

Smoking (%) 1 (7.1) 3 (11) N/A

Diabetes (%) 2 (3.6) 0 (0) N/A

Daily Step Count 5800 ± 3000 N/A N/A
Note: Values presented as mean +/− SD for normal and median (range) for metrics with non-normal distributions.
Here, p value represents statistical significance of group difference from independent sample (two-tailed) t-tests.
TKR = total knee replacement participants; N = number of participants; BMI = body mass index; m = metres;
kg = kilograms; % = percentage; N/A = not applicable.
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3.2. Pathological Gait Signatures

The THR participants demonstrated variations in their temporal and spatial gait metrics
along with gait asymmetry, as shown in Figure 3. They typically walked with a lower gait
velocity (−22.2%, p < 0.001) and shorter step length (−10.1%, p = 0.0115), whilst temporal
parameters such as the step time (+17.3%, p < 0.001), stance time (+16.2, p < 0.001), swing
time (+17.2%, p < 0.001), single support time (+19.5%, p < 0.001) and double support time
(+10.8%, p = 0.0024) were increased. Notably, the THR participants also had markedly
increased gait asymmetry in terms of step length asymmetry (+180%, p < 0.001), step time
asymmetry (+142%, p = 0.0011), stance time asymmetry (+125%, p = 0.0018), swing time
asymmetry (+129%, p = 0.0021) and single support time asymmetry (+126%, p = 0.0066). The
THR group also walked with gait variability in terms of increased step length variability
(+83.2, p < 0.001), stance time variability (+4.3%, p = 0.0018) and swing time variability (+24%,
p = 0.0021). These gait metrics are presented in Figure 3 (and Appendix A Table A1).
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The TKR group also involved deteriorations in the spatial and temporal metrics of
their gaits but to a lesser extent than the THR group. The TKR participants walked with
a lower gait velocity (−21.5%, p < 0.001) and a shorter step length (−12.7%, p = 0.006),
whilst the step time (+15.2%, p < 0.001), stance time (+14.8%, p < 0.001), swing time
(+13.6%, p < 0.001), single support time (+13.9%, p < 0.001) and double support time
(+13.8%, p < 0.001) increased, as shown in Figure 3 (and Appendix B Table A2). The TKR
participants also demonstrated marked gait asymmetry, which involved step length asym-
metry (+129%, p = 0.001), step time asymmetry (+121%, p = 0.003), stance time asymmetry
(+151%, p = 0.002), swing time asymmetry (+138%, p = 0.006) and single support time
asymmetry (+104%, p = 0.005). In terms of gait variability, the TKR group demonstrated
only increased step length variability (+59.5%, p = 0.001), as seen in Figure 3.

The pattern of gait deterioration between the THR and TKR groups were similar when
considering the spatial and temporal metrics. However, the THR group was found to be
more asymmetric and variable (in step length) overall, as seen in Figure 3. The largest
difference between the THR and TKR groups was the step length asymmetry, which was
1.5 times worse in the THR patients.

4. Discussion

The aim of the present study was to investigate the use of a single chest-based wear-
able sensor in identifying the pathological gait signatures of hip and knee OA. Previous
research explored hip OA and knee OA gaits extensively with traditional laboratory-based
gait analysis equipment and electromyography (EMG) [23–26]. Some of the gait parameters
obtained from traditional gait analysis are not directly translatable to wearable sensor
technology, such as knee adduction moment (KAM) [9]. Our observational study was per-
formed using the minimum number of wearable sensors (one chest-based wearable sensor).
These findings validated that wearable sensors can highlight relevant gait parameters for
gait differentiation and profiling. In support of utilising a simplified methodology, Kobsar
et al. (2017) found that the classification accuracy of two-sensor arrays was not significantly
different from that of a three-sensor array while delivering similar results [27].

In terms of methodology, the wrist is one of the most common placement locations
for gait analysis due to the ease of attachment. However, for this observational study, the
preferred placement location for the researcher was above the sternal angle. Chest-based
wearable sensors are more suitable for ambulatory activities such as walking, jumping
and running as they provide holistic representations of the body by including upper body
balance [28–30]. Chest-based wearables are in line with the centre of gravity and can
better quantify the energy expenditure of the participants [28,31]. In terms of the accuracy
percentage of the results, the hip and waist are generally preferred but tend to have lower
wear compliance from participants due to physical discomfort at the wear site and negative
feelings about the visibility of the device [31]. Zhang et al. (2016) found that chest-based
wearables only performed marginally worse than hip or waist wearables and therefore
can be seen as a suitable alternative [31]. Chest-based wearables are also subject to less
disruptions from upper limb movements [31].

Our results are suggestive of distinct preoperative gait profiles in patients awaiting
TKR and THR surgery (and similarities between the two pathological gaits) when compared
with control participants, which can be detected with a single tri-axial wearable sensor [32].
The overall magnitude of the gait deterioration was more significant with the preoperative
THR patients. Hip OA patients have weak hip adductor muscles. Therefore, to stabilise
the hips, patients will mobilise with exaggerated lateral bending of their bodies [33]. The
hallmark of compensatory gait patterns is known as the “Duchenne limp” [33]. Step length
asymmetry was previously noted by Roerdink et al. (2011) and Balasubramanian et al.
(2007) as being due to weaker propulsive force generated by a paretic limb or a compensa-
tion mechanism of greater propulsive force generated by the nonparetic limb [34,35]. It is
the sum of the forward foot placement associated with trunk progression, which is well
studied in the hemiparesis gaits of stroke patients [34,35]. Higgs et al. highlighted that
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advanced OA patients demonstrated less peak sagittal hip flexion and extension and lower
peak sagittal hip moments on the paretic limb [2].

For knee OA, Kobsar et al. (2020) and Mills et al. (2013) found that the stride time is
the single most consistent gait parameter in severe disease progression [9,36]. Pertaining to
spatial gait metrics, some studies reported lower gait speeds due to a decreased cadence
and decreased stride length [33,37]. Tadano et al. (2016) did not comment on the gait speed
but did highlight shorter gait cycles in severe OA patients [38]. This is further supported
by Boyer et al. (2019) and Tadano et al. (2016), as there was less knee extension (heel strike),
ankle flexion (toe off) and abduction motion (toeing out) in severe knee OA patients [37,38].
Moreover, Sagawa et al. (2013) suggested that the gait speed may vary with OA of various
hip knee angles (HKAs) [8]. Much research has explored the KAM, KFA and KFM as the
parameters for identifying the severity of knee OA [23,24]. Changes in these parameters
can indicate increase cartilage loss and more severe disease progression [24]. Favre et al.
(2016) proposed that healthy patients with larger heel strike KFAs might contribute to
the initiation of idiopathic OA [24]. Some studies discovered that pain relief medications
can lead to rapid disease progression, as there have been higher joint loading and peak
adduction moments demonstrated [39,40]. In the present study, those parameters were not
taken into account as that would require specialised equipment (such as motion-cameras
and force plates) for measurements of the ground reaction forces and angles (such as the
toe-in angle and toe-out angle) [23,41].

4.1. Strengths

The present study captured the pathological gait signatures of hip and knee OA pa-
tients as a basis for future longitudinal studies involving gait rehabilitation and monitoring.
Our novel finding of step length asymmetry as an identifiable feature separating knee
and hip OA patients would require further reaffirmation in a larger cohort of patients of
different disease severities. This study further strengthens the existing notable features of
a lower gait speed and decreased stride length. Gait modification training is theorised to
allow for offloading pressure on affected joints (i.e., decrease the HAM impulse), allowing
for slower disease progression [26].

The external hip adductor moment impulse (HAM), much like the KAM, is mentioned
in many studies as a measurable outcome for increased hip loading and progression of
disease [26]. Moreover, there is radiographic evidence of progression of disease in patients
with larger HAM impulses and mean numbers of steps per day [26]. Thus, identifying
the gait parameters is critical for rehabilitation in mild-to-moderate OA patients. This
study differs from mainstream wearables research as it has a different wearable placement
location and seeks to use the minimal number of wearables (more discreet and having
better wearer compliance) [28,30]. Some studies differ in terms of the number of wearables.
The reason for this would be that more wearables would provide additional compensatory
joint motions that are difficult to discriminate from a single wearable sensor [27]. However,
this increases the complexity in interpreting the high-dimensional data to provide clear,
distinguishable gait signatures [27]. Another strength of the present study is that the
recruited participants had similar background characteristics (i.e., age, body mass and BMI)
that could influence compensatory gait movements (such as trunk leaning). Furthermore,
as the study was conducted in the same laboratory setting, the results are not subject to
operator-dependent bias.

4.2. Limitations

There are a few limitations that merit consideration when interpreting the results.
This study only recruited patients of a severity and functional impact significant enough
to warrant surgical interventions. We also did not explore single or bilateral joint OA, as
patients typically present with some degree of OA in both joints. Moreover, this study
did not exclude patients who had previous joint replacements. One notable limitation
is that the study did not include the “free-living” gait and was conducted in a well-lit,
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obstacle-free hospital environment. Therefore, the results are not generalisable to real-
world conditions. One of the reasons for this is that the MetaMotionC wearable sensor
has a battery life of 20 min, which limited the ability to capture day-to-day gaits and
activities. Another limitation of this study is the lack of knee joint loading data to estimate
the knee flexion angle (KFA) and KAM. This observational study did not incorporate
force plates or pressure-sensitive shoes to measure the ground reaction force, which is
required to calculate the knee flexion moments (KFMs) and KFAs. The KFM and KFA have
previously been demonstrated to correlate with disease progression. Stetter et al. (2020)
proved that with the use of machine learning technology (artificial neural networks) with
wearable sensors, the KFM and KFA can be estimated [42]. Furthermore, the recruitment
process of the participants was limited to a single-center and single-surgeon practice. It is
important to note that the participants in this study were scheduled for joint replacement
and therefore might not represent patients with less severe osteoarthritis. Despite the
chest-based location, upper body motions were not evaluated in this study, and potentially
important discriminatory parameters were not studied [43].

4.3. Future Research

Future avenues of research should seek to explore wearable sensors’ diagnostic capa-
bilities of different degrees of osteoarthritis severity according to radiographic evidence
and clinical correlation. Additionally, reassessing the changes of disease-specific gait im-
pairments postoperatively may provide insights into optimising rehabilitation towards
a normative gait, in addition to incorporating machine learning technology with the use
of wearable sensors for diagnosing, disease monitoring or rehabilitation in patients with
osteoarthritis [42]. Gait analysis using machine learning technology has seen increased
utilisation in diseases involving balance (such as Parkinson’s disease and cerebellar ataxia)
and upper limb ataxic movements [44]. Despite the higher computational requirements,
machine learning has shown great promise in accurately differentiating different types of
pathological gaits. Future studies should conduct a multi-center recruitment process with
a longer pre- and post-op study period inclusive of the “free-living gait” [10]. A larger
cohort size or multi-centre recruitment allows for subgroup analysis of the participants,
easier accommodation of participants in case of dropouts and more generalisable results.
Future studies can consider venturing into correlating the clinical findings (e.g., WOMAC
score) with individual gait profiles as well as considering postoperative gaits during reha-
bilitation. In addition to utilising an objective scoring system, future studies could consider
incorporating upper body motion, as Boekesteijn et al. (2021) highlighted the possibility of
compensatory action with an increased trunk range of motion (RoM) [43].

5. Conclusions

Our study found similar changes in the spatiotemporal gait parameters of OA patients,
as previously identified in other studies. In addition to that, this present study captured
another domain of gaits: step length asymmetry as a discriminatory feature between
hip and knee OA patients. Our present study identified that hip and knee OA patients
have unique pathological signatures of gait impairment. The hip OA patients had the
overall larger percentage values for domains of asymmetry and variation in gait parameters
compared with the knee OA patients. This present study validates that single chest-based
wearables can capture and examine disease-specific gait parameters. Future steps should
explore incorporating the use of wearable technology in the community as a simplistic
and cost-effective clinical adjunct in the assessment and identification of gait disorders, as
well as utilising wearable sensor technology for a variety of patient populations in various
natural environments and in continuous use.
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Appendix A

For the quantitative gait signatures of the THR participants (sensor-derived), we
must note that the values are presented as the mean ± SD or as the median (range) for
metrics with normal and non-normal distributions. The p value represents the statistical
significance of the difference between the groups, derived from independent sample two-
tailed t-tests (with Welch’s correction applied if unequal in variance) or Mann–Whitney
U tests (if they had non-normal distributions). Here, CoV is the coefficient of variance, m
stands for metres, s stands for seconds, and ms stands for milliseconds.

Table A1. Quantitative Gait Signature of THR participants (sensor-derived).

THR (n = 28) Controls (n = 33) Group Difference (Controls—THR)

Mean ± SD 95% CI % p

Spatial Gait Metrics

Gait Velocity (m/s) 1.05 ± 0.212 1.35 ± 0.177 −0.400; −0.189 22.2 <0.001

Step Length (m) 0.624 ± 0.0990 0.694 ± 0.694 −0.123; −0.0163 10.1 0.0115

Temporal Gait Metrics

Step Time (s) 0.609 ± 0.0965 0.519 ± 0.519 0.0513; 0.128 17.3 <0.001
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Table A1. Cont.

THR (n = 28) Controls (n = 33) Group Difference (Controls—THR)

Mean ± SD 95% CI % p

Stance Time (s) 0.754 ± 0.116 0.649 ± 0.0323 0.0595; 0.152 16.2 <0.001

Swing Time (s) 0.456 ± 0.0667 0.389 ± 0.0200 0.0405; 0.0942 17.2 <0.001

Single Support Time (s) 0.472 ± 0.102 0.395 ± 0.0223 0.0364; 0.117 19.5 <0001

Double Support Time (s) 0.292 ± 0.0510 0.260 ± 0.0130 0.0119; 0.0524 10.8 0.0024

Gait Asymmetry

Step Length Asymmetry (m) 0.148 ± 0.101 0.0529 ± 0.0168 0.0556; 0.135 180 <0.001

Step Time Asymmetry (s) 0.0906 ± 0.0785 0.0374 ± 0.0166 0.0223; 0.0841 142 0.0011

Stance Time Asymmetry (s) 0.0742 ± 0.0635 0.0330 ± 0.0152 0.0160; 0.0663 125 0.0018

Swing Time Asymmetry (s) 0.0764 ± 0.0671 0.0334 ± 0.0169 0.0163; 0.0696 129 0.0021

Single Support Time Asymmetry (s) 0.0864 ± 0.0869 0.0383 ± 0.0175 0.0140; 0.0823 126 0.0066

Double Support Time Asymmetry (s) 0.0272 ± 0.0519 0.0116 ± 0.00414 −0.00440; 0.0357 134 0.123

Gait Variability

Gait Velocity Variability (CoV) 9.62 ± 2.91 10.5 ± 3.08 −2.46; 0.783 9.15 0.305

Step Length Variability (CoV) 17.0 ± 9.75 9.28 ± 2.26 3.86; 11.6 83.2 <0.001

Step Time Variability (CoV) 12.77 ± 7.31 11.03 ± 4.44 −1.54; 5.02 15.8 0.293

Stance Time Variation (CoV) 8.74 ± 4.74 8.38 ± 3.15 −1.81; 2.55 4.30 0.0018

Swing Time Variation (CoV) 17.21 ± 16.7 13.88 ± 7.16 −3.67; 10.3 24.0 0.0021

Single Support Time Variation (CoV) 25.5 ± 22.9 27.7 ± 19.3 −13.7; 9.19 7.94 0.694

Double Support Time Variation (CoV) 14.3 ± 19.3 12.0 ± 7.32 −5.59; 10.3 19.2 0.553

Appendix B

For the quantitative gait signatures of the TKR participants (sensor-derived), we must
note that the values are presented as the mean ± SD or as the median (range) for the metrics
with normal and non-normal distributions. Here, the p value represents the statistical
significance of the difference between groups derived from independent sample two-tailed
t-tests (with Welch’s correction applied if unequal in variance), or Mann–Whitney U tests
(if they had non-normal distributions). Here, CoV is the coefficient of variance, m stands
for metres, s stands for seconds, and ms stands for milliseconds.

Table A2. Quantitative Gait Signature of TKR participants (sensor-derived).

TKR (n = 28) Controls (n = 33) Group Difference (Controls—TKR)

Mean ± SD 95% CI % p

Spatial Gait Metrics

Gait Velocity (m/s) 1.06 ± 0.264 1.35 ± 0.180 0.163; 0.405 21.5 <0.001

Step Length (m) 0.616 ± 0.106 0.694 ± 0.101 0.0231; 0.134 12.7 0.006

Temporal Gait Metrics

Step Time (s) 0.598 ± 0.0867 0.519 ± 0.0266 −0.114; −0.0443 15.2 <0.001

Stance Time (s) 0.745 ± 0.105 0.649 ± 0.0329 −0.139; −0.0541 14.8 <0.001

Swing Time (s) 0.450 ± 0.0683 0.389 ± 0.0203 −0.0885; −0.0336 13.6 <0.001

Single Support Time (s) 0.459 ±0.0797 0.395 ± 0.0227 −0.0958; −0.0320 13.9 <0.001

Double Support Time (s) 0.296 ± 0.0387 0.260 ± 0.0132 −0.0517; −0.0203 13.8 <0.001
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Table A2. Cont.

TKR (n = 28) Controls (n = 33) Group Difference (Controls—TKR)

Mean ± SD 95% CI % p

Gait Asymmetry

Step Length Asymmetry (m) 0.121 ± 0.0936 0.0529 ± 0.0171 −0.105; −0.0318 129 0.001

Step Time Asymmetry (s) 0.0828 ± 0.0738 0.0374 ± 0.0167 −0.0746; −0.0162 121 0.003

Stance Time Asymmetry (s) 0.0710 ± 0.0583 0.0330 ± 0.0155 −0.0613; −0.0147 151 0.002

Swing Time Asymmetry (s) 0.0714 ± 0.0660 0.0334 ± 0.0172 −0.0643; −0.0117 138 0.006

Single Support Time Asymmetry (s) 0.0781 ± 0.0679 0.0383 ± 0.0178 −0.0668; −0.0127 104 0.005

Double Support Time Asymmetry (s) 0.0189 ± 0.0202 0.0116 ± 0.00421 −0.0153; 0.00700 62.9 0.072

Gait Variability

Gait Velocity Variability (CoV) 10.2 ± 3.02 10.5 ± 3.14 −1.41; 1.90 2.86 0.766

Step Length Variability (CoV) 14.8 ± 7.54 9.28 ± 2.30 −8.53; −2.46 59.5 0.001

Step Time Variability (CoV) 12.0 ± 7.21 11.0 ± 4.52 −4.19; 2.28 9.09 0.554

Stance Time Variation (CoV) 8.59 ± 4.51 8.37 ± 3.20 −2.31; 1.88 2.63 0.835

Swing Time Variation (CoV) 14.2 ± 10.4 13.9 ± 7.29 −5.17; 4.47 2.16 0.885

Single Support Time Variation (CoV) 24.1 ± 21.7 27.7 ± 19.7 −7.51; 14.7 13.0 0.519

Double Support Time Variation (CoV) 12.6 ± 11.4 12.0 ± 7.45 −5.82; 4.55 5.00 0.807
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