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Abstract: PM2.5 is unanimously considered to be an important indicator of air quality. Sustained
rainfall is a kind of typical but complex rainfall process in southern China with an uncertain duration
and intervals. During sustained rainfall, the variation of PM2.5 concentrations in hour-level time
series is diverse and complex. However, existing analytical methods mainly examine overall removals
at the annual/monthly time scale, missing a quantitative analysis mode that applies micro-scale
time data to describe the removal phenomenon. In order to further achieve air quality prediction
and prevention in the short term, it is necessary to analyze its micro-temporal removal effect for
atmospheric environment quality forecasting. This paper proposed a quantitative modeling and
prediction method for sustained rainfall-PM2.5 removal modes on a micro-temporal scale. Firstly,
a set of quantitative modes for sustained rainfall-PM2.5 removal mode in a micro-temporal scale
were constructed. Then, a mode-constrained prediction of the sustained rainfall-PM2.5 removal effect
using the factorization machines (FM) was proposed to predict the future sustained rainfall removal
effect. Moreover, the historical observation data of Nanjing city at an hourly scale from 2016 to
January 2020 were used for mode modeling. Meanwhile, the whole 2020 year observation data were
used for the sustained rainfall-PM2.5 removal phenomenon prediction. The experiment shows the
reasonableness and effectiveness of the proposed method.

Keywords: sustained rainfall; PM2.5 removal mode; micro-temporal scale; quantitative modeling;
mode prediction

1. Introduction

Air pollution is currently a major environmental challenge for both developed and
developing countries worldwide, with increasing industrialization, growing urbanization
and energy consumption posing a serious threat to public health [1,2]. According to a
report from the World Health Organization, PM2.5 is unanimously considered to be an
important indicator of air quality [3,4]. The rainfall processes are typically regarded as
strong drivers to remove PM2.5 so as to improve the air quality.

However, in the existing available research on an observation data analysis, there
are obvious inconsistency between rainfall and the PM2.5 removal effect, especially for
sustained rainfall, a kind of typical but complex rainfall process in southern China with
an uncertain duration and intervals. For example, Kao et al. [5] found that in a rainforest
environment, summers with high precipitation are negatively correlated with PM2.5 levels;
Preethi et al. [6] proposed that the effect of simulated Indian monsoon rainfall removal
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depends to a large extent on climatic wind speeds; Neal et al. [7] pointed out that there
has been no systematic improvement in air quality in mid Wales for 17 years in the face
of increased rainfall. In addition to the complexity of the sustained rainfall itself, the
variations in regional environmental conditions are possibly another important reason.
Therefore, studying the relationship between sustained rainfall and the PM2.5 removal
effect becomes a multi-factor related scientific issue.

When expressing the effect of rainfall on the removal of PM2.5 concentrations in the
air, the observed time series is usually the most intuitive expression [8,9]. The observed
value will be considered as a sign of the presence of the rainfall process [10]. However,
sustained rainfall, which is characterized by two or more sustained rainfall events within
a given period of time, is intermittent, slow to change and uncertain in its length of
formation, and its complexity needs to be fully considered [11,12]. During sustained
rainfall, the variation of PM2.5 concentrations in hour-level time series is diverse and
complex. However, existing analytical methods mainly examine overall removals at the
annual/monthly time scale and mainly use the correlation analysis (CA) between rainfall
amount and PM2.5 concentration based on macroscopic monitoring data, which refers to
the rainfall time series and PM2.5 time series sampled on an annual or monthly temporal
scale [13,14]. For example, using the data of a macro-temporal scale, Shaibu et al. [15]
confirmed that monthly PM2.5 concentrations in the Niger Delta region of Nigeria show a
significant positive correlation with monthly rainfall. Similarly, through a study of annual
datasets from five air quality monitoring stations in Bahrain from 2006 to 2012, Jassim
et al. [16] indicated little correlation between rainfall and PM2.5, leading to a year-on-year
increase in PM2.5 concentrations. They are all missing a quantitative analysis mode that
applies micro-scale time data to describe the removal phenomenon. In order to further
achieve air quality prediction and prevention in the short term, it is necessary to analyze
its micro-temporal removal effect for atmospheric environment quality forecasting.

In addition, due to the sustained rainfall and the atmospheric pollution particulate
matter itself being complex, the large-scale temporal analysis lacks guidance for specific
sustained rainfall-PM2.5 removal processes [17]. On this basis, a part of the study proposes
to extract the historical single rainfall process using hourly observation data and adopt
a predetermined calculation model to quantify the removal effect of the rainfall process:
Chhavi et al. [18] analyzed the wet removal effect by calculating the PM2.5 concentration
difference before and after rainfall, including the positive and negative removal; Kapwata
et al. [19], based on the intensity of rainfall, delineate the rainfall classes, counting the
percentage of positive removal to summarize the removal effect according to the influence
factors, such as rainfall duration and rainfall volume, which have certain guiding signifi-
cance. The above methods do not take into account the changes in the effects produced
by complex sustained rainfall processes at different stages, including effects such as hy-
groscopic growth and the secondary transformation of gaseous pollutants which cause
PM2.5 concentrations to rise or rebound [20–22]; at the same time, they lack universal law
exploration, having difficulties in serving the scientific prediction and early warning of air
quality systems and active prevention [23,24].

In this paper, we propose a quantitative modeling and prediction method for sustained
rainfall-PM2.5 removal modes on a micro-temporal scale. The detailed contributions are
as follows:

• A novel micro-scale analytical framework for quantitatively elucidating the mecha-
nism of PM2.5 removal by sustained rainfall was proposed. Compared with the yearly,
monthly and daily time scales, the hourly scale is a more suitable form of information
for decision making; therefore, the framework would more clearly express the com-
plex characteristics of sustained rainfall than the analysis methods of large-scale data.
The innovative hourly scale data analysis in this paper is more useful for practical
applications in predicting and assessing air quality.

• A set of quantitative PM2.5 removal modes based on a micro-analysis are proposed.
The modes would highlight the specific and high-level patterns of the removal effect
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of sustained rainfall at the micro-scale than the traditional micro-scale data analysis
methods. During sustained rainfall, the variation of PM2.5 concentrations in an hourly
time series is diverse and complex. The analysis of hourly scales reveals new char-
acteristic modes that are different from the traditional large scale. These "declining,
rebounding, or rising" modes not only allow the analysis of historical data from differ-
ent regions, but also allow the prediction of PM2.5 removal at hourly intervals using
future hourly rainfall, which can help the relevant systems and departments to make
timely decisions on air pollution control.

This paper is organized as follows. The study area and data on analytical framework
are viewed in Section 2. Section 3 introduces the quantitative definition of the sustained
rainfall-PM2.5 removal mode on a micro-temporal scale, then presents the rainfall-PM2.5
removal phenomenon predicting algorithm based on the quantitative model and Section 4
discusses the experimental results. Finally, the discussions are presented in Section 5.

2. Study Area and Data
2.1. Study Area

The experimental area of this paper is located in Nanjing, which is in the middle
of the lower reaches of the Yangtze River and has a subtropical monsoon climate with
cold and dry winters, high temperatures and rainy summers and a relatively large rainfall
variability, making it one of the regions in China with more droughts and floods [25,26].
Some studies have shown that (i) due to the influence of strong convective weather and
global warming, there is a significant increase in the amount and duration of rainfall in
Nanjing, which has a different degree of the purifying effect on air pollutants [27]; (ii) at
the same time, according to the results of a pollutant source analysis in Nanjing, PM2.5
water-soluble ion concentrations have diurnal and seasonal differences, making the average
mass concentration of water-soluble ions higher during the day than at night, and the
flushing effect of spring and summer rainfall is generally lower than that of autumn and
winter [28,29]; (iii) according to the statistics, the annual average humidity in Nanjing is
nearly 80%, and some rainfall in this environment may lead to hygroscopic growth of
particulate matter, resulting in higher pollutant concentrations [30].

2.2. Dataset

The experimental data in this paper were obtained from hourly PM2.5 concentrations
and meteorological observations released by the China General Environmental Monitoring
Station and the National Meteorological Information Centre for the period from January
2016 to December 2020. Based on the geographical location of the monitoring stations in
Nanjing and the completeness of the data, the PM2.5 data observed at the CCM (Caochang-
men) site (32.0572 ◦N, 118.7486 ◦E) and the rainfall data observed at the PK (Pukou) site
(32.177 ◦N, 118.706 ◦E) were used for the experiment.

Figure 1 demonstrates the phenomenon of PM2.5 concentration removal by rainfall ob-
served on a macro-temporal scale (yearly and monthly) to a micro-temporal scale (hourly):
from the annual scale, the average annual PM2.5 concentration in Nanjing decreases year
by year from 2016 to 2020, while the pollutant concentration is relatively lower in years
with a higher average annual rainfall; from the monthly scale, the monthly rainfall shows
an overall stable trend of first increasing and then decreasing, and the average monthly
PM2.5 concentration in the period of concentrated rainfall are significantly lower than those
during periods of low rainfall, indicating that rainfall has a significant effect on the removal
of air pollutants; on an hourly scale, the hour-by-hour PM2.5 concentration changes during
a single rainfall process, thus rainfall has an obvious effect on pollutant removal while
there are situations that cause concentrations to increase, and it is not possible to obtain
the mode of the effect of regional rainfall on PM2.5 from a particular rainfall process. In
summary, the mechanism of PM2.5 removal by sustained rainfall in Nanjing is complex,
and it is difficult to satisfy the study of the mechanism of PM2.5 removal by rainfall with the
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macro time statistics and the time series of a single rainfall process, so the micro time-series
effect model proposed in this paper is applied for a deeper analysis.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 19 
 

tration changes during a single rainfall process, thus rainfall has an obvious effect on pol-

lutant removal while there are situations that cause concentrations to increase, and it is 

not possible to obtain the mode of the effect of regional rainfall on PM2.5 from a particular 

rainfall process. In summary, the mechanism of PM2.5 removal by sustained rainfall in 

Nanjing is complex, and it is difficult to satisfy the study of the mechanism of PM2.5 re-

moval by rainfall with the macro time statistics and the time series of a single rainfall 

process, so the micro time-series effect model proposed in this paper is applied for a 

deeper analysis. 

  

Figure 1. Macro/micro-temporal scale of sustained rainfall-PM2.5 observation data series and removal phenomenon in 

Nanjing from 2016 to 2020: (a) Yearly temporal-level; (b) Monthly temporal-level; (c) and (d) Hourly temporal-level 

3. Method 

3.1. A Quantitative Modeling for Sustained Rainfall-PM2.5 Removal Mode in Micro-temporal 

Scale 

3.1.1. Overview 

In order to accurately describe the study object and the study boundary from the 

observation dataset, this section first defines a microscopic time-series fragment model of 

the sustained rainfall process, on the basis of which the time-series process of the removal 

effect is structured, further modeling the concomitant factors affecting the role of rainfall 

in PM2.5 removal, and finally establishes an evaluation mode to quantitatively describe the 

removal effect. 

Figure 1. Macro/micro-temporal scale of sustained rainfall-PM2.5 observation data series and removal phenomenon in
Nanjing from 2016 to 2020: (a) Yearly temporal-level; (b) Monthly temporal-level; (c,d) Hourly temporal-level.

3. Methods
3.1. A Quantitative Modeling for Sustained Rainfall-PM2.5 Removal Mode in
Micro-Temporal Scale
3.1.1. Overview

In order to accurately describe the study object and the study boundary from the
observation dataset, this section first defines a microscopic time-series fragment model of
the sustained rainfall process, on the basis of which the time-series process of the removal
effect is structured, further modeling the concomitant factors affecting the role of rainfall in
PM2.5 removal, and finally establishes an evaluation mode to quantitatively describe the
removal effect.

3.1.2. Micro-Temporal Modeling of Sustained Rainfall Process

The model needs to accurately identify a complete sustained rainfall process in
micro-scale observations due to the large variation in time duration and the existence
of uncertain intervals. The sustained rainfall process is characterized by intermittent
multi-fragmentation on hourly observation data series.

Time-series segments (TS) are mathematical frameworks for describing and modeling
event sequences in the time domain, and are commonly used to construct interpretable
time-series analysis models, such as trend prediction and anomaly detection [31,32]. In this
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paper, the sustained rainfall time-series segment (SRS) is defined at the micro-temporal
scale rainfall: {Rt : t = hour}. SRS visualizes the variation of rainfall in the time dimension
of a sustained rainfall process, as shown in Figure 2, and is defined as follows:

SRS =
{
[Rt′ , . . . , Rt′′ ]

∣∣t′, ∆t, t′′
}

(1)
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Figure 2. Schematic diagram of a micro-temporal model of the sustained rainfall process.

The quantitative measurement steps are:

Step 1: Using the hourly rainfall values as a benchmark, the moment of the first occurrence
of 0.1 mm and above rainfall is taken as the starting point t′ of the time-series fragment.
Step 2: Since rainfall and its resulting effects will remain in space for a certain period
of time, a threshold value ∆t is set to indicate the intermittent duration of the sustained
rainfall process, i.e., the sequence before and after when rainfall is zero does not exceed ∆t
is regarded as the same time-series fragment.
Step 3: Satisfy the above conditions and the last occurrence of rainfall greater than zero is
the end point t′′ , and obtain a complete SRS.

The micro-temporal model of the sustained rainfall process provides a quantitative
basis for determining the baseline interval for the clearance effect analysis.

3.1.3. Sustained Rainfall Removal Concomitant Factor Modeling

Sustained rainfall processes are often concomitant by changes in the accompanying
meteorological factors such as temperature, humidity, wind speed and direction, which
will affect the removal effect to varying degrees [33]. Therefore, in this paper, we consider
the effect and intensity of the existing influence factors [34–37], and balance the availability
of their own observational data and the predictability of future trends to establish a set of
accompanying influence factors F, including the (i) direct factor (FD) to describe rainfall
characteristics, and the (ii) indirect factor (FI) to describe environmental characteristics.
The factors and impact effects are shown in Table 1.

On this basis, the removal effects time-series segment (RES) is defined in conjunction
with the PM2.5 time series. The RES refers to the process and subsequent effects of rainfall
on PM2.5 at the scale of the mechanism of removal, while avoiding the chance of PM2.5
concentration values before rainfall anomalies by expanding the series values for t and t′

forward and backward for n hours, respectively (Figure 3):
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Table 1. Table of qualitative descriptions of concomitant factor.

Class Factor Label Impact Effects

F

FD
Rainfall Total P High correlation with air pollutant concentrations, which can

directly influence the removal effectRainfall Duration D

FI

Temperature T
When the temperature near the ground is high, atmospheric
convection is intensified, which tends to reduce PM2.5
concentrations, and conversely PM2.5 is not easily dispersed

Humidity H
Changes in PM2.5 are closely related to the moisture content of the
air, with "hygroscopic increase" occurring due to the adsorption of
particulate matter concentrations

Wind Power W Stronger winds also facilitate the dilution and uplift of pollutants

Initial PM2.5 C1

The effect of removal is influenced by the magnitude of PM2.5
concentrations before rainfall, and has little effect on particulate
concentrations when air quality is good

Seasonal S The removal effect is mostly higher at night than during the day; the
total positive removal of sustained rainfall will be slightly higher in
autumn than in other seasonsDay and night K
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Figure 3. Schematic diagram of a micro-temporal model of the removal effects process and concomitant factor.

The concomitant factor model {F, RES} for sustained rainfall removal identifies the
information dimensions and effect intervals for the quantitative modeling.

3.1.4. Quantitative Evaluation Modeling of Removal Effects

The effect evaluation refers to the evaluation of the change in the effect produced
by a geographical process considering the influence of relevant factors, and usually uses
quantitative indicators to measure and analyze its dynamic change characteristics in spatial
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and temporal modes [38,39]. The quantitative evaluation model of removal effects is
proposed based on the above-mentioned models (SRS, RES):

M =
{

Mi∈(T,P,D,U,R,L)

∣∣∣〈RP, RF, RS〉, (TSR, TSE)
}

(2)

(1) Quantitative Measurement of Removal Effect Indicators
Based on the model (SRS, RES), the following measurable evaluation indicators

(RP, RF, RS) that quantitatively characterize the temporal variability in the removal pro-
cesses are defined below:

(i) Rate of process RP, the ratio of the difference between the very small value of PM2.5
concentration change when it exists and the pre-start PM2.5 concentration.

(ii) Rate of final RF, the ratio of the difference between the initial PM2.5 concentration
before the start and the concentration after the end, the magnitude of which allows a
quantitative evaluation of the intensity of removal.

(iii) Rate of rebound RR, the ratio of the difference between the minimum value and the
ending concentration for the entire rainfall process.

(2) Modeling of Removal Mode based on Effect Indicators
The (SRS, RES) and (RP, RF, RR) were used to modeling the removal process of

sustained rainfall and the indicators were combined with zero boundaries, corresponding
to the rising and falling changes in PM2.5 concentrations in Figure 4, and combined with
the ensemble theory to classify the effect patterns in Table 2.
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Table 2. Table of sustained rainfall-PM2.5 removal modes, quantitative classification and qualitative description.

Removal Mode Mi
Effect Indicators Trends in PM2.5 Concentrations

RP RS RR During After Min

MT >0 <0 >0 Continued decline Decline Non-existent
MP >0 >0 >0 Decline, rebound Decline Existent
MD <0 <0 >0 Continued rise Decline Existent
MA <0 >0 <0 Continued rise Rise Non-existent
MR >0 >0 <0 Decline, rebound Rise Existent
ML <0 <0 <0 Continued rise Rise Existent
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The removal mode, classified according to the above rules, covers all of the combina-
tions of indicators and corresponds to realistic removal phenomena, providing a category
a priori information for predicting future sustained rainfall.

3.2. The Mode Predicting of Sustained Rainfall-PM2.5 Removal Effect Using the
Quantitative Model
3.2.1. Overview

In this section, based on the quantitative model of sustained rainfall-PM2.5 removal
mode, the future rainfall is further fitted using a multiple regression to fit the removal
modes, the core steps are as follows (Figure 5): Step 1, using the time-series window
according to the constitute time-series sample of removal modes with high-dimensional
characteristics; Step 2, extracting the principal components and component features of
the pattern classification features through the principal component analysis method for
the concomitant factor intensity; Step 3, establishing factorization classification regression
machines for removal modes according to the factor intensity, which can predict the removal
phenomenon based on the future meteorological and current air quality information.
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3.2.2. Sustained Rainfall Time-Series Sample Construction Using Sliding
Time-Series Window

Firstly, according to the definitions of the SRS and RES proposed in Section 3.1, a
small-scale sliding window is applied to process the hourly rainfall time series Rt, hourly
PM2.5 time series Ct and hourly meteorological observations, setting up to capture all of
the sustained rainfall processes in the historical data [40].

Secondly, the statistics of the corresponding direct and indirect factors are calculated
within the extracted time-series range (SRS, RES) according to the concomitant factor
model F proposed in this paper, as Table 3.
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Table 3. Table of quantitative calculation of concomitant factor.

F

Class Label Time-Series Range Quantitative Calculation

FD
P

SRS

P = ∑t′′
t=t′ Rt (3)

D D = ∑t′′
t=t′ t (4)

FI

T T =
∑t′′

t=t′ Tt
t′′−t′

(5)

H H =
∑t′′

t=t′ Ht
t′′−t′

(6)

W W ∈ {0, 1, . . . , 17} (7)

C1 RES C1 =
∑t′

t=(t′−n) Ct

n
(8)

S
SRS

S ∈
{Spr, Sum, Fal, Win} (9)

K K ∈ {Am, Pm} (10)

The quantitative evaluation indicators (RP, RF, RR) of the extracted sustained rainfall
processes were calculated based on the PM2.5 concentration series Ct according to the
evaluation model of removal effects described in this paper.

RP = (C1−Cmin)
C1

RR = (C2−Cmin)
C2

RF = (C1−C2)
C1

(11)

C2 =
∑t′′+n

t=t′ Ct

n
(12)

Cmin = min(Ct′ , . . . , Ct′′ ) (13)

where C1 is the initial PM2.5 concentration during the sustained rainfall process, C2 is the
PM2.5 concentration at the end of the sustained rainfall process and Cmin is the minimum
value for the whole sustained rainfall process.

Finally, sustained rainfall time-series samples
→
V were constructed in the form of

multi-dimensional feature vectors, as follows:

→
V =

(
P, D, T,H, W, C1, S, K, [RF, RS, RP]

)
(14)

It provides a computable basis for the accurate extraction of analytical reference
intervals from hourly observations.

3.2.3. Removal Mode-Constrained Component Analysis of Concomitant Factor

According to the removal mode division rules in Table 2, the
→
V were classified to obtain

six types of labeled samples corresponding to Mi, as shown in the following equation. Due
to the different degrees of influence of the removal factors on effect indicators in different
effect modes, such as the change of effective removal rate magnitude with increasing
rainfall duration in complete removal mode, a multi-factor analysis is needed to explore its
change pattern.

→
V =

(
P, D, T,H, W, C1, S, K

∣∣Mi
)

(15)

The principal component analysis is a statistical method that reduces the information
of multi-dimensional variables to a few characteristic components by a linear transfor-
mation and reflects as much information of the original variables as possible [41]. In this
section, the main components {F1, F2, . . . , Fn} of the sample features under each mode
will be extracted separately, and the weights of each effect factor will be calculated by the
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eigenvalues λ of each principal component and the variance contribution ratio E(λ), and
the relative strength S of the clearance factors under different modes will be evaluated
quantitatively and used to screen the effect factors involved in the construction of the
mode classifier.

SFi =
AFi√

λFi

×
E
(
λFi

)
∑n

k E
(
λFk

) (16)

AFi in the above equation is the loading of the initial factor i on the principal component.
The removal mode-constrained component analysis of concomitant factor enables the

extraction of effective and stable effect factors that map mode characteristics, reducing
the redundancy and sparsity of the factor information and improving the accuracy of the
clearance effect prediction.

3.2.4. Removal Mode Prediction Based on Factorization Machines

Factorization machines (FM) are a classification method with a good learning ability
for sparse data, solving the sparse information generated by the one-hot coding of category
features, while taking into account the two-two correlation features between the features to
meet the correlation and between the environmental factors in the rainfall process [42].

We use the factors filtered by the factor strengths calculated in Section 3.2.3, normalized
by features (scaling all factors to between −1 and 1) with label coding to form the feature

vector
⇀
Xi, which is used to build the factor decomposer ŷ of the time-series effects model. ŷ = w0 +

n
∑

i=1
wi +

⇀
Xi +

n−1
∑

i=1

n
∑

j=i+1
vi, vj

⇀
Xi

⇀
X j

wi,j = vivj

(17)

Assuming that the sustained rainfall time-series sample has n features, vi and vj in the
above equation are the implicit vectors of the feature matrix decomposition, and wi,j is the
interrelationship between the two features i, j.

Further construction of a classifier oriented to the removal mode: the loss function
loss Equation (18) is designed using the logistic regression theory, the ŷ is mapped into
different classes by the step function sigmoid and the logistic loss is used as the criterion
for optimization.  loss(ŷ, y) =

m
∑

i=1
−lnσ(ŷ(i), y(i))

σ(x) = 1
1−e−x

(18)

We can use the factor classifier constructed from the mode information to achieve a
prediction of the removal effect that will result from a sustained rainfall process based on
the rainfall forecast information.

4. Experimental and Analysis Section

This paper uses the historical observation data of Nanjing from January 2016 to
January 2020 as Datatrain for the model analysis and uses the data from January 2020 to
December of the same year Datatest to verify the feasibility and effectiveness of the method
of this paper.

4.1. Construct the Sustained Rainfall Time-Series Sample

Firstly, all of the datasets were processed in a uniform manner.
A sliding window was designed according to Section 3.2.2 to extract the sustained

rainfall process, with all of the rainfall durations greater than 1 h, where the general
residence time of particulate matter in the air and a window threshold of ∆t was set
to 3 h, rainfall with an interruption of no more than 3 h was considered as a complete
sustained process (starting moment t′ and ending moment t′′), with a total of 427 sustained
rainfalls collected.
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While calculating the removal in each concomitant factors for each process, including
the rainfall total, the rainfall duration and initial PM2.5 concentration are shown accord-
ing to Table 3, with seasonal and diurnal values used for labeling; further combining
Equation (3) to calculate the removal effect indicators, and using these to classify the
above rainfall samples into six modes according to the removal mode classification rules in
Table 2, the result is shown in Table 4.

Table 4. A sample table of the sustained rainfall time series in Nanjing.

→
V [t′ − n, t′′ + n] P D T H W C1 S K [RF, RS, RP] M

→
V1

2016/01/04/18:00-
2016/01/05/07:00 18.0 12 8.21 4.91 4 276.33 4 2 [0.96, 0.31, 0.95] MP

→
V2

2016/01/10/21:00-
2016/01/11/08:00 7.0 12 6.04 3.67 3 150.67 4 2 [0.19, −0.03, 0.22] MT

. . . . . . . . . . . . . . . . . . . . . . . .

→
V426

2020/10/15/16:00-
2016/10/16/17:00 17.6 24 14.02 2.31 2 15.33 3 2 [0.93, 0.83, 0.61] MP

→
V427

2020/10/21/05:00-
2020/10/21/10:00 3.8 6 17.38 4.75 2 38.33 3 0 [0.08, −0.02, 0.11] MT

The findings show 85 times of MT, 191 times of MP, MD 80 times, MA 85 times, MR
12 times and ML 14 times. By plotting the numerical distribution of concomitant factors
for different modes (Figure 6), the removal mechanism of sustained rainfall in Nanjing
was explored.
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Figure 6. Distribution of the numerical distribution of concomitant factors for different removal modes. (a) Rainfall Total P
and removal modes; (b) Rainfall Duration D and removal modes; (c) Wind Power W and removal modes; (d) Temperature
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and removal modes; (h) Day and night factor K and removal modes.
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4.2. Principal Component Analysis of the Removal Mode

Due to the large differences in the values of the effectors, the rainfall samples were

first normalized by the eigenvector
→
V, and the high-dimensional feature samples of each

type of mode were further subjected to the principal component analysis. According to the
criteria for selecting the principal components, in this case, when the eigenvalues of the
components were all greater than 1 and the cumulative contribution rate was 85%, there
were the four types of extracted components. The results are shown in Table 5.

Table 5. Explanatory table for the principal component analysis of removal mode.

Component Eigenvalue (λ) Contribution of Variance
E(λ)

Cumulative
Contribution (%)

Principal component 1 2.774 35.67 35.67
Principal component 2 2.101 27.56 63.26
Principal component 3 1.662 16.28 79.54
Principal component 4 1.079 11.46 91.00
Principal component 5 0.662 6.061 97.06
Principal component 6 0.156 2.94 100.00

Based on the principal component eigenvalues and variance contribution rates, the
factor strengths of different modes were calculated Equation (16) and the strengths of the
effectors were ranked, and the total rainfall P, rainfall duration D, initial PM2.5 concen-
tration C1 and wind speed scale W were selected to participate in the construction of the
mode classifier (Table 6).

Table 6. Concomitant factor intensity of the sustained rainfall time series sample with removal mode.

MT MP MD MA MR ML

P 0.223 0.339 0.232 0.250 0.306 0.421
D 0.214 0.294 0.453 0.321 0.276 0.559
T 0.127 0.168 −0.045 −0.174 −0.164 −0.103
H 0.079 0.176 −0.137 −0.076 −0.037 0.218
W 0.263 0.132 0.232 0.271 0.386 0.372
C1 0.193 0.266 0.411 0.263 0.442 0.421
S 0.074 0.135 0.033 0.173 −0.154 0.032
K 0.031 0.095 0.127 0.041 −0.076 0.093

4.3. Predict the Removal Mode and Phenomenon

We combine the above removal concomitant factor strengths with the factorization
machines in Section 3.2.4 to build a classifier for predicting the removal mode and phe-
nomenon: the total rainfall P, rainfall duration D, initial PM2.5 concentration C1 and wind

speed scale W in Datatrain form the feature vector
⇀
X and the classifier ŷ in Equation (17),

and the loss function in Equation (18) is combined to train the classifier according to the
stochastic gradient descent (SGD) method. Figure 7 shows the effect of the removal modes
classification, where 〈C1,, W〉 and 〈P, D〉 are the factors that form the modal length of the
vector, which is used to present the modes distribution based on the effector features; the
classifier designed in this paper can classify the sustained precipitation process into the six
types described according to the effectors.

To validate the removal effect classifier, all of the sustained rainfall extracted from
January 2020 to December of the same year in Nanjing were classified using the samples in
Datatest, and the accuracy of the classification results was evaluated by plotting the receiver
operating characteristic (ROC) curve and the curve area, area under the curve (AUC), to
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evaluate the accuracy of the classification results (Figure 8), where the true positive rate
(TPR) and false positive rate (FPR) of the tested samples were calculated as follows:{

TPR = TP
TP+FN

FPR = TP
FP+TN

(19)
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5. Discussion

In this paper, we mainly analyze the effect of sustained rainfall on PM2.5 removal
from the perspective of a microscopic temporal scale with historical observation data at
the hourly scale. By combining previous research results, we propose a model analysis
framework to quantitatively describe the removal effect from a more refined perspective for
combining the mechanism of sustained rainfall effect on PM2.5. The primary conclusions
are summarized as follows.

In this paper, we use hourly scale observations for proposing models to quantitatively
express sustained rainfall processes with intermittent duration and relative complexity. It
is able to provide data boundaries for studying the role of rainfall removal. Moreover, we
consider a large number of environmental influences and construct a concomitant factor
model F, which can improve the accuracy and information dimension of the analysis. Based
on the above considerations, we conclusively propose the removal modes for a quantitative
description of the removal phenomenon.

• MT, the PM2.5 concentration change has a continuous decreasing trend during the
rainfall process, which has good improvement of the air quality for a period of time
after the precipitation.

• MP, the PM2.5 concentration change is due to the fact that when the removal of
particulate pollutants by prolonged precipitation reaches its limit [29], a small portion
of the particulate matter does not completely settle to the ground and floats into the
air again, thus showing a slight rebound of the concentration values.

• MD, PM2.5 concentrations continue to rise during rainfall, but drop sharply after the
end and are lower than the average concentration values before it.

• MA, PM2.5 concentration changes in a continuous upward trend when the rainfall
duration is too short or small; the humid air will make the suspended pollutants
expand, which is more likely to cause the accumulation of pollutants and make the
PM2.5 concentration rise.

• MR, due to the longer duration of the process, there is often a short gap or the
secondary precipitation is weak precipitation and other phenomena, which will cause
a serious concentration rebound, making the concentration of particulate matter higher
than before the precipitation.

• ML, PM2.5 concentrations continue to rise without rebound during rainfall, and the
rise tends to scale off after the end, eventually making the PM2.5 concentrations rise.

The method in this paper is able to classify the proposed model by historical observa-
tion data. The results show that of the sustained rainfall processes occurring in Nanjing
from 2016 to 2020, only 85 were able to provide complete removal of PM2.5, 63.4% of the
precipitation processes resulted in PM2.5 rebound and up to 177 sustained rainfall processes
ultimately led to elevated PM2.5 concentrations.

Based on the above quantitative modeling framework, we construct a classifier in com-
bination with the model identification method, considering it for the accurate forecasting
of future air quality in short periods. The accuracy evaluation results of the model show
that the ROC of our constructed classifier performs well, and the AUC refers to more than
0.85, showing the reasonableness and effectiveness of the method in this paper.

Due to the limited data acquisition, more years of hourly and environmental data
for PM2.5 are lacking in this paper. Therefore, it lacks the samples of the lasting ascent
mode and the delayed removal mode. Future studies are expected to obtain more hourly
temporal observations for the purpose of removal modes construction and acquisition,
ultimately to improve the accuracy of the prediction classifiers.

6. Conclusions

Rainfall is an effective way to remove major air pollutants such as PM2.5. However,
most studies on the relationship between rainfall data and PM2.5 concentrations have only
focused on the changes in the air quality under the influence of long-time span rainfall,
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ignoring the effects of single rainfall processes that lead to increases or rebound changes in
the PM2.5 concentrations, in addition to the effect of wet deposition.

Therefore, based on the definition and generalization of the sustained rainfall process
and its effects, this paper uses a time-series statistical method to extract and calculate the
single sustained rainfall process and its removal effect factors based on microscopic time-
scale observation data; in this process, the effect evaluation index is specifically proposed
to quantitatively describe the degree of the removal effect, so as to establish a time-series
effect model of PM2.5 concentration removal by rainfall. The potential, deep-seated effect of
rainfall processes on PM2.5 concentrations is explored. The model is further combined with
pattern recognition theory to design an effect pattern classifier for the sample characteristics
of the rainfall process, and finally realize the micro-temporal prediction of air quality after
a single rainfall. Using the hourly observation data of Nanjing from 2016 to 2020, a total
of 427 sustained rainfall processes were collected using this micro-temporal time-series
effects model, and the rate of process, rate of rebound and rate of final were calculated
and classified into six types of modes: 85 totally removal mode, 191 partly removal mode,
14 delayed removal mode, 85 rebounding sscend mode and 12 lasting ascent mode. The
classifier was constructed based on the factors, indicators and model categories, and the
ROC evaluation index showed that the classifier has good performance and is capable
of quantitatively predicting future PM2.5 concentration decreases, increases and rebound
effects using easily accessible rainfall and PM2.5 concentration forecast information, with
a view to providing decision-making information for future regional ambient air quality
forecasting and refined control. For the acquisition of hour-by-hour PM2.5 concentration
forecasts, further investigation of the finer variation characteristics within rainfall periods
is required on the basis of this study.
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