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Abstract: As the world’s largest carbon emitter, China has been committed to carbon emission reduc-
tion and green development. Under the goal of “double carbon”, adjusting the industrial structure
and promoting the development of producer services are regarded as effective emission reduction
paths. In this paper, from the perspective of market entry of enterprises, we firstly investigate the
transmission mechanism between market entry of enterprises and industrial agglomeration and
summarize the carbon emission reduction mechanism of producer services. Based on the panel
data of 110 prefecture-level cities in China’s Yangtze River Economic Belt (YREB) from 2003 to 2017,
we analyze the impact of producer services on carbon emission reduction by using the dynamic
spatial panel model. The empirical results show that China’s urban carbon dioxide emissions have
noticeable spatial spillover effects and high emission club clustering characteristics and exhibit a
noticeable snowball effect and leakage effect in time and space dimensions. The development of the
producer services can effectively reduce carbon emission levels, effectively solving the dilemma of
“stabilizing growth and promoting emission reduction”. Furthermore, there is an apparent syner-
gistic effect between enterprises’ market entry and industrial agglomeration. The agglomeration of
producer services can effectively promote the entry of innovative new enterprises, thus increasing
the carbon emission reduction effect. However, due to resource mismatch and isomorphic devel-
opment, this carbon emission reduction effect has apparent industrial heterogeneity and regional
heterogeneity. Finally, this paper makes suggestions for optimizing regional industrial structure,
strengthening inter-regional linkage cooperation, and promoting the advanced development of the
producer services.

Keywords: carbon emission reduction; dynamic spatial panel; enterprise market entry; producer
services agglomeration; Yangtze River Economic Belt

1. Introduction

Since its reform and opening up, China has made remarkable achievements in eco-
nomic development, and its international influence has increased, with it playing an
increasingly important role in the global economy [1,2]. However, in conjunction to this,
the high consumption of fossil energy has led to a parallel increase in CO2 emissions as
China’s economy grows. As the world’s largest developing country and the largest carbon
emitter, China has been committed to pursuing a green and sustainable development path
while meeting its development needs and actively assuming its responsibility to reduce
emissions. At the UN General Assembly in September 2020, China proposed the goals of
“peak carbon” and “carbon neutral”.

As China’s most significant economic belt (Figure 1), the Yangtze River Economic Belt
(YREB) occupies 21.4% of China’s geographical area and accounts for more than 40% of the
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population, GDP, and carbon emissions. The YREB is one of China’s three major strategies,
the inland economic belt with global influence and the strongest and most active economic
growth belt. As the first demonstration belt for constructing ecological civilization in
China, the YREB has ecological advantages and a strong economic foundation. In the 14th
Five-Year Period, it is significant for the YREB to take the lead in achieving regional “carbon
peaking” and “carbon neutrality” and build a green development demonstration zone.

Figure 1. Research area.

At present, China’s economic structure is service-oriented, and the carbon reduction
role of the service industry has become a focus of governments and scholars in recent years.
With the discovery of the relationship between the environment and economic structure
by Crossman and Krueger [3], Panayotou further summarized the environmental Kuznets
curve (EKC) [4], which has drawn the attention of scholars to the economic structure
transformation and green industry development. Based on this, Adom et al. started
their research on the impact of industrial structure transformation on carbon emissions.
They analyzed the relationship between industrial structure and the emissions [5,6], and
Lin and Du later constructed the framework of the impact of industrial structure factors
on emissions [7]. With the depth of research, Zhang and Wang have further explored
the path and mechanism of industrial structure adjustment to achieve carbon emission
reduction. It was found that industrial structure adjustment, vigorously developing tertiary
and high-tech industries, and reducing the reliance on the growth path of “factor inputs”
are effective ways to reduce carbon emissions [8,9]. In the transition process, the role
of producer service industries is becoming increasingly prominent. While developing
traditional industries, China’s producer service sector is developing rapidly and showing
great potential, able to enhance the position of Chinese cities among the world’s cities [10].
Producer services generally refer to sectors or industries that provide services to producers
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as intermediate inputs [11,12]. It has been pointed out that producer service industries
have a more substantial agglomeration effect and technology intensity than industry
and are characterized by knowledge intensity, low pollution, low consumption, high
output, and high employment [13]. Some studies have explored the carbon emission
reduction effect of producer service industries from the perspective of agglomeration,
showing that the agglomeration of producer service industries can not only improve
the regional energy consumption efficiency [14], but also reduce energy consumption
through synergistic copolymerization with manufacturing industries, thus reducing the
carbon emission level [15]. In addition, due to the producer service industry’s industrial
characteristics, it can reduce carbon emissions through industrial agglomeration and thus
promote industrial structure upgrading, accelerate the diffusion of innovative knowledge,
and advance green technology research and development. However, Han found in his
study that there is significant regional heterogeneity and industrial heterogeneity in this
promotion effect [16].

It is noteworthy that the current discussion on the impact of carbon emissions is mainly
focused on the macro impact, and not enough attention is paid to its micro-level impact
and transmission mechanism. It is well known that both industrial restructuring and
industrial agglomeration will affect the macro performance of the system by influencing
the micro decision-making behavior of enterprises. Therefore, the regional enterprise entry
dynamics reflect the effectiveness of government policy adjustment to a certain extent
and reflect the latest industrial location pattern changes in the region. Analyzed from
the perspective of new economic geography, the market entry behavior of micro-firms
provides scholars with a new perspective to study the spatial distribution and changes
in regional industrial activities [17]. It has been found that agglomeration economies and
government policies have a non-negligible influence on firm entry [18–22]. Jofre-Monseny
studied the effects of agglomeration economies, labor markets, and knowledge spillovers
on firm location choices [23]. Hao incorporated the dynamic process of firm entry into
agglomeration indicators and studied the synergistic effects of urban productivity under
dynamic agglomeration [24]. Guo explored the impact of agglomeration on firm entry
dynamics from the perspective of agglomeration [25]. Shao explored how industrial spatial
agglomeration effects macroeconomics by influencing enterprise market entry through
sorting out the preference model of firm entry dynamics selection and using enterprise
market entry as an intermediate transmission mechanism [26]. It can be seen that external
shocks influence firm entry dynamics, from industrial restructuring and government policy
changes on the one hand, and the agglomeration economy on the preference of the firm’s
decision side on the other hand. As an essential part of economic restructuring and the
development of producer service industries, the entry of new enterprises in the industry
can, to a certain extent, directly reflect the effectiveness of industrial policy adjustment.

By combing through the relevant literature, we make contributions to this area of
research in the following aspects. Firstly, the current understanding of industrial ag-
glomeration often stays at the level of “stock” of enterprises, and the description of the
agglomeration effect is usually based on the non-linear characteristics of the agglomeration
itself. In this paper, we construct dynamic composite agglomeration indicators to reflect
the dynamic agglomeration process of industries by using the “incremental” data of new
enterprises’ entry. This helps to extend further the theory of carbon emission reduction
in the producer service industry. Secondly, most of the studies on the carbon emission
reduction effect of producer service industries are in the form of empirical summaries or
statistical descriptions, or discuss the carbon emission reduction effect from a macroscopic
perspective, without adequate evidence at the microscopic level. Here, we introduce the
examination of market entry behavior of micro-enterprises into the analysis framework of
carbon emissions based on the theory of agglomeration economy and new economic geog-
raphy, and explore the effect of the producer service industry on carbon emissions from
the perspective of micro-enterprises. This is helpful for China to optimize its industrial
structure, deploy market development orientation, reasonably formulate the 14th Five-Year
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Plan, and achieve carbon emission reduction targets. Finally, considering the influence of
heterogeneity, this study discusses industry and regional heterogeneity separately using the
spatial dynamic panel technique. This helps policymakers to formulate effective policies
based on local realities and resource endowments.

The rest of this paper is organized as follows: Section 2 presents the theoretical
mechanism and research hypothesis; Section 3 describes the model construction and
indicator data; Section 4 focuses on the analysis of the empirical results to verify the
carbon reduction effect of the producer service; Section 5 is the discussion; and Section 6
summarizes the conclusions and provides policy recommendations.

2. Theoretical Mechanism and Research Hypothesis

Based on the new economic geography theory, Marshall points out that the agglomera-
tion of industries in a region can bring positive externalities, and the centralized distribution
of industries and specialized division of labor help enterprises reduce costs and develop
collaboratively [27]. As an essential part of the tertiary industry, the producer service
industry is closely related to manufacturing production and runs through all aspects of
enterprise production. On the one hand, with the increase in new enterprises in the regional
producer service industry, spatial agglomeration will gradually take shape and the scale
effect of industrial agglomeration will gradually be highlighted. It is easier for enterprises
of the same type to form a perfectly competitive market, and through information sharing,
reduce transaction costs, improve the efficiency of industrial development, control energy
consumption, and achieve carbon emission reduction [28]. On the other hand, through the
integration of manufacturing and producer services, the advantages of specialization and
scale economy can be better exploited [15,29]. With the market’s refinement of the division
of labor and specialization of services, the manufacturing industry outsources intermediate
service links to the more specialized producer service industry enterprises. The producer
service industry can reduce resource consumption and waste generation due to its high
specialization and high technology, make the manufacturing industry more focused on its
core business, improve energy use efficiency, and reduce carbon emissions [30]. Based on
this, it can be hypothesized that:

Hypothesis 1 (H1). The agglomeration development of the producer service industry could
contribute to the economy of scale effect of service products, reduce production and transaction costs,
and hence reduce carbon emissions.

In addition to this, firm entry occurs throughout the evolution of industrial agglom-
eration. As the agglomeration trend strengthens, through a circular and cumulative
mechanism of action, the agglomeration environment influences new enterprise entry
selection preferences, attracting more innovative enterprises to the market [28]. Compared
with incumbent firms, new firms have stronger innovative ideas, innovation efficiency, and
employment accommodation [31–33]. The entry of new enterprises brings more innovative
power [34]. These producer service enterprises embed advanced production technologies
and cutting-edge innovative ideas in the form of intermediate goods in the production
and manufacturing process to promote technological innovation and competition as well
as improve energy utilization and pollution control, and thus achieve carbon emission
reduction effects. The entry of new enterprises frequently involves the replacement of in-
cumbent enterprises [35]. Hopenhay constructed a basic model of the impact of enterprise
entry and exit on total factor productivity, which is widely used in the fields of industrial
organization and economy [36]. As new enterprises enter the market, competition forces
inefficient enterprises to exit the market, generating an inter-firm resource allocation effect
that affects total factor productivity and total output. In addition, as a knowledge-intensive
and technology-intensive industry, the producer service industry brings together a high
number of professional and technical talents and innovative companies. It can provide
a positive environment for collective learning and innovation, generating new ideas and
concepts [37]. Additionally, it can improve the level of technological progress and la-
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bor productivity of enterprises to reduce carbon emissions [38]. Therefore, the following
hypothesis is proposed:

Hypothesis 2 (H2). The entry of new enterprises can increase total factor productivity and thus
reduce carbon emissions.

The development of the producer service industry has always been an essential ele-
ment of industrial restructuring, and the optimization of industrial structure is crucial to
reduce carbon intensity [7,39]. China’s economic development model has been dominated
by investment and over-reliance on factor inputs. This has led to China’s economic growth
accompanied by “high pollution and high energy consumption”. The producer service
industry is a modern service industry with low pollution, high value added, and high
employment characteristics, with great potential for carbon emission reduction. Developed
producer services can also enhance the region’s position in the global divisions of labor [40].
Through deeper integration and more profound division of labor, it can reduce the produc-
tion cost of the manufacturing industry, promote the production chain to the direction of
low pollution and high value added [41,42], and improve the scale of the regional economy.
Furthermore, promoting the development of the producer service industry and guiding
market subjects to participate in its development can reasonably optimize the allocation of
resources and effectively improve the industrial structure. It can improve the traditional
production methods and energy consumption structure, reduce the proportion of heavy
pollution industries, reduce the rigid demand for energy in production, and control energy
consumption. Accordingly, the following hypothesis can be formulated:

Hypothesis 3 (H3). The development of producer services is beneficial to optimizing industrial
structure, enhancing the industrial value chain, and the realization of carbon emission reduction.

As shown in Figure 2, we summarize the theoretical analysis framework diagram
based on the above analysis. The producer service industry can achieve carbon emission
reduction through industrial structure optimization, industrial value chain climbing, and
economies of scale.

Figure 2. Analytical framework for the mechanisms of impacting carbon reduction by the producer service industry.

3. Research Method and Data
3.1. Empirical Method
3.1.1. STIRPAT Model

In recent years, the STIRPAT model has been widely used in the study of environ-
mental pollution influencing factors, and many scholars have extended it for the analysis
of urbanization, population, economy, industrial structure, and other factors on the envi-
ronment [43–45]. This paper draws on Dietz and Rosa’s STIRPAT model of urban carbon
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emissions as the basis for constructing an econometric model [46,47]. The basic form of the
model is as follows:

I = αPβ1 Aβ2Tβ3µ (1)

where I is urban carbon emissions and α is a constant term; P is population size; A is wealth
per capita; T is the level of technology in energy use and µ is a random error term. The
model is a non-linear model with multiple variables, so the following equation can be
obtained by taking the logarithm of both sides:

lnI = lnα + β1lnP + β2lnA + β3lnT + lnµ (2)

where β1, β2, β3 denote the elasticity coefficient, indicating that for every 1% change in
lnP, lnA, and lnT, lnI changes by β1%, β2%, β3%.

The theoretical analysis of this paper shows that producer services can reduce carbon
emissions through their own “green” characteristics, technology spillover effect, scale
economy effect, and industrial structure upgrading. Therefore, we constructed a panel
model based on the STIRPAT model to analyze the relationship between producer services
agglomeration, enterprise market entry, and carbon emissions. The model is specified
as follows:

lnCO2i,t = α + β1lnENTRYi,t + β2lnCSPi,t + β3lnPi,t + β4lnAi,t + β5lnTi,t + εi,t (3)

In addition to the above factors, according to relevant literature, human capital,
government intervention, foreign investment, and industrial structure may also influence
carbon emissions. Equation (4) can be obtained:

lnCO2i,t = α + β1lnENTRYi,t + β2lnCSPi,t + β3lnPi,t + β4lnAi,t + β5lnTi,t

+β6lnEDUi,t + β7lnGOVi,t + β9lnFDIi,t + εi,t
(4)

where cities are denoted by the subscript i (i = 1, . . . , N) and the subscript t (t = 1, . . . , N)
denotes the time period. α is the intercept term. β1 to β9 are the elastic coefficients of the
explanatory variable and εi,t represents the random error term.

3.1.2. Data

(1) Carbon emissions (CO2). The current calculation of carbon emissions mainly
adopts the IPCC (2006) standard to estimate CO2 emissions from energy consumption.
However, it should be especially noted that since the statistics are primarily national or
provincial level, municipal and smaller-scale statistics are more difficult to collect. The
standard of carbon emission calculation is not uniform, and the results vary greatly. The
corrected and merged lighting dataset of DMSP-OLS data and NPP-VIIRS data can be
effectively applied to carbon emission estimation, which can be effectively applied to
carbon emission estimation and help overcome the shortcomings of traditional methods
and improve the accuracy of the study [48]. Data for YERB region carbon emission were
obtained directly from the China Emission Accounts and Datasets (CEADs) [49].

(2) Enterprise market entry (ENTRY). Most of the current market entry of firms is
reflected by the rate of firm entry or the number of entering firms. In conjunction with
the research objectives of this paper, the market entry of firms can be reflected using the
number of new firms per year in the optional space. The data come from the data of small
and micro enterprises in the National Enterprise Credit Inquiry System on the enterprise
search platform [50]. This database includes a total of 41.75 million enterprises, covering
the unit’s name, industry code, time of establishment, and other pieces of information.
From the data, we filter new enterprises’ information each year, summarize their statistics,
and count them to each prefectural city level.

In this paper, we classify producer service industries according to the National Stan-
dard for Industry Classification (NSIC) and the Statistical Classification of Producer services
(2019), and with reference to Gu’s research [42]. The producer service industry includes
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transportation, storage, and postal services (TSP); information transmission, computer ser-
vices, and software (ICS); wholesale and retail trade (WRT); tenancy and business services
(TBS); scientific research and technology services (SRT); environmental management and
public facilities management services (EMP); and finance (FI).

(3) Two-dimensional composite agglomeration (CSP). Due to the limitation of data
statistics, the existing data of the producer service industry only count the number of
employment units, which does not reflect the overall agglomeration level of the producer
service industry and the agglomeration of enterprise distribution dimension. The change
in agglomeration effect is based on the non-linear characteristics of agglomeration itself,
while the dynamic change characteristics of market players and industrial agglomeration
in the time sequence are difficult to determine. In this paper, on the basis of Ezcurra
and Han [16,51], we make appropriate improvements and draw on Chen’s approach [52],
using weighting coefficients to weigh the two types of agglomeration indicators into a
two-dimensional composite agglomeration degree (CSP). The specific calculation formula
is as follows:

CSP = α ∑
S

∣∣∣∣Eis
Ei
− E′s

E′

∣∣∣∣+ β ∑
S

∣∣∣∣Cis
Ci
− C′s

C′

∣∣∣∣ (5)

where Eis, Cis denote the number of units employed and the number of new enterprises in
producer service industries in city i respectively. Ei, Ci denote the total number of units
employed and the total number of new enterprises in city i respectively, and E′s, C′s denote
the number of units employed and the number of new enterprises in producer service
industry s other than city i respectively. E′, C′ are the number of units employed and the
number of new firms at the national level other than city i respectively. In this paper, α
takes a value of 0.9 and β takes a value of 0.1.

(4) Control variables. Per capita wealth (A) is expressed using the per capita GDP
(ECO), a commonly used indicator to measure regional economic development. The per
capita GDP data are deflated to a base period of 2003 to remove the effect of inflation
on the data. Population factor (POPU) indicates the population size. We use population
density to indicate the impact of population on the environment. This can be divided into
technological progress and industrial structure (INS). We use a broad industrialization
indicator, the ratio of non-agricultural industries, to measure the change in industrial
structure. Technological progress is the main manifestation of knowledge and competence,
and human capital is used to reflect it [53]. We express human capital (EDU) in terms of
the number of students enrolled in tertiary institutions per 10,000 people. For government
intervention (GOV), we use the share of budget revenue in regional GDP to indicate the
degree of regional government intervention in economic development. Regarding openness
to foreign investment (FDI), the “pollution sanctuary” hypothesis suggests that FDI affects
the environmental quality of host countries by transferring highly polluting industries to
them through investment [54]. Some scholars argue that foreign investment can introduce
environmentally friendly technologies and products to improve environmental quality [55],
and that foreign investment can create higher agglomeration economies and thus promote
green industries. Therefore, this paper uses the ratio of actual utilization of investment to
GDP as the FDI index.

Data for the above control variables were obtained from the statistical database of the
China Statistics Bureau, the statistical database of China Economic Network, the Yangtze
River Economic Belt Big Data Platform, the China City Yearbook 2001–2018, and the
China Regional Economic Statistical Yearbook. In order to eliminate problems such as
heteroskedasticity, some of the data were logarithmically processed in this paper, and the
logarithmically processed data were found to be stable through testing. Table 1 shows the
descriptive statistics for all variables.
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Table 1. Summary statistics.

Var Types Var Unit Obs Mean Std. Dev. Min Max

Explained variable CO2 Million tons 1650 23.347 26.573 1.633 230.712

Control variables

ECO Yuan 1650 22,247.6 17,379.650 2097.784 102,300

POPU Person/km2 1650 481.896 291.313 52.73 2285

EDU Students/10,000 person 1650 154.625 211.971 0.588 1270.424

INS % 1650 85 8.9 42.3 99.6

GOV % 1650 7.1 3 2 22.7

FDI % 1650 0.327 0.297 0 2.429

Core explanatory
variable

ENTRY home 1650 50,895.66 120,093.7 275 1,964,005

CSP / 1650 0.104 0.042 0.027 0.32

3.1.3. Dynamic Spatial Econometric Model

Carbon dioxide emissions are a dynamic adjustment process with path dependence.
This means that carbon emissions in the previous period will have an impact on carbon
emissions in the current period, so it is necessary to take into account the time lag effect of
carbon emissions in the model. The specification can be seen in Equation (6).

lnCO2i,t = τlnCO2i,t−1 + β1lnENTRYi,t + β2lnCSPi,t + β3lnECOi,t + β4lnPOPUi,t+

β5lnECOi,t + β6lnINSi,t + β7lnEDUi,t + β8lnGOVi,t + β9lnFDIi,t + εi,t + νt + µi
(6)

Carbon emissions, as an externality in economic development, may have a more
pronounced correlation effect in space, i.e., the carbon emission factors of the city i may
have an impact on neighboring city j. The dynamic spatial panel model proposed by
Elhorst is a good solution to this dependency [56]. The dynamic spatial regression model is
set up as follows.

lnCO2i,t = τlnCO2i,t−1 + σ
N
∑

j=1,j 6=i
wijlnCO2i,t + β1lnENTRYi,t + β2ClnSPi,t

+β3lnECOi,t + β4lnPOPUi,t + β5lnECOi,t + β6lnINSi,t

+β7lnEDUi,t + β8lnGOVi,t + β9lnFDIi,t + εi,t + νt + µi

(7)

where i(i = 1, . . . , N) denotes different cities and t (t = 1, . . . , N) denotes different times.
wij refers to the NN-dimensional spatial weight matrix, σ is the spatial autoregressive
coefficient; β is the elasticity coefficient of the explanatory variable; ϕ represents the
spatial autocorrelation coefficients; µi and νt are the individual effect and time effect,
respectively; εit is the error term that obeys the independent random distribution.

In addition, enterprise market entry may also be affected by agglomeration effects.
In order to effectively investigate the interaction between producer service agglomeration
and enterprise dynamics, the interaction terms are added into the dynamic space panel
model and the model is obtained:

lnCO2i,t = τlnCO2i,t−1 + σ
N
∑

j=1,j 6=i
wijlnCO2i,t + β3lnECOi,t + β4lnPOPUi,t

+β5lnINSi,t + β6lnEDUi,t

+β7lnGOVi,t + β8lnFDIi,t + β1lnENTRYi,t + β2lnCSPi,t

+β12lnENTRYi,t × lnCSPi,t + εi,t + νt + µi

(8)

where τ denotes the first-order lagged regression coefficient of CO2, σ denotes the spatial
lag term regression coefficient, and εit denotes the error term.
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In order to accurately measure the interaction effect of the independent variable
on the dependent variable, the first-order partial derivatives are found for both sides of
Equation (8), as shown in Equation (9).

∂lnCO2

∂lnENTRYi,t
= β12lnCSPi,t + β1 (9)

The marginal effect of the variable ENTRY on CO2 depends on the variable CSP;
if β9 > 0, then the marginal effect of ENTRY on CO2 increases with increasing CSP.
Conversely, if β9 < 0, then the marginal effect of ENTRY on CO2 decreases with increasing
CSP. Further derivation of the Equation (10):

∂lnCO2

∂lnENTRYi,t × ∂lnCSPi,t
=

∂
(

∂lnCO2
lnENTRYi,t

)
∂lnCSPi,t

= β12 (10)

Therefore, the regression coefficient β12 before the interaction term is also called
“Interaction Effect”, or “Moderating Effect”; that is, the effect of ENTRY on CO2 is affected
by CSPi,t. When CSPi,t is unchanged, the influence intensity of CSPi,t on CO2 is β1 + β12.

3.2. Spatial Weighting Matrix

To accurately measure the spatial correlation between individuals, it is also necessary
to construct appropriate spatial weighting matrices. Commonly used spatial matrices
are the adjacency matrix, the geographical distance matrix, and the economic distance
matrix. In reality, however, the spatial correlations between regions may not come from one
aspect of geography or economy alone, but from both geographic distance and economic
behavior. In order to systematically examine the spatial correlation characteristics of carbon
emissions, three spatial weight matrices are constructed in this paper. Firstly, the spatial
distance matrix Wd is constructed for geographical distance decay, and its expression is:

Wd =


1

dij
2 , i 6= j

0, i = j
(11)

Since the spatial agglomeration of industries may make the division of labor and
collaboration between horizontal and vertical industries between two cities spatially related,
only geographical factors do not reflect all the spatial influencing factors well, and they also
may be subject to the spillover and radiation effects of economic and social motives in each
region, so the spatial weight matrix W1 of geographic economic distance is constructed
based on Wd:

W1 =

 Wdij

(
1

|Ei−Ej|

)
, i 6= j

0, i = j
(12)

where E indicates the annual average value of GDP per capita in a region.
The second is a quadratic nested weight matrix (W2) for economic geography, which

draws on the weight construction method of the expression:

W2 = ψWd(φ) + (1− ψ)
1

Ei − Ej
= ψ

[
φWd + (1− φ)

1
Ei − Ej

]
+ (1− ψ)(W1) (13)

where ψ and φ take values between 0 and 1. In this paper, ψ and φ are 0.5.
In addition to this, in the process of economic development, economically developed

regions have a greater radiating influence on less developed regions, while less developed
regions have a smaller influence on developed regions. Therefore, the spatial influence



Sustainability 2021, 13, 13821 10 of 21

effectiveness of the two is not the same. The asymmetric influence nested weight matrix
W3 is constructed on the basis of W1.

W3 =


(

Ei
Ej

)
×Wd i 6= j

0 i = j
(14)

4. Results
4.1. Spatial Characteristics of CO2 Emissions

Figure 3 depicts the spatial evolution of the CO2 distribution, showing the CO2
concentrations in the study area in 2003, 2007, 2012, and 2017. Based on the natural
breakpoint classification, five emission levels are identified from low to high: low emissions,
medium-low emissions, medium emissions, medium-high emissions, and high emissions.
The graph shows that from 2003 to 2007, the level of CO2 emissions in the YREB increased
significantly, especially in the middle and upper reaches of the Yangtze River. Secondly,
CO2 emissions show an apparent spatial clustering. Medium and high emissions are
mainly concentrated in the lower reaches of the Yangtze River. In terms of emission levels,
the trend of expanding high emission areas from 2007 to 2012 reached a peak in 2012, and
the rate of emissions slowed significantly after that, curbing the expansion trend.

Figure 3. Spatial evolution of carbon dioxide in the Yangtze River Economic Belt (YREB).

4.2. Spatial Autocorrelation

CO2 may be spatially correlated, and the spatial autocorrelation index is an indicator
of whether it has a spatial effect and a basis for whether to include spatial features in the
model. Moran’s I-index is generally chosen as a reference for the results. Moran’s index
values under three spatial weights are shown in Table 2 and Figure 4.

The Moran index represents the degree of association of the object in space. p-values
of the Moran index from 2003 to 2017 are all less than 0.01. The results are more significant
and have certain reference significance. From the test results, the Moran index ranges
from 0.038 to 0.279, indicating that the carbon emissions in the study area show significant
spatial clustering characteristics, and the spatial dependence characteristics show a gradual
increase with the continuous development of cities’ industrial changes.
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Table 2. Moran index of carbon emissions in the YREB, 2003–2017.

Year
Moran’s I-Index

W1 W2 W3

2003 0.187 0.106 0.038

2004 0.196 0.11 0.041

2005 0.213 0.12 0.047

2006 0.227 0.128 0.053

2007 0.246 0.141 0.06

2008 0.26 0.149 0.064

2009 0.249 0.143 0.06

2010 0.254 0.145 0.061

2011 0.275 0.153 0.065

2012 0.271 0.151 0.064

2013 0.275 0.149 0.061

2014 0.27 0.147 0.06

2015 0.279 0.154 0.064

2016 0.277 0.153 0.063

2017 0.26 0.141 0.055
Note: The Moran index passed the 1% significance test for all three spatial weights.

Figure 4. Trend of Moran’s I-index.

4.3. Analysis of Full Sample Results

In this paper, the Equations (4) and (6), without considering spatial effects, are first
estimated to test the impact of producer services on carbon emissions. Before estimating the
panel data, the Hausman test was used to select a fixed-effects model or a random-effects
model. The result shows that the chi2 statistic is 262.53 at a 1% significant level; therefore,
the fixed effects model is adopted. Based on this model, it can be seen from column 1 of
Table 3 that ENTRY and CSP significantly reduce carbon emissions. Turning our attention
to the dynamic panel model Equation (6) (i.e., the system-GMM model), results are shown
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in columns 2 and 3 of Table 3. The system-GMM model considers endogeneity but ignores
the spatial interactions of CO2 emissions in space. System-GMM results are usually more
plausible than FE models. From the regression results in columns 2 and 3 of Table 3, the
coefficient of the first-order lag term of carbon emissions is significantly positive, indicating
a significant dynamic effect of carbon emissions, i.e., carbon emissions have an intense
time lag. Moreover, ENTRY and CSP not only exhibit significant carbon reduction effects,
but also there is a significant synergistic effect between ENTRY and CSP. However, due to
the neglect of spatial spillover effects, the system-GMM estimates are subject to omitted
variable bias.

Table 3. Regression results of full sample.

Variables FE SYS-GMM

CO2t−1
0.703 ***
(0.0360)

0.700 ***
(0.0348)

ECO 0.452 ***
(0.0173)

0.174 ***
(0.0346)

0.177 ***
(0.0336)

POPU 0.0821 ***
(0.0222)

0.0273
(0.0269)

0.0259
(0.0249)

EDU 0.0840 ***
(0.0101)

0.0319 **
(0.0135)

0.0321 **
(0.0138)

INS 0.426 ***
(0.1246)

0.450
(0.3553)

0.399
(0.3305)

GOV 2.080 ***
(0.2162)

−1.189 ***
(0.3595)

−1.156 ***
(0.3383)

FDI −0.0280
(0.0181)

−0.0456 *
(0.0270)

−0.0433 *
(0.0250)

ENTRY −0.0560 ***
(0.0099)

−0.0831 ***
(0.0116)

−0.105 ***
(0.0116)

CSP −1.033 ***
(0.1059)

−0.594 ***
(0.1688)

−2.285 ***
(0.6387)

ENTRY × CSP 0.204 **
(0.0799)

Cons −2.432 ***
(0.1567)

−0.671 ***
(0.2384)

−0.468 **
(0.2052)

Sargan 0.2583 0.2659

AR(2) 0.3590 0.2183

Observations 1650 1540 1540
Note: *, **, and *** represent significant differences at the 10%, 5%, and 1% levels, respectively. Columns 2 and 3
pass the AR(2) test for serial correlation and the Sargan test for overidentification.

The Moran values show that there is a positive spatial correlation of CO2 emissions
between regions, and the spatial dynamic panel model (8) is estimated next. Before
estimating the model, we first need to test the spatial model, and this task is usually
performed by the LM test [57]. The criterion is that the model with more significant
LM statistics is the suitable model. The test results show that both LM and LM-robust
pass the significance test, so the spatial lag model is applicable. Due to the endogeneity
problem, estimating dynamic spatial panel models using SGMM tends to be more effective
than traditional great likelihood estimation [56,58], which is able to select the appropriate
instrumental variables from the time trend terms of the variables, making the estimation
more efficient. There are two important tests in the estimation of spatial dynamic panel
models [59,60]. The Sargan statistic of the overidentification test was used to determine
the validity and feasibility of the instrumental variables. The instrumental variables were
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considered valid when the Sargan statistic could not reject the original hypothesis at the
10% significance level earlier. The Arellano–Bond test was used to detect the first-order
and second-order serial correlations of the error terms (i.e., AR(1) and AR(2)). When the
p-value of AR(2) is higher than 0.05, it indicates that the instrumental variables used are
exogenous. As shown in Tables 3 and 4, the tests indicate that there is no misclassification
problem with SGMM and the instrumental variables we used are reasonably valid.

Table 4. Regression results of full sample.

Dynamic Spatial Model

Matrix W1 W2 W3

CO2t−1
0.472 ***
0.0059

0.471 ***
0.0096

0.504 ***
0.0076

0.56 ***
0.006

WCO2
0.505 ***
0.0059

0.533 ***
0.0109

0.462 ***
0.0088

0.363 ***
0.0074

ECO −0.042 ***
0.0025

−0.043 ***
0.0028

−0.035 ***
0.0031

−0.0007
0.0036

POPU 0.061 ***
0.0029

0.057 ***
0.0022

0.071 ***
0.0033

0.083 **
0.003

EDU 0.019 ***
0.0014

0.013 ***
0.0018

0.026 ***
0.0015

0.031 ***
0.001

INS 0.538 ***
0.0214

0.444 ***
0.0186

0.555 ***
0.0275

0.587 ***
0.0247

GOV −0.844 ***
0.0329

−0.799 ***
0.0269

−0.963 ***
0.0288

−1.11 ***
0.0484

FDI −0.04 ***
0.0031

−0.041 ***
0.0014

−0.033 ***
0.003

−0.021 ***
0.0027

ENTRY −0.003**
0.0011

−0.012 ***
0.0014

−0.009 ***
0.0012

−0.019 ***
0.0012

CSP −0.128 ***
0.0165

−1.399 ***
0.0818

−0.142 ***
0.0119

−0.158 ***
0.0117

ENTRY × CSP 0.148 ***
0.0098

Sargan 0.5933 0.7153 0.6314 0.5862

AR(2) 0.679 0.207 0.921 0.483
Note: ** and *** represent significant differences at the 5% and 1% levels, respectively. All pass the AR(2) test for
serial correlation and the Sargan test for overidentification.

The results are presented in Table 4 below. With the inclusion of spatial effects, the
time-lagged term and the spatial lagged term in model (8) are significant. The applicability
of the spatial econometric model is confirmed by comparing the decidable coefficients of
the model as well as the LK values, and the estimated coefficients and reasonableness are
greatly improved. The optimal model was determined by comparing the goodness-of-fit,
LR statistics, and likelihood log values, and the spatial dynamic panel model under the
economic-geographic matrix was selected as the explanatory model. The following section
only reports and discusses the estimation results of the dynamic spatial panel model based
on W1 weights.

It can be seen from Table 4 that the spatial lag of carbon emissions is significantly
positive, which once again proves the spatial agglomeration characteristics of carbon
emissions. Under the influence of the natural environment, atmospheric flow, and economic
activities of human society, the carbon emission levels of this region and other regions
present a kind of “one prosperity, one loss” relationship. In the time dimension, the time lag
term of carbon emissions is also significantly positive, which proves that carbon emissions
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have prominent path-dependent characteristics. In other words, the carbon emission level
in the current period is relatively high, and the carbon emission in the next period may
continue to rise, which is a “snowball” effect. This is consistent with the conclusions
drawn from the existing literature. Therefore, the carbon emission reduction work must be
unremitting and cannot be expected to reduce carbon emissions in some regions.

From the parameter estimates of the control variables, for every 1% increase in ECO,
the carbon emission level of the region is reduced by 0.042%. Moreover, in the Table 4,
POPU has a significant positive effect on carbon emissions. The population size affects
carbon emissions through the scale effect and agglomeration effect. The traffic congestion
and excessive residential density brought by the population gathering aggravate carbon
emissions [61]. In the table, EDU and INS lead to increased carbon emissions. The increase
in the level of local human capital does not reduce the level of regional carbon emissions. At
the same time, China’s economic development model is mainly driven by investment and
industrial structure, and the development of the secondary industry is accompanied by ex-
cessive dependence on fossil energy, which inhibits the optimization of the energy structure.
The optimization of the industrial structure will continue to be a priority for China [7,62].
Meanwhile, GOV in the table is significantly negative. Amid China’s rapid economic devel-
opment, the government has effectively corrected the environmental pollution problem by
utilizing adjustment and supervision. For example, China’s repeated policies, such as the
“Guidance on Accelerating the Development of the Producer Service Industry to Promote
the Adjustment and Upgrading of Industrial Structure”, have extensively promoted the
development of the producer service industry. By guiding the market and formulating
effective green industrial support policies, China has accelerated the “post-industrial”
development and promoted the “green” industrial upgrading. Foreign investment (FDI)
is beneficial to carbon emission reduction. The “pollution refuge” hypothesis for carbon
emissions is not established in China [55]. FDI reduces carbon emission levels through the
over-income effect, “pollution halo effect”, and technology spillover effect.

Secondly, from the estimation results of ENTRY and CSP, it can be found that the
elasticity coefficients of both ENTRY and CSP are significantly negative, indicating that
producer services can effectively reduce carbon emissions, which is consistent with the
conclusion of Zhao’s research [63]. Due to its “green industry” characteristics, producer
services are low-pollution and high-value-added industries. On the one hand, the entry of
new producer service enterprises can promote mutual learning, in-depth exchanges, and
sincere cooperation among similar enterprises, which improves producer services’ service
capacity, stimulates innovation vitality, and reduces production energy consumption and
transaction cost manufacturing. On the other hand, with the agglomeration of producer
services, the rational allocation of resources is optimized, and the effects of economies of
scale can be achieved through industrial association, specialized production, increasing
returns to scale, knowledge spillover, and other mechanisms to promote the optimization
and upgrading of regional industrial structure, adjust energy consumption structure and
reduce carbon emissions. In addition, Table 4 shows a “synergistic effect” between the
agglomeration of producer service industries and the market entry of new enterprises. The
agglomeration of industries can influence the choice preference of the later entering enter-
prises [19], forming a positive cycle of cumulative effect and improving the productivity of
enterprises [26], which ultimately improves the carbon emission reduction capacity of the
producer service industry.

4.4. Heterogeneity Analysis of Carbon Emissions by Industry Sample

Due to the obvious differences in economic activities and industry characteristics
among industries in the producer service industry, the impact on carbon emissions is
influenced by the heterogeneity of producer service industry segments. Therefore, the
producer service industry is divided into seven categories to further examine the impact of
carbon emission reduction among different industries. The results are shown in Table 5.
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Table 5. Regression results by industry sample.

Variables

Transport,
Storage, and

Postal
Services (TSP)

Information
Transmission,

Computer Services,
and Software
Industry (ICS)

Wholesale
and Retail

Trade (WRT)

Finance
(FI)

Tenancy and
Business

Services (TBS)

Scientific
Research and
Technology

Services (SRT)

Environmental
Management and
Public Facilities

Management
(EMP)

ENTRY −0.008
0.0012

−0.01 ***
0.0006

0.009 ***
0.0008

−0.011 **
0.0012

0.007 ***
0.0006

−0.01 **
0.0013

−0.004 ***
0.0005

CSP −4.349 ***
0.3331

0.759 **
0.0.2403

−0.142
0.1159

1.143 ***
0.1999

−2.402 ***
0.2578

−3.729 ***
0.9205

−0.3716 ***
0.1008

Note: The parameter estimation of each control variable is consistent with Table 4, and it is not listed completely due to space reasons.
** and *** represent significant differences at the 5% and 1% levels, respectively. All pass the AR(2) test for serial correlation and the Sargan
test for overidentification.

According to the estimated results in Table 5, it is obvious that the entry of high-end
producer service companies such as EMP, SRT, and FI can effectively reduce the level of
carbon emissions, but this carbon reduction effect is negligible. Moreover, such low-end
producer service companies as TSP and WRT do not exhibit carbon emission reduction
effects. The results of the findings partially coincide with Han’s study [16]. As can be seen
from the table, the agglomeration of TSP, LCS, SRT, and EMP can reduce carbon emission
levels. One side of this comes from the externalities of agglomeration. Synergizing with the
manufacturing industry promotes technological innovation [15], deepens the division of
labor among industrial enterprises, and reduces the cost of green production. On the other
side are the high-end producer service companies such as EMP and SRT; these enterprises
can spontaneously form carbon emission reduction alliances and strengthen the sharing of
information on low-carbon technologies and low-carbon products among enterprises [64].

Unfortunately, the clustering of FI and ICS did not show a significant carbon emission
reduction effect. Furthermore, the carbon emission reduction effect of market entry of
enterprises of high-end producer services shows inefficiency. This is the level of integration
between information technology and industrialization in China is still low, resulting in
low carbon emission reduction utility. The development of carbon finance in China is
also limited by the low degree of marketization, poor innovation ability of derivative
products, and regional differences in industries [65], which lead to the lack of a carbon
emission reduction effect. More often, due to the industry’s entry barriers, price control,
and natural monopoly phenomenon, the agglomeration development does not reduce the
regional carbon emissions. With the expansion of the scale, the disorderly agglomeration of
enterprises, while promoting economic development, will also increase the level of carbon
emissions in the region.

4.5. Heterogeneity Analysis of Carbon Emissions in a Sub-Regional Sample

The YREB is a vast region affected by natural, social, and economic factors and limited
by regional differences in industrial structure, resource endowment, economic activities,
and other aspects, where producer services show obvious diversity in carbon emissions.
Considering the long-standing existence of socio-economic development, regional develop-
ment policy barriers, and watershed division among areas in the YREB, we split the sample
according to upstream (33 cities), midstream (36 cities), and downstream (41 cities) areas to
account for potential regional heterogeneities. The regional sample regression results are
shown in Table 6.

As shown in Table 6, the results for each control variable vary across the sample
estimates in different regions and differ significantly from the complete sample estimates.
Government regulation of the market structure and economic development structure in
the country’s upper, middle, and lower reaches have effectively improved carbon emission
reduction. In Table 6, it can be seen that the increase in population density and the
acceleration of industrialization both triggered a significant increase in carbon emissions.
As the standard of living and industrialization in the downstream and midstream areas
of the YREB are higher than those in the upstream areas, this has led to a large number of
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people moving from the upstream and midstream to the downstream areas [61]. As the
population expands, employment density increases and urban sprawl is accompanied by
an increase in building height and density, increasing carbon emissions.

Table 6. Regression results for sub-regional samples.

Variables
Regional Heterogeneity

Upstream Midstream Downstream

CO2t−1
0.622 ***
0.0431

0.443 ***
0.0264

0.543 ***
0.0175

WCO2
0.407 ***
0.0343

0.652 ***
0.0244

0.494 ***
0.0257

ECO −0.113 ***
0.016

−0.163 ***
0.0158

−0.089 ***
0.0104

POPU 0.156 **
0.062

0.033 ***
0.0079

0.027 ***
0.0041

EDU 0.04 ***
0.0076

0.033 ***
0.0079

−0.026 ***
0.0049

INS 0.37 ***
0.0786

0.6 ***
0.072

0.916 ***
0.1403

GOV −0.785 **
0.2529

−0.274 ***
0.161

−0.694 ***
0.1031

FDI −0.0362 **
0.0148

0.067 **
0.028

−0.009
0.0067

ENTRY 0.016 ***
0.4379

0.017 **
0.009

−0.0132 *
0.0074

CSP −0.048
0.4379

−1.492 *
0.7727

−1.178 **
0.4804

ENTRY × CSP −0.049
0.0516

0.163 *
0.091

0.137 **
0.0538

Sargan 1.0000 1.0000 1.0000

AR(2) 0.739 0.361 0.338

Observation 462 504 574
Note: *, **, and *** represent significant differences at the 10%, 5%, and 1%, levels respectively.

Table 6 shows that ENTRY and CSP are conducive to reducing carbon emissions
in the downstream region. Due to the specialization and market integration-oriented
industrial development strategy implemented in China after the reform and opening up,
the gap in economic development bases between regions has gradually widened, and the
industrialization process and service industry development are not equal in scale. The
economic development of downstream regions is superior to the middle and upper reaches,
with extensive market size and a finer division of labor between and within industries. As
the “polarization trickle-down” effect is constrained by distance and time. Although the
producer service industry in the eastern region is more developed, the positive radiation
effect is smaller than the negative inhibition effect in the central and western regions.
Therefore, it is difficult to influence the development of the central and western regions
through the trickle-down effect, so the change is minimal.

From the perspective of development, the downstream region has a tremendous
carbon emission reduction potential than the upstream and midstream regions [66]. On
the one hand, the upstream area is restricted by the regional economy. It must rely on the
development of secondary industries to promote economic development, and, inevitably,
some of the “high-emission” industrial enterprises in the downstream area will be under-
taken. The economic development level of the upstream region is relatively backward,
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and the concentration of industries and the development of high-end producer services
require a large amount of factor input, which is challenging to form economies of scale
in a short period, so the effect of carbon emission reduction is not apparent. On the other
hand, due to the relatively small industry scale in the upstream and midstream areas, the
demand for producer services is low. At the same time, due to insufficient infrastructure
construction, the influx of new enterprises into the producer service industry does not
match effectively with the local industrial and economic development structure, which
results in low-level duplicate construction and isomorphic development. It causes the
high-end producer service industry to be constrained by the regional economy, which leads
to increased local carbon emissions.

5. Discussion

Despite the growing interest in understanding the impact of producer service on
carbon emissions, most of the current literature is in the form of experience summaries or
statistical descriptions. Here, we empirically investigate the carbon emission reduction
role of productive service industries from a microscopic perspective. Our full-sample
estimation results are supported by Lin, Zhang et al. [5,7,43]. We find that the producer
service industry can effectively reduce carbon emissions, which is consistent with the
findings of Yang and Li [14,15]. In addition, we improve upon Zhao’s study using micro-
firm data [63]. We find that CSP can influence ENTRY to enhance the carbon reduction
effect of producer services. As far as we know, industrial agglomeration could affect the
market entry preferences of new enterprises. Thus, industrial agglomeration encourages
more innovative enterprises to enter the market and affects total output and total factor
productivity through the “allocation effect” [26,36]. It enhances the carbon reduction effect
of producer service. Based on this, we further analyze the heterogeneity of carbon emission
reduction in producer service. In contrast to Han’s results [16], this paper considers
the time dependence and spatial dependence of carbon emissions. We find that ENTRY
of high-end producer services can significantly reduce carbon emissions, while low-end
producer services have the opposite effect. Moreover, the producer service industry exhibits
significant regional heterogeneity. The producer service in the downstream region of YREB
exhibits significant carbon reduction potential compared to the middle and upstream
regions, a result that corroborates Li’s findings [66]. This is mainly due to the differences in
development level, industrial structure, and resource endowment between regions [5,62].
The mismatch between the producer service and regional infrastructure will lead to the
inability of producer services to play their role in carbon emission reduction.

6. Conclusions

This aim of this study was to systematically discuss the impact of producer service
industries on carbon emissions from the perspective of enterprise market entry within
the framework of the new economic geography theory. We adopted a dynamic spatial
econometric model based on the panel data of 110 cities in the YREB of China from 2003 to
2017. We further explored the industry heterogeneity and regional heterogeneity of the
producer service industry separately. The main findings of this study are as follows.

(1) The results of the dynamic spatial model research indicate that the producer service
industry has a significant negative impact on carbon emissions in YREB; in other
words, the development of producer services for the full sample can help mitigate
carbon emissions. In addition, there is a significant synergistic effect between CSP
and ENTRY. The intensity of the effect of ENTRY on carbon emissions increases with
the enhancement of CSP, and CSP significantly enhances the relationship between
ENTRY and carbon emission reduction.

(2) Different sectors of the producer service industry exhibit different carbon reduction
effects; this implies that there is industry heterogeneity in the carbon reduction effects
of producer service. The high-end producer service industry (e.g., SRT, EMP) exhibits
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excellent ability to reduce carbon emissions. In contrast, the low-end productive
service industry cannot reduce carbon emissions, and even increases them.

(3) The impact of producer services on carbon emission reduction differs in different
YREB regions; that is, significant regional heterogeneity is found in the upstream,
midstream, and downstream of the Yangtze River. Due to problems such as re-
source mismatch and economic development differences, producer service does not
contribute to carbon emission reduction in the upstream YREB.

Based on the above conclusions, in order to effectively promote the high-quality
development of the producer services and facilitate carbon emission reduction, we propose
the following recommendations.

First, at the COP26 conference in November 2021, China demonstrated its determi-
nation to promote green and low-carbon development and actively respond to global
climate change. China will insist on the concept of a community of life between human
beings and nature, adhere to ecological priorities, pursue green and low-carbon devel-
opment, and accelerate the construction of a green, low-carbon, and circular economic
system. To achieve the goal of “double carbon”, China must make constant efforts to jointly
prevent and control and formulate effective inter-regional cooperation policies. China must
continuously promote industrial restructuring, resolutely curb the blind development of
high energy-consuming and high-emission projects, accelerate the green and low-carbon
transformation of energy, and vigorously develop renewable energy.

Second, the optimization of the industrial structure can effectively reduce carbon
emissions, but it is still necessary to promote the participation of market entities in the
construction process. Furthermore, China should promote the upgrading of the producer
service industry, accelerate the development scale and speed of high-end producer service
industry, promote the effective embedding of the producer service industry in the manufac-
turing value chain, and realize the effective matching between the high-end manufacturing
industry and the producer service industry. With market incentive policies to attract more
market entities to enter the “green industry”, this guides enterprises to actively carry out
green technological innovation activities to create a “special, precise, new” type of producer
service industry.

Third, all regions should scientifically plan and develop producer services according
to their natural endowments, industrial structure, and demand for development projects, so
as to give full play to the carbon emission reduction of producer services. Furthermore, each
region should comprehensively consider the development needs of the local manufacturing
industry, potential strength, technical capacity, and transformation and upgrading, and
promote the formation of a benign industrial chain with complementary advantages,
reasonable proportions, and close cooperation between upstream and downstream regions.

This study details preliminary empirical evidence and a micro perspective on the
impact of producer service on carbon emissions, but there are some limitations. Firms’ exit
and incumbency times may have different effects on their emission reduction effects, which
are not included in the research framework in this paper due to the limitations of regional
data statistics and errors. Therefore, it will be useful to use other microdata (e.g., POI
data containing enterprise dynamics) or methods in future studies to make more accurate
policy recommendations for relevant regions and industries. Meanwhile, the high-end
producer service industry and high-end manufacturing industry are the trends of research.
Analyzing the impact of both on carbon emission reduction is of great value for exploring
the future development trend of the producer service industry.
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