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Abstract: The evaluation of the natural quality of cultivated land is crucial for preserving arable
land and achieving a balance between the quantity and quality of arable land. Therefore, a timely
assessment of the natural quality of cultivated land is needed to monitor its changes. However,
current methods often focus on a single specified crop, neglecting the variations that occur across
different specified crops. Since the indicator weight recognition method is only suitable for a single
crop, this paper proposes a novel model evaluating the natural quality of cultivated land based on the
method of “hidden light–temperature index and yield ratio coefficient”. In addition, the condition
information entropy and rough set method based on particle swarm optimization (CIERS-PSO) were
proposed to evaluate the natural quality of cultivated land in Enshi. Firstly, condition information
entropy and rough set are adopted to determine the importance of the indicator automatically.
Then, particle swarm optimization (PSO) is utilized to obtain the optimal weights of the first-level
and second-level indicators. Finally, the proposed model and evaluation method were adopted to
evaluate the natural qualities of the cultivated land. The experimental results demonstrated that
the combination of the “hidden light–temperature index and yield ratio coefficient” model and the
CIERS-PSO method can automatically identify the indicator weights for the evaluation of natural
quality in multi-crop cultivated land. It could obtain better evaluation accuracy even if the sample
size is small.

Keywords: particle swarm optimization algorithm; conditional information entropy; rough set;
natural quality evaluation of cultivated land

1. Introduction

At present, China’s cultivated land is experiencing a maldistribution and a decline
in both quantity and quality. Moreover, some cultivated lands are polluted to varying
degrees and suffer from soil damage, ground subsidence, and other adverse effects [1,2].
The evaluation of natural quality is significant for protection and promotion, as well as
achieving a balance between the quantity and quality of cultivated land [3,4].

Based on the differences in hydrothermal conditions in various regions, China’s natural
resource departments have formulated a standard tillage system. This system is designed
for designated crops and multiple-cropping types in various counties [5].

Most counties have designated more than one crop [6–8]. If only one designated
crop is used to determine the natural quality of cultivated land, there would be a certain
deviation in characterizing the production capacity of the cultivated land. The type of
multiple-cropping is mainly determined by local light and temperature conditions. These
conditions have a significant influence on the local natural production potential and are
important factors in the grading of cultivated land [9–12]. Therefore, it is necessary to
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evaluate the natural quality of cultivated land based on the local tillage system and multiple
designated crops. This could represent the production level of cultivated land in one region
more accurately.

The evaluation of cultivated land quality is a comprehensive embodiment of main-
taining crop productivity and improving the environmental quality of cultivated land.
The quality of cultivated land cannot be directly quantified, and the physical, chemical,
and biological properties of cultivated land need to be comprehensively evaluated [13].
At present, in addition to the usually used methods such as the Delphi method, analytic
hierarchy process (AHP) method, etc., intelligent methods are also gradually being applied
to research on cultivated land quality evaluation, both at home and abroad. These methods
include principal component analysis (PCA), fuzzy comprehensive evaluation, the en-
tropy method, support vector machine (SVM), BP neural network, and technique for order
preference by similarity to an ideal solution (TOPSIS) [14–19]. However, current methods
typically ignore the fact that the score of each indicator varies with different designated
crops. They often concentrate on single designated crop areas. In addition, they usually
require a large sample size, and the evaluation accuracies rely on sample qualities as well.

In an area of multiple designated crops, differences in the indicator scores between
different crops would directly affect the natural quality evaluation scores of the cultivated
land. Additionally, the light–temperature index and yield ratio coefficients of different
crops could influence their natural quality indexes [20]. All of these factors ultimately
contribute to the results of the natural quality evaluation of cultivated land. However,
indicator scores, light–temperature indexes, and yield ratio coefficients have different
effects on the natural quality of cultivated land [20,21]. Therefore, existing methods cannot
directly take the indicator scores, light–temperature indexes, yield ratio coefficients, and
national natural classes under different specified crops as the input layer, and identify the
indicator weights.

The “hidden light–temperature index and yield ratio coefficient” method employs
mathematical transformations to hide the light–temperature index and yield ratio coef-
ficients of multiple designated crops into the indicator weights. This method doubles
the number of evaluation indicators for the natural quality of cultivated land, and the
hierarchical processing of the indicator model is considered here.

The rough set (RS) theory was proposed by the Polish mathematician Z. Pawlak in
1982 for superior knowledge simplification in the field of uncertainty and ambiguity [22].
Combining the RS algorithm with the conditional information entropy could overcome
the sensitivity of RS to noise [23,24]. Considering that the conditional information entropy
and rough set (CIERS) method is not sensitive to the information of the first-level indicator
when the indicators are stratified, this paper proposes to optimize the CIERS method based
on the PSO algorithm [25].

In this paper, the “hidden light–temperature index and yield ratio coefficient” method
is proposed to construct a novel evaluation mode. Then, the indicator weights are calculated
based on the proposed condition information entropy and rough set method based on the
PSO (CIERS-PSO) method for the natural quality evaluation of cultivated land.

2. Study Area and Data Sources
2.1. Overview of the Study Area

Enshi is situated in the southwestern of Hubei Province, which is an east extension of
the Yunnan–Guizhou Plateau and is adjacent to the edge of the Sichuan Basin. The total
land area of the city is 39.673 ten thousand hectares, accounting for 16.6% of the total area
of Enshi Prefecture.

The terrain of Enshi city varies greatly, exhibiting complex and diverse landforms, and
an uneven distribution of light, rain, and heat. These factors are reflected in land use, result-
ing in the land use mode of low hills, medium-high mountains, and high mountains, and
demonstrating the unique “three-dimensional” characteristics of land use in mountainous
areas. The location and terrain of the study area are shown in Figure 1.
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According to the land use change survey data of Enshi city in recent years, the total
area of the cultivated land in Enshi is 8.146 ten thousand hectares, accounting for 20.53%
of the total area [26]. However, the reserve resources of cultivated land are few, and the
area of suitable agricultural wasteland that could be developed into cultivated land is
extremely limited.

Therefore, the evaluation method for the natural quality of cultivated land in Enshi city
is being studied to achieve an intensive utilization of land resources by equally managing
both the quantity and quality. This research will provide technical support for land resource
management decision making in Enshi, and have important theoretical and practical value
in promoting its economic development.

2.2. Data Preparation and Pre-Processing

According to the policy documents from the Enshi Land and Resources Bureau, the
designated crops in Enshi are determined to be midseason rice and wheat, with a biannual
replanting cycle. The light–temperature production potential and yield ratio coefficients
of midseason rice are 1161 and 1, and those of wheat are 648 and 3.08, respectively. The
indicators for evaluating the natural quality of cultivated land in the Enshi area include
effective soil thickness, topsoil texture, soil organic matter content, soil acidity and alkalinity,
topographic slope, irrigation guarantee rate, surface rock outcrop, and soil erosion. The
weights of these indicators are as follows: effective soil thickness (0.23), topsoil texture
(0.09), soil organic matter content (0.07), soil acidity and alkalinity (0.07), topographic slope
(0.2), irrigation guarantee rate (0.14), surface rock outcrop (0.11), and soil erosion (0.09) [27].

The land use status map of Enshi was overlaid with the topographic map and soil map
of the same scale (1:2000). It was then adjusted according to the grading criteria, and the
study area was divided into 73,909 units. The natural grade index of each evaluation unit is
calculated based on the regional distribution of the actual state values of the graded factors.
Finally, 1% of the data in each grade were randomly selected as the training samples, and
the remaining data were used as the test samples to verify accuracy.
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3. Research Methodology

The process of evaluating the natural quality of cultivated land in Enshi using CIERS-
PSO is shown in Figure 2 which consists of the following: (1) constructing a novel model for
evaluating the natural quality of cultivated land using the “hidden light–temperature index
and yield ratio coefficient” method; (2) preliminary determination of attribute importance
and attribute weights at each level using the rough set conditional information entropy
theory; (3) establishing an objective function that meets the optimization requirements, opti-
mizes the primary indicator weights with the PSO algorithms, and hierarchically refines the
secondary indicator weights; (4) natural quality grading of the test sample cultivated land
using indicator weights determined by the CIERS-PSO method; and (5) result verification
and accuracy analysis of the natural quality grade evaluation of cultivated land.
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3.1. The ”Hidden Light–Temperature Index and Yield Ratio Coefficient” Method

Usually, for the natural quality evaluation of cultivated land, the model for calculating
the natural grade index for each unit is shown in Equation (1):

[(w1 · F11 + · · ·+ wn · F1n) · x1 + · · ·+ (w1 · Fm1 + · · ·+ wn · Fmn) · xm]/k = R (1)

where xm is the product of the light–temperature index of the m-th designated crop and
the yield ratio coefficient (for simplicity, which is hereinafter referred to as the light–
temperature index and yield ratio coefficient), and there are a total of M designated crops,
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m= (1,2,3. . ..M). wn is the weight of the n-th indicator, and there are a total of N evaluation
indicators, n= (1,2,3. . ..N). Fmn is the score of the evaluation unit when the base crop is m
and the indicator is n. k is a constant influenced by the type of replanting. If the cropping
system of the area is three crops in two years, k takes 2; for others, such as one-year one-
cropping, one-year two-cropping, and other cropping systems, the k value is 1. R is the
natural quality grade index of the evaluation unit. As seen in Equation (1), the evaluation
results of the natural quality grade index of each evaluation unit are determined by the
score of each indicator, the light–temperature index and yield ratio coefficient, and the
indicator weights of the base crop in the evaluation unit.

If the model as Equation (1) is utilized to evaluate the natural quality of the cultivated
land, the scores of the indicators, the light–temperature index and yield ratio coefficient, and
the indicator weights are inputted as the parameters. However, because those parameters
have different degrees on the natural quality grade index of the evaluation unit, it results
in the complexity of the indicator weight solving model. As a consequence, the weights of
the indicators determined in this way lack practical significance.

Considering the above issues, this paper proposes a cultivated land quality evaluation
model based on the method of “hidden light–temperature index and yield ratio coefficient”.
Based on Equation (1), according to different designated crop types, each indicator weight
of natural quality evaluation is multiplied by the proportion factor of the light temperature
index and yield ratio coefficient of different designated crops. This proportion factor is
referred to as the “designated crop indicator weight” in this paper, as shown in Equation (2):

wmn
′ = wn · xm/(x1 + · · ·+ xm), (m = 1, 2, 3 . . . M; n = 1, 2, 3 . . . N) (2)

where xm/(x1 + · · ·+ xm) represents the proportion factor of the light–temperature index
and the yield ratio coefficient of the m-th designated crop to the sum of the light temperature
index and the yield ratio coefficient of all the designated crops. w′

mn represents the n-th
indicator weight of the m-th designated crop, and the sum of the indicator weights of all
the designated crops’ is 1, as shown in Equation (3):(

w11
′ + · · ·+ w1n

′)+ · · ·+
(
wm1

′ + · · ·+ wmn
′) = 1 (3)

Accordingly, the light temperature index and yield ratio coefficient of each designated
crop are hidden in the “designated crop indicator weight”. This allows for their influence
on the cultivated quality evaluation of different crops to be indirectly reflected by the desig-
nated crop indicator weight. This method is referred to as the “hidden light–temperature
index and yield ratio coefficient” approach.

According to Equation (1) and the “hidden light–temperature index and yield ratio
coefficient” method, the natural quality evaluation model of cultivated land is established.
This model is represented by Equation (4):

(
w11

′ · F11 + · · ·+ w1n
′ · F1n

)
+ · · ·+

(
wm1

′ · Fm1 + · · ·+ wmn
′ · Fmn

)
= R/g, (m = 1, 2, 3 . . . M; n = 1, 2, 3 . . . N) (4)

where g is a constant and satisfies g = (x1 + · · ·+ xm)/k; xm, Fmn, and R have the same
practical significance as Equation (1).

From Equation (4), it can be seen that the value of R/g depends on the score of each
factor and the indicator weights. Because the national natural quality grade is derived
from the natural quality grade index of the evaluation unit, the indicator weights could be
considered the hidden factors. The indicator scores, along with the national natural quality
grade, could be used as inputs to identify the indicator weights using intelligent methods.

As shown in Equations (3) and (4), each designated crop has a set of evaluation
indicators in the “hidden light–temperature index and yield ratio coefficient”. Then, the
total number of indicators in the proposed evaluation model is M times of the original
evaluation model, where M is the number of designated crops. Therefore, in the proposed
evaluation model, the evaluation indicators can be treated according to different designated
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crops. This treatment takes into account that the same evaluation factor affects the natural
quality of arable land to a similar extent under different designated crops. As a result, the
indicator set will be divided into blocks.

According to the actual situation of Enshi city, two first-level indicator sets, C1 and C2,
were established. These indicator factors, respectively, represent the degree of influence
on the cultivated land natural quality of cultivated land under wheat and rice cultivation.
Each first-level indicator set was subdivided into eight second-level indicators, such as
“effective soil layer thickness” and “surface soil texture”, determined in Section 2.2. [28].

3.2. Rough Set Conditional Information Entropy Methods

According to the RS theory, knowledge is defined as the ability to classify things [29].
Some researchers have applied the RS theory to the identification study of land evalua-
tion indicator weights [30–32]. However, due to the sensitivity of the RS theory to noise,
this paper proposes a combination of conditional information entropy with the RS theory
to overcome this limitation. From the information theory perspective, if information is
expressed with information entropy and conditional entropy, the knowledge comprehensi-
bility could be enhanced. Therefore, this paper chooses the RS and conditional information
entropy theories to study the classification of the natural quality of cultivated land.

3.2.1. Constructing a Decision Table

According to the evaluation model of the RS conditional information entropy theory,
a decision table composed of conditional attributes and decision attributes has to be
established. The decision table requires the decision attributes to entirely depend on the
conditional attributes. Otherwise, the decision table is an incomplete information system,
and an evaluation model established on such a system lacks reliability.

In this paper, the set of indicator scores under different designated crops are considered
the conditional attributes, and the natural quality grades are taken as the decision attribute.
This is the way in which the decision table is constructed.

3.2.2. Determination of Indicator Weights

According to the RS conditional information entropy theory, this paper defines the
decision table S = (U, C, D), where C = {C1, C2 · · · , Ck} is the conditional attribute set,
and Ck is the set of indicator scores of different designated crops in the k-th evaluation
unit. D = {D1, D2 · · · , Dm} is the decision attribute set, where Dm represents the m-th
national natural quality grade. U is a set of objects composed of conditional attribute
set C and decision attribute set D. I(D|C) is the conditional information entropy of the
decision attribute set relative to the conditional attribute set, which is defined as shown in
Equation (5) [16]:

I(D|C) =
m

∑
i=1

|Ci|2

|U|2
k

∑
j=1

∣∣Dj ∩ Ci
∣∣

|Ci|

(
1 −

∣∣Dj ∩ Ci
∣∣

|Ci|

)
(5)

where P(Ci) = |Ci |
|U| denotes the distribution of Ci over U, referring to the probability of

the evaluation unit of which the indicator score set is Ci. P
(

Dj
∣∣Ci
)
=

|Dj∩Ci|
|Ci |

indicates
the probability of Dj occurring under the condition of occurrence of Ci. This refers to the
probability of the national natural quality grade being Dj when the indicator score set of
the evaluation unit is Ci.

Additionally, for ∀c ∈ C, the importance of attribute c is defined as Equation (6) [16]:

NewSig(c) = I(D|C − {c})− I(D|C) + I(D|{c}) (6)

Then, the importance of the attribute Ci of the first-level indicator sets is as follows:

NewSig(Ci) = I(D|C − {Ci})− I(D|C) + I(D|{Ci}) (7)
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The definition of the importance of attribute c considers not only c’s importance in
the conditional attribute set C, but also the importance of c itself. This makes the weight of
each attribute non-zero and the weight calculation more reasonable.

However, the rough set conditional information entropy method could not accurately
identify the weights of the first-level indicator. To address this issue, this paper proposes
the CIERS-PSO method.

3.3. The Rough Set Conditional Information Entropy Evaluation Method Based on Particle
Swarm Optimization

The PSO algorithm has a strong global stochastic search capability. It can efficiently
and rapidly find the global optimal solution in a large, non-differential, and multiple-peak
vector space. In the PSO algorithm, the system first initializes a set of random solutions
called particles. During each iteration, the particles update their position and velocity by
tracking individual optima and global optima. The velocity and position update Equations
are as follows [25]:

Vk+1
id = Pw · Vk

id + c1r1

(
Pk

id − Xk
id

)
+ c2r2

(
Pk

gd − Xk
gd

)
(8)

Xk+1
id = Xk

id + Vk+1
id (9)

where Pw is the inertia weight, reflecting the ability of the particle to inherit previous
velocities. k is the number of current iterations. Vid is the velocity of the particle. c1 and c2
are non-negative constants called acceleration factors, generally taking the value 1.494. r1
and r2 are random values distributed in the interval [0, 1].

3.3.1. Constructing the Objective Function

In this research, the PSO algorithm was adopted to find the optimal first-level indicator
weights. This approach addresses the issue of the rough set conditional information entropy
method’s inaccuracy in characterizing the importance of first-level indicator attributes. In
this paper, the proposed objective function of the PSO algorithm is defined as Equation (10):

Accuracy = Verify
{

Classi f y
[

x1 · (w1 · f1 + · · ·+ w8 · f8) + · · ·
+xn · (w9 · f9 + · · ·+ w16 · f16)

]}
(10)

where xn is the weight value of the n-th first-level indicator and which satisfies x1 + · · ·+
xn = 1. “Classify” represents the classification function. This function determines the
natural grade index based on the indicator weights and the score of each factor. It then
classifies the natural quality of the cultivated land of the evaluation unit. Verify() is the
validation function. This function calculates the evaluation accuracy of the proposed
evaluation method. It compares the national natural grade evaluated according to the
proposed method with the actual grade of the evaluation unit. Accuracy() is the function
calculating the evaluation accuracy of the proposed method.

3.3.2. Optimizing First-Level Indicator Weights by PSO

In this study, twenty particles were randomly initialized in the PSO algorithm. The
positions of the particles were set to be within [0, 1], which represents the values of the
first-level indicator weights. In addition, the particles’ velocities were set to be within
[0.2, −0.2]. Furthermore, the iteration number of the PSO algorithm was set to 50.

To better balance the PSO’s global search and local search ability and avoid falling into
local optimal solutions, a non-linear decreasing approach was adopted here to change the
inertia weight Pw, as shown in Equation (11):

Pw(k) = Pwstart − (Pwstart − Pwend)

(
k

Tmax

)2
(11)
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where Pwstart is the initial inertia weight and Pwend is the inertia weight at the maximum
number of PSO iterations. k is the current number of PSO iterations and Tmax is the
maximum number of PSO iterations. In general, the algorithm performs the best with
inertia weights Pwstart = 0.9 and Pwend = 0.4.

The PSO algorithm conducts 50 iterations to optimize first-level indicator weights. We
recorded the changes in the fitness value of the objective function at each iteration. The
changes in the accuracy of the natural quality evaluation of the cultivated land are shown
in Figure 3.
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As shown in Figure 3, initially, before the optimization iteration of first-level indicator
weights by the PSO algorithm, the natural quality evaluation accuracy only achieves
60.2% by the RS conditional information entropy method. Fortunately, the optimal value
of the natural quality evaluation accuracy achieves 91.98% after the 29th optimization
iteration of first-level indicator weights by the PSO algorithm. Obviously, the RS conditional
information entropy method based on PSO has a significant improvement in evaluation
accuracy compared to the RS conditional information entropy method. The weights of the
indicators calculated by the method of RS conditional information entropy based on PSO
are shown in Table 1.

Table 1. The weight of indicators calculated employing the RS conditional information entropy
method based on PSO.

Factor Wheat Middle Rice

Effective soil thickness 0.035 0.171
Surface soil texture 0.031 0.099

Soil organic matter content 0.011 0.072
Soil pH 0.029 0.078

Slope of the terrain 0.045 0.083
Irrigation guarantee rate 0.010 0.042

Surface rock outcrop degree 0.017 0.122
Soil erosion 0.033 0.123

Total 0.211 0.789

From Table 1, it can be observed that, for the same evaluation factor indicators of
different crops, their weight values calculated by the RS conditional information entropy
method based on PSO differ significantly.

This phenomenon is due to the effect of the differences in the light–temperature index
and yield ratio coefficients of different designated crops. The “hidden light–temperature
index and yield ratio coefficient” method proposed in this paper ensures that the differences
in the light–temperature and yield ratio coefficients of different crops are reflected in the
differences in the final indicator weights.
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4. Results

The indicator weights obtained from the RS conditional information entropy method
based on the PSO were applied to evaluate the natural quality of cultivated land in Enshi.
The evaluation results are shown in Table 2.

Table 2. The results of the evaluation employing the RS conditional information entropy method
based on PSO.

Natural Quality Class
of Arable Land

Number of Training
Sample Units (pcs)

Number of Sample
Units Tested (pcs)

Number of Correctly
Classified Test
Samples (pcs)

Classification
Accuracy (%)

Level 10 131 12,972 10,661 82.18
Level 11 481 47,611 45,121 94.77
Level 12 125 12,374 11,421 92.3
Level 13 2 213 98 46.04

Total 739 73,170 67,301 91.98

As seen in Table 2, the method proposed in this paper achieves an overall accuracy
of 91.98% in the natural quality evaluation of cultivated land in Enshi. The evaluation
accuracies are higher than 80% for all national nature grade categories, except for the 13th
national nature grade. This is because there are fewer evaluation units of the 13th national
nature grade in the study area, and only two samples of the 13th national nature grade
were selected for training in this experiment. This led to poor test results for this category.

A comparison of the evaluation results of the RS conditional information entropy
method and the RS conditional information entropy method based on PSO is shown
in Figure 4.
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According to Figure 4, the evaluation accuracy of the RS conditional information
entropy method based on PSO has been significantly improved compared to that of the RS
conditional information entropy method. The RS conditional information entropy method
based on PSO can achieve better overall results in a short time, even when sampling 1% of
all the samples.

Figure 5 shows a symbolic representation of the evaluation results of the RS conditional
information entropy model based on PSO for the city of Enshi.
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The statistical results of the natural quality evaluation of cultivated land by the RS
conditional information entropy method based on PSO are as follows: the total area of
cultivated land in Enshi is 8.146 ten thousand hectares, and the national natural grades
of the cultivated land are concentrated within the 10th–13th grade. Among them, the
cultivated land area of the 10th national natural grade is 1.228 ten thousand hectares,
accounting for 15.07% of the total cultivated land in Enshi. The cultivated land area of the
11th national natural grade is 5.218 ten thousand hectares, accounting for 64.05% of the
total cultivated land. The cultivated land area of the 12th national natural grade is 1.676
ten thousand hectares, accounting for 20.58% of the total cultivated land. The cultivated
land area of the 13th national natural grade is 0.024 ten thousand hectares, accounting
for 0.30% of the total cultivated land. In summary, there are a total of 8.122 ten thousand
hectares of medium-quality cultivated land, accounting for 99.70% of the total cultivated
land. Additionally, there are approximately 0.024 ten thousand hectares of low-quality
cultivated land, accounting for 0.30% of the total cultivated land in Enshi.

5. Discussion

This paper considers stratifying evaluation indicators. Then, it uses the CIERS-PSO
method to calculate the weights of the indicators which are used for assessing the natural
quality of cultivated land. From Table 2, it is seen that the CIERS-PSO proposed in this
paper performs well in the evaluation of the natural quality of cultivated land in Enshi
city, with an overall accuracy of 91.98%. This indicates that the proposed method has
high reliability and effectiveness in evaluating the natural quality of cultivated land. It
is particularly noteworthy that the method achieves a classification accuracy of over 80%
when classifying cultivated land with grades 10 to 12. This further validates its feasibility
and accuracy within the common grade range.
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The comparison results show that the CIERS-PSO method has significantly improved
classification accuracy compared to the RS conditional information entropy method. This
indicates that the PSO technique holds certain advantages. It is used to optimize model
parameters, achieve better data fitting, enhance the model’s generalization ability, and
improve the efficiency of problem solving.

To verify the efficiency of the PSO algorithm, the number of training and testing
samples were set according to Table 2, and two methods were used to evaluate the national
nature grade categories in Enshi separately. The CIERS-PSO method took 20 seconds to
run. The RS conditional information entropy method took 37 seconds to run. Therefore,
the CIERS-PSO method was faster than the RS conditional information entropy method.
When the number of training samples increases to 3000, the CIERS-PSO method takes 28
seconds to run, and the RS conditional information entropy method takes 178 seconds. This
indicates that the CIERS-PSO method achieves good evaluation accuracy in a relatively
short time. This is significant for handling large-scale data.

We combined the topography of Enshi city to analyze the results of the national natural
grade evaluation of cultivated land in Enshi city. The results show a close relationship
between topography and the quality of arable land. The cultivated land with the national
natural grade of 10 is primarily distributed in the central and eastern regions of Enshi.
The cultivated land of grade 13 is mainly located in the higher altitude areas of Banqiao
township in the west of Enshi, and Baiguo township in the south of Enshi. The cultivated
land with the national natural grades of 11 and 12 is scattered throughout Enshi city, while
the area proportion in the east is significantly larger than that in the west. The main reason
may be related to the topography of Enshi. The northwestern and southern flanks of Enshi
are high, similar to mountainous plain landforms, while the central area is a collapsed basin.
Thus, the high altitude in the northwestern and southern Enshi results in the decreasing
agricultural productivity of those regions.

The CIERS-PSO method proposed in this paper is designed for regions with multi-
crop cultivation. It addresses the issue of indicator weight identification methods being
applicable only to a single crop. If the region only has one designated national crop, the
indicator weight identification method can be directly applied for evaluation.

In summary, the CIERS-PSO method demonstrates high accuracy and efficiency in
evaluating the natural quality of cultivated land in Enshi city. It provides a reliable new
approach for cultivated land quality assessment.

6. Conclusions

Aiming to address the problems that current intelligent methods usually do not
consider relating to the influence of the different light–temperature indexes and yield
ratio coefficients of different crops, a novel method, “hidden light–temperature index
and yield ratio coefficient”, was developed. This method was developed for establishing
the evaluation model of the natural quality of cultivated land in multi-designated crop
areas. Then, the RS conditional information entropy method based on PSO was adopted
to evaluate the natural quality of cultivated land in Enshi city. The experimental results
proved that the proposed “hidden light–temperature index and yield ratio coefficient”
model and the RS conditional information entropy method based on PSO are valid. It
achieved an overall accuracy of 91.98% in the natural quality evaluation of cultivated land
in Enshi city. The following conclusions were drawn from the above study:

(1) The “hidden light–temperature index and yield ratio coefficient” method was used to
transform the original cultivated land natural quality evaluation model mathemati-
cally. It is conducive to adopting the RS conditional information entropy method in
the evaluation of the natural quality of cultivated land.

(2) The RS conditional information entropy method based on PSO can achieve a high
evaluation accuracy even with a small sample. It overcomes the limitation of the RS
conditional information entropy method being insensitive to the first-level indicator,
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and makes the evaluation results of the natural quality of cultivated land more
accurate and reliable.

(3) The spatial distribution of the cultivated land in Enshi is largely affected by the local
topography. Cultivated land in high-altitude areas has poor quality, and the condition
of cultivated land resources is not promising.
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