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Abstract: Mapping and monitoring tree seedlings is essential for reforestation and restoration efforts.
However, achieving this on a large scale, especially during the initial stages of growth, when seedlings
are small and lack distinct morphological features, can be challenging. An accurate, reliable, and
efficient method that detects seedlings using unmanned aerial vehicles (UAVs) could significantly
reduce survey costs. In this study, we used an unsupervised approach to map young conifer seedlings
utilising spatial, spectral, and structural information from UAV digital aerial photogrammetric (UAV-
DAP) point clouds. We tested our method across eight trial stands of radiata pine with a wide height
range (0.4–6 m) that comprised a total of ca. 100 ha and spanned diverse site conditions. Using this
method, seedling detection was excellent, with an overall precision, sensitivity, and F1 score of 95.2%,
98.0%, and 96.6%, respectively. Our findings demonstrated the importance of combining spatial,
spectral, and structural metrics for seedling detection. While spectral and structural metrics efficiently
filtered out non-vegetation objects and weeds, they struggled to differentiate planted seedlings from
regenerating ones due to their similar characteristics, resulting in a large number of false positives. The
inclusion of a row segment detection algorithm overcame this limitation and successfully identified
most regenerating seedlings, leading to a significant reduction in false positives and an improvement
in overall detection accuracy. Our method generated vector files containing seedling positions and key
structural characteristics (seedling height, crown dimensions), offering valuable outputs for precision
management. This automated pipeline requires fewer resources and user inputs compared to manual
annotations or supervised techniques, making it a rapid, cost-effective, and scalable solution which is
applicable without extensive training data. While serving as primarily a standalone tool for assessing
forestry projects, the proposed method can also complement supervised seedling detection methods
like machine learning, i.e., by supplementing training datasets.

Keywords: unsupervised; seedling detection; SfM; DAP; image segmentation; Pinus radiata D.
Don; VIs

1. Introduction

Seedlings represent an acutely vulnerable stage of the tree development cycle. Trees at
this stage are highly susceptible to many biotic and abiotic factors that can be exacerbated by
transplanting shock [1] and poor site conditions in disturbed forest lands [2]. Consequently,
seedling mortality during the establishment phase is considered a strong predictor of the
mid- and long-term performance of forestry projects [2–4].

Monitoring seedling survival often requires the detection and mapping of seedlings
at different spatial and temporal scales. When conducted regularly, seedling mapping
facilitates effective monitoring that helps track the progress of intended outcomes of
reforestation efforts, e.g., sustainable timber production, carbon sequestration [5], and
ecological recovery [4,6]; it also simplifies the process of surveying individual trees [7]
and can guide precision management techniques [8]. Seedling detection, mapping, and
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monitoring can also greatly assist the control of invasive tree species during the early
growth stages [9–11].

Remote sensing (RS) offers rapid, scalable, and multi-temporal solutions for tree
mapping and monitoring on sites where field surveys can be challenging, time-consuming,
and labour-intensive. However, due to their small size and the absence of distinctive
morphological structure at young ages, it can be challenging to detect seedlings using RS
data that do not possess appropriate spatial–spectral resolutions [9,12,13].

Spectral data captured by sensors mounted on space-borne platforms have been com-
monly utilised for forest cover mapping due to their scalability and accessibility [14,15].
Nevertheless, they have been frequently observed to be affected by cloud coverage, es-
pecially in regions with high cloud frequencies. High-resolution imagery captured using
aerial platforms, such as aircraft and helicopters, is another data source employed for indi-
vidual tree detection in RS studies. Both high-resolution satellite, e.g., World-View imagery
with a resolution of 0.31 m, and aerial imagery have limitations in seedling mapping, as
they lack the necessary details, accuracy, and flexibility required for effective seedling
mapping and monitoring [9]. Also, it is important to note that high-resolution satellite and
aerial imagery can be costly, contingent upon coverage and sensor usage, and both lack the
ability to perform direct measurements of structural information.

Methodologies using airborne light detection and ranging (LiDAR) can overcome some
of these limitations and accurately detect seedlings using key structural features such as
height [16–18]. However, airborne LiDAR data can be expensive to collect over large areas
at sufficiently high pulse densities for the accurate detection of small seedlings, particularly
when repeat acquisitions are required [19]. While LiDAR can provide intricate structural
and spatial information about seedlings, its lack of embedded spectral details hinders its
ability to distinguish between vegetative and non-vegetative elements in plantation settings,
such as piles of harvest residue and tree stumps. To address this limitation, the integration
of LiDAR with imagery is necessary [20,21]. However, this integration complicates the
methodology by introducing additional steps, including co-registration and data fusion.

In recent decades, forest management has experienced a transformation with the
widespread adoption of lightweight unmanned aerial vehicles (UAVs) [22,23]. These
UAVs, equipped with miniaturised optical and LiDAR sensors, provide the flexibility of
on-demand data captures at a local scale. Spectral imagery having red, green, and blue
bands (RGB) with sufficient spatial–spectral resolution for the reliable detection of small
seedlings can readily be collected using high-resolution cameras mounted on UAVs [4,24].
Furthermore, cost-effective consumer-grade UAV-based LiDAR sensors, such as the DJI-L1
Zenmuse (DJI, Shenzhen, China), can be employed to capture colourised point clouds that
contain both structural and spectral information.

In cases where such equipment is unavailable, an alternative option would be to use
digital aerial photogrammetry (DAP) and computer vision techniques such as structure
from motion (SfM). These relatively recent proliferations enable the reconstruction of geo-
metrically precise, three-dimensional (3D) point clouds from overlapping two-dimensional
(2D) images [25]; this technology has further broadened the horizons of UAV-based remote
sensing in forestry [23]. The methodologies that utilise UAV-based RGB imagery for DAP
eliminate the requirement for intricate sensors such as multispectral or LiDAR and negate
the need for data fusion, thereby reducing the overall complexity of the methods employed.

The automated detection and mapping of seedlings using UAV-based, high-resolution
RGB imagery is an active area of research. Many studies have reported a suite of com-
mon seedling detection methods, including the use of RGB-derived spectral indices with
traditional image segmentation techniques such as thresholding, edge detection, and clus-
tering [4,26,27], and more modern, artificial intelligence (AI) based methods such as deep
learning [28–30]. Deep learning has seen a dramatic increase in usage over the past few
years as a successful technique for small seedling detection, with some studies reporting
precision levels as high as 97% with the use of convolution neural networks (CNNs) [28].
However, a notable limitation of CNNs is the need for large training datasets. These
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datasets are often acquired through the visual interpretation of imagery, where a human
operator annotates examples that allow the CNN algorithm to self-learn the characteristic
features which are useful for detection. This annotation phase can be very time-consuming
and, hence, expensive, and can introduce the potential for biases [29].

An alternative possibility is to use objective and data-driven unsupervised techniques.
These methods recognise distinct units by automatically identifying natural groups based
on spatial, spectral, and structural information within RS data. The key advantage of these
techniques is that they do not require the user to have extensive prior knowledge of the
study area. Unsupervised techniques have been widely implemented in a wide range of
RS applications and are usually tailored to specific application requirements. Customised
pipelines have been developed using data from a wide range of satellite, airborne, and
terrestrial platforms to improve the accuracy and efficiency of vegetation detection and
tested against a variety of species in a broad spectrum of forest settings [31–35]. Within this
research area, a few studies have focused on the detection and mapping of conifer seedlings
using unsupervised methods [4,24,36,37]. However, we are only aware of one study that
has used a combination of spatial, spectral, and structural information for conifer seedling
detection. That study showed that these complementary data sources improved detection
accuracy in challenging settings, such as sites with weeds and coarse woody debris [36]. In
the present study, unsupervised techniques proved to be suitable, as they enabled us to
leverage the spatial, structural, and spectral details contained within the UAV–DAP point
clouds without the need for site-specific model training.

Radiata pine (Pinus radiata D. Don) is one of the most widely planted exotic species,
both globally and in the southern hemisphere [38]. Our research utilised data from six radi-
ata pine plantations encompassing a diverse range of site conditions and weed infestations.
Using these data, the primary goal of this study was to develop an easy to implement and
robust pipeline for detecting and mapping conifer seedlings in plantation settings using
a combination of spatial, spectral, and structural metrics derived from UAV–DAP point
clouds. We extended the developed method to include the generation of vegetation masks
and the delineation of crown structures.

In this study, DAP point clouds derived from high-resolution RGB imagery captured
by UAVs were utilised, presenting a notable advantage over the direct application of
LiDAR data for seedling detection. Similar observations highlighting the challenges of
integrating LiDAR with spectral data and the advantage of UAV–DAP point clouds over
direct applications of LiDAR have been documented in previous studies [20,21,23].

2. Materials and Method
2.1. Study Site

Eight trial stands located in the North Island of Aotearoa, New Zealand, (Figure 1)
comprising a total area of ca. 100 ha, were selected to assess the pipeline. At the time of
measurement, seedlings were aged between 4 months and 3.5 years, with a height range of
0.4–4.2 m. In general, regular spacing was maintained at all sites, but occasional gaps were
found as a result of missing or dead seedlings.

The Rangipo trial was established on a gently rolling site that was previously pasture.
Half of the site was rip-mounded (i.e., a soil preparation activity that involves using a
mechanical tool to loosen and elevate the soil), while the other half was planted into the
bare pasture. Some areas of this site were infested with weeds. The Kaingaroa trial sites 1
and 3 were previously planted forest sites with significant levels of harvest residue. The
seedlings were mechanically spot-mounded—a process by which harvest residue is cleared
from the planting area and stacked in windrows, and the seedlings are established on a
small mound of earth. Weeds on this site mainly comprised naturally regenerating P. radiata
seedlings (which will be referred to as “regen” hereafter) that were unevenly spaced and
smaller in size than the planted seedlings. Kaingaroa 2 was also a previously planted site
with little to moderate harvest residues and significant weed infestation that comprised
regen and patches of gorse (Ulex europaeus). The Scion Nursery site is a flat site in which
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seedlings were established onto grass that is regularly mowed. The Tarawera site is a
previously forested site with moderate levels of harvest residue, weed cover, and regen. An
overview of the study sites is given in Appendix A; please refer to [28,39] for more details.

Figure 1. (a,b) Study site locations within the North Island of New Zealand. Also shown are UAV
acquired images showing the (c) Scion nursery, (d) Tarawera, (e) Kaingaroa 1, (f) Kaingaroa 2,
(g) Kaingaroa 3, and (h) Rangipo.

2.2. Data
2.2.1. Remote Sensing Data

High resolution imagery for the study sites was captured using the DJI P4P system (DJI
Ltd., Shenzhen, China), equipped with an integrated 1-inch 20 MP RGB camera. All flights
were planned to maintain forward and side overlap of at least 85% and 80%, respectively.
Other specific flight details for each site can be found in Appendix A.

2.2.2. Field Data

A total of 16,318 seedlings spanning all eight study stands were annotated using
high-resolution UAV imagery by an operator. Subsequently, the positions of the annotated
seedlings at all sites, apart from Tarawera and Kaingaroa 2, were converted to seedling
maps. The accuracy of these seedling maps was then verified on the ground by a field
crew, who matched the locations on the seedling maps with the stem numbers attached
to the seedling stems. From these annotated seedlings, the height of a total of 6616 trees
was measured across six sites, i.e., the Kaingaroa 1 and 3, Rangipo, and Scion nursery trials,
using a height pole for trees up to ~6 m tall, and a Vertex 4 hypsometer (Haglöf, Langsele,
Sweden) for taller trees. The measured heights ranged from 0.4 to 6.1 m.

2.3. Detection Process

Our seedling detection and measurement methodology consists of four stages:
(i) UAV–DAP point cloud generation and processing, (ii) vegetation point isolation,



Remote Sens. 2023, 15, 5276 5 of 21

(iii) individual seedling detection, and (iv) seedling segmentation and metric extraction. A
flowchart describing the methodology is presented in Figure 2.

Figure 2. The workflow containing general steps for conifer seedling detection and segmentation.

2.3.1. UAV–DAP Point Cloud Generation and Processing

Pix4Dmapper (Pix4D, Lausanne, Switzerland) was used to process the raw UAV
images and generate SfM data. The standard 3D processing settings within Pix4D were
followed, with some previously described minor adjustments (see [39]). The processing of
SfM data comprised the following steps: (i) initial processing, (ii) point cloud and mesh
generation, and (iii) DSM and orthomosaic and point cloud generation. Once the initial pro-
cessing step had been completed, spatial reference data in the form of 3D GCPs were added
to reprocess the models into the required spatial coordinate system—NZGD2000/New
Zealand Transverse Mercator 2000 (EGM 96 Geoid). A point cloud and an orthomosaic
were generated for each site in subsequent steps and exported in LAS and TIF format,
respectively. The exported point cloud contained XYZ coordinates and RGB digital number
(DN) values attached to each point as point attributes. These point clouds were tiled,
de-noised, thinned, ground classified, and normalised using the LAStools software package
(version 220310; [40]). The Kaingaroa 1 and Kaingaroa 3 datasets were processed separately
with care given to ensure that the ground classification accounted for the spot mounds
present at these sites. In [39], the detailed methodology used for UAV–DAP point cloud
generation in Pix4D and point cloud processing in LAStools is described.
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2.3.2. Vegetation Point Isolation

A two-step process was used to isolate the vegetation on the site. This included the
creation of a vegetation mask and the use of nearest neighbour and height filtering to
remove noise.

We chose Otsu’s thresholding technique [41] to create the binary vegetation mask.
Using this method, a single intensity value is selected as a global threshold that separates
objects (UAV–DAP points in this study) into two classes—foreground and background
(vegetation and non-vegetation points in this study). The threshold is determined either by
maximising the separability of the classes or minimising intra-class variance in grey levels.

The accuracy of the method depends on how well the coloured input is transformed
into greyscale. Vegetation indices (VIs) have proven to be a useful means for this transforma-
tion. VIs calculated from spectral information are simple and effective for quantitative and
qualitative evaluations of vegetation cover, vigour, and growth dynamics [31,42] and have
been widely implemented with high-resolution UAV-based RGB imagery [23]. We exam-
ined common RGB-based VIs (e.g., Excess green index [43], Excess red index [44], Green–red
ratio index [45], Modified green blue vegetation index [46], Normalised green–red differ-
ence index [47], Vegetative index [48], and Visible atmospherically resistant index [49]) and
found the red-green-blue vegetation index (RGBVI) introduced in [46] to be most effective
in segregating the seedlings. The RGBVI can be used to identify vegetation through the
reflectance characteristics of chlorophyll, which include high reflectance in the green band
and absorption in the red and blue bands. RBGVI is determined as:

RGBVI =
R2

G − (R B × RR
)

R2
G + (R B × RR

) (1)

where RR, RG, and RB are, respectively, the normalised DN values of the red, green, and
blue bands extracted from the spectral information within the imagery. To convert the RGB
point cloud into a greyscale point cloud, we calculated the RGBVI value as a point attribute,
determined the global thresholding by applying Otsu’s technique to the RGBVI values, and
filtered out all the points having RGBVI values less than Otsu’s threshold (Figure 3c).

This thresholding was refined in the next step through the application of height and
noise filters. A height filter was used to remove weeds that were spectrally similar to the
trees and identified through the above process but could be separated based on structural
differences. Lastly, a noise filter based on the number of nearest neighbours of a point
within a specified distance was applied to remove isolated points and small point clusters
that could not represent a seedling. The final output from this stage (Figure 3d) will be
hereafter referred to as the “vegetation point cloud”.

2.3.3. Individual Seedling Detection

Using the vegetation point cloud as input, this stage comprises the following steps:
(i) detection of potential seedling locations, (ii) approximation of general planting distance
and orientation of the site, (iii) multicriteria evaluation of detected seedling locations, and
(iv) re-testing the identified seedling locations.

Detection of Potential Seedling Locations

This step establishes a baseline by detecting all possible seedling locations in a partic-
ular area. Assuming that the highest point in an individual conifer seedling point cloud
represents the vertex (Figure 3e), a local maxima-based treetop detection algorithm was
implemented on the vegetation point cloud using a fixed-size moving window. The output
of the treetop detection algorithm is a vector file of the likely XY locations of the individual
seedlings and their maximum height (Figure 4). These seedling locations were subjected to
further evaluation in the next steps of the pipeline.
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Figure 3. Example results from stage 1 and stage 2 of the pipeline. A 50 × 50 m area within the
Tarawera site is shown to visualise the: (a) raw UAV–DAP point cloud coloured by RGB values,
(b) normalised UAV–DAP point cloud coloured by height values, (c) binary vegetation mask gener-
ated by Otsu thresholding of RGBVI values, (d) vegetation point cloud after applying a minimum
height filter and nearest neighbor noise filter, and (e) individual tree point cloud segmented manually
from the normalised UAV–DAP point cloud.

Figure 4. Example detection of potential seedling locations within two 50 × 50 m areas at the
Tarawera site. The results show the estimation of distance and row orientation in (a) an area with
only one row orientation and (b) an area with two distinct orientations.
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Approximation of General Planting Distance and Orientation of the Site

Planting distance and row orientation are often site-specific and are the most relevant
inputs in plant row fitting algorithms. The authors of [36] suggested using a histogram-
based method to estimate the general planting distance of a site. We adopted their method
with some modifications. Assuming that the along-row distance is smaller than the across-
row distance, the most likely nearest neighbour of a point is a seedling on the same row as
the point being considered (called the principal point hereafter). The process that we used
(i) detects the nearest neighbour of each point, (ii) calculates the distance and orientation
of the nearest neighbour point with respect to the principal point, (iii) creates a histogram
of the nearest neighbour distances of all the points in the site, (iv) fits a Gaussian curve,
and (v) extracts the peak value of the curve as the general planting distance. This method
works effectively in young, planted forest stands that have not yet been thinned, as the
seedling spacing is relatively consistent throughout such sites. Often, the nominal planting
distance of a site is specified at establishment and, in these cases, can be directly specified
in the pipeline as the general planting distance. From this point forward, all the default
distance thresholds are defined as a percentage of the general planting distance.

In contrast to the general planting distance, the row orientation is often not known and
varies significantly within the site, depending on the terrain and site conditions. Therefore,
we followed a more flexible approach when determining the general row orientation of
a site. We used a mixture distribution method, which fits multiple Gaussian curves to
a histogram depending on the complexity of the distribution (via the mixtools package
in R software version 4.0.2; [50]). The mixture distribution method was applied to the
histogram that was plotted using the nearest neighbour orientations of all points in a
particular site. The initial value of the mixing proportion was set to 15% of the population
size to prevent the dataset from splitting into insignificant clusters and to ensure erroneous
seedling locations did not affect the process. We estimated the peak value of the Gaussian
curve of the largest cluster as the general row orientation. Peak values of the Gaussian
curves that were fitted to clusters constituting at least 15% of the total population size were
recorded as secondary orientations.

Multicriteria Evaluation of Detected Seedling Locations

This process used all the potential seedling locations detected in the previous step. At
this stage of the processing, the vegetation point cloud may have still been contaminated by
non-seedling vegetation and regen that were not removed by the spectral, structural, and
spatial filtering of the UAV–DAP point cloud described in Section 2.3.2. These contaminated
UAV–DAP points may have propagated errors into the planted seedling location detection
as well. In order to account for such errors and possible misdetections and to retain only
uncontaminated seedling location points, we used a scoring system that can evaluate each
seedling location point against a list of defined criteria (Table 1).

This method identified relevant criteria and assigned a relative weight to each criterion
by distributing 10 points among all the criteria based on their relative importance. A
probability rating scale (e.g., −1 = less probable, 0 = same probability and +1 = more
probable) was then established for each criterion. Each seedling location point was assigned
a base score of 10, and the base value was adjusted accordingly as the point was evaluated
against each criterion specified in Table 1. The summed score can range from 0–20, with
higher values denoting greater confidence in the tree location. The user can specify the cut-
off score below which seedlings are eliminated, depending on the level of contamination in
their vegetation point cloud and the seedling location dataset (Figure 5b). When deciding
on the cut-off, it is crucial to consider the end use of the seedling detection results. For
instance, a higher cut-off would be suitable if predicted locations are used to generate a
training dataset for a supervised method (e.g., deep learning) that needs to be as accurate
as possible. The performance of the cut-off score was visually assessed on the Tarawera
and Kaingaroa 1 sites, as these two sites had a high number of false positives. A cut-off
score of 12 proved to be ideal for removing the majority of these false positives in these
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two sites without discarding a significant number of true positives. Therefore, the default
cut-off was set to 12 for all our study sites. We favoured a scoring method over a filter-out
method, as it gives the user more control over the point selection and error margin.

Table 1. Seedling location evaluation criteria and scoring.

Indicator Weight Criteria Score

−1 0 1

Maximum seedling
height 1 <defined lower threshold

(1 × −1)
within the range

(1 × 0)
>defined upper threshold

(1 × 1)

Distance between
actual and ideal point

location (midXY)
1.5

>0.2 times the general planting
distance

(1.5 × −1)

between 0.1 and 0.2 times the general
planting distance

(1.5 × 0)

<0.1 times the general
planting distance

(1.5 × 1)

Collinearity with
nearest neighbours 3

No collinear neighbours in
alignment with general or
secondary row orientation

(3 × −1)

No collinear neighbours in alignment
with general row orientation but

present in alignment with secondary
row orientation

(3 × 0)

Collinear neighbours in
alignment with general row

orientation
(3 × 1)

Mutual points with
other collinear

segments
3

Not present in any collinear
segment
(3 × −1)

Present only in one collinear segment
(3 × 0)

Present in more than one
collinear segment

(3 × 1)

Distance from a fitted
local line 1.5

Distance between the local line
segment and the point is larger

than 0.2 times of general
planting distance

(1.5 × −1)

Distance between the local line
segment and the point is between 0.1

and 0.2 times of general planting
distance
(1.5 × 0)

Distance between the local
line segment and the point is
less than 0.1 times of general

planting distance
(1.5 × 1)

Total (including the
base score) 10 −10 (0) 0 (10) 10 (20)

Figure 5. Images from a sample area at Kaingaroa 1 showing (a) fitted row segments, (b) multicriteria
evaluation score of points, (c), remaining seedling locations after filtering values <12, and (d) and
dummy point placement with buffers drawn around them.

Within the multicriteria evaluation, many of the criteria were associated with the
collinearity and row alignment of the points. Thus, a simple row segment detection
algorithm was developed to identify seedling location points that did not fit a local line
with their nearest neighbours. This was accomplished following the steps listed below:
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(i) The two nearest near-collinear neighbours of each seedling location point that were in
alignment with the general row orientation were identified.

(ii) The mean XY of the two identified points was calculated (midXY) and compared to
the principal point.

(iii) The two neighbours were marked as the collinear pair of the principal point if the
distance between midXY and the principal point was less than a specified distance
threshold. The midXY and the XY of the principal point should overlap for stands
with regular spacing, but this was often not the case when the planting spacing was
less uniform. Therefore, the distance threshold was estimated as a proportion of
the general planting distance (a default of 0.2 times the general planting distance
was used).

The first three steps were repeated on all points to detect their near-collinear neigh-
bours that were in alignment with the general direction. The remaining non-collinear
location points were then checked against the secondary orientations (only if available)
to detect the collinear points. After identifying all collinear points, they were processed
through the following steps:

(iv) A line segment, represented by each point and its two collinear points, was created
(known as collinear line segments hereafter).

(v) Some of these collinear line segments may have mutual points as the collinear point
detection was conducted independently on each point. Consequently, all collinear
line segments with mutual points were grouped together.

(vi) All the points belonging to each group of collinear line segments were extracted, and
a local line was fitted to these points using the least square method. These fitted local
lines corresponded to row segments, as depicted in Figure 5a. Finally, the shortest
distance between the fitted local line and each point used for line fitting was estimated.

Re-Testing the Identified Seedling Locations

This step takes the filtered seedling location dataset as the input and re-tests each point.
For each seedling location point, (i) two dummy points were placed along the line direction
at a distance similar to the general planting spacing, (ii) a circular buffer with a radius of
0.2 times the general planting distance was applied to each dummy point (Figure 5d), and
(iii) any tree peak point located within the buffer was confirmed as a seedling location. If
no tree peak point was found within the buffer, the dummy points were marked as possible
missing seedlings. These missing seedling location points were re-checked in the raw
UAV–DAP point cloud by directly interrogating the Z values of the unfiltered UAV–DAP
points within a circle of the same size. Whenever a point with a Z value between the
specified maximum height range was found, the dummy point was flagged as a potential
seedling point. If no peak fell within the specified maximum height range, then the point
was marked as a possible missing seedling. All the flagged and possible missing seedling
location points were then exported as vector layers for the user to visually evaluate on
the orthomosaic.

2.3.4. Seedling Segmentation and Metric Extraction

This last stage of the pipeline includes the following two steps: (i) seedling segmenta-
tion, and (ii) extraction of the seedling structural attributes. The input data for this stage
were the isolated vegetation point cloud and the confirmed seedling locations.

Seedling Segmentation

Ideally, the seedlings were expected to appear as solid circular formations of point
clusters of appropriate size, separated by at least the minimum planting distance. Using a
region-growing method, point clusters that represented seedlings could be detected and any
clusters that met the size and shape criteria could be safely delineated as seedling crowns.
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Following the method proposed in [51], a decision tree method was implemented to
grow individual crowns around the confirmed seedling location points. This was achieved
through the following steps:

(i) Each detected seedling location, with attached XYZ coordinates representing the top
of the seedling crown, was marked as the initial seed point around which the seedling
crown was grown.

(ii) A maximum allowable distance between the seed point and neighboring points was
defined. This represented the maximum crown diameter expected in a particular stand.

(iii) A circle, centered on the initial seed point and having a diameter equal to the maxi-
mum allowable distance, was drawn and all UAV–DAP points falling within the circle
were identified.

(iv) The Z coordinates of these identified UAV–DAP points were then divided by the Z
coordinate of the initial seed point and attached as a point attribute named “height
fraction”. Subsequently, all the UAV–DAP points with a height fraction above 0.25
were labelled as potential crown points.

(v) The distances between each of these potential crown points and the initial seed point
were calculated and attached as a point attribute named “distance”. The potential
crown points were then sorted in ascending order by distance.

(vi) Starting from the potential crown point with the lowest distance, each potential crown
point was visited and retained if its height fraction was above 0.25 but less than the
height fraction of the previous point.

(vii) A convex hull was fitted to the retained potential crown points and its circularity was
estimated using the function 4π×A

P2 , where A and P are the area and the perimeter
of the convex hull, respectively. The circularity value was 1 for a perfect circle and
decreased to 0 for highly non-circular shapes.

(viii) If the circularity of the convex hull was less than 0.6, starting from the point with the
highest distance, points were removed until the circularity reached 0.6. A default
circularity threshold of 0.6 was considered appropriate for this pipeline after testing
various threshold values on weed-infested sites.

These steps were implemented iteratively for all the confirmed seedling locations
(Figure 6a).

In weed-infested sites, there could be point clusters that do not necessarily represent
individual seedlings but clusters of vegetation as a result of weeds and regen that are
established close to seedlings. This potential issue was resolved by using a maximum
crown diameter threshold to prevent the delineation of seedling crowns of unrealistic size.
In addition, a circularity threshold was applied to avoid unrealistic crown shapes that
deviated significantly from the typical circular crown shape.

Seedling Metric Extraction

One of our objectives was to expand the seedling detection method to incorporate the
generation of vegetation masks and the delineation of crown structures. At this stage, given
that the locations of most seedlings had already been accurately identified following the
procedures outlined in Section 2.3.3, and UAV–DAP points belonging to each segmented
seedling cluster were classified as per the method described above. It was then possible to
extract more precise individual seedling metrics, including crown dimensions and seedling
height, from the detected segments. To achieve this, a 2D convex hull was fitted around
each seedling cluster, and polygon parameters such as diameter (Figure 6b,d), circularity,
and area were estimated. The outputs included vector files representing the confirmed
seedling locations, potential missing seedling locations, and potential seedling locations
detected on the raw UAV–DAP point cloud, crown polygons of confirmed seedlings, and
a database with seedling properties, which were calculated using the spatial, structural,
and spectral information for points in each segment (e.g., maximum height, mean height,
crown area, and mean RGBVI).



Remote Sens. 2023, 15, 5276 12 of 21

Figure 6. Illustrations of the crown segmentation process showing (a) UAV–DAP vegetation point
cloud clusters representing individual seedling crowns coloured by cluster ID, (b) closeup of a 2D
convex hull polygon drawn around a single cluster, (c) vertical representation of a point cluster, and
(d) the results of seedling crown delineation for a section of the Tarawera site.

2.4. Parameterisation and Accuracy Assessment

All the steps in the pipeline were custom-written using the R software package
(version 4.0.2; [50]), except for the initial UAV–DAP point cloud generation and processing
step. Although the pipeline does not require training data, it employs rule-based tech-
niques, which requires the user to fine-tune a number of parameters to optimise the results
(Table 2).

Table 2. List of input parameters.

User Input Parameters Default Value Required to be Set by the User
for Optimal Results

1. Minimum height of UAV–DAP points that could represent a seedling 0.2 m NO

2. Minimum cluster size for noise filtering 5 points NO

3. Local maxima window size 2.5 m NO

4. Range of maximum seedling height 0.5–5 m YES

5. Variability of planting distance ±20% of the general
planting distance NO

6. Cut-off score for seedling filtering 12 YES

7. Maximum allowable distance for crown delineation 30% of the general
planting distance YES

The seedling locations detected by the proposed pipeline were tested against the
annotated seedling dataset, which showed the availability of seedlings on the ground, to
assess the performance of the proposed seedling detection method. To do this, a circle
with a radius of 0.5 m was created around each of the detected seedling points. Any
spatial intersections between this layer and the annotated seedling layer were tested. If
an annotated point fell within the circle, the seedling point was marked as a true positive;
otherwise, it was marked as a true negative. If no annotated point intersected the circle, the
detected seedling point was marked as a false positive.
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The performance of the detection method was assessed through precision, recall, and
the F1 score, which were calculated as follows:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score = 2 × Recall × Precision
Recall + Precision

(4)

where TP, FP, and FN are the true positive (a prediction that correctly indicates the
presence of a tree), false positive (a prediction that incorrectly indicates the presence of
a tree), and false negative (a prediction that incorrectly indicates the absence of a tree)
predictions, respectively.

Precision measures the proportion of the positive predictions that were correct, while
recall measures the proportion of actual positives that were correctly identified. The
F1 score is the harmonic mean of precision and recall and is more useful than accuracy
for unbalanced datasets, as it accounts for both false positives and false negatives [28].
The values for all metrics were expressed as a percentage (by multiplying by 100), and
all ranged from 0–100%, with values >90% representing outstanding classification for the
F1 score.

In addition to assessing the overall performance of the method, we also assessed the
performance of the predictions made using normalised UAV–DAP point clouds prior to
vegetation point isolation.

3. Results
3.1. The Overall Accuracy of Seedling Detection

Averaged across all sites, the method F1 score was 96.6%; the F1 score exceeded 95% at
all sites, which represents outstanding performance (Table 3). The average recall across the
sites slightly exceeded the precision value (98 vs. 95.2%), indicating that there were slightly
more false positives than false negatives. The three Scion nursery stands and Rangipo had
the highest F1 scores (range 97.9–99.1%), which was predominantly due to the very high
precision achieved at the four sites (99.1–99.7%). In contrast, the F1 measure was lowest
within the three Kaingaroa and Tarawera sites (range 95.1–96.2%), predominantly because
precision (range 92.1–94.6%) was lower than recall (range 96.7–98.4%).

Table 3. Summary of seedling detection accuracy assessment. Accuracy statistics were calculated
using only the individual seedling locations with multicriteria scores ≥12.

Precision
%

Recall
%

F Score
%

Kaingaroa

1 94.6 97.8 96.2

2 92.1 98.4 95.1

3 93.6 98.3 95.9

Scion nursery

1 99.7 96.6 98.1

2 99.3 96.5 97.9

3 99.5 98.6 99.1

Rangipo 99.1 99.0 99.0

Tarawera 94.1 96.7 95.4

All sites combined 95.2 98.0 96.6

3.2. Impact of the Multicriteria Evaluation of Seedling Detection Accuracy

To understand the impact of the cut-off score of multicriteria evaluations on the
detections, we calculated the statistics for cut-off scores ranging from 0 to 20. A sensitivity
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analysis examined how changes in the cut-off score of the multicriteria score affected
true positives, false negatives, and false positives. Thus, this assessment explained the
impact of the multicriteria score on both the quantity and quality of detected seedlings. As
shown in Figure 7, the false positives dwindled with increasing cut-off scores, subsequently
increasing precision, which reached 98% when the cut-off score was at its highest. The most
pronounced increase in false positives was seen in the seedling locations detected on the
unfiltered UAV–DAP point cloud.

Figure 7. Comparison of statistics for all sites combined at different cut-off scores of multicriteria
evaluation. BVP represents the results of individual seedling location detection before the vegetation
point isolation step. TP, FP, and FN are, respectively, true positive, false positive, and false negative.

The false negatives in the unfiltered seedling location dataset can be categorised into
two broad classes: (i) smaller seedlings, e.g., seedlings with poor growth or seedlings
that were planted to replace dead seedlings that were barely visible on the UAV imagery
and, thus, were inadequately reconstructed on the UAV–DAP point cloud (Figure 8); or
(ii) seedling locations detected on the vegetation point cloud but which were then assigned
a lower multicriteria score and subsequently filtered-out by higher cut-off scores.

Figure 8. Comparison of results of individual seedling location detection (a) before and (b) after
vegetation point isolation in a small area of the Kaingaroa 1 site. Note the tree location points detected
on piles of harvest residue on the figure on the left panel.

3.3. Importance of Vegetation Point Isolation Using Spectral Information

The individual seedling locations detected on the unfiltered UAV–DAP point cloud, i.e.,
prior to vegetation isolation, constituted a substantial number of false positives (Figure 7),
as the local maxima algorithm detected peak points on piles of harvest residues that
had Z values in the same range as the maximum seedling height (Figure 5a). However,
as expected, the vegetation point isolation stage of the proposed pipeline eliminated a
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substantial number of non-vegetation noise points from the input UAV–DAP point cloud,
resulting in a cleaner point cloud, with the majority of points corresponding to seedlings,
particularly on the sites with significant levels of harvest residue (e.g., Kaingaroa 1 and
Kaingaroa 3; Figure 5b).

3.4. Results of Seedling Location Re-Testing

The potential missing and true seedling location vector files that were exported as
an additional output of stage 3 of the pipeline were visually assessed by overlaying them
on the orthomosaic. About 86% of the detected missing seedlings were confirmed as true
missing seedlings (Figure 9a–c). About two-thirds of the seedlings that were missed on
the vegetation point cloud but were located on the unfiltered UAV–DAP point cloud were
small seedlings with very small crowns (Figure 9a–b). The remaining one-third comprised
discoloured seedlings (e.g., standing dead and diseased seedlings) (Figure 9c), seedlings
that deviated considerably from the planting row (Figure 9c), and large weeds growing in
missing seedling locations (Figure 9d).

Figure 9. Example illustrations of true positives, true negatives, and false negatives in a sample area
at the Tarawera site.

4. Discussion
4.1. Performance of the Pipeline

Using a comprehensive combination of remotely sensed metrics and algorithms, the
developed pipeline was able to accurately detect trees. Previous studies that used unsuper-
vised seedling detection methods on UAV–DAP point clouds have reported accuracies in
the range of 76–95% [24,36]. Although the results from previous studies cannot be com-
pared directly to our results due to the differences in methods used and species targeted, it
should be noted that our results are within the upper range of reported values.

Although model performance was very high across all sites, there was some variation
in tree detection accuracy among sites. The highest F1 scores were observed in the three
Scion nursery stands and the Rangipo site. The excellent model performance at these sites
can be attributed to the uniform planting spacing and the absence of weeds and regen that
were spectrally and structurally similar to the planted seedlings. In contrast, the lowest
F1 scores, observed within the three Kaingaroa and Tarawera sites, were most likely due to
the presence of moderate to significant weed cover within these sites, which resulted in
more false positives than at the sites with few weeds.
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The high accuracy of our pipeline was attributable to use of a combination of spatial,
structural, and spectral metrics, which provided a comprehensive set of criteria for tree
identification. The use of RGBVI efficiently segregated the vegetation and substantially
reduced the number of false positives. Squaring the green band reflectance value in the
RGBVI calculation provided a means of amplifying the greenness of the vegetation [46], and
thus, was highly effective in discriminating between non-vegetation objects (e.g., harvest
residue, soil, and some weeds) and green vegetation in all our test sites. The vegetation
point isolation stage further reduced the number of points by at least 50%, making the dense
UAV–DAP point clouds more manageable in the following steps of the pipeline, which
substantially reduced the processing time. Further research should explore alternative
VIs with potential for vegetation point isolation. For instance, the normalised difference
vegetation index (NDVI) is known to exhibit robust correlations with parameters such
as leaf area index (LAI), above ground biomass, and plant vigour [52–54]. These high
correlations between VIs and LAI result from their joint sensitivity to vegetation density; as
leaf area (represented by LAI) increases, higher reflectance in green, red, and near-infrared
spectra leads to elevated VI values.

At all sites, the false positives that remained after the vegetation point isolation stage
originated from the weeds and regen that were not eliminated by the binary thresholding
technique due to their spectral and structural similarity to the planted seedlings. Most of
these false positives could be removed by increasing the cut-off score, further emphasising
the advantage of using a combination of spectral, spatial, and structural metrics. However,
it is crucial to understand that the increased precision comes at the cost of a higher number
of false negatives, i.e., predictions that incorrectly indicated the absence of a seedling.

The majority of the seedlings that were missed on the vegetation point cloud but
were located in the unfiltered UAV–DAP point cloud were small seedlings with very small
crowns. These smaller seedlings were poorly reconstructed during the UAV–DAP process
and, thus, were removed in the nearest neighbour noise filtering due to the small size of the
point clusters. Some of these inadequate reconstructions could be improved to some extent
by fine-tuning the UAV–DAP generation parameters on the photogrammetric software
package, particularly by increasing the point density parameter [55]. This aspect could
also be further improved using a moving window method in which the user is able to
specify thresholds for each window separately to account for variations in the seedling
size. Such a method would also be more suitable for uneven-aged plantations and sites
characterised by a range of seedling sizes. It is also worth noting that higher-resolution
UAV-based RGB imagery might be required to attain a higher detection rate in sites with
small seedlings [4,24].

4.2. Downstream Applications

Accurate tree crown delineation is crucial for precision forestry, allowing for the esti-
mation of various forest attributes, including crown size, stem volume, species classification,
and vigour at the individual tree level [56–58]. Furthermore, incorporating crown metrics
into models has been shown to enhance model fit and improve predictions of diameter
at breast height [59], which is a commonly predicted forest attribute. In addition, studies
indicate that individual tree metrics extracted from crown masks enhance above-ground
biomass models, with the extent of improvement depending on the forest structure and
species distribution [60].

The outcomes of the proposed method enable similar estimations and modelling for
seedlings, especially in plantation forests. Forest managers will have the flexibility to
customise this method to achieve diverse objectives, including seedling health assessments,
survival analyses, weed infestation evaluations, and continuous seedling growth moni-
toring, ensuring accurate and timely oversight of forest health and productivity. Overall,
the implementation of this method will lead to significant time and cost savings, enabling
measurements to be taken more frequently.
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This methodology also offers substantial time and cost savings in terms of generating
forestry training datasets for supervised classification methods such as machine learning
applications in the forestry sector. Currently, the training datasets utilised by machine
learning methods rely heavily on manual annotations, hindering their efficiency and
restricting data size. The produced vector masks can be converted into training data for
instance segmentation or object detection algorithms with minimal cleaning, thereby greatly
reducing the amount of labor required to produce high-quality datasets for supervised
methods [28,30]. In this pipeline, we utilised a scoring method that provides greater control
over point selection and greater flexibility in terms of managing error margins. By setting
a higher multicriteria score cut-off value, we were able to precisely regulate the purity
of the generated training datasets. The proposed methodology not only accelerates data
generation but also guarantees the availability of larger, more reliable datasets. Therefore,
this method has the potential to significantly enhance the capabilities and applications of
machine learning methods within the forestry sector.

5. Conclusions

In this study, we have developed an unsupervised method to detect and map young
conifer seedlings using point clouds and orthomosaic imagery generated from high-
resolution UAV-based RGB imagery through DAP. The processing pipeline comprises
four main steps: (i) generating UAV–DAP point clouds from UAV RGB imagery, (ii) iso-
lating vegetation points by utilising RGB spectral information from the UAV–DAP point
cloud to eliminate non-vegetation points, (iii) identifying individual seedlings through
a combination of structural and spatial details such as spacing and height, combined in
a weighted scoring approach to detect potential seedling locations, and (iv) segmenting
seedling crowns and extracting attributes like height and crown dimensions.

The efficacy of the developed method was assessed in radiata pine plantations with
varying site conditions covering a wide range of seedling heights. The results showed high
F1 scores (96.6%), precision (95.2%), and recall (98.0%) across a range of age classes and site
conditions. Notably, the accuracy increased significantly when a multicriteria evaluation
method was employed to filter out false detections, demonstrating the value of leveraging
a combination of distinct yet complementary metrics.

In broader applications, this method could be adapted for purposes such as seedling
health assessments, survival analyses, evaluating weed infestation levels, and monitoring
seedling growth. Moreover, there is potential to adapt the pipeline for use with point cloud
data captured by consumer-grade, colourised LiDAR sensors (e.g., DJI-L1 Zenmuse), which
could subsequently enhance the precision of seedling attribute estimations.
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Appendix A

Table 1. Summary of site properties, field measurements and UAV flight parameters for the selected eight sites. GSD stands for ground sampling distance, while NA
indicates that the information is not available.

Site
Field Measurements UAV Flight Parameters

Estab.
Date

Site
Area
(ha)

Terrain Weed
Cover Debris

Date
of Field

Measures

Seedling
Height

(m)

Date of
UAV

Imagery

Target
Altitude

(m)

Target
Overlap

Flight
Speed
(m/s)

Density
SfM Point

Cloud
(pt/m2)

GSD
(cm)

Kaingaroa

1 July 2016 2 Gently
rolling

Moderate weed cover
(mostly radiata pine

regen)

Moderate harvest
residues

July–August
2017

2.9
(0.4–5.5) June 2019 74 90:80 3.5 573 1.9

2 NA 9 Gently
rolling Significant weed cover Little to moderate harvest

residues NA NA
January

2022 100 85:85 7 201 2.7

3 August 2015 27 Rolling
Moderate weed cover
(mostly radiata pine

regen)

Significant harvest
residues

July–August
2017

0.4
(2.9–5.5) August 2018 74 90:80 3.5 443 1.9

Rangipo August 2016 26 Gently
rolling Little weed cover Little harvest residues September

2017
3.3

(0.6–5.6) June 2019 74 90:80 3.5 580 1.9

Scion Nursery

1 October 2015 Flat Regularly mowed No harvest residues September
2017

4.2
(1.4–6.1) April 2019 60 85:80 3 939 1.6

2 October 2016 0.9 Flat Regularly mowed No harvest residues September
2017

1.7
(0.34–3.1) April 2019 60 85:80 3 939 1.6

3 October 2019 Flat Regularly mowed No harvest residues September
2017

0.4
(0.12–0.61) March 2020 74 90:80 3.5 410 2.0s

Tarawera NA 25 Gently
rolling Significant weed cover Little to moderate harvest

residues NA NA January
2021 80 85:85 7 232 2.2
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