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Abstract: Tea plants (Camellia sinensis (L.) Kuntze) are a cash crop that thrive under warm and moist
conditions. However, tea plants are becoming increasingly vulnerable to heat damage (HD) during
summer growing seasons due to global climate warming. Because China ranks first in the world
in both harvested tea area and total tea production, monitoring and tracking HD to tea plants in a
timely manner has become a significant and urgent task for scientists and tea producers in China. In
this study, the spatiotemporal characteristics of HD evolution were analyzed, and a tracking method
using HD LST-weighted geographical centroids was constructed based on HD pixels identified by
the critical LST threshold and daytime MYD11A1 products over the major tea planting regions of
mainland China from two typical HD years (2013 and 2022). Results showed that the average number
of HD days in 2022 was five more than in 2013. Daily HD extent increased at a rate of 0.66% per day
in 2022, which was faster than that in 2013 with a rate of 0.21% per day. In two typical HD years, the
tea regions with the greatest HD extent were concentrated south of the Yangtze River (SYR), with
average HD pixel ratios of greater than 50%, then north of the Yangtze River (NYR) and southwest
China (SWC), with average HD pixel ratios of around 40%. The regions with the least HD extent were
in South China (SC), where the HD ratios were less than 40%. The HD LST-weighted geographical
centroid trajectories showed that HD to tea plants in 2013 initially moved from southwest to northeast,
and then moved west. In 2022, HD moved from northeast to west and south. Daily HD centroids were
mainly concentrated at the conjunction of SYR, SWC, and SC in 2013, and in northern SWC in 2022,
where they were near to the centroid of the tea planting gardens. The findings in this study confirmed
that monitoring HD evolution of tea plants over a large spatial extent based on reconstructed remotely
sensed LST values and critical threshold was an effective method benefiting from available MODIS
LST products. Moreover, this method can identify and track the spatial distribution characteristics of
HD to tea plants in a timely manner, and it will therefore be helpful for taking effective preventative
measures to mitigate economic losses resulting from HD.

Keywords: heat damage; monitoring; critical threshold; remotely sensed LST; tea plants

1. Introduction

Tea (Camellia sinensis (L.) Kuntze) has become a popularly and commonly consumed
beverage in modern life as cultivation of tea has grown worldwide. The area of harvested
tea plantations reached 5.31 × 106 ha in 2020 with a production of 7.02 × 109 kg [1], values
which were 49.2% and 37.4%, respectively, higher than those in 2018 [2]. China ranks first
among all countries in the world in terms of both harvested tea area and total production,
followed by India and Kenya. Tea plants are grown in 19 provinces and municipalities in
mainland China, mainly located in regions north of the Yangtze River (NYR), south of the
Yangtze River (SYR), southwest China (SWC), and South China (SC) [3].
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Global warming is now recognized as occurring worldwide. The newly released IPCC
Sixth Assessment Report states that global surface temperature during the first two decades
of the 21st century (2001–2020) was 0.99 [0.84 to 1.10] ◦C higher than during 1850–1900,
and the increase was 1.09 [0.95 to 1.20] ◦C from 1850–1900 to 2011–2020 [4]. Furthermore,
surface temperatures have increased faster over land than over oceans since 1850–1900, with
warming during 2011–2020 of 1.59 [1.34 to 1.83] ◦C over land and 0.88 [0.68 to 1.01] ◦C over
oceans [4]. Previous research has revealed that climate warming has produced negative
impacts on most crop yields, such as wheat [5], maize [6–8], rice [9], and soybean [10], as
well as on grain quality [11,12] across the world.

Tea plants are a cash crop that thrive under warm and moist conditions. However,
tea plants are vulnerable to heat damage (HD) during summer growing seasons. Previous
studies have predicted that although there have been net positive impacts of climate change
on tea yield over China at both the 1.5 ◦C and 2 ◦C global warming levels, new areas of yield
reduction due to intensified heat extremes may emerge, and the yield losses are estimated to
range from 14 to 26% along the Yangtze River and in southern China [13]. The Yearbook of
Meteorological Disasters in China [14] reported that high temperatures and drought from 23
July to 18 August 2013 caused disasters to tea trees in Anhui Province, during which more
than 2.5 × 104 ha of Huangshan tea gardens were affected, thereby directly affecting spring
tea production in the coming year. On 23 July 2017, China National Radio (CNR) reported
that some tea gardens in Jiajiang County, Sichuan Province suffered HD due to continuously
high temperatures, and that more than 90% of the tea gardens at Guixiang Village suffered
from burning and scorching of mature tea leaves, withering of young tea leaves, and death
of tea seedlings (http://country.cnr.cn/market/20170723/t20170723_523863565.shtml (last
accessed on 12 May 2024)). A published book also recorded that the continuous sunny
conditions and high temperatures from 1 July to 18 August 2013 caused nearly 80% of tea
gardens in Zhejiang Province to suffer from HD [15]. Therefore, timely monitoring of HD to
tea plants has become one of the main tasks of the meteorological department with regard
to serving agricultural production, in order to take timely and effective HD prevention
measures, such as morning and evening sprinkle irrigation and midday shading, to reduce
the temperature and HD impact on tea plants.

Timely monitoring of natural disasters has been widely carried out in various fields.
Water-related monitoring has mainly focused on water stresses, such as meteorological
drought monitoring based on data from an automatic weather station network [16], surface–
air temperature differences [17], and satellite images [18], and soil moisture index monitor-
ing for food security by integrating SMOS (soil moisture and ocean salinity) and SMAP (soil
moisture active passive) remote sensing data [19]. Rapid and near real-time monitoring
of insect-induced defoliation [20], deforestation [21], and forest disturbance [22,23] have
been related to ecosystem functioning. Applications of near real-time monitoring in air
pollution studies [24,25] and environmental enforcement [26] have also attracted much
attention in recent years. However, there are few reports on the timely monitoring of HD
to crops. Moreover, the data used in previous monitoring research have mostly been from
multiple sources, such as a variety of ground-based observations [27], multi-resolution
satellite remote sensing images [19,28,29], etc., that may have great challenges with regard
to data availability, spatiotemporal consistency, and scaling conversion. Therefore, timely
monitoring of the evolution characteristics of natural disasters based on a single data source
may be a major trend in future research applications.

Currently operational agrometeorological services in China have carried out timely
monitoring of temperature-related agricultural disasters based on air temperatures ob-
served by ground-based meteorological stations. Observations of air temperature cannot
effectively reflect spatial variations due to the limited extent of the weather station network
layout, especially in complex terrain areas. Although some spatial interpolation techniques
have been researched over the past decades, different interpolation methods may yield
different results in the same region. Therefore, some statistical methods, such as the step-
wise linear regression method [30], the temperature–vegetation index method [31], the
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linear mixed effect method [32], and the random forest machine learning approach [33],
have been used to estimate daily maximum air temperature based on remotely sensed
land surface temperature (LST). Even so, deviations still exist, with mean absolute error or
root mean square error values of 1.7–3.0 ◦C [30,31,33] for the maximum air temperature
between observations and estimations, and these values strongly depend on seasonality
and the complexity of the surface energy budget [30,34,35].

Remotely sensed LST is a direct measure of the energy being released by a surface,
which is whatever satellite sensors can capture when viewing various surfaces (e.g., snow,
building roofs, lawn grass, or vegetation canopy leaves) through the atmosphere [36].
Therefore, satellite-based LST has shown great capabilities in the timely monitoring of
natural hazards and disasters due to its high spatial resolution, short revisit period, and
wide coverage area. Some examples include monitoring the channel width of the six
largest Arctic rivers by using GCOM-C/SGLI [37], identifying coal fires by integrating
multitemporal thermal infrared and InSAR remote sensing data [38], monitoring agricul-
tural drought by using LST retrievals and NDVI [29,39], and quantifying the sensitivity of
canopy thermal stress by using surface–air temperature differences [17]. However, research
on the application of thermal infrared data for identifying and quantifying HD to tea plants
at grid scale has not yet been reported.

The main purposes of this study were to investigate how to monitor HD evolution
to tea plants based on remotely sensed LST threshold, and further, to reveal the spa-
tiotemporal evolution characteristics of HD during an HD event at the pixel scale over
the entire China tea planting region. To achieve this goal, the annual dynamics of the
ration of HD pixels to the total pixels of tea gardens in mainland China were initially
analyzed from 2002 to 2022. Then, two typical HD years were selected to characterize
the spatiotemporal distribution of HD during the tea growing season in summer at three
different spatial scales. Daily HD LST-weighted geographical centroids were then ex-
tracted, and the HD evolution trajectories were dynamically tracked. Finally, discussion
and conclusions were summarized.

2. Study Area

Climate is one of several critical factors that determine where crops are planted. Tea
plants can be grown over a wide range of climatic conditions, and can tolerate light snow
or frost, as well as tropical and subtropical climates with high humidity. Previous research
has delineated the major tea planting regions in mainland China to be between 20◦ and
37◦N and 98◦ and 121◦E [13], covering an area of approximately 2.55 × 106 km2 and
accounting for approximately 26.58% of the area of mainland China. It includes all or
parts of 17 provinces and two municipalities: Shandong (SD), Henan (HEN), Shaanxi (SN),
Gansu (GS), Jiangsu (JS), Anhui (AH), Hubei (HB), Shanghai (SH), Zhejiang (ZJ), Jiangxi
(JX), Hunan (HN), Sichuan (SIC), Chongqing (CQ), Yunnan (YN), Guizhou (GZ), Fujian
(FJ), Guangdong (GD), Guangxi (GX), and Hainan (HI) [3] (Figure 1).

The climate of the major tea planting regions in mainland China is affected by tem-
perate and subtropical monsoon conditions, with warm and windy springs, hot and rainy
summers, cool and sunny autumns, and slightly cold and dry winters. The average annual
temperature ranges from 13 to 20 ◦C, and the annual precipitation is between 800 mm
and 2000 mm, decreasing from the south to the north. An anomalous anticyclone in the
troposphere during summer usually causes HD events that are characterized by increased
solar radiation and decreased rainfall and cloud cover [40,41]. Global warming has also
accelerated this anomalous atmospheric circulation. Therefore, HD often seriously affects
agricultural and industrial production [41], especially with regard to high-yielding cash
crops in China, such as tea plants.
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Figure 1. Study area and spatial distribution of the four major tea planting areas in China. The gray
regions are areas unsuitable for tea planting, and the grid cells with green color are the locations of
tea gardens extracted from the MODIS land cover product (MCD12Q1).

3. Data and Methodology
3.1. Data
3.1.1. MODIS LST Products

MODIS sensors were launched on board the National Aeronautics and Space Admin-
istration (NASA) Terra and Aqua satellites in 1999 and 2002, respectively. Terra passes from
north to south at about 10:30 a.m. and p.m. local solar time, while Aqua passes from south
to north at about 1:30 p.m. and a.m. local solar time on each day. The passing time of Aqua
is closer to the observed time of daily maximum air temperature, so the LST products on
board the Aqua satellite platform were selected to monitor HD to tea plants in this study.

Daily MODIS LST products were retrieved from the MODIS thermal and middle
infrared spectral regions at 1 km pixels by using the generalized split window algorithm
that corrects for atmospheric effects [42]. These data are easily available to the public via the
Earth Observing System Data and Information System of NASA (https://earthdata.nasa.
gov/. Last visited on 26 June 2023). To cover the entire study area, daily MODIS daytime
LST products (MYD11A1, version 6) of seven tiles in a 1200 by 1200 grid at 1 km spatial
resolution were downloaded from June through August in 2002–2022, including h26v05,
h27v05, h28v05, h26v06, h27v06, h28v06, and h28v07. The daily MYD11A1 products for
the seven tiles were re-projected to Albers Conical Equal Area projection, and then merged,
resized, and mosaicked to obtain a dataset that was exactly consistent with the study area.

3.1.2. Tea Planting Distribution

The MODIS Terra + Aqua Combined Land Cover products (MCD12Q1) were created
using a hierarchical classification model that ingested a full year of 8-day MODIS Nadir
BRDF-Adjusted Reflectance (NBAR) data [43]. The MCD12Q1 product provides global
maps of land cover types at annual time steps and 500 m spatial resolution from 2001
to present. It contains six different land cover classification schemes, including IGBP
(International Geosphere-Biosphere Programme), UMD (University of Maryland), LAI
(Leaf Area Index), BGC (BIOME Biogeochemical Cycles), PFT (Plant Functional Types),
and LCCS (Land Cover Classification System) [43]. In this study, closed shrublands and
open shrublands (consisting of woody perennials with more than 10% coverage rate and
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1–2 m height) in the IGBP classification scheme were extracted to identify the tea planting
gardens in China (the green dots in Figure 1).

3.1.3. Historical HD Descriptions in the Yearbook of Meteorological Disasters

A wide range of high-temperature processes from June through August in 2013 was
recorded in the Yearbook of Meteorological Disasters in China (2014) [14]. The records
described four high-temperature processes: 15–20 June, 27 June–20 July, 22 July–24 August,
and 27–29 August. During 15–20 June, a wide range of high-temperature weather occurred
from Huanghuai to South China, especially in central Henan, western Hubei, northeastern
Chongqing, southern Shaanxi, and the Sichuan Basin, with extreme maximum temperatures
reaching new high values. From July to August in 2013, southern China experienced the
strongest high-temperature heat wave since 1951, with 31 high-temperature days in nine
provinces, including Shanghai, Zhejiang, Jiangxi, and Hunan in the area south of the
Yangtze River; Chongqing and Guizhou in southwest China; and Hubei, Anhui, and
Jiangsu along the Yangtze River.

Long-term severe high temperatures can cause heat damage and sunburn disasters
in tea gardens. For example, more than 2.5 × 104 ha of Huangshan tea gardens in Anhui
Province were affected in 2013, causing potential impacts on the output and quality of
Chinese spring tea in the following year [14].

3.1.4. Disaster Reports via Web News

The year 2022 featured an unprecedented hot summer that attracted worldwide atten-
tion [44]. Web news services overwhelmingly reported that the summer of 2022 experienced
strong high-temperature conditions in the middle and lower reaches of the Yangtze River
in China. The maximum temperature values and the number of high-temperature days
at many meteorological stations exceeded those observed in 2013, which had been the
strongest high-temperature year since 1961. Severe weather with high temperatures, little
precipitation, and sunburning produced mild to moderate HD to tea plants over a large
spatial extent. Some areas with young tea gardens and vulnerable tea varieties were greatly
affected, resulting in severe HD [45].

3.2. Methodology
3.2.1. The Critical LST Threshold for HD to Tea Plants

The box-plot and cumulative frequency distribution (CFD) methods were jointly
used to determine the critical LST threshold for HD to tea plants in China. The box-plot
method is a graphically-based method of showing the distribution of collected data, such
as median, first and third quartile, non-outlying minimum and maximum values, and
potential outliers [46]. Nowadays, the boxplot method has commonly been used to identify
outliers by quartiles and interquartile ranges [47–49] because of its simplicity [50]. The
cumulative frequency distribution has also been widely used for distinguishing different
mass spectra of intact proteins [51], identifying hotspots in conservation and ecology [52],
and discriminating data classes emanating from sensors [53]. Previous research combining
box-plot and CFD methods has determined that the critical LST threshold for HD to
tea plants in China is 30.1 ◦C, and this value is applicable over a large spatial extent in
different climatic regions for Chinese tea plantations, and is also suitable for different tea
varieties [54].

3.2.2. Reconstruction for Gap-Filled MODIS LST Values

MODIS LST products are unavailable when clouds exist during satellite overpassing
periods [2]. Cloud contamination, therefore, has strong impacts on the availability and
the quality of LST products [55]. A clear-sky MODIS LST reconstruction method (RS-
DAST) [56] was used in this study to reconstruct gap-filled MODIS LST pixels. Unlike other
temperature reconstruction methods, RSDAST requires only one parameter (the MODIS
LST product itself), based on the assumption that differences in LST between nearby pixels
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are relatively stable during a short time period. Reconstructed LST values have good
accuracies not only in flat areas, but also in complicated terrain areas. The statistics for
mountain areas, with an elevation range from 50 to 5000 m, were R2 of 0.81–0.89, bias of
−0.35 to −1.52 k, and RMSE of 1.42–2.24 k [56].

3.2.3. Spatiotemporal Evolution Tracking of HD

Spatiotemporal tracking of HD geographical centroids is an effective way to mon-
itor the evolutionary characteristics of HD to tea plants. It consists of three main steps
(Figure 2): (1) identification of HD pixels; (2) LST-weighted location of HD centroids; and
(3) spatiotemporal tracking of HD centroids [57].

Figure 2. Schematic diagram of spatiotemporal tracking of LST-weighted heat damage (HD) centroids.
The grid cells with different grayscales represent the intensity of HD in the first and second columns
(Steps 1 and 2); the darker the shade of gray, the greater the HD intensity. The red dots are the
identified LST-weighted HD centroids at each point in time in the second and third columns (Steps 2
and 3).

(1) Identification of HD pixels
All HD pixels in the tea planting gardens of China were identified based on the critical

LST threshold for each day from June through August. When the LST value at a certain
pixel was above or equal to the critical LST threshold, the LST value was reserved as a
weight coefficient (Step 2) to indicate that the cell was experiencing HD; otherwise, the
pixel was labeled as HD-free, with a value of 0 [57].

(2) Locating LST-weighted centroids
Based on the identified HD pixels, daily HD geographical centroids were calculated

by considering HD intensity [58], denoted by the difference between the LST values at HD
pixels and the critical LST threshold:

xc =
∑

i=m,j=n
i=1,j=1

[
xi,j ×

(
LSTi,j − LSTHD

)]
∑

i=m,j=n
i=1,j=1

(
LSTi,j − LSTHD

) , (1)



Remote Sens. 2024, 16, 1784 7 of 19

yc =
∑

i=m,j=n
i=1,j=1

[
yi,j ×

(
LSTi,j − LSTHD

)]
∑

i=m,j=n
i=1,j=1

(
LSTi,j − LSTHD

) , (2)

where (xc, yc) is the geographical LST-weighted centroid of HD on certain days; LSTi,j is
the LST value at HD pixel (i, j); xi,j and yi,j are the longitude and latitude of HD pixel (i, j);
and LSTHD is the critical LST threshold referred to in Section 3.2.1. The subscripts of m and
n are the rows and columns of the study area.

(3) Spatiotemporal tracking of HD centroids
Each HD centroid was tracked in time sequence to produce the spatiotemporal tracking

path of the HD centroids. The characteristics of HD evolution and direction can be clearly
identified by the tracking path [59].

3.2.4. HD Characteristics

HD ratios and HD days were calculated to express HD characteristics in this study. HD
ratios were the ratio of identified HD pixels to the total pixels of tea gardens in mainland
China on each day. Then, average values of HD ratios at different temporal and spatial
scales were calculated to obtain annual HD ratios, provincial HD ratios, or regional HD
ratios. HD days were the total days affected by HD at each grid cell in a certain year.

4. Results
4.1. Annual Dynamics of HD Ratios for Tea Plants from 2002 to 2022

The annual HD extent, expressed as HD ratios, from 2002 to 2022 for the entire
mainland area of China and the four different tea regions are shown in Figure 3a. For the
tea gardens in the entire mainland area of China, nearly half of the 21 years on record had
HD ratios between 25% and 33%, and the upper outlier had an HD pixel ratio of 44.94%,
appearing in 2022. For the entire mainland area of China, the mean and median HD ratio
values were both close to 30%, which meant that approximately 30% of the tea regions were
likely to have experienced HD disasters during the past 21 years. From the perspective of
comparing the four tea regions, the region with the largest HD ratio and the largest number
of years with HD was SYR, followed by NYR, and SWC had the smallest mean HD ratio. It
is worth noting that the number of HD years in the SC tea region had two peaks, which
occurred around HD pixel ratio values of 28% and 38%, respectively. There was a clear
data gap between HD pixel ratio values of 30% and 34% in SC, and the median HD ratio
was obviously larger than the mean.

The HD ratios fluctuated from 2002 to 2022, especially in the last decade (Figure 3b).
The upper and lower quartiles of the HD ratios were concentrated between 20% and 40% in
most years, except the years of 2013, 2018, 2020, and 2022. The three years with the largest
HD ratios were 2013, 2018, and 2022, and their median and mean HD ratios were around
40%. In contrast, extremely low HD ratios occurred in 2020, with more than half of HD
ratios observed to be between 15% and 21%, and with both the median and mean HD ratios
being less than 20%.

The distribution of HD ratios in 2013 and 2018 were similar, but the HD ratios were
slightly higher in 2013 than in 2018. Therefore, two years (2013 and 2022) were selected as
typical HD years for detailed analysis.

4.2. Temporal Dynamics of HD Ratios for Tea Plants in Two Typical HD Years
4.2.1. Daily Dynamics in Mainland China

Daily dynamics of HD extent, also expressed as HD ratios, from 1 June to 31 August
were analyzed using average values of HD ratios over the entire tea planting region of
mainland China in two typical HD years (2013 and 2022) (Figure 4). Daily HD extent clearly
varied more drastically in 2022 than in 2013.
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Figure 3. Violin plots of heat damage (HD) pixel ratios in the tea gardens of mainland China from
2002 to 2022 (panel a shows results for the entire mainland area of China [CHN] and the four different
tea regions; panel b shows the annual dynamics). The upper and lower boundaries in the black
polygons indicate the 25th and 75th percentiles of HD ratios, respectively; the lower and upper
whiskers indicate the minimum and maximum HD ratios, respectively; the black lines and red
points within the boxes are the median and mean values, respectively; the black points are outliers.
NYR = region north of the Yangtze River; SYR = region south of the Yangtze River; SWC = southwest
China; SC = South China.

Figure 4. Daily dynamics of heat damage (HD) ratios from June through August in 2013 (a) and 2022
(b) over the entire tea planting region of mainland China. The three black horizontal lines in each
panel are the monthly average values of HD ratios. ** denotes a significant test of 0.01.
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In 2013, daily HD extent increased linearly at a rate of 0.21% per day (slope was
significant at p < 0.01), with a maximum HD ratio of 77.46% on 15 August, and a minimum
value of 3.98% on June 6 (Figure 4a). The HD extent in August was the highest, with a
monthly average ratio of 48.89%, followed by July with an average of 38.31%, and June
with the smallest monthly average HD ratio of 34.35%. In 2022, the HD ratios also increased
significantly (p < 0.01) with time as in 2013, but covered a wider range of values and
increased at a faster rate. Daily HD ratio significantly increased at a rate of 0.66% per
day, with the maximum and minimum values of 89.68% and 1.87% on 25 July and 4 June,
respectively (Figure 4b). Monthly average values of HD ratio increased dramatically over
time, with August being the highest (64.62%), June being the smallest (20.56%), and July
having a value of 48.84%.

4.2.2. Daily Dynamics of HD Extent at Regional Scale

Daily HD extent values in 2013 and 2022 were calculated by taking each tea planting
area as a statistical unit, and the dynamics of HD extent are shown in Figure 5. The HD
extent for each of the four tea planting areas was quite different. The greatest HD extent
appeared at SYR, with average HD ratios of 52.62% and 51.46% from June through August
in 2013 and 2022 (Figure 5b), followed by NYR and SWC, with average HD ratios of around
40% (Figure 5a and 5c, respectively). Average HD ratios in SC were less than 40%, with
values of 35.02% and 38.34% in 2013 and 2022 (Figure 5d). Except for SYR, the average
HD ratios in the other three tea planting areas were greater in 2022 than in 2013, and the
difference in these two years was between 3.32 and 7.24%. Daily HD extent showed large
fluctuations from day to day, with a minimum HD ratio of 0.00% appearing in SC on 10
June in both 2013 and 2022, and a maximum HD ratio of 99.81% in SYR on 7 August 2013.

Figure 5. Daily dynamics of heat damage (HD) ratios from June through August for each tea planting
area. The horizontal lines in each panel are the average HD ratios for 2013 (red lines) and 2022
(black lines). NYR = region north of the Yangtze River; SYR = region south of the Yangtze River;
SWC = southwest China; SC = South China.
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4.2.3. Daily Dynamics of HD Extent at Provincial Scale

The daily dynamics of HD extent at the provincial scale from June through August
in 2013 and 2022 are shown in Figure 6. Because three provinces (i.e., JS, AH, and HB)
spanned the tea planting regions of NYR and SYR, the HD ratios for each of these provinces
in the corresponding tea regions were calculated and shown separately.

Figure 6. Daily dynamics of heat damage (HD) ratios from June through August in 2013 (a) and 2022
(b) for each province. The first two columns on the left are the four tea planting regions and their
corresponding provinces. Different shades of red indicate different HD ratio ranges. The Jiangsu
(JS), Anhui (AH), and Hubei (HB) provinces were divided into two parts by the Yangtze River,
namely northern (N) regions (JS_N, AH_N, and HB_N) and southern (S) regions (JS_S, AH_S, and
HB_S). SD = Shandong; HEN = Henan; SN = Shaanxi; GS = Gansu; SH = Shanghai; ZJ = Zhejiang;
JX = Jiangxi; HN = Hunan; SIC = Sichuan; CQ = Chongqing; YN = Yunnan; GZ = Guizhou;
FJ = Fujian; GD = Guangdong; GX = Guangxi; HI = Hainan; NYR = region north of the Yangtze
River; SYR = region south of the Yangtze River; SWC = southwest China; SC = South China.
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As in Figure 5, HD in SYR in 2013 was the greatest in terms of both HD duration
and HD extent, followed by NYR, and HD in SC and SWC was relatively light (Figure 6a).
The HD ratios in all provinces of SYR in 2013 were high from July 8 to August 18, with
average and median HD ratios of 76.82% and 91.86%, respectively. The number of days ×
provinces with HD ratio of 100% was 28. In NYR, the regions with high HD ratios were
mainly located in HEN and the northern regions of JS, AH, and HB, where higher HD
ratios were observed in early to mid-August with values between 60% and 100%. In SWC,
the temporal distribution of HD ratios was completely different from those in SYR and
NYR. The higher HD ratios occurred in YN and GZ from June 12 to 19, with an average
ratio of 81.27%, and in SIC and CQ from August 12 to 27, with an average ratio of 77.89%.
The HD ratios in SC were relatively scattered in time and space, and there was no obvious
province or period of concentrated HD.

In 2022, the higher HD ratios mainly occurred in mid-June in NYR and extended over
the entire tea planting region of mainland China from late July (Figure 6b). HD in 2022 had
a wider extent, a longer duration, and a higher HD pixel ratio than in 2013. From June to
August, the total number of days × provinces with HD ratios greater than 40% was 970 in
2022 and 874 in 2013. The maximum number of HD days with daily HD ratios of greater
than 40% in 2013 appeared at HN with the number of HD days reaching 62, followed by ZJ
and CQ with values of 57 d. The maximum number of HD days in 2022 was close to the
number observed in 2013, with a value of 61 d in ZJ. However, the average number of HD
days for all provinces in 2022 was five days more than in 2013. The average number of HD
days with HD ratios of greater than 40% was the highest in the tea planting region of SYR
in both 2013 and 2022, with the number of HD days reaching 48 d and 52 d, respectively.
The number of HD days in the other three regions was around 40 d (between 35 d and
42 d), with slightly more HD days in 2022 than in 2013.

4.3. Spatial Characteristics of Number of HD Days for Tea Plants in Typical HD Years

The spatial characteristics of HD intensity, expressed as number of HD days in this
study, are shown in Figure 7. Except for the northern part of SWC, the spatial distribution
of HD intensity in 2022 was generally similar to 2013. In 2022, the number of HD days in
northern SWC exceeded 40 d, while in 2013, the number of HD days was between 20 and
40 days in the same region. The difference in the number of HD days was more than half a
month between the two typical HD years.

Figure 7. Spatial distribution of number of heat damage days in the tea planting regions of mainland
China from June through August in 2013 (a) and 2022 (b).
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Areas with more than 40 HD days (denoted by dark red color in Figure 7) occurred
mainly along the Yangtze River (i.e., the southeastern parts of the SIC Basin, northern parts
of GZ and CQ, southern parts of HB and AH, and central parts of HN, JX, and ZJ) in both
2013 and 2022. The areas with a number of HD days between 20 and 40 d (denoted by
light brown) were mainly located in tea planting gardens of central regions of SWC in 2013,
and the entire region of SC and western regions of NYR in 2013 and 2022. Regions with
numbers of HD days less than 20 d (denoted by light orange) were scattered across the
northern and central parts of NYR, the southern parts of SWC, and sporadic areas of SYR.
Generally, HD intensity in the tea planting regions of mainland China followed a spatial
distribution of greatest along the Yangtze River, less in the south, and least in the north.

4.4. Spatiotemporal Tracking of HD Geographical Centroids in Two Typical HD Years

Daily HD LST-weighted geographical centroids in 2013 and 2022 were located based
on the identified HD pixels and their HD intensity in the tea planting regions of China. The
spatial distribution of these centroids is shown in Figure 8. Daily geographical centroids
in both 2013 and 2022 were concentrated in western SYR, eastern SWC, and northern SC,
where the centroids were concentrated around the centroid for the tea planting gardens (the
green circle with a cross in Figure 8). Nevertheless, the daily HD geographical centroids for
2013 and 2022 presented completely different trajectories.

Figure 8. Spatial distribution of daily LST-weighted heat damage centroids and their spatiotempo-
ral trajectories in the tea planting regions of mainland China from June through August in 2013 (a)
and 2022 (b). Different shades of red indicate the day of the year when the geographical centroids
appeared. The lighter red colors indicate earlier appearance, and the darker red colors indicate
later appearance.

In 2013 (Figure 8a), the HD centroid originated in SWC, west of the tea planting
gardens centroid, and then gradually moved northeastward until the end of June. After
that, the HD centroids slowly moved to northern SC in July. Finally, the HD centroids
moved into the central and northern parts of HN and JX in the tea planting gardens of
SYR at the end of August. The maximum movement of HD centroids in the north–south
direction (9.18◦N) was slightly smaller than centroid movement in the east–west direction
in 2013 (9.36◦E).

In 2022 (Figure 8b), the HD centroids first appeared in the east of the tea planting
gardens of SYR and NYR in early June, and then moved west and south. Most of the HD
centroids were clustered in the eastern part of SIC and GZ in the tea planting gardens of
SWC in July and August. Daily HD geographical centroids showed a spatial distribution
similar to a right triangle, with the final centroid located at the right vertex of the triangle
in South China.



Remote Sens. 2024, 16, 1784 13 of 19

5. Discussion
5.1. Spatiotemporal Distribution of HD

The major weather-related hazard to tea production during summer is HD caused by
high temperature. Spatiotemporal characteristics of HD to tea plants in mainland China
were analyzed in two typical HD years (2013 and 2022) in this study. Spatially, HD was
concentrated in the tea planting regions of SYR, and this finding was consistent with a
long-lasting high-temperature event in the summer of 2013 in a zone extending from North
China southward to the south of the lower reaches of the Yangtze River in East China [60,61].
In terms of temporal evolution, HD mainly occurred from mid-to-late July to mid-August,
and these occurrences of HD coincided with historical HD descriptions in the Yearbook of
Meteorological Disasters [14]. In 2022, the areas with a number of HD days greater than 40 d
based on the critical LST threshold were mainly distributed in the SIC Basin and the middle
and lower reaches of the Yangtze River, which basically coincided with the occurrences of
maximum air temperature [62]. From July to August 2022, there were overwhelming media
reports (https://www.capiaccti.org.cn/industrynews/b69f67c062ff3f6311ea7def2d354a2f
(last accessed on 12 May 2024); https://www.thepaper.cn/newsDetail_forward_19425033
(last accessed on 12 May 2024); http://www.news.cn/politics/2022-08/22/c_11289339
35.htm (last accessed on 12 May 2024)) that tea production in many provinces in China,
such as Anhui, Jiangsu, Zhejiang, Sichuan, Hunan, Fujian, etc., had been affected by high
temperatures. As a result, the buds and leaves of the tea plants wilted, scorched, and
fell off, and the yield of summer and autumn tea decreased, which further affected the
production of spring tea in the coming year. The disaster area reported by the media is in
good agreement with the regions and provinces of more HD days and higher HD extent in
this study. The spatiotemporal characteristics of daily HD geographical centroids were also
consistent with previously reported research that showed HD evolution occurring from
northeast to southwest in tea planting gardens of SYR and SC in mainland China [45].

5.2. Applicability of the LST-Weighted Centroid Method

Geographical centroids can describe where events of interest gather spatially. Both
weighted and unweighted centroid determination methods have been widely used, such as
with regard to species distributions based on unweighted centroids [63], metapopulation
centroids weighted by population density [64], urban heat island centroids based on the
Gaussian volume model [58], and drought tracking based on geometric centroids [57].
To our knowledge, weight-based centroids, fully taking into account the effects of factor
contributions, can more objectively locate the geographical location of the centroid. When
locating the geographical centroid in this study, the spatial distribution of HD and its
intensity for each HD pixel were jointly considered. Thus, the HD centroid can be connected
to the pixels with greater HD intensity. The results of the HD geographical centroid were
also consistent with an overwhelming number of media reports indicating that the areas
suffering HD impacts on tea plants were mainly distributed in the provinces along the
Yangtze River Basin.

The comparisons of HD geographical centroid deviations (denoted by the differences
in longitude and latitude between weight-free and LST-weighted locations) over the tea
planting regions of mainland China from June through August in 2013 and 2020 are shown
in Figure 9. Theoretically, longitude and latitude locations obtained by the LST-weighted
and weight-free methods would be offset due to the difference in weight of HD intensity.
Results in Figure 9 also show that the geographical centroids determined by the weight-free
method were slightly shifted to the west compared with the LST-weighted method, with the
maximum difference being close to −2.6◦E in 2013. The deviation in north–south direction
was not obvious, and most differences were concentrated between −1◦N and 1◦N for the
two typical HD years.

https://www.capiaccti.org.cn/industrynews/b69f67c062ff3f6311ea7def2d354a2f
https://www.thepaper.cn/newsDetail_forward_19425033
http://www.news.cn/politics/2022-08/22/c_1128933935.htm
http://www.news.cn/politics/2022-08/22/c_1128933935.htm
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Figure 9. Differences in the latitude and longitude of heat damage geographical centroids determined
with and without LST weights over the tea planting regions of mainland China from June through
August in 2013 (a) and 2022 (b).

5.3. Applications of Tracking Method

Timely monitoring and tracking of natural disasters is critical for rapidly assessing
and addressing impacts on ecosystem disturbances [22,23,65,66], vegetation anomaly de-
tection [67], crop water deficits or flash droughts [17,18,68], wildfire progressions [69], and
so on. Daily HD extent and centroids for tea plants in mainland China for the typical HD
years of 2013 and 2022 were monitored and tracked. HD evolution characteristics in the
tea planting areas were clearly observed, both spatially and temporally. The HD spatial
distribution in 2022 was more concentrated in northern SWC, and this observation was
related to the record-breaking high-temperature intensity and duration in SIC province
and CQ municipality [44]. Moreover, the HD intensity was greater in August than in
July, which was also consistent with the temperature anomalies [60]. However, the HD
centroids in 2013 were shifted slightly westward compared with the location of the heat
wave [61], which was mainly due to the fact that the tea gardens were more concentrated
in the western regions of the Yangtze River.

5.4. Availability of LST Products

Although monitoring HD to tea plants based on remotely sensed LST products is a
good way to capture HD occurrence in a timely manner and to exactly track HD evolution,
the availability of LST products is a key constraint of this monitoring method. Satellite
remote sensing can provide LST products with unprecedented global coverage. However,
its spatial resolution is 1 km. When the area of tea plantations is less than one pixel, or the
distribution of tea gardens is relatively loose, there will be a certain degree of deviation in
the HD monitoring. Furthermore, LST data are unavailable if cloud contamination exists
during satellite overpassing periods [70]. In this study, the RSDAST method was introduced
to reconstruct the gap-filled MODIS LST values, and thus most LST gaps were effectively
filled. However, there were still some pixels that could not be filled objectively [56], which
may have produced a certain deviation in the results. Even so, use of this method can still
more effectively represent the spatial distribution of HD to tea gardens than using original
LST products directly, and this finding represents great progress in monitoring HD disas-
ters based on remote sensing products. Nowadays, reconstructing some remotely sensed
products, such as reflectance [70], vegetation index [71,72], LST [56,73], crop evapotranspi-
ration [74], etc., has been widely investigated in monitoring vegetation conditions [75,76],
detecting early crop growth stages [75] and end-of-season dates [77], monitoring vineyard
water use and stress [78], and irrigation management [79].

Timely monitoring of disasters is the main business of meteorological services. How-
ever, the effectiveness of the method is not only limited by technical capabilities, but also
depends on the availability of remotely sensed LST data. If the data can be obtained in a
timely manner, HD to tea plants can be monitored in a timely manner. Fortunately, the
MODIS LST product has achieved quasi-real-time sharing, thereby providing a sufficient
guarantee of data availability. In addition, the HD period often relates to weather condi-
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tions such as high temperature, low precipitation, and few clouds. Therefore, the influence
of cloud contamination can essentially be ignored, which further ensures sufficient avail-
ability of satellite-based LST products. Other LST products available from other satellite
platforms, such as FY-3 [80] and Himawari-8 [81], are also welcome, and further expand
the applicability of the method.

5.5. The Area of Tea Gardens

Although tea trees are widely planted in mainland China, the distribution of tea gar-
dens is still relatively scattered. Previous research had revealed that the area extracted from
MODIS Terra + Aqua Combined Land Cover products with closed and open shrublands
was almost 4.8 times the actual tea plantation area in SYR [2]. In this study, a proximate
relationship between satellite-based area and the actual area of tea gardens was determined
at the provincial scale for the entire tea planting region in China. The linear regression
coefficient was 4.67. Therefore, the area of shrublands was much larger than the actual
area of tea gardens, which may result in some spatial deviation between the HD centroids
and the actual disaster area. Additionally, MOD11A1 LST was retrieved based on spectral
emissivity values, which is closely related to land cover types [42]. Thus, over-labeling of
tea plantations may have a negative impact on HD monitoring results. Therefore, it may be
an ideal way to accurately map the spatial distribution of tea plantations over time based
on high-resolution remote sensing data in the future.

6. Conclusions

A method of monitoring HD evolution to tea plants was investigated based on the
critical LST threshold and reconstructed remotely sensed LST data for two typical HD years
(2013 and 2022). Results showed that daily HD extent exhibited similar characteristics from
June to August in both 2013 and 2022, with a faster rate of increase (0.66% per day) in 2022
and a slower rate of increase (0.21% per day) in 2013. The average number of HD days
for all provinces was five days greater in 2022 than in 2013. Spatially, HD pixel ratios in
four tea planting regions also showed similar characteristics across the two years. HD
in SYR was the greatest, with average HD pixel ratios of greater than 50%, followed by
NYR and SWC, with average HD pixel ratios of around 40%, and the HD pixel ratio was
the lowest in SC, with a value of less than 40%. Daily HD geographical centroids of tea
plants were concentrated in western SYR, eastern SWC, and northern SC in 2013, while
they were located a little more westward in 2022, clustering in northern SWC. The HD
centroid tracking results showed that the HD trajectories were completely different in 2013
and 2022. In 2013, the centroids moved from the west of the tea planting gardens of SWC
to the northeast first and then to the west, mainly gathering at the junction of SYR, SC, and
SWC. In contrast, the HD centroids in 2022 first developed in the northeast and moved
westward and southward, remaining in the eastern regions of SWC in July and August.

The results of this study strongly confirmed that monitoring HD evolution to tea
plants based on remotely sensed LST products was an effective method due to its abil-
ity to correctly characterize both temporal evolution and spatial distribution of HD. Our
findings have important implications for meteorological staff, in the timely monitoring of
temperature-related disasters and objectively pinpointing their locations; for government
agencies, to formulate reasonable disaster relief strategies and to schedule necessary sup-
plies; and for tea farmers in disaster regions, to give greater attention to methods that can
reduce economic losses.
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