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Abstract: Wetlands are integral components of agricultural landscapes, providing a wide range of
ecological, economic, and social benefits essential for sustainable development and rural livelihoods.
Globally, they are vulnerable ecological assets facing several significant threats including water
extraction and regulation, land clearing and reclamation, and climate change. Classification and
mapping of wetlands in agricultural landscapes is crucial for conserving these ecosystems to maintain
their ecological integrity amidst ongoing land-use changes and environmental pressures. This study
aims to establish a robust framework for wetland classification and mapping in intensive agricultural
landscapes using time series of Sentinel-2 imagery, with a focus on the Gwydir Wetland Complex
situated in the northern Murray–Darling Basin—Australia’s largest river system. Using the Google
Earth Engine (GEE) platform, we extracted two groups of predictors based on six vegetation indices
time series calculated from multi-temporal Sentinel-2 surface reflectance (SR) imagery: the first
is statistical features summarizing the time series and the second is phenological features based
on harmonic analysis of time series data (HANTS). We developed and evaluated random forest
(RF) models for each level of classification with combination of different groups of predictors. Our
results show that RF models involving both HANTS and statistical features perform strongly with
significantly high overall accuracy and class-weighted F1 scores (p < 0.05) when comparing with
models with either statistical or HANTS variables. While the models have excellent performance
(F-score greater than 0.9) in distinguishing wetlands from other landcovers (croplands, terrestrial
uplands, and open waters), the inter-class discriminating power among wetlands is class-specific:
wetlands that are frequently inundated (including river red gum forests and wetlands dominated
by common reed, water couch, and marsh club-rush) are generally better identified than the ones
that are flooded less frequently, such as sedgelands and woodlands dominated by black box and
coolabah. This study demonstrates that HANTS features extracted from time series Sentinel data
can significantly improve the accuracy of wetland mapping in highly fragmentated agricultural
landscapes. Thus, this framework enables wetland classification and mapping to be updated on a
regular basis to better understand the dynamic nature of these complex ecosystems and improve
long-term wetland monitoring.

Keywords: wetland classification and mapping; Sentinel-2 time series; vegetation indices; HANTS;
random forest; benchmark experiment
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1. Introduction

Floodplain wetlands in arid and semi-arid regions are formed by and respond to the
periodic flooding of adjacent rivers [1–3]. They are dynamic ecosystems that contribute
significantly to regional hydrological and ecological functions [4,5], and provide a range of
ecological services [6] such as biodiversity conservation [7], water quality improvement [8],
and carbon sequestration [9]. In intensive agricultural landscapes, these ecosystems are
critical for regional ecological health [10,11]. Floodplain wetlands support rich biodiversity:
their presence increases landscape complexity within a terrestrial mosaic. They provide
habitat and forage for breeding waterbirds and offer refugia for a wide range of invertebrate
wildlife, including many that are agriculturally beneficial such as pollinators and natural
pest predators [12].

Despite their resilience and adaptability [13], these unique ecosystems are increas-
ingly under threat from climate change and human activities such as the expansion of
agriculture and associated irrigation, extensive water resource development, including
dam construction and water diversion, and infrastructure development [14,15]. The loss
of these floodplain wetlands can have devastating impacts on local biodiversity and the
overall health of the semi-arid landscapes [16]. To prevent further losses and degradation
of these critical ecosystems, effective management strategies are required.

Mapping is an indispensable tool for effective wetland monitoring and conservation.
It guides management decisions, and facilitates adaptive management [17,18], especially in
the context of the increasing unpredictability of climatic patterns associated with climate
change [19,20]. Mapping wetlands using traditional methods, such as ground survey and
aerial photo interpretation, is often time-consuming and resource-intensive [21]. Machine
learning algorithms, coupled with satellite imagery, offer promising solutions for automated
and accurate wetland mapping [22–24], providing essential insights into their dynamics
and responses to environmental changes [25,26]. Many studies have demonstrated the
efficiency and accuracy of wetland mapping at regional, national, and global scales by
applying machine learning algorithms to satellite data [21]. Using random forest (RF) with
Landsat-8 data, Amani et al. [27] presents the first Canadian national wetland inventory,
with an overall accuracy of 70.6%. Aiming to improve accuracy and efficiency in wetland
mapping, LaRocque et al. [28] employed various classification techniques to delineate
11 wetland classes in southern New Brunswick, Canada. By utilizing a combination of
remote sensing data sources including Landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and
LiDAR, they were able to achieve an overall accuracy of 97.67%. Li et al. [29] also proposed
an approach that integrated spectral indices derived from Landsat and Sentinel satellite
imagery, topographic variables, and climatic data within the GEE platform to classify
wetlands for the entire continent of Africa while achieving promising results.

Wetland mapping in intensive agricultural landscapes presents several unique chal-
lenges due to the dynamic nature of these ecosystems and the interactions with human
activities. First, agricultural landscapes are characterized by diverse land uses and man-
agement practices, leading to high variations in wetland types and characteristics over a
relatively small space [30]. This heterogeneity makes it difficult to develop standardized
mapping approaches. Second, wetlands can vary in size and shape, ranging from small,
isolated patches to large complexes [31] or narrow linear features fringing the riparian
zones [32], requiring high-resolution data and sophisticated analytical techniques. Third,
wetlands in agricultural landscapes are subject to more frequent temporal changes due to
seasonal fluctuations, land-use changes (e.g., crop rotation), and management practices,
such as irrigation and drainage. Mapping efforts need to account for these dynamics to
achieve a satisfactory performance. Finally, vegetation cover in agricultural landscapes
can obscure wetland boundaries. For example, the optical signatures between irrigated
crops and flooded amphibious plants can be barely distinguishable, resulting in less-than-
optimal classification and mapping accuracy in comparing with other landcover types [33].
Discriminating between wetland vegetation and surrounding landcover types requires
advanced remote sensing techniques, such as hyperspectral imagery [34], which are not
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publicly available and limited to small geographic areas. Recent studies [35,36] demonstrate
the potential of multi-temporal imagery that highlights plant phenological differences in
species-based vegetation community classification, leading to the introduction of land
surface phenological metrics in wetland classification and mapping [37]. A variety of
methods have been applied to multi-temporal spatial data to extract phenological metrics
(see a recent review by Misra et al. [38]). The harmonic analysis of time series (HANTS)
algorithm, introduced by Verhoef [39] for the reconstruction of outliers and missing data
simultaneously in time series with periodic behaviour, is more suitable for natural veg-
etation, such as forests, shrublands, and perennial grasslands, which might experience
limited multi-annual variation [40]. By integrating phenological variables derived from
time series of remote sensing data, researchers can improve the classification and mapping
of wetland types, providing valuable insights for wetland management, conservation, and
monitoring efforts [35,41,42]. This approach utilizes remote sensing imagery collected
over a period (normally over a year) to extract phenological variables that can capture
the unique vegetation response to the changes in environmental conditions (e.g., water
availability and soil moisture) and inundation regimes associated with specific wetland
vegetation types [42].

This study aims to establish a robust framework for wetland classification and map-
ping in intensive agricultural landscapes using time series of Sentinel-2 imagery, with a
focus on the Gwydir Wetland Complex. The wetlands are located in the northern Murray–
Darling Basin—Australia’s largest system of interconnected rivers. Despite being exten-
sively affected by long-term agricultural expansion, the Gwydir Wetland Complex remains
notable for its ecological significance and rich biodiversity, encompassing a diverse array
of wetland types such as floodplain marshes, woodlands, and riparian open forests, [43,44].
Specifically, the study seeks to (1) evaluate the contribution of HANTS metrics to wetland
mapping by comparing models with and without them, and (2) assess the performance of
random forest algorithms in discriminating compositional wetland vegetation types with
similar ecohydrological settings using the most effective predictors.

2. Methods
2.1. Study Area

The Gwydir Wetland Complex (Figure 1) is a significant wetland system located in
the northern part of New South Wales, Australia. It includes floodplain wetlands lakes
and river channels and covers approximately 200,000 hectares. This wetland complex that
includes two internationally recognized Ramsar sites and is renowned for its ecological
importance, providing critical habitat for a wide variety of flora and fauna, including
numerous species of waterbirds, fish, and reptiles [44]. The Gwydir Wetland Complex is
also recognized for its cultural significance to Indigenous communities, who have long-
standing connections to the land and waterways within the region [45].

Despite its ecological and cultural significance, the Gwydir Wetland Complex faces
multiple threats. These include habitat degradation due to human activities such as water
extraction for agriculture, invasive species, and altered flow regimes. The landscape of the
Gwydir Wetland Complex is marked by a mosaic of water regimes ranging from permanent
to ephemeral wetlands, which are interspersed with agricultural lands. The wetlands them-
selves are often described as relic wetlands, highlighting their reduced and fragmented state
due to historical land-use changes and water management practices. These relic wetlands
typically manifest as small, fragmented, and linear features along streams, reflecting the
impact of agricultural expansion and water diversion for irrigation. Conservation efforts,
such as providing environmental water for key vegetation communities (e.g., Bolboschoenus
wetlands), are a major management action to protect and restore this valuable ecosystem.
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Figure 1. The distribution of field sampling plots in the Gwydir Wetland Complex, located down-
stream of Gwydir catchment in the Murray–Darling Basin of Australia (inset map).

2.2. Field Survey

Ground-based surveys are crucial for calibrating and validating wetland mapping
based on remote sensing data. On-ground surveys enabled the validation and identification
of wetland boundaries, vegetation types, and hydrological characteristics. To ensure our
plots covered all major vegetation types, we adopted a stratified random sampling approach
to create field survey points. Firstly, we stratified the study area using three information
layers: vegetation class (nine vegetation classes mapped in 2015), preferred inundation
frequency following Roberts and Marston [46], and soil landscapes [47]. We rasterised the
shapefiles of these three information layers, stacked them, and created a 100 m internal
buffer from the boundaries of National Parks and Crownlands and a 50m internal buffer
for accessible roadside areas. This step divided the study area into relatively homogeneous
units (i.e., strata) in terms of vegetation composition. As the relic natural vegetation areas
in private lands are normally irregular and small, the grids size was 150 m × 150 m (vs.
250 m × 250 m in National Parks and Crownland areas) to ensure enough sample sites. A
total of 730 random sample sites were then drawn from the strata.

In June and July 2023, we collected rapid floristic data from 445 of the 730 randomly
generated points due to restricted access in some areas of the Gwydir Wetlands. We
recorded the identity and percentage cover of the five most dominant species in each
stratum within a 20 m × 20 m randomly generated plot, as well as its environmental
attributes (landscape position and soil characteristics).

To supplement our ground data in areas with limited access, ground data points
were utilized from contemporary mapping exercises within the study area. This included
an additional 326 ground data points from systematic and random meander vegetation
points [48], and by a consultancy team (the Alluvium Group (Eco Futures)) who provided
unpublished vegetation survey data as part of their preliminary mapping study of the
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vegetation of the Mallowa creek region. Since the vegetation survey schemes were the
same, we combined the two datasets to map the wetlands for the entire study area.

2.3. Vegetation Compositional Types

Each of the 771 ground survey samples was assigned a plant community type (PCT),
which is the master community-level typology used in New South Wales (NSW) planning
and assessment tools and state vegetation mapping and management programs (NSW
BioNet, website visit on 28 April 2024: https://www.environment.nsw.gov.au/topics/
animals-and-plants/biodiversity/nsw-bionet/about-bionet-vegetation-classification). We
then aggregated the PCTs into three levels of classification (Table 1). The first level distin-
guishes wetlands from other landcover types, i.e., croplands including irrigated pastures,
surface water—mainly farm dams, and terrestrial upland in more or less natural condi-
tion. The second level further divides wetlands into five functional groups: the frequently
flooded river red gum (Eucalyptus camaldulensis) forest, woodland, shrubland dominated by
shrub species including lignum (Duma florulenta) and nitre goosefoot (Chenopodium nitrari-
aceum) and small trees such as river cooba (Acacia stenophylla), sedgeland—the intermittent
grass-dominated wetlands, and marshes—frequently inundated wetlands dominated by
aquatic plant species. The third level distinguishes three woodlands: coolibah (Eucalyptus
coolabah) wetland dominated by coolibah and river cooba (Acacia stenophylla), coolibah
woodland (dominated by E. coolabah) and black box (E. largiflorens) woodland; and three
marshes based on dominant species: common reed or cumbungi (Phragmites australis and
Typha spp.) wetland, water couch (Paspalum distichum) wetland, and marsh club-rush (Bol-
boschoenus fluviatilis) wetland. The second and third level classification were based on the
NSW plant community types. We did not separate other landcover types into more detailed
classes since the focus of this study was to improve the performance of wetland mapping.

Table 1. The three levels landcover samples in the Gwydir Wetland Complex.

Level 1 Level 2 Level 3 No. of Samples

L1: Wetland

L11: Forested wetland L111: River red gum forest 69

L12: Woodland wetland
L121: Coolabah wetland woodland 115
L122: Coolabah open woodland 122
L123: Black box woodland 29

L13: Shrubland wetland L131: Lignum shrubland 92

L14: Marshes
L141: Common reed wetland 29
L142: Water couch wetland 25
L143: Marsh club-rush wetland 17

L15: Sedgeland L144: Sedgeland 73

L2: Terrestrial upland L21: Terrestrial upland L211: Terrestrial upland 104

L3: Cropland L31: Cropland L311: Cropland 77

L4: Water L41: Water L411: Water 19

We developed three sets of machine learning classification models for each level of
landcover (see Section 2.6 below) that resulted in a total of nine landcover maps. We then
compared the performance of the nine models using a benchmark experiment [48,49] ap-
proach. This enables maps with different levels of detail to be used for specific management
purposes. For example, level one maps could be used for environmental reporting, while
level three maps could be used to guide environmental water delivery to a targeted wetland
community.

2.4. Topographic Variables

We downloaded the 5 m airborne light detection and ranging (LiDAR) digital elevation
model (DEM) covering the study site from Geoscience Australia (https://elevation.fsdf.org.

https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/nsw-bionet/about-bionet-vegetation-classification
https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/nsw-bionet/about-bionet-vegetation-classification
https://elevation.fsdf.org.au/
https://elevation.fsdf.org.au/
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au/, website accessed on 15 February 2024). The 5 m DEM was corrected with field survey
transects for streams and water bodies using field survey transects; it has a fundamental
vertical accuracy of at least 0.30 m (95% confidence) and horizontal accuracy of at least
0.80 m (95% confidence). The 5 m DEM was resampled to 20 m using bilinear interpolation.
The detailed LiDAR DEM is not available for the western part of the Gwydir Catchment.
The gap was filled with the 30 m smoothed digital elevation model (DEM-S) using a
simple linear regression. DEM-S was derived from the SRTM data acquired by NASA in
February 2000 [50]. DEM-S represents ground surface topography (excluding vegetation
features) and has been smoothed to reduce noise and improve the representation of surface
shape [51]. Three topographic variables were derived from the DEM-S: de-trended DEM,
local (within a 3 × 3 pixel window) deviation from global, and surface curvature, which is
the second derivative of a surface (i.e., the slope of the slope) [52–54]. The three variables
are all related to water availability and soil moisture condition, which are important for
vegetation establishment and growth.

2.5. Sentinel-2 Based Variables

All available Sentinel-2 atmospheric corrected surface reflectance (SR) images (a to-
tal of 152 from two tiles) for the 2022 water year (30 June 2022–1 July 2023) were used
for landcover classification and mapping. Sentinel-2 Earth observation mission by the
European Space Agency consists of two satellites (Sentinel-2A and Sentinel-2B) with a
revisit frequency of 5 days. Image pre-processing (including cloud and cloud shadow
masking), calculating vegetation indices (VI) and statistical summary of VI time series,
and phenological feature extracting, were conducted using the Google Earth Engine (GEE)
platform. The cloud and cloud shadow were masked out at pixel level with the Cloud
Score+ S2_HARMONIZED dataset [55]. We adopted a relatively high-quality score (0.70)
to remove the occluded pixels.

2.5.1. Tasseled Cap Transformations (TCT)

Previous studies [56–58] have shown that Tasseled Cap transformations (TCT) [57]
can be valuable in remote sensing classification by reducing dimensionality, extracting
relevant features, enhancing discrimination, and reducing noise. By integrating TCT with
classification techniques, valuable thematic information from remote sensing imagery can
be extracted for various applications, including landcover mapping, land-use classification,
and environmental monitoring. In this study, three TCT components, for brightness,
wetness, and greenness, were calculated from the median image of the time series using
the coefficients proposed by Healey et al. [58].

2.5.2. Vegetation Indices and Calculation of Statistical and Phenological Features

There are more than 100 empirical spectral-based vegetation indices (VI) being de-
veloped and used to monitor Earth system dynamics [59,60]. We selected six VIs derived
from multispectral Sentinel-2 SR imagery to suit cropland dominance in the landscape: the
generalized kernel NDVI (kNDVI), the inverted red-edge chlorophyll index (IRECI), the
modified normalized difference water index (MNDWI), the normalized difference moisture
index (NDMI), and the enhanced modified bare soil index (EMBI) (Table 2).

https://elevation.fsdf.org.au/
https://elevation.fsdf.org.au/
https://elevation.fsdf.org.au/
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Table 2. Spectral indices used to discriminate landcover in the Gwydir Wetland Complex.

Index Formula Relevance Reference

kNDVI tan h
[(

NIR−red
2σ

)2
] kNDVI improves accuracy in monitoring

vegetation parameters such as LAI and GPP. [61]

NDRE Rededge740−Rededge704
Rededge740+Rededge704

NDRE is sensitive not only to chlorophyll
content but also to canopy structure and
composition variations. Differences in leaf angle
distribution, canopy density, and leaf area index
(LAI) influence the reflectance properties in the
red-edge region, which NDRE can capture.

[62]

IRECI NIR−red
Re1/Re2 Highly correlated with leaf chlorophyll content. [63]

NDMI NIR−SWIR1
NIR+SWIR1

NDMI detects moisture levels in vegetation,
providing an indicator for vegetation water
stress levels.

[64]

MNDWI Green−SWIR1
Green+SWIR1

MNDWI highlights water bodies and monitor
their turbidity. [65]

EMBI
MBI−MNDWI−0.5
MBI+MNDWI+1.5 and
MBI = SWIR1−SWIR2−NIR

SWIR1+SWIR2+NIR + 0.5

EMBI enhances detecting bare soil areas, can be
valuable to differentiate bare soil and other
landcover types. Due to the high contrast
between bare soil and vegetation, EMBI provides
a continuum ranging from high vegetation cover
to exposed soil.

[66]

Note: SWIR1 and SWIR2 are shortwave infrared band 11 and band 12, respectively; NIR is near-infrared band 8;
red and green are the red band 4 and green band 4; Re1 and Re2 and red edge band 5 and red edge band 6. σ is a
length-scale parameter.

Using the time series of VI, two groups of predictor variables were calculated to
develop machine learning classification models: statistical and phenological features.

The statistical features are the five simple summary variables, including minimum,
median, maximum, the range average in the 25–75% percentile intervals, and standard
deviation of the six vegetation indices.

The phenological features are based on the harmonic analysis of time series data
(HANTS). HANTS is one of the most widely recognized reconstruction methods to model
satellite time series observations [67]. HANTS decomposes time series into a series of
harmonic components (i.e., a set of sine or cosine curves in Equation (1)), which capture
the seasonal variation, periodic trends, and cyclic patterns present in the remote sensing
data [68].

Different landcover types, such as forests, croplands, and water bodies, exhibit
distinct temporal patterns in terms of vegetation growth, phenology, and land surface
dynamics [68,69]. By analysing the harmonic components of time series remote sensing
data, landcover types can be effectively discriminated and classified with high accuracy [68].
Here, we explored the potential of the extracted phenological metrics (i.e., the amplitude
(Equation (2)) and phase (Equation (3)) of all harmonic components) to further distinguish
the wetland vegetation communities (Table 2).

Yt = a0 + ct + ∑N
n=1[an cos(2πnt/T) + bn sin(2πnt/T)] + εt (1)

where Yt is the fitted value at date t; T is mean number of days in a year (i.e., T = 365.2425);
and N is the number of cycles in the time series (i.e., the number of harmonic components
associated with the frequency of the time series, T). The harmonics (we selected two in this
study) consist of a base frequency and a series of integer multiples of the base frequency; an
and bn are coefficients of the trigonometric components; a0 can be viewed as the coefficient
at zero frequency, which is the average of the series; c is the linear trend; and εt is the
residual of harmonic fitting.
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With the fitted coefficients, amplitude and phase for the n-th harmonic components
are calculated:

Amplitude =

√
an2 + bn

2 (2)

Phase = atan−1
(

bn

an

)
(3)

The model residuals, amplitude, and phase for both harmonic components were used
as HANTS features for the development of classification models. We included the residuals
to capture the possible erratic response of riparian vegetation communities to river flows,
which may not manifest in broad floodplain communities.

All predictors were resampled to 20m spatial resolution for consistency.

2.6. Machine Learning Classification
2.6.1. Development of Random Forest Models

We modelled the distribution of the landcover classes using random forest (RF) im-
plemented in the R package “Caret” [70]. RF is an extension of decision tree classifiers,
consisting of an ensemble of decision trees, in which each tree is constructed using a subset
of training samples with replacements [71]. RF is a widely used supervised machine learn-
ing method for classification and regression [72], especially for landcover and land-use
mapping. It is also useful in discriminating wetland vegetation compositions [73,74].

We developed three set random forest (RF) models (Table 3) for each level of landcover
classification. The most comprehensive models have all the predictors, i.e., topographic
and TCT (inferred as basic predictors thereafter) and both statistical and HANTS features.
The others involved basic predictors, and either statistically or HANTS-generated features.

Table 3. Inputs for random forest classifiers.

Models M1 M2 M3

Predictors Topographic, TCT, statistical
and HANTS features

Topographic, TCT,
statistical features

Topographic, TCT,
HANTS features

Before modelling, all predictor variables are normalized so that the whole dataset
is in a common frame [75]. The dataset was split into training (75%) and testing (25%)
subsets using stratified random sampling. With the training dataset, a 10-fold repeated
(5 times) cross-validation method was used for model tuning. The landcover (use) classes
are highly unbalanced (minimum 17 and maximum 130, Table 1), and most machine
learning models tend to be more efficient and accurate in predicting the majority class
than the minority class [76]. In model tuning, we adopted the hybrid “smote” (synthetic
minority sampling technique), which down samples the majority class and synthesizes new
minority instances by interpolating between existing ones [77] to correct this behaviour,
so that class frequencies match the least prevalent class. The “smote” was conducted
inside of resampling when calling the “train” function of “Caret” package. In addition, we
determined the “granularity” of the tune grid by setting the tuneLength = 10 in the “train”
function to search the optimal model that has the highest accuracy.

Although RF is relatively robust to correlated predictor variables [78], highly correlated
inputs could lead to inflated training performance and lower the prediction power [79]. To
identify and exclude highly correlated predictors, we first randomly sampled 5000 points
from the model domain (i.e., the entire Gwydir Wetland Complex), and used the 5000 points
to extract all predictor variables. We then used variance inflation factor (VIF) to test the
collinearity among variables. Variables with a VIF greater than 5 [79] were excluded for the
following modelling.
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2.6.2. Classification Accuracy

The classification accuracy was assessed at both model and class level. At model level,
we evaluated the performance with two widely used metrics in machine learning: the
overall accuracy (OA, Equation (4)) and sample-weighted F1 score (Equation (6)). Both
metrics have their own advantages and disadvantages. With the F1 score, the harmonic
mean of the precision and recall of a classification model (Equation (5)) offers a more
nuanced evaluation; however, overall accuracy provides a straightforward measure of
correctness. The choice between the two depends on the specific requirements of the
classification problem and the class distribution of the dataset [80].

At class level, the class-dependent performance of fitted models in separating one
landcover from others was evaluated in terms of F1 score, precision (Equation (7)) and
recall (Equation (8)). We report both training and testing performance metrics. The overall
accuracy, precision, recall, and F1 score (Equation (5)) were calculated from the confu-
sion matrix.

OA =
TN + TP

TN + FN + TP + FP
(4)

F1 =
2 × precision × recall

precision + recall
(5)

Weighted F1 = ∑N
i=1 wi × F1i, and wi =

ni

N
(6)

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

where TN and TP are true negative and true positive; and FN and FP are false negative
and false positive, respectively. N is the number of total samples and ni is the number of
samples for class i.

Please note that the model tuning includes a 10-fold cross-validation procedure, which
splits the training dataset into 75/25 for model checking. Therefore, the difference between
the training and testing accuracy should be minimal if there are sufficient samples.

2.7. Model Comparison

A benchmark experiment [46,47] was adopted to compare the performance of the three
sets of RF models for each classification level. In benchmarking, 50 samples are drawn from
the same training dataset (by setting the same seed number during model tuning) using
bootstrapping, i.e., resampling with replacement. The significance in difference of model
performance metrics (we included overall accuracy and the means of precision, recall and
F1-score across the classes) was then tested using a simple t-test with Bonferroni-adjusted
p value.

3. Results
3.1. Model Performance
3.1.1. Level One Classification

All models performed well for level one classification according to the weighted F1
score and overall accuracy (Table 4). Moreover, the performance of testing is comparable to
that of training, indicating there is limited concern of overfitting [81].
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Table 4. Performance of Level 1 classification models for the Gwydir Wetland Complex.

Class Validation
M1 M2 M3 M1 M2 M3 M1 M2 M3

F1 Precision Recall

L1: Wetland
Training 0.936 0.921 0.933 0.933 0.925 0.933 0.940 0.918 0.932
Testing 0.933 0.916 0.903 0.943 0.916 0.926 0.923 0.916 0.881

L2: Terrestrial upland Training 0.706 0.634 0.692 0.731 0.635 0.725 0.682 0.633 0.662
Testing 0.750 0.654 0.632 0.700 0.654 0.581 0.808 0.654 0.692

L3: Cropland Training 0.950 0.945 0.919 0.952 0.936 0.880 0.948 0.955 0.962
Testing 0.889 0.865 0.872 0.941 0.889 0.850 0.842 0.842 0.895

L4: Water
Training 0.859 0.875 0.875 0.795 0.824 0.824 0.933 0.933 0.933
Testing 0.667 0.667 0.667 0.600 0.600 0.600 0.750 0.750 0.750

Weighted F1 Training 0.915 0.898 0.903

Testing 0.928 0.918 0.878

Overall accuracy Training 0.916 0.898 0.916
Testing 0.927 0.917 0.927

M1, with all predictors; M2, with basic predictors and statistical features of vegetation indices; and M3, with basic
predictors and HANTS features.

For each landcover class, the models were excellent for separating wetlands and
croplands from other classes (i.e., all training F1 scores are greater than 0.9 and the overall
accuracy was greater than or close to 0.9). The worst case was for discriminating terrestrial
from other classes with training F1 scores of 0.706, 0.634, and 0.692 for M1, M2, and M3,
respectively. However, the classification may be considered efficient even for the worst case
(i.e., F1 score > 0.6). For open water, the training performance was good (F1 score > 0.8);
however, there was a large decrease in the testing performance (F1 score = 0.667 for all
models). The discrepancy is likely caused by the small test samples. With only four testing
samples, one error resulted in dramatic reductions in performance assessment metrics.

3.1.2. Level Two Classification

Further discrimination of wetlands into five broad groups decreased the models’
performance (Table 5). Generally, the weighted F1 score and overall accuracy were greater
than 0.7, meaning these models were considered sufficient.

Table 5. Performance of Level 2 classification models for the Gwydir Wetland Complex.

Class Validation M1 M2 M3 M1 M2 M3 M1 M2 M3
F1 Precision Recall

L11: Forested wetland Training 0.702 0.693 0.695 0.669 0.647 0.665 0.738 0.746 0.727
Testing 0.789 0.800 0.800 0.714 0.696 0.778 0.882 0.941 0.824

L12: Woody wetland Training 0.797 0.718 0.802 0.835 0.773 0.841 0.763 0.671 0.767
Testing 0.784 0.764 0.760 0.845 0.839 0.790 0.731 0.701 0.731

L13: Shrub wetland Training 0.608 0.531 0.571 0.565 0.503 0.528 0.658 0.562 0.620
Testing 0.744 0.727 0.711 0.800 0.762 0.727 0.696 0.696 0.696

L14: Marshes Training 0.834 0.772 0.816 0.842 0.798 0.818 0.826 0.748 0.815
Testing 0.865 0.882 0.865 0.800 0.882 0.800 0.941 0.882 0.941

L15: Sedgeland Training 0.643 0.539 0.606 0.638 0.490 0.620 0.647 0.600 0.593
Testing 0.686 0.605 0.563 0.706 0.520 0.643 0.667 0.722 0.500

L21: Terrestrial upland Training 0.715 0.662 0.664 0.729 0.679 0.669 0.703 0.646 0.659
Testing 0.714 0.760 0.643 0.667 0.792 0.600 0.769 0.731 0.692

L31: Cropland Training 0.937 0.936 0.936 0.926 0.909 0.909 0.948 0.966 0.966
Testing 0.895 0.865 0.865 0.895 0.889 0.889 0.895 0.842 0.842

L41: Water Training 0.875 0.899 0.903 0.824 0.855 0.875 0.933 0.947 0.933
Testing 0.600 0.545 0.545 0.500 0.429 0.429 0.750 0.750 0.750

Weighted F1 Training 0.771 0.728 0.750
Testing 0.803 0.798 0.801

Overall Training 0.769 0.725 0.769
Testing 0.802 0.797 0.802
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For the modelled wetland classes, the classifiers were highly efficient in detecting
marshes, especially with features including phenology (i.e., M1 and M3) (F1 score > 0.8,
Table 5). Moreover, the comparable precision and recall indicated that the models were
well-balanced. They had high capacity to correctly identify marshes and to avoid wrongly
classifying other vegetation communities as marshes. In contrast, the models were less
efficient in discriminating shrub wetlands even with all predictors (F1 score = 0.608 and
0.744 for training and testing datasets, respectively, Table 5). A close examination of the
confusion matrix revealed that the inter-class misinterpretations between woodlands and
shrublands contributed the most to the low discrimination power. Nevertheless, the F1
score suggested a good classification (F1 = 0.797 and 0.744 for M1 training and testing
Table 5) for woodlands, and the precision and recall indicated that the model was well-
balanced. The inconsistency is likely due to the imbalance in the sample number (the
woodland has nearly three times more samples than shrubland). The models were also
sufficient in identifying river red gum forests. However, the lower precision suggested
that the models tended to mis-classify other landcover types as river red gum forests
(shrublands and woodlands based on the model confusion matrix).

3.1.3. Level Three Classification

When progressing to separate the wetlands into more detailed groups with different
vegetation compositions, the model performance metrics deteriorated as expected (Table 6).
However, the models were still useful with the overall accuracy and F1 score close to 0.7,
especially for M1. In comparison with the woodlands, the models were more efficient at
discriminating the vegetation communities within the more frequently flooded marshes.

Table 6. Performance of Level 3 classification models for the Gwydir Wetland Complex.

Class Validation
M1 M2 M3 M1 M2 M3 M1 M2 M3

F1 Precision Recall

L111: River red gum forest Training 0.762 0.751 0.755 0.707 0.694 0.735 0.827 0.819 0.777
Testing 0.667 0.571 0.667 0.769 0.556 0.688 0.588 0.588 0.647

L121: Coolabah wetland woodland Training 0.612 0.565 0.578 0.718 0.632 0.651 0.533 0.510 0.520
Testing 0.583 0.462 0.500 0.700 0.500 0.500 0.500 0.429 0.500

L122: Coolabah open woodland Training 0.594 0.551 0.558 0.613 0.602 0.574 0.576 0.508 0.544
Testing 0.633 0.433 0.633 0.655 0.448 0.655 0.613 0.419 0.613

L123: Black box woodland Training 0.577 0.494 0.565 0.522 0.425 0.528 0.645 0.591 0.609
Testing 0.833 0.364 0.727 1.000 0.500 1.000 0.714 0.286 0.571

L131: Lignum shrubland Training 0.609 0.622 0.623 0.576 0.588 0.593 0.646 0.661 0.655
Testing 0.596 0.449 0.638 0.583 0.423 0.625 0.609 0.478 0.652

L141: Common reed wetland Training 0.684 0.590 0.637 0.661 0.573 0.628 0.709 0.609 0.645
Testing 0.556 0.615 0.526 0.455 0.667 0.417 0.714 0.571 0.714

L142: Water couch wetland Training 0.896 0.866 0.866 0.849 0.821 0.821 0.947 0.916 0.916
Testing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

L143: Marsh club-rush Wetlands Training 0.775 0.774 0.763 0.781 0.667 0.758 0.769 0.923 0.769
Testing 0.667 0.333 0.400 1.000 0.250 1.000 0.500 0.500 0.250

L144: Sedgeland Training 0.625 0.549 0.561 0.614 0.518 0.558 0.636 0.585 0.564
Testing 0.432 0.457 0.438 0.421 0.471 0.500 0.444 0.444 0.389

L211: Terrestrial upland Training 0.718 0.654 0.689 0.728 0.725 0.694 0.708 0.595 0.685
Testing 0.702 0.588 0.679 0.645 0.600 0.667 0.769 0.577 0.692

L311: Cropland Training 0.940 0.906 0.908 0.938 0.898 0.870 0.941 0.914 0.948
Testing 0.864 0.927 0.837 0.760 0.864 0.750 1.000 1.000 0.947

L411: Water Training 0.875 0.875 0.877 0.824 0.824 0.850 0.933 0.933 0.907
Testing 0.667 0.667 0.667 0.600 0.600 0.600 0.750 0.750 0.750

Weighted F1 Training 0.703 0.696 0.698

Testing 0.690 0.649 0.655

Overall Training 0.706 0.700 0.702
Testing 0.691 0.654 0.665

Wetlands dominated by water couch were classified with very high precision and recall
(greater than 0.9, Table 6), followed by those dominated by marsh club-rush (F1 score = 0.775).
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Even though the F1 score was lower for the common reed wetlands and sedgelands, it was
still greater than 0.5, and the models can be considered acceptable. While the confusion
with woodlands contributed the most to the low performance for sedgelands, the low F1
score for the common reed wetland was mostly caused by the confusion with sedgelands.

3.2. Model Comparison

For the three levels of classification, the model with all predictors (M1) had significantly
better performances in the majority of cases in terms of F1 score, overall accuracy, and
mean recall and precision (Table 7, Figure 2). The performance difference between M1 and
M2 (model with basic predictors and statistical features) was higher than that between M1
and M3 (model with basic predictors and HANTS features). Although M3 generally had
better performance than M2, the difference was not significant in some cases (Table 7).

Table 7. The difference in performance metrices between models (p values in bold indicate the
difference is significant at 0.05 level) for the Gwydir Wetland Complex.

Level Metric M1 vs. M2 M1 vs. M3 M2 vs. M3
Difference p-Value Difference p-Value Difference p-Value

L1 Accuracy 0.024 <0.001 0.007 0.014 −0.017 0.004
F1 0.021 <0.001 0.009 0.023 −0.011 0.117
Mean precision 0.022 0.005 0.013 0.009 −0.008 0.366
Mean recall 0.021 <0.001 0.006 0.192 −0.016 0.007

L2 Accuracy 0.059 <0.001 0.015 0.002 −0.044 <0.001
F1 0.042 <0.001 0.013 0.007 −0.028 <0.001
Mean precision 0.048 <0.001 0.010 0.110 −0.038 <0.001
Mean recall 0.035 <0.001 0.017 <0.001 −0.018 0.005

L3 Accuracy 0.035 <0.001 0.025 <0.001 −0.010 0.196
F1 0.038 <0.001 0.024 0.001 −0.016 0.034
Mean precision 0.044 <0.001 0.02 0.009 −0.034 0.002
Mean recall 0.019 0.009 0.027 <0.001 0.008 0.329

The p-values are Bonferroni-adjusted.
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Figure 2. The distribution of model performance metrics generated by resampling the predictions
using the same testing dataset. Dots are the mean, vertical bars are the standard deviation, and
shadows are the distribution of the 50 resamples. M1 = model with all predictors; M2 = model with
basic predictors and statistical features; and M3 = model with basic predictors and HANTS features.
L1, L2, and L3 are class level 1 (4 types), level 2 (8 types), and level 3 (12 types).
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For all performance metrics of the three levels of classification, M1 had the smallest
standard deviation (sd, Figure 2), suggesting that the models with all predictor variables
were the most balanced and robust; therefore, prediction maps produced with M1 would
have highest reliability.

3.3. Predicted Wetland Distribution

Figure 3 presents the nine prediction maps. We did not have access to contemporary,
independent landcover maps for comparison, so we have used aerial photos captured in
2022 for qualitative comparison purposes (Figure 4). We focused on the prediction of M1,
the most robust classifier.

The largest landcover in the Gwydir is cropland, and accounts for more than 60%
of the total modelled domain (276,005 ha, Table 8), followed by wetlands (126,178 ha or
29.05%), terrestrial vegetation (21,622 ha, 4.98%), and open water (10,511 ha, 2.42%). Note
that the mapped croplands were cultivated lands, as the edges of paddies, often covered by
shrubs and grasses, were generally modelled as shrublands (Figure 4).
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Figure 4. Virtual comparison between aerial photo and predicted landcover types of a section in
Gwydir Wetland System showing the correct identification of small farm dams, relic native vegetation
patches, and linear river red gum forests along creeks.

Table 8. Summary of the mapped landcover in Gwydir based on the prediction maps of M1 that
involved all predictor variables.

Class Area (ha) Percentage

L111: River red gum forest 5775 1.33
L121: Coolabah wetland woodland 11,353 2.61
L122: Coolabah open woodland 40,727 9.38
L123: Black box woodland 23,063 5.31
L131: Shrubland 11,308 2.60
L141: Common reed wetland 6037 1.39
L142: Water couch wetland 991 0.23
L143: Marsh club-rush wetland 1694 0.39
L144: Sedgeland 25,230 5.81
L211: Terrestrial 21,622 4.98
L311: Cropland 276,005 63.55
L411: Water 10,511 2.42

The model is highly efficient in delineation of surface waters, most of which are farm
dams for irrigation. M1 correctly identified all 91 mapped farm dams in the 2017 land-
use map [82], and the smallest dam identified using M1 has an area of just over 3000 m2

(8 modelling pixels).
The mapped river red gum forests, which are linear features along the main rivers and

streams, were largely in agreement with the aerial photos (Figure 4). The total area of river
red gum forests was 5775 ha (1.33%).

Small patches of relic natural landcover (wetlands and terrestrial vegetation) within
the croplands were also correctly identified and delineated (Figure 4).

3.4. Key Predictors to Discriminate Wetland

The VIF process selected a total of 34 predictor variables to build the random forest
model. Predictors from all four groups were selected (Figure 5). Also, features (simple
statistics and/or HANTS) from all six vegetation indices were involved. One topographic
variable (detrended elevation) and one TCT component (brightness) were included in the
modelling procedure. The spatial and temporal variations of the other two TCT components,
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i.e., greenness and wetness, are likely captioned by vegetation indices such as MNDWI and
NDMI. The most important variable was the mean MNDWI, followed by minimum NDRE.
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Figure 5. Importance of the top 21 predictors with importance of over 10. Importance is scored
so the most important variable has a score of 100, and the variable with least contribution to the
performance of the model has a score of 0. Res-NDMI is the residuals of the harmonical fitting of
NDMI time series.

4. Discussion

Our study found that land surface phenological metrics are important in discriminat-
ing relic wetlands in highly fragmented agricultural landscapes. Furthermore, we showed
the potential and limitations of using machine learning algorithms with phenological
variables for delineation of wetlands with different vegetation compositions.

4.1. The Value of HANTS in Wetland Identification

The RF models that included HANTS features generally had better performance
for all three levels of classification (i.e., higher overall accuracy and weighted F1 score,
Tables 4–6), and the difference was significant in almost all cases according to the analysis
of the benchmark experiments (Table 7). The findings suggest that harmonic analysis of
satellite time series is a powerful technique for landcover classification and mapping [67],
especially for differentiating wetlands with different vegetation composition [38].

Different landcover classes may exhibit distinct seasonal patterns of growth, phenology,
and reflectance due to varying environmental factors and land management practices [83].
Harmonic analysis effectively captures these temporal signatures, enabling the identifi-
cation and characterization of different landcover types based on their unique temporal
behaviour (Figure S1). The simple statistical summary of the VI time series, such as the
annual medium, minimum, maximum, and standard deviation, focuses on the prevailing
conditions and may not reflect the finer temporal dynamics. Many studies recognized the
importance of seasonal patterns of growth and used seasonal summary of remote sensing
data for vegetation classification and mapping [3,35]. The inclusion of HANTS features
(i.e., amplitude and phases in this study) facilitates the detection of subtle variations and
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trends that may not be apparent from statistical features. The comparison between M2 and
M3 (Table 7) demonstrates the superiority of HANTS features over statistical features in
differentiating landcover types.

4.2. The Potential and Limits of Using HANTS Features to Discriminate Wetland Types

The study also demonstrates the potentials of HANTS features in differentiating
the major wetland types with different vegetation communities. Our results show that
the RF models with all predictors can separate wetland types based on the vegetation
compositions with high accuracy for the low-laying and frequently flooded river red
gum forests and grassy marshes. These wetlands are relatively homogeneous in terms
of vegetation composition. For example, the marsh club-rush wetland is dominated by
Bolboschoenus fluviatilis (canopy cover generally > 40%), which forms densely, and stands up
to 2 m tall [84]. Nevertheless, the inter-class confusion (Table S1) increased when vegetation
cover became more heterogeneous within transition zones. For example, the models had
the lowest performance for sedgelands, which are often found between the edge of (semi-
)permanent marshes and terrestrial uplands, typically consisting of wetland plants such as
Phragmites, Typha, and Paspalum species at the wet end and Ficinia and Juncus at the drier
side. In general, wetlands lack a defined boundary, and their border is almost fuzzy, since
they gradually transit from one type to another [22,85,86]. Moreover, these transient zones
often fluctuate dramatically depending on season and year [85].

The classification performance was generally lower for the less inundated wetlands
including woodlands and sedgelands with mixed vegetation communities (Table 7). These
wetlands are ‘savanna like’ grassy woodlands and have very sparse trees with canopy
cover greater than 0.2% [87]. Typically, these woodlands form mosaics with grasslands,
shrublands, and marshes, and, thus, have higher rate of being misclassified (see Table
S1 for the confusion matrices). Moreover, the spectral signatures of woodland are more
determined by the ground cover plant assemblages that vary depending on past and
present grazing pressure (classified as grazed native vegetation in the 2017 NSW land-use
map) as well as the soil moisture levels [88], contributing to the higher confusion between
woodlands, shrublands, and sedgelands [3].

The relatively lower performances for woodlands and sedgelands could be improved
by combining Sentinel-2 and Sentinel-1 time series [89], as the different landcovers were
found to have unique time series curves in both the optical (Sentinel-2) and SAR (Sentinel-1)
domains, which could lead to improved classification accuracy [38].

5. Conclusions

The increasing availability of satellite missions offering free imagery with relatively
high temporal, spatial, and spectral resolutions provides opportunities for efficient land-
cover classification and mapping across large areas. In this study, we investigated the value
and limits of HANTS features modelled from Sentinel-2 imagery in accurately classifying
and mapping wetland types across a highly fragmented agricultural landscape. We found
that machine learning models with both HANTS and statistical features have significant
higher overall accuracy and F1 scores (p < 0.05) when comparing with models with one
feature (either statistical or HANTS), increasing the performance by up to 6.1% (overall
accuracy) and 6.4% (F1 score). While the models have excellent performance (F1 score
greater than 0.9) in distinguishing wetlands from other landcovers (croplands, terrestrial
uplands, and open waters), the inter-class discriminating power among wetlands are
class-specific: wetlands that are frequently inundated (including river red gum forests and
wetlands dominated by common reed, water couch, and marsh club-rush) are generally
better identified than the ones that are flooded less frequently such as sedgelands and
woodlands dominated by black box and coolibah.
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