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Abstract: Aircraft wake vortices are serious threats to aviation safety. The Pulsed Coherent Doppler
Lidar (PCDL) has been widely used in the observation of aircraft wake vortices due to its advantages
of high spatial-temporal resolution and high precision. However, the post-processing algorithms
require significant computing resources, which cannot achieve the real-time detection of a wake
vortex (WV). This paper presents an improved Convolutional Neural Network (CNN) method for
WYV locating and grading based on PCDL data to avoid the influence of unstable ambient wind fields
on the localization and classification results of WV. Typical WV cases are selected for analysis, and the
WYV locating and grading models are validated on different test sets. The consistency of the analytical
algorithm and the CNN algorithm is verified. The results indicate that the improved CNN method
achieves satisfactory recognition accuracy with higher efficiency and better robustness, especially in
the case of strong turbulence, where the CNN method recognizes the wake vortex while the analytical
method cannot. The improved CNN method is expected to be applied to optimize the current aircraft
spacing criteria, which is promising in terms of aviation safety and economic benefit improvement.

Keywords: aircraft wake vortex; Coherent Doppler Lidar; Convolutional Neural Network

1. Introduction

An aircraft wake vortex is a pair of vortex structures generated by the lift force exerted
on aircraft wings, also called a “wing tip vortex”, which may cause serious damage to
the following aircraft, especially during the landing and take-off phases [1,2]. Thus, most
airports adopt regulations based on conservative separation for safety concerns, limiting
airport capacity greatly. Facing the problems of safety and capacity, there have been a large
number of studies on aircraft spacing and aircraft safety systems [3-5]. Theoretical research
methods including numerical simulations and wind tunnel tests have been studied in
depth to explore the characteristics of the evolutionary process of the wake vortex [6-8].
However, these methods can only simulate the wake vortex evolutionary process roughly
due to the lack of high-precision atmospheric parameters, especially under near-surface
conditions where the evolutionary characteristics of wake vortices are related to various
factors such as headwind, crosswind, turbulence, etc.

In recent years, the Pulsed Coherent Doppler Lidar (PCDL) has become an effective
method of aircraft wake vortex observation utilized by the International Civil Aviation
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Organization (ICAO) and has been employed across different platforms for the study of
wake vortex characteristics and evolutionary processes under various circumstances [9-13].
The main characteristics of the wake vortex obtained via the PCDL are the wake vortex
position and intensity, which are commonly utilized to track the evolutionary trajectory of
the wake vortex and assess the potential hazards of the wake vortex intensity on the
subsequent aircraft. Currently, the wake vortex retrieval algorithms based on PCDL
data are mainly divided into two categories, the analytical algorithms and the machine
learning algorithms.

The analytical algorithms of aircraft wake vortex recognition mainly focus on how to
calculate the position of wake vortices and the circulation value representing the intensity
of wake vortices precisely in previous literature. The commonly used methods primarily
include the velocity envelope method and the radial velocity method, both of which
calculate the characteristic parameters of wake vortices such as core position, tilt angle,
circulation, and so on based on the velocity fields obtained via PCDL measurements.
The velocity envelope method can obtain precise vortex parameters based on tangential
velocity, which requires relatively high signal-to-noise ratio (SNR) lidar data [9]. The
radial velocity method was proposed for the estimation of wake vortex parameters under
stationary conditions and weak turbulence, giving an equivalent error on core position and
a larger relative error of 20% on circulation estimation, compared to the velocity envelope
method [12]. The specific impact of the circulation error on aircraft spacing during take-off
and landing phases needs to be evaluated based on parameters such as the circulation
value, background wind field condition, turbulence intensity, and other relevant factors.
The two methods can be combined to achieve higher positioning accuracy to solve the
incorrect location caused by complex background wind fields and strong turbulence, with
a faster speed [13,14]. The correction method of circulation estimation is used to avoid the
underestimation and overestimation of vortex circulation, caused by the relative movement
between the laser beam and the wake vortex under near-ground effect [2].

The analytical algorithm plays a vital role in the analysis of the wake vortex evolution-
ary process. However, it cannot meet the requirement of obtaining wake vortex parameters
in real time for air traffic control due to the limitation of computing resources. In recent
years, deep learning methods have been used widely, to provide a new method for fast
analysis of characteristics of aircraft wake vortices. The deep learning algorithms primarily
ascertain the presence of wake vortices and identify their respective spatial regions utilizing
image feature recognition. The existence of wake vortex has been studied by employing
various deep learning models based on image data sets, achieving good accuracy [15-17].
The deep learning models also showed their applicability in the estimation of wake vortex
parameters including the vortex core position and vortex intensity [18,19]. The image
data sets used in the above existing algorithms are solely derived from the radial wind
velocities, which require a relatively stable ambient wind field, resulting in insufficient anti-
interference ability. In radial velocity images, the structure of the wake vortex is susceptible
to influences from turbulence, gusts, and other factors. Meanwhile, the resulting variations
in image features caused by wind speed fluctuations are potentially recognized as a wake
vortex. That is, there will be misidentification and missing identification when strong
turbulence or interference exists. A deep learning method based on frequency-domain data
obtained from PCDLs is presented to reduce the effect of disturbances by combining both
radial velocity and spectrum width, achieving good accuracy on wake vortex recognition.

This paper is composed of five sections. Section 2 introduces the methods to construct
the data sets and to train the deep learning models for wake vortex locating and grad-
ing. Section 3 provides the models” performance including typical cases and statistical
evaluation. Section 4 discusses the reason for the different performances of the models
considering the climatological information. Section 5 summarizes the conclusion and
outlook of this paper.
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2. Methodology
2.1. Experiments and Data

The evolution of a wake vortex is closely related to terrain, climate, and weather
conditions. The observation experiments were conducted at two different airports located
in East China and Southwest China, respectively, to explore the characteristic difference of
the wake vortex caused by meteorological and topographic factors.

The locations of Chengdu Shuangliu International Airport (ZUUU) and Qingdao
Liuting International Airport (ZSQD) are shown in Figure 1a. The former is a subtropical
monsoon climate with high temperature and humidity in summer, located in the basin. The
latter is a temperate monsoon climate, with high wind speed in spring, located in the coastal
hills. The number of effectively observed aircraft sorties exceeded 4000 (totally observed
sorties > 8000), with the lidar configured at ZUUU from August 2018 to September 2018
and at ZSQD from November 2019 to June 2020, respectively. The PCDL at ZUUU was
configured southeast of Runway 02, about 1400 m vertically from the landing point, aiming
to observe landing aircraft, as shown in Figure 1b,d. The PCDL at ZSQD was configured
southeast of Runway 35, about 400 m away from the observation positions, to observe
aircraft in the take-off phase, as shown in Figure 1c,e.

Figure 1. Information of experiments for wake vortex observation based on PCDL. (a) Location of
ZUUU and ZSQD. (b) Sketch map of wake vortex observation experiments at ZUUU. (c) Sketch map
of wake vortex observation experiments at ZSQD. (d) Lidar position and scanning mode of wake
vortex observation experiments at ZUUU. (e) Lidar position and scanning mode of wake vortex
observation experiments at ZSQD.

The PCDL system employed during the experiments was Wind3D 6000, manufactured
by Leice Transient Technology Co., Ltd., achieving high-precision wind field measure-
ment [20,21]. The PCDLs employed Range-Height-Indicator (RHI) scanning mode for wake
vortex observation. The resolution of the PCDL elevation angle was set to be 0.2 degrees
per second at ZUUU and 0.4 degrees per second at ZSQD to ensure a consistent vertical
resolution of the wake vortex data, considering the relative position of the PCDLs. During
the experiments, the range resolution of the PCDLs was set to 15 m, providing sufficient
vertical resolution for observing wake vortices. The parameters of the PCDL scanning
strategy during the experiments at ZUUU and ZSQD are listed in Table 1. The elevation
angle range of PCDL at ZSQD was larger than that at ZUUU, since the flight path of the
aircraft during take-off is more uncertain than the flight path of the aircraft during landing
and the former PCDL was much closer to the landing point. Considering the vertical
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resolution, the elevation angle resolution of the PCDL at ZUUU was much lower than that
at ZSQD.

Table 1. Parameters of the PCDL scanning strategy during the experiments at ZUUU and ZSQD.

ZUUU ZSQD
P t
arameters Landing Take-Off
Scanning mode RHI RHI
Scanning speed ~1°/s ~2°/s
Azimuth angle 90° 260°
Elevation angle range 0~10° 2~35°
Elevation angle resolution 0.2° 0.4°
Scanning duration ~10s ~17s

The data source used in this paper were frequency-domain data (simply called FD
data in this paper), which can be obtained via transforming time-domain data—the pro-
cessed backscattered signal obtained using PCDLs and the Fast Fourier Transform (FFT)
method [20]. FD data are the fundamental data for wind field retrieval obtained using a
Doppler lidar, providing atmospheric information including radial velocity, turbulence
characteristics, and the signal-to-noise ratio [2,22]. The data sets used for the wake vortex
locating and grading modules were established separately based on FD data, namely the
radial velocity (RV)-spectrum width (SW) data set and the wake vortex (WV) region data
set. The RV-SW data sets are composed of the radial velocity and spectrum width data
obtained at all observing elevations and ranges, while the WV region data set contains only
limited elevations and ranges where the wake vortex exists.

The data sets of the wake vortex were established not only based on the wake vortex
characteristics from PCDL data but also adjusted considering flight information. A dynamic
matching algorithm including two matching processes was proposed in our previous
work [23]. Two matching processes were used to select effective wake vortex observation
data for different flights and the identification of the start and end times of the wake
vortices. Firstly, matching between the PCDL scanning times and the flight take-off and
landing times was performed. Then, the start and end times of the current flight's wake
vortices were obtained via the second match, which was used for the establishment of wake
vortex data sets. The process of adjusting the wake vortex data sets using flight information
is considered as empirical correction in this paper.

Three RV-SW data sets and one WV region data set were established by matching
the PCDL data with flight information. The former data sets were used to compare the
different models” performance on different test sets, to explore the different characteristics
of wake vortices under different meteorological and topographical conditions. The latter
data set was used to verify the feasibility of the wake vortex grading method, composed of
lidar data at ZUUU. The composition of the data sets is shown in Table 2. In all the data
sets, the ratio of the training set to the test set was 8:2.

Table 2. Composition of the wake vortex locating and grading data sets.

Data Sets Corresponding Model Airport/No.
RV-SW data set 1 WYV locating model ZUUuuU/1000
RV-SW data set 2 WYV locating model ZSQD/1000
RV-SW data set 3 WYV locating model ZUUU /1000 + ZSQD /1000

WYV region data set WYV grading model ZUuu /2000

2.2. Wake Vortex Retrieval Algorithms

The analytical algorithm and the deep learning algorithm are the two approaches
used to obtain the position and intensity information of the wake vortex. In this paper, the
results retrieved from the analytical algorithm were used as the reference while establishing
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data sets to train the deep learning models. In our previous study, it was found that
the analytical algorithm could not recognize the wake vortex where interference exists,
such as an undissipated wake vortex or strong turbulence. Thus, the parameters of wake
vortex characteristics were adjusted empirically according to flight information and vortex
temporal evolutionary characteristics, due to the lack of infallible truth of the wake vortex.

The algorithm of aircraft wake vortex locating and grading consists of four parts—data
pre-processing, WV locating, WV grading, and model evaluation—as shown in Figure 2. A
detailed description of all the parts will be provided in the following sections.

/ FFT raw data /

Analytical Algorithm\ CNN Algorithm

Pre-processin

A 4

RV and SW data — -» RV-SW data set

WYV Locating

A 4
Horizontal position
of WV
A 4 A 4

/Vertical position of WV/L / Position of WV /

WV Grading |

Tangential velocity
distribution

A 4

A\ 4

WV locating model

A 4 A 4

Correction of stre_tchlng WV grading model
and compression |

y A 4

/ Circulation of WV H /Intensity grade of WV/

A 4

Verification and performance evaluation

Figure 2. Flow chart of the main methodology of aircraft wake vortex locating and grading algorithm.
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2.2.1. Data Pre-Processing

The step of data pre-processing aims to provide a reliable data set for model training.
In this section, a new wake vortex image data set named the RV-SW data set is put forward
and tested for training the deep learning models, using the radial velocity and spectrum
width images obtained from the analytical algorithm. The process of data pre-processing
and analysis of images is explained below.

The radial velocity and spectrum width can be retrieved using the analytical algorithm,
according to the three velocities retrieved from FD data by using a given threshold [13].
The radial velocity contains the peak value of FD data, and the spectrum width contains
the broadening information due to turbulence. The existence of the wake vortex affects
the nearby local wind field, generating a Doppler broadening phenomenon of a spectrum
width, as well as the wind pair structure in radial velocity, which can be clearly seen in the
pseudo-color images at a distance of about 320 m and a height of about 120 m, as shown
in Figure 3a,b. The features in radial velocity and spectrum width can be used for wake
vortex identification by employing deep learning methods.
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Figure 3. Images of wake vortex observed at ZSQD at 00:47 on 27 April 2020, LST, where the brighter
color represents a larger value. (a) The pseudo-color images of radial velocity (RV). (b) The pseudo-
color images of spectrum width (SW); (c) The gray-scale images of RV. (d) The gray-scale images of
SW. (e) The stacked image of radial velocity and spectrum width (RV-SW).

Disturbances such as the presence of noise and errors will greatly affect the accuracy
of wake vortex identification when using radial velocity or spectrum width separately [24].
For example, the wake vortex structure will be interfered with by the strong turbulence and
could not be well displayed in RV images, while it is obvious in the SW images. In contrast,
the RV image can better highlight the existence of the wake vortex when its circulation is
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relatively small and the background wind field is relatively stable, whereas the SW image
is less obvious or even disappears in this case, which is related to the selection of the
threshold value.

Thus, the RV-SW data set is used in this paper, to incorporate as much information as
possible. The radial velocity image and spectrum width image are converted to gray-scale
and stacked to obtain the RV-SW data set, aiming to combine the wind pair features in
radial velocity with the broadening features in spectrum width. The gray-scale images of
radial velocity and spectrum width are shown in Figure 3c,d, with the grays-cale range
from 0 to 255, where the brighter color represents a larger value. The stacked image is
shown in Figure 3e, where the ratio of radial velocity to spectrum width was 1:2.

2.2.2. Wake Vortex Locating

The position of the vortex core is necessary information for analyzing the evolutionary
trajectory of the wake vortex. Turbulence and other disturbances always affect the accuracy
of localization since the analytical algorithm recognizes horizontal features and vertical
features separately. The deep learning model is used to identify the overall characteristics
of the wake vortex to improve its anti-interference ability, which is illustrated in this section.
Firstly, the wake vortex position is retrieved using analytical algorithms with empirical
correction. Then, the WV locating model is trained. Finally, the wake vortex region without
background disturbances is extracted.

The analytical method combines both radial velocity and spectrum width data for
wake vortex localization, as described in our previous research [2,13]. The horizontal
position of the vortex core is retrieved according to the distribution of the maximum
and minimum radial velocity and the maximum value of the spectrum width at each
range bin. The vertical position of the vortex core is obtained from the middle position of
the maximum and minimum velocity envelope. Empirical correction according to flight
information and vortex evolutionary characteristics is added since there would be missing
recognition and misrecognition results when using the analytical algorithm. The wake
vortices can be marked as the regions shown in the white dashed boxes in Figure 4.

(b)

(a)

(c) (d)

Figure 4. RV-SW images after marking the regions of the wake vortices with dashed boxes, where the
brighter color represents a larger value. (a,b) RV-SW images with marked wake vortex regions at
ZSQD. (c,d) RV-SW images with marked wake vortex regions at ZUUU.
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As a one-stage object detection algorithm with high precision, the You Only Look
Once (YOLO) network has become the most frequently used object detection deep learning
model [25]. The YOLO models can recognize the location of all the objects labeled as
different classes and provide the most-possible regions with their possibilities. In this paper,
the YOLO v4 model integrating the characteristics of the former versions is chosen for
wake vortex localization.

YOLO v4 consists of three parts: CSP Darknet53 is the main backbone, Spatial Pyramid
Pooling (SPP) and Path Aggregation Network (PAN) are the neck network, and the YOLO
head is the prediction structure. The CSPNet enables rich gradient combinations with
less computational effort and higher accuracy, reducing computational bottlenecks and
costs and enhancing learning ability [26]. The SPP is utilized as a solution for the problem
of fixed-size constraints when dealing with the images [27]. The PAN is employed to
boost the flow of information, achieving better feature fusion [28]. The head of YOLO v4
obtains the results of recognition using the obtained features, the same as the head of
YOLO v3 [29]. The model mainly employs the CloU (Complete-Intersection over Union)
loss as the bounding box location loss [30], of which the confidence loss and classification
loss are the same as YOLO v3. The structure of the WV locating model is shown in Figure 5.

il
Pl
Pl
Pl
Concat | CBL*x5 CBL |+ convolution |- :
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Upsampling 5 i |
L |
i i
CBL *x5 Concat : '
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i b :
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Figure 5. The structure of the WV locating model based on YOLO v4 with different color blocks
representing different layers. The color blocks marked with * are the results of combining different
layers, the structure of which are explained in the lower part of the diagram marked with *.

The parameters for the training of the WV locating model based on RV-SW data set
3 (mentioned in Table 2) are shown in Table 3. Only the wake vortex structure is labeled
with the coordinates of its region to remove the influence of background turbulence for
subsequent intensity grading, so the number of classes is only 1. Thus, the WV locating
model could provide the coordinates of a rectangular region that is most likely to be the
wake vortex class with its possibility. The learning rate is set to be 1 x 10~* and the batch
size is chosen to be 4, corresponding to 6400 iterations.

The coordinates of the wake vortex would be obtained by employing the trained and
validated WV locating model. Then, the features of the wake vortex are extracted to reduce
the effect of disturbances in the ambient wind field, which cause inaccurate results of wake
vortex identification according to our earlier work using analytical methods. The extracted
wake vortex regions are shown in Figure 6.
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Table 3. Parameters of deep learning model for wake vortex locating based on RV-SW images.

Parameter Value
Input size 416 x 416
Classes 1
Learning rate 1x 1074
Batch size 4
Iterations 6400

Cadl

()

Figure 6. The WV region data set after extracting the wake vortex feature from the RV-SW data set,
where the brighter color represents a larger value. (a) Example of Grade 0. (b) Example of Grade 1.
(c) Example of Grade 2. (d) Example of Grade 3.

2.2.3. Wake Vortex Grading

The circulation value is another key parameter to evaluate the risk of the wake vortex,
representing vortex intensity. The biggest error source of wake vortex intensity estimation
is inaccurate positioning due to the disturbances. Thus, the feature classification model is
employed to obtain the intensity grades of the wake vortex regions, which are provided
according to the results of wake vortex localization. The deep learning method proposed in
this section can effectively reduce the evaluation error and avoid the influence of interfer-
ence compared to traditional algorithms. The data set observed at ZUUU is selected for
the feasibility evaluation of the WV grading model. Firstly, the wake vortex circulation
is retrieved using analytical algorithms with empirical correction. Then, the WV grading
model is trained.

The analytical algorithms calculate the wake vortex circulation according to the distri-
bution of tangential velocity based on the assumption that the vortex structure is circular
and axisymmetric [31]. The velocity envelope is required to calculate the vortex circulation,
which represents the sum of the tangential velocity and the background radial veloc-
ity, assuming that the distance between the vortex core and the sensing volume is short
enough [9]. Meanwhile, the scaling correction was performed to avoid the stretching and
compression caused by the relative movement of the wake vortex and the laser beam [2].
Then, the WV region data set is divided into four grades according to data characteristics,
through the comparison of the models” performances based on different settings. Empirical
correction according to flight information and vortex evolutionary characteristics is also
conducted. For example, the misidentification of disturbance will be eliminated and the
missing wake vortex will be added, referring to the circulation values of the previous and
the latter wake vortex. The grading standard of the WV region data set is shown in Table 4.

Table 4. Grading standard of WV region data set for deep learning model training.

Intensity Grade Circulation Value Number of WV
Grade 3 More than 600 500
Grade 2 350~600 500
Grade 1 100~350 500

Grade 0 Less than 100 or disturbances 500




Remote Sens. 2024, 16, 1463

10 of 19

The Visual Geometry Group (VGG) network was proposed for the improvement of
the model’s accuracy by increasing its depth steadily by only using very small convolution
filters [32]. In VGG networks, the 3 x 3 convolution filters are stacked to achieve the same
effective receptive field of larger filters, and the 2 X 2 max-pooling layers are used after
each convolutional layer to reduce the computation of the model. A more compact VGG
network structure is used for wake vortex classification to reduce feature parameters and
save computing costs, which could significantly increase the ability to obtain image features
and improve the model’s performance. Only one fully connected layer with the ReLU
activation function is applied differently from the three connected layers in classic VGG
networks. The model structure for WV grading is shown in Figure 7.

Model Structure for WV Grading Based on RV-SW Images

’ Input H CBR* ‘ ‘ FC layer H ReLU |

) !
’ MaxPooling ‘ ‘ Dropout ‘ Nor::ltii:tion
1 T l

‘ Dropout ‘ ‘MaxPooling‘ ‘ Dropout |

} !

CBR*x2 ‘ CBR* x 2 ‘ ‘ Softn??x
Classifier
‘ MaxPooling H Dropout ‘

Batch
malization

CBR ’—‘ Convolution ‘-I- ’ Nor ‘ + ‘ ReLU ’

Figure 7. The structure of the deep learning model used for wake vortex grading based on WV region
images with different color blocks representing different layers. The color blocks marked with * are
the results of combining different layers, the structure of which are explained in the lower part of the
diagram marked with *.

Parameters of the deep learning model for wake vortex grading based on the ZUUU
WYV region data set can be seen in Table 5. The learning rate is set to be 5 x 1074, after
comparing different orders of magnitude of learning rates, to avoid the oscillation of
validation loss. The batch size is adjusted to be 8, thus the number of iterations is 4800.
Note that the convergence of the grading model is closely related to the selection of data
sets and the setting of network parameters. The model may fail to converge if the feature
distinction between different grades is not obvious or the batch size is too large.

Table 5. Parameters of deep learning model for wake vortex grading based on WV region images.

Parameter Value
Input size 96 x 96
Classes 4
Learning rate 5x 1074
Batch size 8
Iterations 4800

2.2.4. Evaluation Metrics

The performance of the models should be evaluated comprehensively after obtaining
the WV locating and grading models for continuous optimization and improvement. Preci-
sion, Recall, F1-score, mean Average Precision (nAP), and Kappa coefficient are the parameters
commonly used for model evaluation.
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The formulas of Precision and Recall are shown as Equation (1) and (2). True Positive (TP),
False Positive (FP), and False Negative (FN) are introduced, to calculate the value of Precision
and Recall. Precision is defined as the number of positive samples predicted to be positive
(TP) divided by the total number of samples predicted to be positive (TP + FP), representing
the prediction accuracy in the samples that are predicted to be positive. Correspondingly,
Recall measures the ratio of positive samples predicted to be positive (TP) out of all positive
samples (TP + FN), representing the prediction accuracy in positive samples.

TP

Precision = TP L EP (@)
TP

R = 2

ecall = 75 FN @)

F1-score gives equal weight to Precision and Recall, which is used as a common index in
the evaluation of model performance. The formula of F1-score is explained as Equation (3).

Precision x Recall
F1=2
x Precision + Recall’ )

In addition, mAP is also a vital parameter that evaluates the performance of the models.
The formulas of AP and mAP are shown as Equations (4) and (5). Where ri is the Recall
value at the position of the point i after interpolation of the Precision-Recall (P-R) curve,
and Pinter is the Precision value after interpolation, obtained according to the value of the
maximum Precision on the right side of all the chosen points. Thus, AP measures the ability
of the trained model to detect the category of interest, while mAP represents the ability of
the trained model to detect all categories. The parameter k is the number of categories.

n—1 . ’
-~ AP
AP = Z(ri+1—ri)Pinter(ri—i—l),mAp:% )
i=1

Pinter(r) = maxr’ > rP(r') (5)

Kappa coefficient is another index used for consistency tests, measuring the accuracy
of classification. Kappa coefficient can be calculated according to the result of the confusion
matrix, shown in Equation (6). Here, po is the ratio of the sum of the diagonal elements in
the confusion matrix to the sum of the entire matrix elements, pe is the ratio of the sum of
the product of actual and predicted quantities corresponding to all categories, respectively,
to the square of the total number of samples.

po — pe (6)

Kappa = 1= pe

3. Results
3.1. Measurement Cases

The accuracy and effectiveness of the CNN algorithm can be verified through compar-
ison with results from analytical algorithms with flight information. The applicability of
the two methods under different conditions is demonstrated, including the wake vortex
under the stable meteorological condition and the wake vortex under the strong turbulence
condition, by conducting extensive processing and comparative analysis. In this section,
two representative measurement cases are presented to illustrate the performance of the
CNN algorithm.

3.1.1. Wake Vortex under Stable Meteorological Condition

A typical case of a well-structured wake vortex observed at 12:42, 25 August 2018, at
ZUUU is shown in Figure 8, which can be effectively recognized by both two algorithms.
The value of turbulence—Energy Dissipation Rate (EDR)—is used to evaluate the turbu-
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lence in this paper [2]. The EDR!/3 of the vortex-free PCDL data in the adjacent moment
at the height of 20 m to 60 m is calculated to be 0.09 m2/3 s~1 much less than the ICAO
standard. Thus, the ambient wind field is considered to be relatively stable.
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Figure 8. The images and results of the wake vortex under stable meteorological condition. (a) Spec-
trum width image of the wake vortex. (b) Radial velocity image of the wake vortex. (c) Results of WV
locating and grading models when applied on the wake vortex, where the brighter color represents a
larger value.

The spectrum width and radial velocity of the well-structured wake vortex are shown
in Figure 8a,b, the wake vortex core positions obtained from the analytical algorithm
are (491.6 m, 36.8 m) and (521.5 m, 39.1 m), representing the horizontal and vertical
distance from the lidar, respectively. The circulation values of the left and right vortex are
221.5m? s~! and 149.2 m? 571, respectively, summed to be 370.7 m? s~ 1.

The results of CNN algorithms are shown in Figure 8c. The result recognized by the
WYV locating model is [224, 152, 284, 197], representing the coordinates of left x, upper y,
right x, and lower y of the wake vortex region in the image, respectively. The WV region
extracted based on the coordinates above is classified into Grade 2 via the WV grading
model, consistent with the analytical algorithm, referring to the criteria in Table 4. The
CNN algorithm and the analytical algorithm show good consistency within this presented
case, with high possibilities of 0.99 on locating and 88.41% on grading.

3.1.2. Wake Vortex under Strong Turbulence Condition

Another typical case of a wake vortex under the turbulence condition, observed at
12:14, 27 August 2018, at ZUUU, is shown in Figure 9. The EDR/3 of the vortex-free data
in the adjacent moment at the height of 10 m to 50 m is calculated to be 0.31 m?/3 s~1,
much larger than that in Case 1, considered as moderate turbulence according to the ICAO
standard (regarded as the strong turbulence condition in this paper).

The images of spectrum width and radial velocity of the wake vortex under strong
turbulence condition are shown in Figure 9a,b, the former is hardly affected by turbulence,
while the instability of the background wind field can be seen in the latter image. The
horizontal location of the wake vortex obtained by the analytical algorithm is shown in
Figure 9c. The horizontal positions of the vortex cores can be marked by two peaks in
SR_ind, considering both SW_ind and RV _ind [2,13]. It can be seen that there is only one
single peak on the black line due to the influence of turbulence, so the analytical algorithm
could not obtain the position of the wake vortex nor could it calculate the circulation value.
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Figure 9. The images and results of the wake vortex under strong turbulence condition. (a) Spectrum
width image of the wake vortex. (b) Radial velocity image of the wake vortex. (c) Results of
horizontal location of the wake vortex when using the analytical algorithm, where the light blue line
represents SW_ind, the light pink line represents RV _ind, and the black line represents SR_ind, the
red pentagram represents the location of the vortex core as identified by the algorithm. (d) Results
of WV locating and grading models when applied on the wake vortex, where the brighter color
represents a larger value.

The CNN algorithm could recognize the whole feature of the wake vortex in the
RV-SW image, rather than the feature of a single dimension as the analytical algorithm
does, which can avoid the interference of turbulence. The result of the WV locating model
is [216, 172, 271, 215] with the possibility of 0.84, and the result of the WV grading model is
Grade 2 with the possibility of 86.82%, less than that in Case 1, as shown in Figure 9d. The
decrease in certainty also proves that the model has higher accuracy when the wake vortex
is well-structured with a stable background wind field.

These two representative cases provide a visual demonstration of the CNN algorithm’s
performance for the locating and grading of a wake vortex under stable and strong turbu-
lence conditions. In these cases, the CNN algorithm and the analytical algorithm show a
good agreement when the background wind field is stable, and the former method could
recognize wake vortices when the effectiveness of the latter method is greatly affected
under strong turbulence conditions. Meanwhile, it is also explained that the accuracy of
the CNN algorithm will be influenced by atmospheric turbulence to some extent.

3.2. Statistical Evaluation

The performances and robustness of deep learning models can be evaluated statisti-
cally based on different test sets by calculating the parameters explained in Section 2.2.4.
The test results of four WV locating models trained on different training data sets are
compared, and the effectiveness of the WV grading model is also assessed. The parameters
are calculated according to Equations (1)-(6), where the F1-score, mAP, and Kappa coeffi-
cient can evaluate the performance of the models more thoroughly by comprehensively
considering the Precision and Recall rate.
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3.2.1. Performance of WV Locating Model

Based on historical weather data, the experiments at ZUUU were primarily conducted
during the summer, with predominantly overcast and rainy conditions and less frequent
sunny and cloudy days, of which the temperatures were generally above 20 degrees Celsius.
The ZSQD experimental data were mostly obtained during the spring, characterized by
predominantly clear and cloudy skies, with frequent rainfall and temperatures ranging from
as low as 5 degrees to as high as 20 degrees Celsius. Additionally, ambient wind speeds
were often light during observations at ZUUU, which were typically between force 24,
with variable wind directions at ZSQD. By selecting typical data from clear, cloudy, and
rainy days for calculation, it was found that the mean value of EDR!/3 at different altitudes
at ZUUU did not exceed 0.15 m2/3 s~1, which was over 0.15 m2/3 s~ for one-third of the
time at ZSQD, with a larger overall fluctuation range, indicating more variable turbulence
characteristics. Overall, the meteorological environment during the experiment at ZUUU
was more stable, whereas the background wind field and climatic conditions were more
diverse during the experiment at ZSQD.

Four models based on different data sets were trained and tested to evaluate the
model’s performance under the different conditions of the two airports, as Table 6 shows.
WYV locating model 1 and 2 were trained using the RV-SW data set observed at ZUUU and
ZSQD, respectively. Both WV locating model 3 and 4 employed ZUUU and ZSQD data,
the difference is that the former was trained by adding the ZSQD data set to the ZUUU
model, and the latter was trained using ZUUU and ZSQD data sets simultaneously. The
WYV locating models have certain differences between the test sets, due to the diversity in
the background wind field, experimental durations, and other factors in the training and
validation data sets.

Table 6. Performance of WV locating models based on different training sets and test sets.

Test Set

Model Training and Validation Set (Airport/No.) Precision Recall F1 mAP
ZUUU /200 99.5% 94.1% 0.97 99.4%

1 RV-SW data set 1(ZUUU) Z5QD/200 97.8% 43.8% 0.60 82.8%
ZUUU /200 92.0% 84.7% 0.88 89.7%

2 RV-SW data set 2 (Z5QD) 7SQD/200 96.2% 87.1% 091 96.7%
ZUUU /200 99.5% 94.1% 0.97 99.4%

3 ZUUU model + ZSQD data set 75QD/200 93.6% 57.7% 0.71 89.4%

A RV-SW data set 3 ZUUU /200 99.0% 97.5% 0.98 99.9%
(ZUUU + ZSQD) Z5QD/200 98.3% 87.6% 0.93 98.6%

e The WV locating model performs well when the training set and the test set are built
based on the same data set. The F1-score and mAP of model 1 are 0.97 and 99.4% when
applied to the ZUUU test set and 0.60 and 82.8% when applied to the ZSQD test set.
It can be seen that model 1 has good performance on the ZUUU test set but does not
perform well on the ZSQD test set. The Precision value of 97.8% means that most of the
wake vortices identified using the CNN algorithm are consistent with the reference
values in the data set, but the Recall value of 43.8% shows that more than half of the
wake vortex cannot be identified.

e A new model can be obtained by adding data from a specified airport to build a
new training set or continually training based on a current model, showing better
performance at the specified airport. Model 3 was trained on the ZSQD data set based
on model 1, and the Precision value decreases while the Recall value increases when
applying to the ZSQD test set, meaning that the missing wake vortex images of the
model are reduced, at the cost of a slight increase in the misidentification rate.

e  The model trained on a mixed data set performs better on each test set compared to
the model continually trained on the added data based on a current model. Although
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both model 3 and model 4 were trained based on all data of the two airports, model
4 trained on RV-SW data set 3 performed better with F1-scores of 0.98 and 0.93 and
mAPs of 99.9% and 98.6% when applied on the ZUUU test set and ZSQD test set,
respectively.

e Models trained on more diverse data sets have higher generalization ability. As
mentioned above, the observation environment at ZSQD was more complicated than
that at ZUUU, which means the data set established at the former airport is more
diverse than the data set formed based on the latter. The F1-score and mAP of model 2
applied on the ZUUU test set are 0.88 and 89.7%, higher than the test results of model
1 applied on the ZSQD test set, for which the parameters are 0.60 and 82.8%.

3.2.2. Performance of WV Grading Model

The confusion matrix is used to evaluate the feasibility of the WV grading model,
as shown in Figure 10. Where the horizontal axis represents the predicted results and
the vertical axis represents the true results. The model performs better in Grades 0 and
2, the reason for which may be that the wake vortex features of Grades 0 and 2 are more
unique. The former has more chaotic image features, and the latter has a clearer wake
vortex structure. The features of the wake vortex of Grade 1 and 3 are not clear enough due
to the high wind speed or the dissipating wake vortex.
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Figure 10. The confusion matrix of the WV grading model.

Precision, Recall, and F1-score can also be calculated to evaluate the performance of
the WV grading model based on the confusion matrix, as shown in Table 7. The macro
average values of Precision, Recall, and F1-score are calculated to be 98.0%, 97.3%, and 0.97,
respectively. In addition, the Kappa coefficient of the WV grading model is 0.97 (much
larger than 0.8—the threshold for determining the model’s performance), showing that the
predicted results are in good agreement with the wake vortex reference values.

In this section, the CNN algorithm is proved to have good consistency with the
analytical algorithm. The migration application ability and robustness of the WV locating
model on different test sets are compared. The WV grading model is also proved to be
feasible. It has been validated that the analytical algorithm takes approximately one minute
to retrieve the wake vortex location and circulation, with empirical corrections added to
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ensure accuracy. In contrast, the deep learning method completes the entire process in
about 15 s, significantly improving the efficiency of wake vortex recognition and providing
a quasi-real-time approach for wake vortex parameters.

Table 7. Performance of WV grading model based on different training sets and test sets.

Model Data Set Grade Precision Recall F1
WV region 0 99.0% 98.0% 0.98
WV grading o 1 97.9% 95.0% 0.96
model (ZUUU) 2 98.0% 100.0% 0.99
3 97.0% 96.0% 0.96

4. Discussion

In Section 3.2.1, this paper compares the performance of the CNN algorithm in identi-
fying wake vortices based on the data observed at two airports, as shown in Table 6. For
instance, models trained on the ZSQD data set outperform those trained on the ZUUU
data set, and models considering all data from both airports exhibit higher accuracy than
those trained exclusively on a single airport data set. Meteorological environmental factors
during the PCDL observation experiments at the two airports may be one of the primary
reasons for these results.

We selected typical historical meteorological data for clear, cloudy, and rainy days to
compute the EDR!/3 during the observation periods at ZUUU and ZSQD, as illustrated in
Figure 11. The results for ZUUU are indicated by round dots, while the results for ZSQD
are indicated by diamond dots. Specifically, the results for 27 August, 5 September, and
7 September 2018 correspond to clear, rainy, and cloudy days, respectively, from Shuangliu
District, Chengdu City, while those for 6 April, 12 April, and 8 May 2020 correspond to
cloudy, clear, and rainy days, respectively, from Chengyang District, Qingdao City. Among
the selected historical data, Chengdu exhibited higher temperatures ranging from 18 to
33 degrees Celsius, with background wind conditions being calm or light breezes; Qingdao
had lower temperatures between 4 and 17 degrees Celsius, with background wind fields
consisting of southeast wind at a force of two, northwest wind at a force of three, and east
wind at a force of three.
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Figure 11. The value of EDR'/? of typical dates at ZUUU and ZSQD.
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The average results of the EDR!/3 within the 5-80 m near-ground layer for typical date
data from the two airports are shown in Figure 11. The missing data indicate periods when
the lidar was not operational during the night or when data were rendered unusable due
to rainfall interference. It can be deduced that the ZUUU data exhibit lower EDR values,
below 0.15 m?/3 571, whereas the ZSQD data show a broader fluctuation range between 0
and 0.2 m?/3 s~1. The EDR!/3 for all three days decreases around 5:00-6:00, with greater
relative fluctuations on rainy days at ZUUU; the EDR for all three days drops around 15:00,
with clear and cloudy days showing larger fluctuations at different times, while the EDR
on rainy days maintains a relatively stable high value at ZSQD.

Given the climatic differences between the two aforementioned airports and the
disparities in calculated EDR values, further elucidation of the varying test accuracies of
the models can be attempted. The model trained on the ZUUU data set has predominantly
learned wake vortex characteristics under more stable environments, hence its subpar
performance on the ZSQD test set. Conversely, the model trained on the ZSQD data set
has learned more diverse features, giving better identification accuracy across both test
sets. Similarly, supplementing the model trained on the ZUUU data set with additional
ZSQD data, which encompasses a wider range of wake vortex evolutionary characteristics,
enhances its precision when applied to the ZSQD test set, and vice versa. The model trained
on both data sets from ZUUU and ZSQD has acquired the most varied features, leading to
commendable performances on the test sets from both airports.

From Figure 11, we could conclude that wake vortex models are influenced by the
background environmental conditions present in their training data sets. Models trained
on data sets with more homogeneous features also possess some recognition capabilities for
data with more diverse features, though they tend to have a higher rate of False Negatives.
Therefore, when employing the CNN algorithm for wake vortex recognition, incorporating
as many characteristic wake vortex data as possible into the training set may enhance the
model’s applicability across different airport data sets.

5. Conclusions

This paper presents a deep learning method for aircraft wake vortex localization
and classification based on Pulsed Coherent Doppler Lidar data observed at ZUUU and
Z5QD. The method consists of using the WV locating and WV grading modules to avoid
the influence of unstable ambient wind fields. Data sets are built based on the analytical
algorithm with empirical correction according to flight information and the evolutionary
characteristic of the wake vortex. Several models are trained and evaluated based on
different data sets. The CNN algorithm is proved to have good consistency and better
robustness compared with the analytical algorithm, based on the measurement cases and
statistical evaluation methods. The deep learning method has broad application prospects
in the field of aviation safety, with the ability to provide a quasi-real-time reference value
for the analysis of aircraft wake vortices.

The major conclusions are summarized as follows:

1. A deep learning method for wake vortex locating and grading is presented based
on stacked radial velocity and spectrum width images, obtained from FD raw data.
Three data sets are built under different meteorological and topographical conditions
(ZUUU and ZSQD airports) and used for the training and testing of four WV locating
models, to evaluate model performances under different conditions. The WV grading
model is trained and tested based on the ZUUU data set, to verify the effectiveness of
the model.

2. The WV locating models are trained based on different data sets, showing certain
differences in the test sets. The performance of the models can be summarized as
follows: The WV locating model performs well when the training set and the test
set are built based on the same data set. A new model can be obtained by adding
data from a specified airport to build a new training set or continually training based
on a current model, showing better performance at the specified airport. The model
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trained on a mixed data set performs better on each test set compared to the model
continually trained on the added data based on a current model. Models trained on
more diverse data sets have higher generalization ability.

3. The WV grading model is verified to be effective for the classification of WV region
images. The removal of the non-WV region could amplify wake vortex features, to
improve the accuracy of the model. According to the confusion matrix and statistical
evaluation parameters, the predicted results are in good agreement with the wake
vortex reference values, based on the analytical algorithm and empirical correction.

4. The deep learning method in this paper has good performance not only when applied
to the well-structured wake vortex but also to wake vortices under strong turbulence
conditions, where the analytical algorithm cannot recognize the structure of the wake
vortex. The deep learning algorithm and the analytical algorithm have been verified
for consistency. The former exhibits better robustness and a faster processing speed of
approximately 15 s.

This paper has provided an attempt at wake vortex locating and grading using an
improved deep learning method. In the future, the data sets could be further expanded
for training and testing, and the performance of the model trained using various data sets
can be compared. The time variable can be considered to further improve the accuracy
of the model. The models can be used to identify and analyze the characteristics of wake
vortices under various meteorological conditions, to further optimize the spacing criteria
of airports.
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