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Abstract: Anatoxin-a (ATX-a) is a potent neurotoxin produced by several species of cyanobacteria
whose exposure can have direct consequences, including neurological disorders and death. The
increasing prevalence of harmful cyanobacterial blooms makes the detection and reliable assessment
of ATX-a levels essential to prevent the risk associated with public health. Therefore, the aim of this
review is to compile the analytical methods developed to date for the detection and quantification
of ATX-a levels alone and in mixtures with other cyanotoxins and their suitability. A classification
of the analytical methods available is fundamental to make an appropriate choice according to the
type of sample, the equipment available, and the required sensitivity and specificity for each specific
purpose. The most widely used detection technique for the quantification of this toxin is liquid
chromatography–tandem mass spectrometry (LC-MS/MS). The analytical methods reviewed herein
focus mainly on water and cyanobacterial samples, so the need for validated analytical methods
in more complex matrices (vegetables and fish) for the determination of ATX-a to assess dietary
exposure to this toxin is evidenced. There is currently a trend towards the validation of multitoxin
methods as opposed to single-ATX-a determination methods, which corresponds to the real situation
of cyanotoxins’ confluence in nature.

Keywords: anatoxin-a; analytical methods; cyanotoxins; parameter validation

Key Contribution: The methods with the best validation parameters are those based on LC-MS/MS
detection. More validated methods in complex matrices such as plants and fish are needed to
determine ATX-a alone or in combination with other cyanotoxins.

1. Introduction

Anatoxin-a (ATX-a) belongs to the group of cyanobacterial toxins, which includes other
well-known members such as microcystins (MCs) and cylindrospermopsin (CYN). Chemi-
cally, it is a bicyclic amine alkaloid whose molecular formula is C10H15NO. Its molecular
weight is 165.23 g/mol, and it is very soluble in water. ATX-a, its analog homoanatoxin-a
(HATX-a), and its dihydro derivatives (Figure 1) are produced by different cyanobacterial
genera, including Anabaena, Dolichospermum, Aphanizomenon, and Cuspidothrix, among
others, with a worldwide distribution. However, ATX-a has generally been detected less
frequently than MCs and CYN [1]. This could be related to its degradation through photol-
ysis and non-photochemical reactions under natural conditions [2,3]. In any case, ATX-a
also has a significant occurrence, and, for example, Bouma-Gregson et al. [4] found ATX-a
in 58.9% of the benthic mat samples they analyzed, while Moreira et al. [5] found that 33%
of the samples from seven freshwater ecosystems in Portugal were above the guideline
value established for ATX-a in Portuguese freshwater systems. Moreover, this toxin has
been detected jointly with other cyanotoxins such as MCs [6,7] or CYN [8]. In certain cases,
ATX-a has even been detected at higher levels than MCs, as is the case for samples collected
from the Eel River (California), alerting us to the importance of this toxin [4].
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Figure 1. Structures of (A) ATX-a and (B) HATX-a and their respective derivatives. 

The growing occurrence and bioaccumulation of cyanotoxins [9,10] raises concerns 
about their potential risks. These risks are based on two main factors: hazards and expo-
sure. Regarding the hazards, ATX-a is a well-known neurotoxin. It is a nicotinic agonist 
and has been shown to bind to acetylcholine receptors and cause the inhibition of the en-
zyme acetylcholinesterase. Consequently, the neurons continuously propagates neuronal 
impulses that lead to nerve depolarization through the movement of positively charged 
ions across the receptor, in addition to the desensitivity of the receptor, blocking neuro-
transmission [11–13]. However, toxicity data for ATX-a are comparatively scarcer than for 
other cyanotoxins and are a topic worthy of research. Recently, Plata-Calzado et al. [14] 
reviewed the toxic effects produced by ATX-a under laboratory conditions and evidenced 
that, in addition to neurotoxic effects, the scientific literature shows that ATX-a can also 
have immunotoxic effects [15,16] and that oxidative stress and apoptosis are the mecha-
nisms involved. Moreover, ATX-a was shown to be genotoxic in vitro by the micronucleus 
test [17]. 

With regard to field studies and case reports, ATX-a has been involved in plenty of 
animal intoxication cases, which has led to great concern [3,18]. In most of the detected 
cases, ATX-a caused significant behavioral changes, vomiting, ataxia, locomotor defi-
ciency, respiratory distress, and even death in different animal species, such as ducks, 
cows, flamingos, etc., with dogs being the animal in which most cases of poisoning have 
been detected [3]. Concentrations of up to 8700 µg/L ATX-a have been detected in their 
stomach contents [19], and concentrations up to 357 mg/kg have been detected in dogs’ 
vomit [20]. 

In contrast, human data poisonings specifically attributed to ATX-a are not so evident 
in the literature, as co-exposure with other additional cyanotoxins has been described [1]. 
However, Biré et al. [21] reported human poisoning in 26 patients due to the consumption 
of sea figs in France between January 2011 and March 2018. These patients presented with 
diarrhea, nausea, vomiting, paresthesia, dizziness, and headache, among other symptoms 
that evoke a cerebellar syndrome. This study reported ATX-a concentrations ranging from 
193.7 to 1240.2 µg/kg in sea figs (Microcosmus), lower than those reported to cause toxic 
effects in animals [1]. This emphasizes the toxicological relevance of ATX-a in humans. 
Nevertheless, the database of ATX-a toxicity is still limited, and that is the reason why the 
World Health Organization (WHO) has not yet established a long-term provisional 
health-based reference value [1]. 

With respect to the exposure data for ATX-a, it has already been stated that it has a 
worldwide distribution. The levels reported in the waters are very variable. In open water, 
the concentrations rarely exceed 10 of µg/L, but they can exceed 1000 µg/L in surface 
blooms, and in drinking water concentrations, they vary from the low-µg/L range to 8.5 
µg/L [1]. Also, in relation to water, recreational activities can be another form of exposure, 
either by ingestion or inhalation, though this has a lower impact. Regarding oral exposure, 
the ingestion of contaminated food is another possibility to take into account. Currently, 
data on the occurrence of ATX-a in food are still limited. However, concentrations of up 
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The growing occurrence and bioaccumulation of cyanotoxins [9,10] raises concerns
about their potential risks. These risks are based on two main factors: hazards and exposure.
Regarding the hazards, ATX-a is a well-known neurotoxin. It is a nicotinic agonist and has
been shown to bind to acetylcholine receptors and cause the inhibition of the enzyme acetyl-
cholinesterase. Consequently, the neurons continuously propagates neuronal impulses that
lead to nerve depolarization through the movement of positively charged ions across the
receptor, in addition to the desensitivity of the receptor, blocking neurotransmission [11–13].
However, toxicity data for ATX-a are comparatively scarcer than for other cyanotoxins
and are a topic worthy of research. Recently, Plata-Calzado et al. [14] reviewed the toxic
effects produced by ATX-a under laboratory conditions and evidenced that, in addition
to neurotoxic effects, the scientific literature shows that ATX-a can also have immuno-
toxic effects [15,16] and that oxidative stress and apoptosis are the mechanisms involved.
Moreover, ATX-a was shown to be genotoxic in vitro by the micronucleus test [17].

With regard to field studies and case reports, ATX-a has been involved in plenty of
animal intoxication cases, which has led to great concern [3,18]. In most of the detected
cases, ATX-a caused significant behavioral changes, vomiting, ataxia, locomotor deficiency,
respiratory distress, and even death in different animal species, such as ducks, cows,
flamingos, etc., with dogs being the animal in which most cases of poisoning have been
detected [3]. Concentrations of up to 8700 µg/L ATX-a have been detected in their stomach
contents [19], and concentrations up to 357 mg/kg have been detected in dogs’ vomit [20].

In contrast, human data poisonings specifically attributed to ATX-a are not so evident
in the literature, as co-exposure with other additional cyanotoxins has been described [1].
However, Biré et al. [21] reported human poisoning in 26 patients due to the consumption
of sea figs in France between January 2011 and March 2018. These patients presented with
diarrhea, nausea, vomiting, paresthesia, dizziness, and headache, among other symptoms
that evoke a cerebellar syndrome. This study reported ATX-a concentrations ranging from
193.7 to 1240.2 µg/kg in sea figs (Microcosmus), lower than those reported to cause toxic
effects in animals [1]. This emphasizes the toxicological relevance of ATX-a in humans.
Nevertheless, the database of ATX-a toxicity is still limited, and that is the reason why
the World Health Organization (WHO) has not yet established a long-term provisional
health-based reference value [1].

With respect to the exposure data for ATX-a, it has already been stated that it has
a worldwide distribution. The levels reported in the waters are very variable. In open
water, the concentrations rarely exceed 10 of µg/L, but they can exceed 1000 µg/L in
surface blooms, and in drinking water concentrations, they vary from the low-µg/L range
to 8.5 µg/L [1]. Also, in relation to water, recreational activities can be another form of
exposure, either by ingestion or inhalation, though this has a lower impact. Regarding oral
exposure, the ingestion of contaminated food is another possibility to take into account.
Currently, data on the occurrence of ATX-a in food are still limited. However, concentrations
of up to 33.00 µg/g of this toxin have been detected in dietary supplements containing
cyanobacteria [22]. In relation to seafood, in addition to the study by Biré et al. [21]
mentioned above, Amzil et al. [23] detected, for the first time, the presence of this neurotoxin
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in mussels in France. Moreover, interestingly, different studies have investigated the
potential bioaccumulation of ATX-a in fish. Osswald et al. [24] calculated a bioaccumulation
factor of 2.65 in juvenile Cyprinus carpio exposed to cells of ATX-a producing strains of
Anabaena sp. Osswald et al. [25] determined a bioconcentration factor ranging from 30 to
47 based on fresh weight in juvenile Oncorhynchus mykiss exposed to ATX-a. Thus, they
concluded that it was necessary to consider potential human exposure through the ingestion
of contaminated fish. Similarly, Pawlik-Skowrońska et al. [26] reported the simultaneous
accumulation of ATX-a (up to 30 ng/g fresh weight, muscle) and MCs in three species of
fish. On the contrary, Colas et al. [27] did not observe ATX-a accumulation in medaka fish.

For all of this, the exposure assessment must rely on analytical results obtained by
techniques and validated methods that allow for the unequivocal determination and
quantification of ATX-a. In this sense, there are plenty of analytical methods for ATX-a
detection that have been noted in the scientific literature. Thus, the aim of this work was to
review the research papers focused on analyzing ATX-a, both alone and in combination
with other cyanotoxins, and its classification to facilitate the selection of an appropriate
method based on the type of sample (matrix), the available equipment, and the required
sensitivity and specificity for each specific purpose. Previously, other reviews have been
published looking at methods for the determination of cyanotoxins, including ATX-a [28,29].
However, these works mainly focus on extraction procedures prior to sample analysis and
do not consider the validation parameters of the methods, which are important when
selecting the most appropriate technique according to the requirements of each specific
scenario (type of matrix, toxin recoveries, LOQ, LOD, etc.). Furthermore, they do not focus
on ATX-a analytical methods, so these studies do not cover all of the existing literature on
ATX-a analytical methods. For all this, the novelty of the present review lies in the fact that
it summarizes and classifies all the validation parameters of each method according to the
type of sample and detection system used and provides a complete overview and update
of all available information up to 2023, which allows one to obtain a picture of the benefits
and drawbacks of each method. This review aims to support those who need to work with
ATX-a for research, surveillance, or monitoring purposes in their decision-making process
to select the best analytical option available currently. Also, it will contribute to improving
ATX-a exposure assessments in the framework of risk evaluations.

2. Analytical Methods for ATX-a Determination

The first studies focused on the validation of methods for the determination of ATX-
date back to the 1980s, focusing only on ATX-a (Figure 2). However, the trend in recent
years has shifted towards the development of methods that allow for the detection of
several cyanotoxins simultaneously, as this is a more common scenario in nature. In this
case, with regard to multitoxin methods, only those methods for the determination of
cyanotoxin mixtures containing ATX-a will be discussed. In addition, the need for the
development of rapid and reliable methods considering both scenarios (ATX-a alone or in
combination) has led to further research into new methodologies.

The methods developed for ATX-a analysis employ a variety of detection systems. One
of the first techniques used for the isolation and purification of ATX-a was thin-layer chro-
matography (TLC), which is, in addition, a low-cost and swift screening technique [30,31].
However, it is a very basic technique. Therefore, more complex techniques have been
developed, such as gas or liquid chromatography coupled with spectroscopy or mass
spectrometry (MS) detection. Additionally, immunochemical assays or biosensors can also
be employed for its detection (Figure 3). However, more than half of the methods have been
performed with MS detection systems, highlighting the tandem mass system (MS/MS)
mainly for the analysis of cyanotoxin mixtures.

Based on the type of sample analyzed in the revised articles, most of the methods
developed for the determination of ATX-a are in water (54.2%) and cyanobacterial cultures
(41.7%), compared to methods in which the presence of ATX-a is analyzed in more complex
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matrices such as aquatic animals (11.1%), vegetables (2.8%), or algae-based supplements
(6.9%) (Figure 4).
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Figure 3. Techniques employed for determination of ATX-a alone or in combination with other
cyanotoxins. ELISA: enzyme-linked immunosorbent assay; TLC: thin-layer chromatography; UV:
ultraviolet; FLD: fluorescence detection; MS: mass spectrometry; ECD: electron capture detector;
MS/MS: tandem mass spectrometry; HRMS: high-resolution mass spectrometry: HRMS/MS: high-
resolution mass spectrometry tandem mass spectrometry.

To our knowledge, all the methods for the determination of ATX-a alone are listed in
Tables 1 and S1 (Supplementary Materials). In addition, multitoxin methods that include
ATX-a determination are summarized in Tables 2 and S2 (Supplementary Materials).



Toxins 2024, 16, 198 5 of 26

Table 1. Analytical methods focused on the determination of ATX-a published from 2003 to date.

Type of Sample Analytical Method Linear Concentration Range Validation Parameters More Information References

Cyanobacteria and
water samples LC-MSn -

LOD < 0.6 µg/L
Reproducibility (RSD%): ≤7%

(LC-MS/MS and LC-MS3)

LC-MS4 did not produce reproductible
quantitative data.

[32]

Cyanobacteria cultures GC-MS
1H NMR 2–400 ng LOD: 0.5 ng

Derivatization is not necessary.
To improve the detection limits, SIM is

necessary.
[33]

Water samples and
cyanobacterial bloom GC-MS 50–10,000 ng/L

LOD: 11.2 ng/mL
LOQ: 200.1 ng/mL

Intra-day (RSD%): 5.15%
Inter-day (RSD%): 2.7%

Three forms of PANI films and a single form
of PPY film were used, showing that the

leucoemeraldine form of PANI displayed a
better selectivity to ATX-a.

[34]

Cyanobacterial samples QqTOF-MS
QIT-MS - - The investigated compounds were ATX-a,

HATX-a, and their degradation products. [35]

Food supplements (BGA and
spirulina tablets, powders,

and capsules)
LC-FLD 0.1–2.0 µg/g

LOD: 50 µg/kg (BGA) and
10 µg/kg (spirulina)
Recovery: 74–108%

Derivatization reagent: NBD-F.
Two transformation products of ATX-a were

also analyzed: epoxyanatoxin-a (LOD:
10–55 µg/kg) and dihydroanatoxin-a (LOD:

10–65 µg/kg).

[36]

Water and fish muscle tissue LC-MS/MS -

LOD: 8 ng/L (water) and
0.2 ng/g (fish)

LOQ: 13 ng/L (water) and
0.5 ng/g (fish)

Recovery: 71–79%

Water samples were directly injected after
filtration, whereas fish tissue required the

matrix SPD technique. Provides sensitivity for
analyzing ATX-a in fish at levels < 1 ng/g.

[37]

Water samples GC-MS 2.5–200 ng/mL
LOD: 2.0 ng/mL
LOQ: 2.5 ng/mL

Repeatability (%RSD): 6.8–10.9%

Direct derivatization of the ATX-a by adding
hexylchloroformate in a sample with pH = 9. [38]

Water samples (deionized water
and river water) and

cyanobacterial samples
LC-FLD 6.25–1250 ng/mL

LOD: 0.18 ng/mL (deionized
water) and 0.29 ng/mL

(river water)
Repeatability (RSD%): <15%

Reproducibility (RSD%): <15%

Derivatization reagent: NBD-F
SPME coupled to HPLC was used. [39]

Cyanobacterial cultures MALDI-TOF-MS - -

Derivatization reagent:
N-methyl-N(tert-butyldimethylsilyl)

trifluoroacetamide.
Useful method for small sample volumes

(1 µL) and has an analysis time of
1 min/sample.

[40]
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Table 1. Cont.

Type of Sample Analytical Method Linear Concentration Range Validation Parameters More Information References

Dietary food supplements
containing cyanobacteria

LC-FLD 0.03–0.59 µg/mL

Recovery: 84%
LOD: 3 ng/g

LOQ: 10 ng/g
Repeatability (%RSD): 6.3%

No significant effect on response of ATX-a in
the matrix sample.

[22]

GC-MS 5.87–23.50 µg/mL
LOD: 24 ng/g
LOQ: 70 ng/g

Repeatability (%RSD): 10.9%

13% of suppression of ATX-a response in
sample matrix extract compared with solvent.

Water samples LC-MS/MS 0.5–2000 µg/L

Recovery: 73–97%
LOD: 0.65 ng/L
LOQ: 1.96 ng/L

Intra-day (RSD%): 4.2–5.9%
Inter-day (RSD%): 4.2–9.1%

Three different SPE cartridges were
assessed—hypersep PGC SPE cartridges gave

better recoveries.
PHE-d5 was used as internal standard.

[41]

Water and lyophilized trout LC-FLD 0.1–23.0 µg/mL

LOD: 0.17 µg/mL (water) and 80
ng/g (d.w. trout)

LOQ: 0.58 µg/mL (water) and
170 ng/g (d.w. trout)

Repeatability (RSD%): 0.4–0.9%
Recovery: 84–94%

Intermediate precision <2%
Accuracy (RSD%): 6% (water)

and <0.5% (trout)

Methanol is used as the mobile phase. [42]

Cyanobacterial bloom LDTD-APCI-MS/MS 3–250 µg/L

LOD: 1 µg/L
LOQ: 3 µg/L

Accuracy: 108%
Inter-day (RSD%): 8%

Remove interference from PHE. [43]

Cyanobacterial cultures

FP 0.1–200 µm LOD: 33.3 nM
LOQ: 100.0 nM

No effects of the solvent (methanol) in
fluorescence intensity.

[44]
LC-MS/MS - LOD: 1.5 ng/mL (5.33 nM)

LOQ: 5.0 ng/mL (17.77 nM)

The sample was analyzed in positive MRM
mode, searching for the transitions of the

ATX-a and the most common ATX-a
analogues: HATX-a, dihydroanatoxin-a,

dihydrohomoanatoxin-a, epoxyanatoxin-a,
and epoxyhomoanatoxin-a.

Water samples Aptasensor (DNA aptamers) 1–100 nM LOD: 0.5 nM
Recovery: 94.8–108.6%

The aptasensor exhibited high stability and
selectivity of ATX-a against CYN and MC-LR. [45]
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Table 1. Cont.

Type of Sample Analytical Method Linear Concentration Range Validation Parameters More Information References

Water samples LDTD-APCI-HRMS 0.5–1000 µg/L

Recovery: 96–108%
LOD: 0.2 µg/L
LOQ: 0.6 µg/L

Accuracy and precision values
(RSD%) < 15%

Resolve the misidentification of ATX-a and
PHE. Two scan modes were assessed,

showing that targeted-MS/MS increased the
selectivity of compound detection.

[46]

Cyanobacteria samples LC-MS 0.005–1.25 µM
LOD: 0.02 mg/kg
LOQ: 0.06 mg/kg

Precision (RSD%): 1–12%

A novel mixed reverse-phase/weak anion
exchange solid phase clean-up was employed.
Also determines HATX-a (LOD: 0.04 mg/kg

and LOQ: 0.12 mg/kg).

[47]

Water samples IMS 20–150 µg/L

Recovery: 91–115%
LOD: 0.02 µg/L
LOQ: 0.08 µg/L

Repeatability (RSD%): 3–9%

Interferences with PHE avoided using the
d-MagIA extraction methodology. [48]

Water samples UPSS sensor 10−15–10−10 M LOD: 10−14 M
Selectivity of ATX-a against CYN and

brevetoxin-2. [49]

Cyanobacterial samples DART-HRMS 0.283–206 ng/mL
LOD: 1 ng/mL

Intra-day (RSD%): 10–40%
Inter-day (RSD%): 33%

<2 min of analysis per sample for triplicate
analysis. Also determines HATX-a and

dihydroanatoxin-a.
[50]

Water samples Colorimetric biosensor (DNA
aptamer) 10 pM–200 nM

LOD: 4.45 pM
Repeatability (RSD%): 3.6%

Recoveries: 89.72–112.43% (RSD:
4.12–10.91%)

Gold nanoparticles are used as probes.
Excellent specificity toward ATX-a. [51]

Water samples ECL-RET aptasensor 0.001–1 mg/mL LOD: 0.00034 mg/mL This sensor showed high assay performance
for ATX-a determination. [52]

Cyanobacterial samples DART-HRMS/MS 0.14–86 ng/mL
LOD: 4.8 ng/g cyanobacteria

Recovery: 82–84%
Precision (RSD%): 12–34%

Also determines HATX-a and
dihydroanatoxin-a. [53]
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Table 1. Cont.

Type of Sample Analytical Method Linear Concentration Range Validation Parameters More Information References

Water samples
ELISA (direct and indirect) 0.5–500 ng/mL

Direct and indirect ELISA:
LOD: 0.1 ng/mL

Recovery: 82–117.4%
CV < 20%

Intra-day (RSD%) < 10%
Inter-day (RSD%) < 20%

Detected (+)-ATX-a.
Robust to pH variations.

It is advisable to minimize the concentration
of organic solvents, and PBS proved to be the

most suitable buffer for the ELISA.
[54]

LFICA - LOD: 2 ng/mL No influence of pH.

Cyanobacterial samples LC-HRMS/MS - - Allows for the detection of new
ATX-a derivatives. [55]

APCI: atmospheric pressure chemical ionization; ATX-a: anatoxin-a; BGA: blue–green algae; CV: coefficients of variation; DART: direct analysis in real time; CYN: cylindrospermopsin;
DNA: deoxyribonucleic acid; d-MagIA: dispersive magnetic immunoaffinity; d.w.: dry weight; ECL-RET: electrochemiluminescence resonance energy transfer; ELISA: enzyme-linked
immunosorbent assay; FLD: fluorescence detection; FP: fluorescent polarization; GC: gas chromatography; HATX-a: homoanatoxin-a; 1H NMR: proton nuclear magnetic resonance;
HPLC: high-performance liquid chromatography; HRMS: high-resolution mass spectrometry; IMS: ion mobility spectrometry; LC: liquid chromatography; LDTD: laser diode thermal
desorption; LFICA: lateral flow immunochromatography assay; LOD: limit of detection; LOQ: limit of quantification; MALDI-TOF-MS: matrix-assisted laser desorption ionization time
of flight mass spectrometry; MC-LR: microcystin-LR; MRM: Multiple Reaction Monitoring; MS/MS: tandem mass spectrometry; MSn: multiple tandem mass spectrometry; NBD-F: 7-
Fluoro-4-nitro-2,1,3-benzoxadiazole; PANI: polyaniline; PBS: phosphate-buffered saline; PGC: porous graphitic carbon; PHE: phenylalanine; PPY: polypyrrole; QIT: quadrupole ion-trap;
QqTOF: hybrid quadrupole time-of-flight; RSD: relative standard deviation; SIM: selected ion monitoring; SPD: solid-phase dispersion; SPE: solid-phase extraction; SPME: solid-phase
microextraction; UPSS: ultrasensitive polymeric sensing system.

Table 2. Analytical methods for the determination of cyanotoxin mixtures containing ATX-a published from 2003 to date.

Type of Sample Cyanotoxins Analytical Method Linear Concentration Range Global Validation Parameters of
Multitoxin Methods More Information and Specific ATX-a Data References

Phytoplankton and aqueous
phytoplankton

STX, ATX-a, DA, NOD,
MCs (-RR, -YR, -LR, LA,

-LW, and -LF), OA,
and DTX-1

LC-MS 1 to 50 ng on column
LOD: 0.5 to 1.0 ng
RSD%: 0.6–7.1%

Recoveries: 96–113%

Direct analysis after the simple preparation of the sample.
The applied chromatographic conditions allow for the isolation and

identification of substances suspected to be “new” microcystins.
For ATX-a: LOD: 0.5 ng, RSD%: 3.2%, and recovery: 103%.

[56]

Cyanobacterial cultures

STX and its various
analogues, ATX-a, CYN,

doCYN, MCs (-LR
and -RR)

LC-MS - LOD: 1.4–3.2 pmol injected on
column in SIM mode

MS detection was carried out in the SIM and SRM modes for the positive
ions, with SRM being the best performing.

In samples, a simple extraction method was used, and no clean-up was
performed on the crude extracts in order to demonstrate rapid analysis.

For ATX-a: LOD: 1.4 pmol injected on column in SIM mode.

[57]

Water samples ATX-a, MCs (-LR, -RR,
and -YR), and NOD LC-MS 5–50 µg/mL

LOD: less than 1 µg/L
RSD%: 5–19%

Recoveries: 68–98%

Toxins are partitioned from water samples with extraction disks.
It allows for sample analysis, including processing in 1 h.

Does not provide multipoint linearity data due to the lack of sufficient
quantities of analyte.

For ATX-a: LOD: less than 1 µg/L, and recovery: 68%.

[58]
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Table 2. Cont.

Type of Sample Cyanotoxins Analytical Method Linear Concentration Range Global Validation Parameters of
Multitoxin Methods More Information and Specific ATX-a Data References

Water bloom samples and crude
cyanobacterial extracts ATX-a, MC-LR, and CYN

CZE-UV -

LOD: 0.73–3.77 µg/mL
RSD% peak area: 1.48–2.93%

RSD% migration time:
0.27–0.71%

For ATX-a: LOD: 1.12 µg/mL; RSD% peak area: 2.93%; and RSD%
migration time: 0.27%.

[59]

MEKC-UV -

LOD: 0.89–3.65 µg/mL
RSD% peak area: 1.87–2.98%

RSD% migration time:
0.58–0.74%

It is recommended to use both CZE and MEKC for the analysis of the
same sample in order to confirm the results.

For ATX-a: LOD: 2.63 µg/mL; RSD% peak area: 2.98%; and RSD%
migration time: 0.66%.

Cyanobacteria-containing
samples

PSP toxins, ATXs, CYNs,
MCs (-RR, -LR, -YR, -LA,
-LW, and -LF), and NODs

LC-MS/MS - LOD: 6–700 pg
LOQ: 10–1150 pg

It is necessary to clean the sample to avoid false positives.
This method allows one to detect potential unknown variants of

cyanobacterial toxins.
For ATX-a: LOD: 700 pg and LOQ: 1150 pg

[60]

Water samples ATX-a, MCs (-RR, -LR,
and -LF), and CYN LC-MS/MS 0.5–100 ppb (µg/L) LOD: 0.10–0.21 ppb (µg/L)

Recoveries: 88–110%

This method can be used to either screen or quantify the main
cyanotoxins in a few minutes.

For ATX-a: LOD: 0.13 µg/L and recoveries: 88–102%.
[61]

Water samples
MCs (-LR, -RR, -YR, -LW,

-LF, and -LA), NOD,
ATX-a, and CYN

LC-MS
8–1000 ng/L (MCs and NOD)

40–2000 ng/L (ATX-a)
40–2000 ng/L (CYN)

LOD: 2–100 ng/L (pure water)
Recoveries: 83–104%

Dual-cartridge SPE extraction is necessary.
Toxin recoveries were lower in reservoir water than in pure water

(83–90% vs. 94–104%).
Differences of less than 10% were obtained in the values of MC-LR and
CYN concentrations measured by this method (SPE-LC-MS) compared

to the ELISA test.
For ATX-a (pure water): LOD: 46 ng/L and recovery: 96%.

[62]

Water, fish, and plant samples BMAA, DAB, and ATX-a

LC-FLD
0.01–0.70 mg/L (BMAA

and ATX-a)
0.01–1 mg/L (DAB)

LOD: 5–7 µg/L Derivatization reagent: 6-aminoquinolyl-N-hydroxysuccinimidyl
carbamate.

An extraction step with SPE cartridges is required. The sensitivity
provided by LC-MS/MS was improved over HPLC-FLD.

For ATX-a: LOD: 6 µg/L in HPLC-FLD and 3.2 µg/L in LC-MS/MS.

[63]

LC-MS/MS
0.01–0.70 mg/L (BMAA

and ATX-a)
0.01–1 mg/L (DAB)

LOD: 0.8–3.2 µg/L

Water samples CYN, MCs (-LR, -RR, and
-YR), and ATX-a LC-MS/MS - LOD: 1.9–3.9 ng/mL

LOQ: 5–10 ng/mL

The method separates the amino acid PHE, so there is no interference
with ATX-a.

The most common cyanotoxins can be simultaneously identified within
12.5 min, including several ATX-a analogues.

For ATX-a: LOD: 1.9 ng/mL and LOQ: 5 ng/mL.

[64]

Algal bloom water samples
MCs (-RR, -YR, -LR, -LY,

-LW, and -LF), ATX-a,
and CYN

LC-MS/MS 0.1–10 µg/L

LOD: 0.01–0.02 µg/L
LOQ: 0.03–0.06 µg/L

Intra-day (RSD%): 3–9%
Inter-day (RSD%): 7–13%

Bias (%): 7–12%
Recoveries: 72–102%

SPE extraction is required.
The analysis time was 7 min per sample.

The method permitted the chromatographic separation of ATX-a
and PHE.

For ATX-a: LOD: 0.01 µg/L, LOQ: 0.03, bias: 8–9%, intra-day (RSD%):
4–6%, inter-day (RSD%): 9–13%, and recovery: 72%.

[65]

Aquatic samples
MCs (-LR, -YR,

-RR, -LA, -LY, and -LF),
NOD, CYN, ATX-a,

and DA
LC-MS/MS 0.01–2 ng/mL

LOD: 0.3 and 5.6 ng/L
LOQ: 0.8 and 18.5 ng/L

Intra-day (RSD%): 1.2–9.6%
Inter-day (RSD%): 1.3–12.0%

Recoveries: 35.5–107.5%

SPE extraction is required.
Very low recoveries are obtained for ATX-a and DA (35.5 and 65.5%,

respectively). The rest of the toxins show good recoveries (93.8–107.5%).
For ATX-a: LOD: 5.6 ng/L, LOQ: 18.5, ng/L: 1.3–12.0%, and

recoveries: 35.5%.

[66]
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Table 2. Cont.

Type of Sample Cyanotoxins Analytical Method Linear Concentration Range Global Validation Parameters of
Multitoxin Methods More Information and Specific ATX-a Data References

Water samples

ATX-a, HATX-a, CYN,
doCYN, NOD, and MCs

(-LR, -RR, -YR, HtyR, -LA,
-LF, -LW, -LY, -WR,

-[Dha7]-LR, -[d-Asp3]-LR,
-[d-Asp3]-RR, -HilR,

-(N-methyl-l)-R, -[d-Asp3,
(E)-Dhb7]-HphR,

-[d-Asp3,
(E)-Dhb7]-HtyR,

-[d-Asp3,
(E)-Dhb7]-RR,
-[Dha7]-LR)

LC-MS/MS 0.1–10 µg/L

LOQ: 0.1–0.5 µg/L
RSD%: 0.9–5.4%

Recoveries: 60–111% for
drinking water

Recoveries: 65–138% for
raw water

The time of analysis, including the lysis of cell-bound toxins, is less than
three hours.

For ATX-a: LOQ: 0.5 µg/L and recoveries: 89–138% (raw water).
[67]

Drinking water samples
MCs (-RR, -YR, -LR, -WR,
-LA, -LY, -LW, and -LF),
NOD, ATX-a, and CYN

LC-MS

0.1–10 µg/L (ATX-a, MC-RR,
-WR, -LA, -LF, and NOD)

0.2–20 µg/L (MC-YR, and -LW)
0.3–30 µg/L (CYN, MC-LR,

and -LY)

LOD < 100 ng/L (range of
30–90 ng/L)

LOQ: 0.1–0.3 µg/L
RSD < 20% (intra-day (RSD%):

5.1–16.6% and inter-day (RSD%):
5.8–13.7 for 1 µg/L; intra-day

(RSD%): 2.5–16.0% and inter-day
(RSD%) 4.6–12.3 for 200 ng/L)
Accuracy: intra-day 93–107%

and inter-day: 84–99% for
1 µg/L; accuracy intra-day:

89–106% and inter-day 91–105
for 200 pg/mL

Adequate separation of toxins in 12 min.
The matrix effects between calibrators and samples (≤30%)

were negligible.
For ATX-a: LOD: 30 ng/L and RSD < 20% (intra-day (RSD%): 8.6% and

inter-day (RSD%) 8.1% for 1 µg/L; intra-day (RSD%): 5.1% and
inter-day (RSD%) 6.3 for 200 ng/L; accuracy: intra-day 101% and

inter-day: 99% for 1 µg/L; and accuracy intra-day: 106% and inter-day
105% for 200 pg/mL

[68]

Cyanobacterial blooms samples

MCs (-LR, -YR, -RR,
-HtyR, -HilR, -WR, -LW,
-LA, -LF, -LY, -Dha7, -LR,

and -Dha7-RR)
and ATX-a

LC-HRMS 0.05–4.80 µg/L

LOD: 0.004 and 0.01 µg/L
Intra-day (RSD%): 1.71–4.68%
Inter-day (RSD%): 1.95–3.63%

Recoveries: 93.5–105.4%

Automated preconcentration of the sample (on-line SPE) was used.
This method presents quantitative results in a period less than 3 h.

Uncertainty of method: 4 and 14%.
For ATX-a: LOD: 0.0044 µg/L, intra-day (RSD%): 3.66%, inter-day

(RSD%): 3.42%,
recovery: 98.9%.

[69]

Algal dietary supplements
(Spirulina and Aphanizomenon

flos-aquae)

MCs (-RR, -YR, -LR, -LA,
-LY, -LW, and -LF), ATX-a,

dihydroanatoxin-a,
epoxyanatoxin-a, CYN,

STX, and BMAA

LDTD-APCI-HRMS
and LC-HRMS 0.03–20 µg/g

LODs: 0.01–0.1 µg/gLOQs:
0.03–0.1 µg/gIntra-day (RSD%):

1–9% and 5–12% for high and
low concentrations

Inter-day (RSD%): 7–13% and
7–15% for high and low

concentrations
Recoveries: 79–97%

The ATX-a recoveries obtained using LDTD-APCI-HRMS analysis were
better (92–95%) than applying UHPLC-HESI-HRMS analysis (89–90%).
However, a better linearity range and better LOD and LOQ data were
obtained with UHPLC-HESI-HRMS compared to LDTD-APCI-HRMS.

For ATX-a: LOD: 0.04 µg/g, LOQ: 0.1 µg/g, intra-day (RSD%): 5%,
inter-day (RSD%): 8–9%, and recovery: 89–90%.

[70]

Water samples

CYN, ATX-a, NOD, MCs
([D-Asp3]-RR, -RR, -YR,

-HtyR, [D-Asp3]-LR, -LR,
-HilR, -WR, -LA, -LY, -LW,

and -LF), OA, and DA

LC-MS/MS 1–250 µg/L
LODs: 1–10 ng/L
RSD%: 5.5–45.8%

Recoveries: 44–113%

In general, the mean recoveries and precision parameters are in
agreement with guidelines for all common toxins.

The worst analytical validation data (recovery and precision) were
found for MC-WR, MC-LF, and MC-LW. Nevertheless, the decreased

efficiency of the method, observed only for these analytes, is
compensated for by the advantage of achieving the simultaneous

determination of numerous toxins.
For ATX-a: LODs: 1 ng/L, RSD%: 25.38%, and recovery: 62.3%.

[71]
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Table 2. Cont.

Type of Sample Cyanotoxins Analytical Method Linear Concentration Range Global Validation Parameters of
Multitoxin Methods More Information and Specific ATX-a Data References

Water samples and fish tissue
MCs (-LA, -LR, -LY, -RR,
and -YR), NOD, ATX-a,

CYN, and STX
LC-MS 0.1–100 ng/mL

0.1–20 ng/mL (ATX-a)

LOD: 0.004–0.080 ng/mL
LOQ: 0.01–0.28 ng/mL
RSD% water: 0.6–7.2%

RSD% fish tissue: 1.2–8.2%
Recoveries water: 53–98%

Recoveries fish tissue: 45–103%

SPE extraction was used for water, and liquid–liquid extraction was
used for fish tissue.

A zwitterionic HILIC was evaluated to separate toxins.
For ATX-a: LOD: 0.004 ng/mL, LOQ: 0.01 ng/mL, RSD% water: 1.9%,

RSD% fish tissue: 3.4%, recovery water: 97%, and recovery fish
tissue: 103%.

[72]

Water samples ATX-a, CYN, NOD,
and MC-LR

Differential
fluorescent sensor

array
(DNA aptamer)

8–100,000 nM

LOD of fluorimeter: 0.54–1.8 nM
LOD of smartphone: 1.2–2.8 nM

LOQ: 8–23 nM
Recoveries: 97–104.6%

RSD%: 0.9–3%

The smartphone-based sensor platform showed remarkable chemical
specificity against potential interfering agents in water. This assay chip
runs to completion after the addition of a drop of environmental water,
making it suitable for field applications. Robust to various interferences

(minerals, organics, and biomacromolecules).
For ATX-a: LOD of fluorimeter: 0.54 nM and LOD of smartphone:

1.2 nM.

[73]

Water samples

CYN, ATX-a, HATX-a,
AP-A and AP-B, and MCs

(-RR, [Asp3]-RR, -YR,
-HtyR, -LR, [Asp3]-LR,

-HilR, -WR, -LA, -LY, -LW,
and -LF)

LC-HRMS -

LOD: 8 and 53 ng/L
LOQ: 36 and 176 ng/L

Intra-day (RSD%): 1.2–17%
Inter-day (RSD%): 3.1–19%

RSD% < 20%
Recoveries: 81–113%

On-line SPE extraction was used.
Extraction and separation of toxins were achieved in 8 min.

Low relative matrix effects (<29%).
For ATX-a: LOD: 15 ng/L and LOQ: 49 ng/L.

[74]

Water reservoirs
CYN, ATX-a, NOD, and
MCs (-LR, -RR, -YR, -LA,

-LY, -LW, -LF).
LC-HRMS 0.025–50 µg/L

LOD: 4 and 150 pg/L
LOQ: 12 and 450 pg/L

Intra-day (RSD%): 1.5–8.8%
Inter-day (RSD%): 2–23.2%

Recoveries: 9.2–84.3% at 2 ng/L
Recoveries: 32.3–70.3% at

10 ng/L
Recoveries: 48.7–87.8% at

20 ng/L

Two-step SPE extraction was used.
The best recoveries of 70.2–87.8% were obtained for ATX-a, and the
worst data recoveries (only 9.2–48.7%) were obtained with MC-LW.
For ATX-a: LOD: 20 pg/L, LOQ: 60 pg/L, intra-day (RSD%): 2.1%,

inter-day (RSD%): 22.6%, and recoveries: 70.2–87.8%.

[75]

Cyanobacterial bloom freshwater CYN, ATX-a, and
HATX-a LC-MS/MS 0.03–100 ng/mL

LOD by DI: 15–70 ng/L
LOD by SPE: 0.6–1.3 ng/L
LOQ by DI: 50–240 ng/L
LOQ by SPE: 2–4 ng/L

RSD%: 1.4–3.3%

ATX-a and HATX-a in freshwater samples could be performed by both
DI and SPE coupled with UPLC-ESI-MS/MS; the best values were

obtained by SPE. Acetaminophen-d4 (an isotopically labeled
acetaminophen) is a suitable internal standard for correcting the matrix

effects on the signal intensity of ATX-a and HATX-a.
For ATX-a: LOD by DI: 70 ng/L, LOD by SPE: 1.3 ng/L, LOQ by DI:

240 ng/L, LOQ by SPE: 4 ng/L, and RSD%: 2.2%.

[76]

Water samples

ATX-a, HATX-a, CYN,
and MCs (-LF, -LR, -RR,

-YR, [D-Asp3]-LR,
[D-Asp3]-RR)

LC-HRMS 0.02–100 µg/L

LOD extracellular: 10–129 ng/L
LOD intracellular: 3–45 ng/L

LOQ extracellular: 25–129 ng/L
LOQ intracellular: 8–45 ng/L

Intra-day (RSD%): 2–7%
Inter-day (RSD%): 2–7%

Recoveries:84–119%

Matrix effects for the intracellular fraction were similar and acceptable
for all analytes.

For ATX-a: LOD extracellular: 10 ng/L, LOD intracellular: 3 ng/L, LOQ
extracellular: 25 ng/L, LOQ intracellular: 8 ng/L, intra-day (RSD%):

2–4%, inter-day (RSD%): 4%, and recoveries: 84–100%

[77]

Fish muscle
ATX-a, HATX-a, CYN, 12

MCs, AP-A and AP-B,
and cyanopeptolin-A

LC-MS/MS 0.05–250 µg/kg

LOD: 0.3–10 µg/kg
LOQ: 0.3–33 µg/kg

Intra-day (RSD%): 1.8–11.4%
Inter-day (RSD%): 7.2–25.5%

Recoveries: 83.2–109.8%

For the ATX-a, the parameters were as follows: LOD: 10 µg/kg,
LOQ: 33 µg/kg, intra-day (RSD%): 1.8%, inter-day (RSD%): 19%, and

recovery: 97.8%.
[78]
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Table 2. Cont.

Type of Sample Cyanotoxins Analytical Method Linear Concentration Range Global Validation Parameters of
Multitoxin Methods More Information and Specific ATX-a Data References

Water reservoirs
MCs (-LR and -RR), NOD,

CYN, ATX-a, BMAA,
DAB, and AEG

LC-MS/MS 0.004–2.00 µg/L

LOD: 0.0012–0.03 µg/L
LOQ: 0.004–0.1 µg/L

Intra-day (RSD%): 3.3–14.1%
Inter-day (RSD%): 5.1–14%

Recoveries: 70.6–101.0%

Matrix effects: 11.2–253%.
Different types of stationary phases were tested. The results showed that

the Oasis MCX cartridge provided satisfactory recoveries for all
cyanotoxins (above 55%), with the exception of ATX-a.

Moreover, different membrane filters (CA, GF, PTFE, Nylon, and PVDF)
were studied, with the hydrophilic PTFE filter membrane being the most

reliable filter material.
Separation and detection of toxins were achieved in less than 12 min.

For ATX-a: LOD: 0.03 µg/L, LOQ: 0.1 µg/L, intra-day (RSD%):
3.6–4.5%, inter-day (RSD%): 6.4–14%, recoveries: 82.3–92.8%, and matrix

effect: 11.4–16.8%.

[79]

Algal dietary supplements
(Spirulina)

MCs (-LR and -RR), NOD,
ATX-a, BMAA, DAB, and

AEG
LC-MS/MS 60–2500 µg/kg

LOD: 15–90 µg/kg
LOQ: 50–300 µg/kg

Intra-day (RSD%): 3.7–19.5%
Inter-day (RSD%): 5.6–25.1%

Recoveries: 64.2–102.9%

Matrix effects: 9.1–467.8%. For ATX-a, matrix effects: 26–33%.
For ATX-a: LOD: 45 µg/kg, LOQ: 150 µg/kg, intra-day (RSD%):

7.1–9.1%, inter-day (RSD%): 8.2–8.6%, and recoveries: 78.7–87.8%.
[80]

Shellfish

STXs, ATX-a, CYN, NOD
doCYN, DTXs, DA, MCs,

BMAA, DAB, AEG,
azaspiracids, yessotoxins,
spirolides, pectenotoxins,
pinnatoxins, ovatoxins,

gymnodimines, and
brevetoxins

LC-MS/MS -
LOD: 1.2–150 µg/kg
LOQ: 3.5–450 µg/kg

Recoveries: 48–107.5%
For ATX-a: LOD: 8 µg/kg, LOQ: 17.5 µg/kg, and recovery: 94%. [23]

Bivalve mollusks and
phytoplankton

ATX-a, HATX-a, CYN,
MCs (-RR[D-Asp3],

-RR[D-Asp3, (E)-Dhb7],
-LA, -LR-[Dha7],

-LR-[Asp3], -LF, -LR, -LY,
-HilR, -LW, -YR, -HtyR,

and -WR), and NOD

LC-MS/MS 3.12–200 µg/kg

LOD: 2.1–4.04 µg/kg
LOQ: 6.29–12.11 µg/kg

Within-batch repeatability
(RSD%): 1.3–7.4%;

between-batch repeatability
(RSD%): 5.6–18%

Recoveries: 18.6–88.8%

ATX-a, HATX-a, MC-LF, MC-LW, and especially CYN presented the
worst recovery data.

For ATX-a: LOD: 2.51 µg/kg, LOQ: 7.52 µg/kg, and recoveries:
57.9–60.6%.

[81]

Cyanobacterial samples

ATX-a, HATX-a, CYN,
doCYN, NOD, GNT, MCs

(-RR, [C-Asp3]RR, -LA,
-LR, -LY, -LW, and -YR),

and STXs

LC-MS/MS - - First method to detect GNT simultaneously with other cyanotoxins. [82]
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Table 2. Cont.

Type of Sample Cyanotoxins Analytical Method Linear Concentration Range Global Validation Parameters of
Multitoxin Methods More Information and Specific ATX-a Data References

Water samples

MCs (-LR and -RR), NOD,
CYN, ATX-a, DAB,
BMAA, and AEG

CE-MS/MS

0.03–2.5 µg/L (NOD and CYN)
0.02–0.15 µg/mL (rest

of cyanotoxins)

LOD: 0.005–0.102 µg/L
LOQ: 0.016–0.340 µg/L
Recoveries: 53.5–105%

Intra-day (RSD%): <9.8%
Inter-day (RSD%): <13.7%

No significant matrix effect. The lower recoveries were obtained
for DAB.

For ATX-a: LOD: 0.005 µg/L and LOQ: 0.016 µg/L.

[83]

Spinach samples

0.6–2.4 µg/kg (AEG, DAB,
and MC-LR)

0.45–1.80 µg/kg (ATX-a, MC-RR,
and BMAA)

1.28–8 µg/kg (NOD and CYN)

LOD: 0.03–0.23 µg/kg
LOQ: 0.10–0.78 µg/kg
Recoveries: 65.5–81.0%

Precision (RSD%): 1.1–11.9%

For ATX-a: LOD: 0.03 µg/Kg and LOQ: 0.10 µg/kg.

AEG: N-(2-aminoethyl)glycine); APs: anabaenopeptins; APCI: atmospheric pressure chemical ionization; ATX-a: anatoxin-a; BMAA: β-methylamino-L-alanine; CA: cellulose acetate;
CYN: cylindrospermopsin; CZE: capillary electrophoresis; DA: domoic acid; DAB: 2,4-diaminobutyric acid; DI: direct injection; DNA: deoxyribonucleic acid; doCYN: deoxycylindrosper-
mopsin; DTX-1: dinophysistoxin-1; ELISA: enzyme-linked immunosorbent assay; ESI: electrospray ionization; FLD: fluorescence detection; GNT: guanitoxin; GF: glass microfiber;
HATX-a: homoanatoxin-a; HESI: heated electrospray ionization source; HPLC: high-performance liquid chromatography; HRMS: high-resolution mass spectrometry; LC: liquid
chromatography; LDTD: laser diode thermal desorption; LOD: limit of detection; LOQ: limit of quantification; MEKC: micellar electrokinetic chromatography; MC: microcystin;
MS: mass spectrometry; MS/MS: tandem mass spectrometry; NOD: nodularin; OA: okadaic acid; PHE: phenylalanine; PTFE: polytetrafluoroethylene; PSP: paralytic shellfish poisoning;
PVDF: polyvinylidene fluoride; RSD: relative standard deviations (precision, repeatability, and reproducibility); SIM: selected ion monitoring; SPE: solid-phase extraction; SRM: selected
reaction monitoring; STX: saxitoxin; UHPLC: ultra-high-performance liquid chromatography; UPLC: ultra-performance liquid chromatography.
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2.1. Enzyme-Linked Immunosorbent Assay (ELISA)

Cyanotoxins can be determined and quantified by their interactions with specialized
antibodies, commonly used to determine other cyanotoxins such as MCs, saxitoxins (STXs),
and nodularins (NODs). In fact, in 2016, the US Environmental Protection Agency (US
EPA) validated an immunoassay for the determination of MCs and NODs [84]. On the
contrary, specific antibodies against ATX-a were not available until recently. For the first
time, Cevallos-Cedeño et al. [54] developed a sensitive immunoassay for ATX-a after the
same research group generated immunoreagents (bioconjugates and antibodies) following
the synthesis of three different functionalized derivatives of ATX-a [85], allowing ATX-a to
be controlled at lower part-per-billion levels. The authors also used these immunoreagents
to optimize a dipstick assay that provides rapid screening in water samples with levels
higher than 2 ng/mL ATX-a [54]. This advancement has made the determination of this
cyanotoxin possible through commercial kits (Abraxis, Warminster, PA, USA). In this
regard, the kit based on the recognition of toxins by a monoclonal antibody shows a limit
of detection (LOD) of around 0.1 µg/L, with recoveries between 98 and 104.4%. However,
it is important to keep in mind the limitations of this rapid screening method. This test
may experience interferences in more complex matrices; the presence of solvents should be
reduced to avoid the matrix effect (methanol concentration should be <2.5%.), and in those
cases where positive results require regulatory measures, it is also necessary to perform an
analysis using an alternative method.

2.2. DNA Aptamers/Biosensors

Aptamers are single-stranded DNA or RNA sequences that take the form of unique
three-dimensional structures, enabling them to recognize a specific target with high affinity.
These have multiple applications, including biosensors, which are analytical instruments
that allow for the detection of an analyte of interest by means of biorecognition and result
in a measurable signal. In this respect, biosensors using ATX-a specific DNA aptamers
have been published using different detection modes, such as impedimetric [45], electrical
conductance [49], colorimetric [51], and electrochemiluminescence [52] aptasensors. The
DNA aptamer characterized by Elshafey et al. [45] was one of the first to be developed. The
technique revealed an LOD of 0.5 nM, a linear range for ATX-a concentrations ranging from
1 to 100 nM, and recoveries between 94.8 and 108.6%. In general, these methods have lower
LODs than other techniques, even detecting ATX-a at picomolar levels [51]. In addition,
aptamers exhibit many advantages because they are simple, specific, and cost-effective,
as they do not require complex instrumentation, which makes them a useful tool for field
studies and allows for the analysis of a large number of samples in a short time, which is a
suitable screening method [86]. However, only Li et al. [73] have developed a fluorescence
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sensor-based adaptor method for the detection of cyanotoxin mixtures, including ATX-a,
CYN, NOD, and MC-LR, in water samples. This method shows very good recoveries (in
the range of 97.0–104.6%), proving to be a simple, sensitive, and robust method for the
determination of four of the most common cyanotoxins in field samples.

2.3. Ultraviolet and Fluorescence Detection

The early methods developed based on ATX-a determination mainly employed high-
performance liquid chromatography (HPLC) coupled with absorbance detection techniques
such as ultraviolet–visible (UV-vis) or fluorescence spectroscopy, providing both qualitative
and quantitative data in ATX-a analyses. However, most of these methods contained
little detailed data on the validation parameters [30,87–91]. Due to the presence of an
α, β-unsaturated ketone, ATX-a has maximum UV absorption at 227 nm, allowing for
its discrimination from phenylalanine (257 nm), a compound that frequently produces
interferences with ATX-a [92]. For UV detectors, the LOD to determine ATX-a can be
up to 0.025 µg/L in water samples [91]. Nevertheless, despite being a fast and simple
method, it has limitations, such as its low sensitivity and the numerous interferences
in more complex matrices, such as environmental samples or animal and plant tissues,
causing false positives or negatives. In addition, HPLC-UV does not allow for the detection
of ATX-a degradation products, which is of particular relevance in the case of rapidly
degrading ATX-a under natural conditions [93]. Such tests on environmental samples can
provide useful information in cases of investigating sudden animal deaths after ATX-a has
been degraded [94].

Other authors, to increase ATX-a selectivity and LODs, developed different methods
using derivatization and fluorescence detection (FLD) [22,36,39,42,90,94,95]. The method
developed by James and Sherlock [37] allowed for the detection of ATX-a in fresh water in
Ireland and was used to relate this cyanotoxin to cases of neurotoxicosis in dogs [96]. A
year later, the method was improved to allow for the simultaneous determination of ATX-a
and HATX-a, as well as their degradation products (dihydroanatoxin-a, epoxyanatoxin-
a, dihydrohomoanatoxin-a, and epoxyhomoanatoxin-a), with LODs below 10 ng/L and
recoveries greater than 80% in water samples and cyanobacterial blooms [94]. In FLD,
the excitation and emission wavelengths of ATX-a are frequently set at 470 and 530 nm,
respectively [22,39,90]. However, Azevedo et al. [42] investigated the best detection con-
ditions using different excitation and emission wavelengths, obtaining better results with
a 480 nm excitation length and a 546 nm emission wavelength. Regarding derivatization,
4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) is usually used, as it is a simple method
that only takes a few minutes and exhibits selective reactivity with primary and secondary
amines to form highly fluorescence derivatives [36,90,94,95]. Namera et al. [95] used the
derivatization–solid-phase microextraction (SPME) technique coupled to HPLC-FLD to
analyze ATX-a in aqueous simples. An improvement to this method was reported by
Rellán and Gago-Martínez [39], who showed an LOD of 0.29 ng/mL in river water samples
and changed the position of the derivatizing agent at the bottom of the reaction vial to
extend the working life of the fiber. Thus, SPME is an effective alternative to conventional
solid-phase extraction (SPE) for monitoring samples with a great number of analytes.

HPLC-FLD after derivatization with NBD-F has also been used for ATX-a analysis
in more complex samples, such as algae-based dietary supplements [22,36], showing
that the method can be robust to the matrix effect. In this case, the method allows for
the determination of ATX-a and two of its degradation products (epoxyanatoxin-a and
dihydroanatoxin-a) due to the use of o-phthaldialdehyde (OPA) and mercaptoethanol prior
to the derivatization reagent [36].

In relation to multitoxin analysis, Vasas et al. [59] demonstrated the applicability of
capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC)
for the spectrophotometric detection (at 230 nm) of ATX-a, CYN, and MC-LR in wa-
ter bloom samples and culture extracts. Low LODs were obtained for all three toxins
(0.89–3.65 µg/mL), including ATX-a (2.63 µg/mL), proving to be a simple and rapid tool
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for testing the content of these cyanotoxins in environmental samples. However, for
more complex samples, the authors recommended using both techniques for the confir-
mation of the results. Later, other authors applied HPLC-FLD for the analysis of ATX-a,
β-methylamino-L-alanine (BMAA), and (2,4-diaminobutyric) DAB using a polymeric cation
exchange solid-phase extraction (SPE) method in more complex matrices, as well as water
samples (fish and aquatic plants) [63].

2.4. Mass Spectrometry Detection

The MS detection system is mainly based on the comparison of the specific analytical
standards of the compound to be determined, being widely used for the determination of
cyanotoxins [29]. Both the initial mass and the characteristic molecular ionic fragments
are used to ensure the specificity of the assignment. However, in the case of ATX-a, it is
important to note that this pattern is similar to that of phenylalanine, so it is necessary to
know how this amino acid behaves when developing a method that allows for the detection
of ATX-a with MS [97].

Ross et al. [98] were among the first research groups to use MS for ATX-a determination.
They performed a comparison of different MS methods, obtaining the best results with the
desorption chemical ionization/mass spectrometry tandem (DCI-MS/MS), with an LOD
of pure ATX-a of 10 pg/µL. These authors used this method for the analysis of ATX-a in
toxin-spiked urine samples, demonstrating that it could also be suitable for these types of
matrices. However, it is important to note that, to date, it is not known whether ATX-a can
be eliminated in urine, as the metabolism pathways for this toxin are still uncertain [1].

MS coupled to different techniques, such as LC or gas chromatography (GC), has been
used for ATX-a determination in different matrices. Nevertheless, most of the methods
developed employ LC-MS/MS when using water and cyanobacterial samples. To our
knowledge, to date, only one study has focused on the analysis of fish samples using
LC-MS/MS, achieving an LOD of 0.2 ng/g of ATX-a after carrying out an extraction by
matrix solid-phase dispersion [37]. Moreover, the authors also evaluated the influence of
the type of fish on the recovery rate of ATX-a, showing similar recovery values in all cases
(around 75%). Dimitrakopoulus et al. [41] developed a LC-ESI-MS/MS method with the
lowest reported LOD for the detection of ATX-a in freshwater samples using LC-MS/MS
(LOD = 0.65 ng/L). To accomplish this, different types of SPE cartridges were also evaluated
to select the most suitable one to carry out ATX-a preconcentration and extraction. Porous
graphitized carbon cartridges showed the best recoveries compared to silica-based C18 or
polymeric cartridges [41].

On the other hand, few studies employ GC-MS compared to LC-MS [22,34,38,99]. This
may be due to the fact that the LODs achieved by this method are higher (µg/L ATX-a
levels) than those obtained by LC-MS (ng/L ATX-a levels) and the fact that this method
requires more analysis time due to the use of a derivatization process prior to the analysis.
Rellán et al. [22] developed a method for the detection of ATX-a in dietary food supplements
containing cyanobacteria, using GC-MS as a tool to confirm results obtained by HPLC-FLD.
Although this technique has high sensitivity, as mentioned above, it can present errors in
more complex matrices.

The use of other techniques coupled to MS has also been explored for ATX-a anal-
ysis. For instance, matrix-assisted laser desorption ionization time-of-flight (MALDI-
TOF) has been performed for the characterization of ATX-a [40]; however, it does not
indicate validation parameters for quantitative purposes. Also, laser diode thermal
desorption–atmospheric pressure chemical ionization–tandem mass spectrometry (LDTD-
APCI-MS/MS) was employed for the first time by Lemoine et al. [43] to identify ATX-a. This
technique allows for the elimination of phenylalanine interferences without the need to use
LC, thus reducing analysis time. Shortly thereafter, analytical data from this technique were
improved using LDTD-APCI coupled with high-resolution mass spectrometry (HRMS) [46].
An LOD and a limit of quantification (LOQ) of up to 0.2 and 0.6 µg/L, respectively, were
achieved using less than 15 s of analysis per sample.
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More recently, other authors have used HRMS combined with direct analysis in real
time (DART) for the analysis of ATX-a in cyanobacterial samples. This technique can be
useful for the analysis of a large number of samples in a short time at the expense of the
reproducibility of the method (around 30% RSD), with an LOD = 1 ng/mL [50]. Shortly
afterwards, an improvement to this method was made using DART-HRMS/MS, which also
allowed for the analysis of HATX-a and dihydroanatoxin-a, as well as the reduction of the
matrix effect due to the use of an isotopically labeled ATX-a standard [53].

Regarding the methods for the determination of ATX-a in mixtures with other cyan-
otoxins, most of them have been validated using an MS detection system in different matrix
samples. In addition to ATX-a, these methods have been validated to determine MCs
(mainly MC-LR) and CYN, followed by other less common toxins such as STX, BMAA,
DAB, NOD, okadaic acid (OA), and domoic acid (DA), among others. The first documented
methods for the detection of ATX-a and MCs in water and fish muscle were developed by
Hormozábal et al. [100,101], who obtained better validation parameters for the less complex
matrix (water). Worse results were obtained by Pietsch et al. [102], who reported a very
wide range of general toxin recoveries (3.2–96.0%) and a recovery of 50% for ATX-a after
performing HPLC-ESI-MS/MS on water samples. They also determined STX and NOD.
Subsequently, other authors improved these parameters by reducing the range of toxin recov-
eries (96–113%) and decreasing the LODs in phytoplankton samples with a higher number
of toxins (STX, ATX-a, DA, NOD, six congeners of MCs, OA, and dinophysistoxin-1) [56].
These authors obtained the best overall toxin recovery parameters, with one of the highest
ATX-a recoveries (103%) reported in this type of matrix, by LC-ESI-MS. Ortiz et al. [83]
obtained similar parameters by LC-QtoF HRMS in cyanobacterial blooms, determining up
to 13 congeners of MCs together with ATX-a.

In general, most of these methods have been developed for water samples, obtaining
important differences in the validation parameters and showing wide ranges of toxin
recoveries (recoveries of 35.5–107.5% were reported by Greer et al. [66]; recoveries of
65–138% were reported by Pekar et al. [67]; and recoveries of 44–113% were reported by
Zervou et al. [71]. Among them, Pekar et al. [67] presented the best recoveries for ATX-
a (range of 89–138%, compared to 35.5% [66] and 62.3% [71]) using UPLC-MS/MS and
LC-MS/MS (see Table 2).

With respect to more complex matrices such as fish tissues, very few works have
been published. As mentioned above, the first published report was from Hormozábal
et al. [100], who obtained an ATX-a recovery of up to 73% using LC-MS. More recently,
Haddad et al. [72] obtained a varied range of recoveries (45–103%) depending on each
toxin, presenting a high percentage in the case of ATX-a (103%) using the same technique.
Nevertheless, other authors have presented an overall high range of recoveries (83.2–
109.8%) for all cyanotoxins, with 97.8% for ATX-a by LC-MS/MS [78]. However, when
choosing a multitoxin method, it is very important to consider the recovery parameters of
all toxins in general, in addition to those of ATX-a.

Method EPA 545

Because LC-MS is one of the most sensitive techniques, the Environmental Protection
Agency (EPA) proposed this analytical method as the official method for the analysis of
ATX-a in drinking water samples [103]. This guide indicates all the quality parameters
that must be met by laboratories that wish to use this method for the detection of ATX-a
and CYN. This method is a liquid chromatography, electrospray ionization, tandem mass
spectrometry (LC/ESI-MS/MS) method. Thus, it requires the presence of analysts skilled in
the operation of LC/ESI-MS/MS instrumentation and the interpretation of the associated
data. Moreover, the minimum reporting levels for the lowest concentration in the laboratory
were 0.018 µg/L for ATX-a and 0.063 µg/L for CYN.

The method describes the precision (95–111% for ATX-a) and accuracy (1.0–7.4% for
ATX-a) values for ATX-a depending on the type of fortified water tested (water, groundwa-
ter, chlorinated surface water), as well as the influence of the contact packaging material
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(plastic and glass). Moreover, this method allows for the selection of LC columns and their
conditions as long as they do not reduce analytical efficiency, and the analyst checks that
all acceptance criteria for the quality control of the EPA-545 method are satisfied.

2.5. Gas Chromatography–Electron Capture Detection

GC coupled to electron capture detection (ECD) is also among the techniques used
for ATX-a determination [104,105]. GC-ECD analysis of ATX-a requires the use of deriva-
tization to increase the sensitivity of the analysis, resulting in a longer analysis time. To
accomplish this, different derivatization processes have been employed, such as ones in-
volving the use of trichloroacetic anhydride [104] or pentafluorobenzylbromide [105]. This
technique was able to detect ATX-a levels up to pg levels in both water and cyanobacterial
bloom samples [105].

3. General Discussion

The proliferation of toxin-producing cyanobacteria is increasing worldwide, with
more and more variants of cyanotoxins being documented in the literature, as well as more
alarming data regarding the concentrations of these toxins in samples. The development
and validation of analytical methods is essential to alert the population to the presence
of cyanotoxins and reduce potential exposure to cyanotoxins [106]. In recent years, cyan-
otoxins other than MCs, such as ATX-a, have attracted more attention [8]. Concentrations
of up to 1430 µg/L and 8000 µg/g dw of ATX-a have been found in environmental sam-
ples [18,92,107]. Furthermore, a high bioaccumulation capacity has been demonstrated in
fish [25,26].

On the other hand, different authors have demonstrated the presence of ATX-a or
its derivatives in algae-based food supplements [108,109]. Therefore, because of the risk
that the consumption of water and food contaminated with this toxin may pose, it is
important to have adequate analytical methods to determine ATX-a. Furthermore, these
methods should be in constant development to meet new analysis demands: the presence of
cyanotoxins in different matrices, the coexistence of several toxins in one sample, different
concentration ranges, etc.

Several parameters must be taken into account when selecting an ATX-a analysis
method. These include the availability of the analytical method, the type of matrix, the
required analysis time, and the main validation parameters, such as the LOD, LOQ, % re-
covery, and precision. Figure 5 summarizes the main advantages and disadvantages of the
analytical methods developed for ATX-a detection.

In general, although there are different methods for the detection of ATX-a alone,
most of them use MS/MS detection systems [41,43,78,80]. These methods have shown
the best validation parameters compared to other detection systems such as UV or FLD.
With respect to the analysis of ATX-a alone in a water matrix, the method of analysis
validated by Dimitrakopoulos et al. [41] using LC-ESI-MS/MS presents the best LOD
levels (below 1 ng/L), a good range of toxin recoveries (73–97%), and adequate precision.
However, methods using an MS/MS detection system require a prior cleaning, extraction,
or preconcentration step, which increases the time of analysis, labor demands, and cost of
the analytical process. A good alternative to them in this matrix (water) can be biosensors.
The colorimetric biosensor validated by Nguyen and Jang [51] shows an LOD of 4.45 pM
(equivalent to 0.7 ng/L) and a high recovery (89–112%).

More recently, rapid methods using DART-HRMS have been developed for cyanobloom
samples; however, they have not shown good accuracy parameters (RSD% up to 34%) [50,53].
Recently, Cevallos-Cedeño et al. [54] developed an ELISA method for ATX-a. Although ELISA
methods are fast and inexpensive methods for cyanotoxin analysis, they are less sensitive
than other techniques. Nevertheless, they could be used as an alternative or screening method
for an initial ATX-a analysis.

Regarding the methods used to analyze the presence of ATX-a in matrices other than
water and cyanobacteria, we can find methods developed for fish [37,42] and algae-based
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supplements [22,108]. In fish tissue, the method of Bogialli et al. [37] presents a higher
sensitivity, allowing for the detection of ATX-a at lower levels using LC-ESI-MS/MS,
while the method developed by Azevedo et al. [42] presents a higher recovery rate and
an RSD% < 1% when using HPLC-FLD. Considering the bioaccumulation of the above-
mentioned toxin, it is essential to be able to develop new validated methods in different
matrices (fish, plants, etc.) in order to carry out a correct risk assessment from a food safety
point of view.
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coupled to fluorescence detection; LC-MS/MS: liquid chromatography–tandem mass spectrometry.

In recent years, multitoxin determination methods have attracted more interest than
ATX-a alone analysis. This is because the presence of different cyanotoxins at the same
time in field samples is becoming more and more frequent for different reasons. On the
one hand, in nature, it is common to find different strains producing toxins that coexist
in the same cyanobacterial bloom, while on the other hand, the same strain can lead to
the production of different types of cyanotoxins [110]. Similarly to methods that focus on
ATX-a alone, the analysis of ATX-a in combination with other cyanotoxins mainly uses
MS/MS as the detection method.

Overall, multitoxin analytical methods show worse validation parameters (recovery
rates, LOD, LOQ, and precision) than those focused on individual ATX-a analysis, despite
most of them being more novel. This is largely due to the fact that the extraction process
must consider the presence of both hydrophilic and hydrophobic toxins. However, we can
find some multitoxin methods that show good recoveries of all the toxins analyzed (around
80–110%) [61,62,69,74]. These methods may be a good option for samples containing
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MCs [69], CYN [61], NOD [62], or even anabaenopeptins [74]. Regarding detection limits,
the method of Filatova et al. [75] shows low detection levels for ATX-a, CYN, NOD, and
MCs (order of ng/L), but it has the disadvantage of showing low recovery levels for some
of the MC variants.

In relation to the type of matrix, water and cyanobacterial samples are also the matrices
in which most analytical methods have been developed for cyanotoxin mixtures. However,
fewer multitoxin determination methods have been developed in cyanoblooms compared
to those for ATX-a. On the other hand, the number of multitoxin methods developed based
on aquatic animals and vegetables is higher compared to the analytical methods for ATX-a
alone. The method of Skafi et al. [78] can be applied for the analysis of ATX-a, HATX-a,
CYN, 12 MC variants, anabaenopeptins A and B, and cyanopeptolin-A in fish tissue by
LC-MS/MS, with recoveries between 83.2 and 109.8%. In addition, a validated method for
spinach samples has recently been published that reports validation parameters [83]. This
method uses capillary electrophoresis with tandem mass spectrometry (CE-MS/MS) to
analyze MC-LR, MC-RR, CYN, ATX-a, NOD, DAB, BMAA, and AEG with good precision
(%RSD < 12%) and LODs between 0.03 and 0.23 µg/kg. As evidenced by multitoxin
methods with other matrices such as water [71,72,75], this method does not show high
toxin recoveries (range 65.5–81.0%).

Nevertheless, although better toxin recovery data are obtained with ATX-a-only meth-
ods (more than 70%) [36,37,41,42], they may not be as practical for risk assessments. This is
because ATX-a-only methods do not consider the possible presence of other cyanotoxins
in samples, even those potentially more toxic and more abundant than ATX-a in natural
samples, such as MC-LR and CYN.

Another important aspect of the analysis is to consider the possibility of degradation
of ATX-a under environmental conditions. Methods that consider the determination of its
degradation products allow for more realistic data on the status of this neurotoxin to be
obtained. In this regard, there are different methods focused on the determination of ATX-a
that can be applied [44,50,53,94]. However, there are few multitoxin methods that consider
the detection of the products derived from ATX-a [60], meaning that, in cases in which this
toxin is thought to be the main cause of poisoning, it may be advisable to use methods that
only determine ATX-a and ATX-a-derived compounds.

Finally, in the determination of ATX-a, it is important to take into account its potential
interference with phenylalanine, an amino acid present in foods rich in proteins. In this
regard, several methods have been optimized to avoid erroneous results and false positives
due to the presence of this amino acid in samples [41,43,46,48].

Taking all this into account, the selection of the most appropriate ATX-a analytical
method in each case is multifactorial and must consider all the possibilities described above.

4. Conclusions

The need for rapid and reliable methods for the determination of ATX-a has led to
the publication of a large number of articles focused on the analysis of both ATX-a alone
and in mixtures with other cyanotoxins, with the multitoxin mode being highlighted in
recent years. In general, the methods focused on ATX-a alone present a better sensitiv-
ity in determining this toxin. However, realistically, natural samples frequently contain
several toxins.

In summary, bearing in mind the methods currently available for ATX-a analysis, to
choose an appropriate method, it is necessary to consider the following: (1) the type of
matrix; (2) whether it is likely to find more cyanotoxins as well as ATX-a and, if so, the
types of these cyanotoxins; (3) the quality of the analytical parameters required; and (4) the
cost and speed requirements. Most validated methods for the determination of ATX-a
are based on the MS detection system and use simple matrices such as water samples or
cyanobacterial blooms. Therefore, it is necessary to develop analytical methods for this
toxin, both alone and in combination with other cyanotoxins, in more complex matrices
(vegetables, crops, and fish).
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5. Materials and Methods
5.1. The Information Sources and Search Strategy

Our search for information was conducted using research databases including Web of
Science, Scopus, Science Database, and PubMed up to January 2024. The selected keywords
for all search engines were as follows: anatoxin-a, cyanotoxins, detection methods, mass
spectrometry. Furthermore, the bibliographies of the retrieved articles were reviewed to
enhance the comprehensiveness of the search.

5.2. Inclusion and Exclusion Criteria

The following criteria were considered in the information selection process:
Inclusion criteria: (1) articles based on ATX-a determination methods providing opti-

mization or new analytical validation parameters for ATX-a alone or in cyanotoxin mixtures;
(2) articles published prior to January 2024; and (3) articles reporting comprehensive results
published in internationally recognized journals.

Exclusion criteria: (1) articles on ATX-a determination that use methods already
published by other authors and do not provide any new developments; (2) articles based
on ATX-a(s) determination methods; (3) articles based on methods for the determination of
cyanotoxin mixtures that do not consider the detection of ATX-a; (4) articles published in a
language other than English; and (5) articles for which the abstract is only available.

Based on all the studies that complied with the inclusion criteria, different tables
pertaining to the following were prepared: analytical methods focused on the determination
of ATX-a published up to 2003 (Table S1) and from 2003 to date (Table 1), and analytical
methods for the determination of cyanotoxin mixtures containing ATX-a published up to
2003 (Table S2) and from 2003 to date (Table 2). In addition, Figures 1–3 were elaborated with
the data contained in the articles of Tables 1 and 2 and Supplementary Tables S1 and S2
considering all the ATX-a analysis works found.

Regarding the risk of bias due to the quality of the studies used for the analysis
(Table S3), most of them showed a low (59.1%) or medium (37.8%) risk of bias, while only a
minority (12.1%) demonstrated a high risk of bias, with these studies mainly being older in
terms of date of publication and primarily focusing on the determination of AXT-a alone.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxins16040198/s1. Table S1: Analytical methods fo-
cused on the determination of ATX-a up to 2003 [111]; Table S2: Analytical methods focused
on the determination of cyanotoxin mixtures containing ATX-a up to 2003. Table S3: Risk of
bias for the methodological quality of studies reporting different analytical methods for ATX-a
determination—0: not reported; 1: not appropriately or clearly evaluated; 2: appropriately evaluated.
M: medium (4–6); L: low (7–8); H: high (0–3).
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