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Abstract: In smart cities, large amounts of multi-source data are generated all the time. A model
established via machine learning can mine information from these data and enable many valuable
applications. With concerns about data privacy, it is becoming increasingly difficult for the publishers
of these applications to obtain users’ data, which hinders the previous paradigm of centralized
training through collecting data on a large scale. Federated learning is expected to prevent the
leakage of private data by allowing users to train models locally. The existing works generally ignore
architectures designed in real scenarios. Thus, there still exist some challenges that have not yet been
explored in federated learning applied in smart cities, such as avoiding sharing models with improper
parties under privacy requirements and designing satisfactory incentive mechanisms. Therefore,
we propose an efficient attribute-based participant selecting scheme to ensure that only someone
who meets the requirements of the task publisher can participate in training under the premise of
high privacy requirements, so as to improve the efficiency and avoid attacks. We further extend
our scheme to encourage clients to take part in federated learning and provide an audit mechanism
using a consortium blockchain. Finally, we present an in-depth discussion of the proposed scheme
by comparing it to different methods. The results show that our scheme can improve the efficiency
of federated learning by enabling reliable participant selection and promote the extensive use of
federated learning in smart cities.

Keywords: smart cities; blockchain; CP-ABE; federated learning

1. Introduction

The concept of smart cities has become central to contemporary discussions on urban
development, where the integration of Information and Communication Technology (ICT)
is pivotal in transforming the city’s infrastructure and services [1,2]. Smart cities utilize
advanced data analytics and IoT technologies to optimize resources, improve service
delivery, and enhance the quality of urban life. These urban areas are defined by their ability
to efficiently manage vast amounts of data generated from a multitude of sources—ranging
from traffic sensors to healthcare records—aiming to improve sectors such as energy,
healthcare, and community governance, as Figure 1 shows. Despite the advantages, the
challenge of data acquisition persists, exacerbated by strict data protection regulations
and the growing demand for privacy, which contribute to the formation of fragmented
data ecosystems or ‘data islands’ within urban settings. In response, federated learning
emerges as an effective approach to navigate these challenges. This method allows for
the decentralized training of models on local data held by various stakeholders, thereby
adhering to privacy concerns without centralizing sensitive information. Since its initial
introduction by Google [3], the application of federated learning has expanded, driven
by ongoing research aimed at enhancing its efficiency and accuracy [4–7]. However, the
implementation of federated learning within smart cities is fraught with obstacles, such as
high communication costs; difficulties in achieving model convergence in diverse, non-IID
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data environments; and the critical need for robust security measures to safeguard against
potential data breaches during the model training process [8–11].

Figure 1. Our application of access control in a smart city.

In existing federated learning systems, the number of clients involved in each round
of updates is usually fixed. In the context of a smart city, federated learning schemes
normally select a small number of clients randomly to participate in each round, due to the
limitations of participants’ state and network conditions. However, as there is a mass of
heterogeneous clients in reality, such random selection of clients will increase the adverse
impact of data heterogeneity [12]. Therefore, it is very important to select appropriate
clients for training. Current schemes either select clients with higher statistical utility based
on the measurement of their contributions to model updates [13] or select clients based on
computing resources and communication constraints [14]. Although these schemes achieve
certain effects, there still exist some challenges. For example, some schemes need to analyze
private gradients uploaded by participants, or they consume a lot of resources for learning
and testing, while some can only select participants at a coarse-grained level.

Federated learning prevents direct uploads of private data, but the issue of privacy
leakage has not been completely resolved. Traditional client selection schemes in federated
learning typically allow participants to train models with local datasets and upload gra-
dients to update the global model, so that the central server can use this information to
avoid model poisoning and select participants for the next round of training to favor model
convergence [15,16]. However, some scholars have pointed out that this will also cause se-
rious privacy disclosures [8]. To solve this problem, some studies have used homomorphic
encryption [17] and differential privacy [18] to mask the gradient, but this undoubtedly
prevents the central server from selecting participants, because the server cannot obtain
valid information from the encrypted or confusing gradient. In addition, existing federated
learning schemes usually assume that the participants unconditionally use local resources
to train the models and upload gradients to the central server, which is not sustainable
in reality [19]. Some scholars have looked at federated learning from the perspective of
crowdsourcing [20]. Inspired by this, we believe that, in smart cities, the publisher of a
federated learning task should have no control over the participants, and the clients should
choose whether or not to use local data for training. Therefore, it is necessary to set up an
incentive mechanism to attract participants to join the training [11].

In the context of smart cities, we have sufficient reasons to design a federated learning
framework from the perspective of crowdsourcing. This framework should consider se-
lecting participants during training to improve the training efficiency, blocking malicious
adversaries before training, and encouraging more high-quality clients to participate in con-
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structing the models. In recent years, attribute-based encryption has been widely studied
as a promising direction of functional encryption [21]. Ciphertext-policy attribute-based
encryption (CP-ABE) can conduct fine-grained access control for users conforming to spe-
cific policies without revealing any private data. This enables us to separate the participant
selection module from the federated learning module, thus providing the possibility of
complete privacy protection, including homomorphic encryption. It is worth noting that
there is no research on its application in federated learning. In addition, a consortium
blockchain is a tamper-resistant and traceable distributed ledger that can be used to record
the contributions of participants.

To better understand our scheme, let us consider a scenario in which a company
needs to train a model of people’s desire to consume different goods. It is hoped that as
many clients as possible in the region will participate, even if this is done at a cost. At
the same time, the company wishes to eliminate malicious attacks from competitors and
select participants with an appropriate data distribution in training to improve the learning
efficiency. Although stringent data confidentiality regulations prevent it from deducing
the appropriateness from gradients, it can still apply an attribute-based encryption scheme
to select participants. Specifically, the task publisher develops a policy for each round of
training so that only those who meet this policy can decrypt and participate in subsequent
training. At the same time, participants can record decryption logs in a blockchain, which
can provide both non-repudiation credentials to incentivize the participants and an auditing
report to trace the transactions if a malicious adversary tries to disrupt the model.

The contributions of this article are as follows.

• We propose a client selecting framework in federated learning based on ciphertext-
policy attribute-based encryption, which extends traditional federated learning from
the perspective of crowdsourcing. Our scheme can select appropriate participants on
the premise of protecting gradient privacy.

• An incentive mechanism based on blockchain is proposed, so that the profits to
participate in training belong to clients. The use of immutable smart contracts can
greatly improve the enthusiasm of clients participating in federated learning.

• The security of the proposed scheme is proven, and the performance of the proposed
scheme is evaluated. The experiments show that the method proposed in this paper
can perform better than the existing methods.

The rest of our article is organized as follows. Section 2 presents an analysis of related
work. Section 3 briefly describes the preliminaries, including the security model of this
scheme. Section 4 describes the workflow and the architecture of the proposed CP-ABE
scheme. Section 5 characterizes the IND-CPA security model and describes other security
proofs. Section 6 compares the performance of our proposed scheme with that of other
recent schemes. Finally, Section 7 draws the conclusions.

2. Related Work

The concept of federated learning was proposed by researchers at Google [3], who
devised an interesting virtual keyboard application. Federated learning, as defined by
Kairouz et al. [9], is a machine learning setting where multiple entities (clients) collaborate
in solving machine learning problems, under the coordination of a central server or service
provider. Each client’s raw data are stored locally and not exchanged or transferred. A
typical federated learning process consists of five steps: client selection, broadcast, client
computation, aggregation, and model updates. Among them, it is a very challenging task
to select appropriate clients during training, rather than performing random selection, and
there are still some problems to be solved in the existing client selection schemes.

Zhang et al. [14] selected the clients according to the resource information sent by
them, such as the computing ability and channel state. However, this may mean that clients
with a large amount of data are unlikely to participate in training. Chai et al. [12] stratified
the clients and adaptively selected those with similar training performance per round in
order to mitigate heterogeneity without compromising the model accuracy, but this means
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that the central server has to control all participants to capture the training time on-the-fly.
Fan et al. [22] used importance sampling to select clients, i.e., to select clients by utility.
In addition, they developed an exploration–exploitation strategy to select participants.
However, each of these clients was designed to upload complete model updates to the
central server at each round, ignoring the fact that not all model updates contribute equally
to the global model. As an improvement on this work, Li et al. [23] proposed PyramidFL,
which calculated the importance ranking of each client based on feedback from past training
rounds to determine a list of qualified clients for the next round of training, but the central
server still obtains private information, such as the gradients and loss uploaded by clients.
Wang et al. [24] put forward an experience-driven federated learning framework (Favor)
based on reinforcement learning, which can intelligently select the clients participating in
each round of federated learning to offset the deviation caused by non-IID. However, the
disadvantage is that the efficiency of reinforcement learning restricts the performance of
the system, and sometimes it is unclear why it is effective.

We can consider federated learning from the perspective of crowdsourcing, which
may be an important direction for future federated learning because few companies have as
many registered users as Google. Thus, we have a strong motivation to respect participants’
willingness to participate in training while fully protecting their data. The additional
challenge that needs to be addressed to apply federated learning in smart city scenarios is
participant motivation [11], and most existing federated learning schemes assume that the
participants use local data for training and upload model updates unconditionally. This is
not realistic, as participants have the right to claim remuneration for the resources that they
consume to participate in training. In order to provide appropriate incentives, Sarikaya
et al. [25] designed a Stackelberg game to motivate participants to allocate more computing
resources. Richardson et al. [26] designed payment structures based on the impact charac-
teristics of data points on the model loss function to motivate clients to provide high-quality
data as soon as possible. In many applications, blockchain is considered to be the best
solution to achieve an incentive mechanism, because it is immutable and auditable and
has inherent consensus [27]. Almutairi et al. [28] proposed a solution integrating federated
learning with a lightweight blockchain, enhancing the performance and reducing the gas
consumption while maintaining security against data leaks. Weng et al. [29] proposed a
value-driven incentive mechanism based on blockchain to force participants to behave
correctly. Bao et al. [30] designed a blockchain platform that allows honest trainers to earn
a fair share of profits from trained models based on their contributions, while malicious
parties can be promptly detected and severely punished. Most of these blockchain plat-
forms complete the verification and audit of gradient updates via the blockchain itself,
while ignoring the costs. Moreover, these pure blockchains overemphasize transactions,
without taking into account the difference in data value between different participants. We
believe that, from the perspective of crowdsourcing, it is natural for the task publisher to
pay high-value participants who meet his/her requirements.

In order to achieve a balance between privacy, performance, and incentives in fed-
erated learning, we introduce attribute-based encryption based on ciphertext-policy in
participant selection. Sahai and Waters et al. [31] proposed an attribute-based encryption
scheme in 2005. Their scheme used a single threshold access structure, and only when
the number of attributes owned by users is greater than or equal to a threshold value in
the access policy can the ciphertext data be decrypted successfully. Bethencourt et al. [32]
first proposed an attribute-based encryption scheme based on ciphertext-policy in 2007.
The keys were associated with an attribute set, and the access structure was embedded
in the ciphertext. Only when a user’s own attribute set meets the access structure set by
the data owner can the user successfully decrypt the ciphertext to obtain the ciphertext
data, and the access tree structure is used in this scheme. In order to reduce the storage and
transmission overhead of the CP-ABE scheme, Emura et al. [33] proposed a scheme with
a fixed ciphertext length for the first time, which improved the efficiency of encryption
and decryption. However, all these schemes adopt a simple “AND” gate access structure.
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Waters et al. [34] proposed a new linear secret shared scheme (LSSS) to represent the access
structure, which can realize any monotonous access structure, such as “AND”, “OR”, and
the threshold operation of attributes. This scheme is more expressive, flexible, and efficient.

In smart city scenarios, there are many complex situations, such as the attributes of
the participants being revoked. Updating participants’ attributes timely and effectively
guarantees system security. Pirretti et al. [35] proposed a CP-ABE scheme of indirect
attribute revocation in order to solve the loose coupling problem in social networks. Zhang
et al. [36] proposed a CP-ABE scheme based on an “AND" gate structure with attribute
revocation, but this scheme has poor access structure expression abilities. Hur et al. [37]
proposed an access control scheme with coercive revocation capabilities to solve a problem
in the access permissions caused by changes in the users’ identity in the system. They
introduced the concept of attribute groups. Users with the same attributes belong to the
same attribute group and are assigned to the same attribute group key. Once a member of
the attribute group is revoked, a new group key is generated and sent to all group members
except the revoked user. The ciphertext is updated in the cloud with the new group key,
which makes it impossible for the revoked user to decrypt the data. However, their scheme
does not prevent a collusion attack between the current and revoked users. In order to
prevent cooperative decryption between users who have revoked attributes and users who
do not have attributes, Li et al. [38] proposed a CP-ABE scheme to resist collusion attacks
and support attribute revocation. However, the computational complexity of their scheme
is still too high.

To address the challenges identified in the related work, our study introduces a novel
federated learning framework that utilizes ciphertext-policy attribute-based encryption
(CP-ABE) and a consortium blockchain. This methodology combines the strengths of
CP-ABE to provide fine-grained access control and ensure privacy with the transparency
and traceability of blockchain to manage and audit participant contributions effectively.
The selection of participants based on attribute encryption ensures that only those who
meet pre-defined criteria can access and process the training data, thereby enhancing the
privacy and security of the data used in our federated learning model. Additionally, the
consortium blockchain serves as a decentralized ledger to record all participant activities,
which supports non-repudiation and helps in maintaining a trustworthy environment for
all parties involved.

3. Preliminary
3.1. Federated Learning

Federated learning is a promising research area for distributed machine learning that
protects privacy. In the process of federated learning, the task publisher can train models
with the help of other participants. Instead of uploading private data to the central server,
participants obtain a shared global model from the server and train it on a local dataset.
These participants then upload the gradients or weights of the local model to the task
publisher to update the global model. In particular, taking FedAVG as an example, the
objective function under federated learning is rewritten with the non-convex loss function
of a typical neural network.

f (w) =
K

∑
k=1

nk
n

Fk(w) where Fk(w) =
1
nk

∑
i∈Pk

fi(w)

Here, k represents a total of k participants, and nk represents the number of training
set samples in the k-th participant. The specific algorithm is quite simple. Firstly, we select
some nodes in each batch for epoch training, and then each node uploads weight updates
to the server.

w← w− η∇ℓ(w; b)
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Then, the server collects all the wk
t+1 to obtain the weighted average value of the new

global wt+1, and it is then sent to each participant.

wt+1 ←
K

∑
k=1

nk
n

wk
t+1

Finally, each participant replaces the wt+1 calculated from the last epoch with the
delivered update to train a new epoch. The system repeats the above three steps until the
server determines w convergence.

3.2. Bilinear Pairing

Bilinear pairing, also known as bilinear mapping, was initiated to build functional
encryption schemes. At present, most ABE schemes [39] are based on bilinear pairing
cryptography, and its security has been recognized by many experts. The general definition
of bilinear pairing is given below.

Consider three cyclic groups G1, G2, and GT , each of prime order p. Typically, G1 and
G2 are groups of points on an elliptic curve over a finite field, and GT is a multiplicative
group of a finite field. A bilinear pairing is a map

e : G1 × G2 → GT

that satisfies the following properties.

1. Bilinearity: For all elements u, v ∈ G1 and w, z ∈ G2, the pairing operation respects
the distributive property over the group operation. That is,

e(u · v, w) = e(u, w) · e(v, w)

e(u, w · z) = e(u, w) · e(u, z)

This property can be extended to the exponents in the groups

e(ua, wb) = e(u, w)ab

for all a, b ∈ Z. This property is fundamental in enabling many cryptographic proto-
cols because it allows the pairing operation to “interact” with the group operations in
a predictable way.

2. Non-degeneracy: The pairing is non-trivial in the sense that there exists at least some
u ∈ G1 and w ∈ G2 such that e(u, w) ̸= 1 in GT . This ensures that the pairing map
is not constantly zero and thus is useful for cryptographic applications. It is often
required that for all u ̸= 1 in G1 and all w ̸= 1 in G2, e(u, w) ̸= 1.

3. Symmetry (in some cases): For some pairings, particularly symmetric pairings,
G1 = G2 and the pairing satisfies e(u, w) = e(w, u). This symmetry is not always
required or desired, depending on the cryptographic application.

4. Computability: There must be an efficient algorithm to compute e(u, w) for all u ∈ G1
and w ∈ G2. The efficiency of this computation is critical because the practicality of
cryptographic protocols based on pairings depends heavily on the ability to compute
these pairings quickly.

Bilinear pairings are not only theoretical constructs but are practically implemented
using specific types of elliptic curves, such as supersingular curves or curves with a low
embedding degree, which provide the necessary mathematical structure to support efficient
and secure pairings. These properties make bilinear pairings powerful tools in modern
cryptographic systems, providing functionalities that are not feasible with traditional
cryptographic primitives.
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3.3. Consortium Blockchain

Blockchain is essentially a decentralized database. It adopts distributed accounting
and relies on ingenious algorithms based on cryptography to achieve the characteristics of
tamper-proofing and traceability. These features can establish a foundation of trust for a
fair distribution of incentives in federated learning [10].

There are three main types of blockchain, namely public chain, private chain, and
consortium chain. The essential differences between them are related to who has the write
permission and how distributed they are. The public chain is highly decentralized, so
anyone can access and view other nodes, but the cost is that the ledgers are very slow
to update. At the other extreme is the private chain, where accessing and authoring are
entirely controlled by an agency, but this also leads to the excessive concentration of power.
The most appropriate blockchain applied in federated learning is the consortium chain,
which is jointly maintained by the members and is highly suitable for transaction clearing
within the consortium. It is more reliable than the purely private chain and has better
performance than the public chain.

Regardless of the type of blockchain applied in a specific scenario, the data structure is
a linked list of ledgers containing transaction records, as Figure 2 shows. Each block in the
linked list contains hash values of the previous block, a new transaction record, and other
information, such as timestamps. This structure ensures that each block is not tampered
with and any nodes can easily trace back each transaction along the pointer.

Figure 2. Typical blockchain data structure with hash pointers.

3.4. Security Model

Let Π(Setup, KeyGen, Encrypt, Re− encrypt, Decrypt) be our scheme. To define a se-
lective IND-CPA security model for Π, the following GameΠ,A game is designed, involving
a PPT attacker A and a PPT challenger C.

Init: An adversary A controls a series of attribute authorities AAk ∈ AA (where at
least two authorities in AA are not controlled by A) and the remaining AA are controlled
by the challenger C. An adversary A submits the access structure A∗ to be challenged, and
then sends it to challenger C.

Setup: C runs a setup algorithm in order to obtain the master keys MSK and public
parameters PP. Subsequently, challenger C sends the public parameters PP to adversary A.
Meanwhile, challenger C initializes the user list, which includes authorization attributes
and the challenged access structure A∗.

Phase 1: A adaptively sends a set of attributes S. C generates the corresponding
SK1, . . . , SKq1 , which is returned to A.

Challenge: A submits two messages M0 and M1 with equal length and submits an
access structure A∗ to C. It is required that, for every S queried by A, S cannot satisfy A∗. C
flips a coin b ∈ {0, 1} and encrypts Mb with the access structure A∗ to obtain CT∗. Finally,
C sends the ciphertext CT∗ to A.

Phase 2: Repeat Phase 1. For every S queried by A, S cannot satisfy the access
structure A∗.

Guess: A outputs a guess b′ ∈ {0, 1} for b and wins the game if b′ = b.
The advantage of A is defined in this game as follows:

Adv(A) =
∣∣∣∣Pr

[
b′ = b

]
− 1

2

∣∣∣∣. (1)
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We note that the model can easily be extended to handle chosen-ciphertext attacks by
allowing for decryption queries in Phase 1 and Phase 2.

Definition 1. The protocol Π is CPA security if no probabilistic polynomial-time (PPT) adversaries
have a non-negligible advantage in the above game.

Under our security model, the task publisher and its central servers are considered to
be honest but curious. In other words, they do not counterfeit, attack, or try to decipher the
data uploaded by the owners, and they faithfully execute the algorithms. However, they
may have a certain degree of curiosity and may bypass some restrictions to access users’
data or the system parameters directly. Meanwhile, the participants may be malicious, and
they may attempt to access data that exceed their permissions in collusion with others.

4. Proposed Scheme

In this section, we provide our proposed system framework and details of our scheme,
and we then verify their appropriateness. Figure 3 shows the framework diagram of
our scheme.

Cloud

… Re-encryption

…

…

… …

AA1 AA2

Center Authority (CA)

Global
Parameters

Access Policy

Download

Ciphertext

Keys

Attribute Authority

Public keys

Local Data

Training

Local Model

Local Data

Training

Local Model

……

Blockchain

…

Upload
Local
Model

Task Publisher

Global Model
…

+Encryption

①

②

③

④

⑤

⑥

⑦

Decryption

Download
Ciphertext

Figure 3. Framework of the proposed scheme.

4.1. System Framework

1 The central authority (CA) receives a security parameter λ and generates public
parameters (PP) before publishing them in the system.

2 The task publisher tries to build a global model by selecting a set of attribute names
and delegating attribute authorities to generate different attribute value keys for
potential participants.

3 The task publisher initializes the model weights and establishes an access policy
before generating a linear secret sharing matrix (M, ρ). Then, he/she uses public
keys obtained from AAs to encrypt a flag as a credential to participate in the current
communication round.
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4 If some participants’ attributes change, the task publisher obtains the latest version
of the attribute public keys from the attribute authorities, re-encrypts the ciphertext,
and attaches a digital signature.

5 Participants download the ciphertext from the central server (CS), verify the sig-
nature, and then perform decryption operations. If a participant meets the access
policy set by the task publisher, such as requirements on the data quantity, data
quality, and computing ability, he can successfully decrypt the ciphertext and obtain
the flag. After an interaction with the server, such as homomorphic encryption key
negotiation, the participant can use local data to carry out the next round of updates
and return the updated weights to the central server.

6 Participants upload the decrypted flag of the current round to the consortium chain
as a credential for an incentive.

7 After verifying the flag sent by the selected participants, the publisher can use the
weight update to calculate new global weights and repeats this process until the
global model converges.

4.2. Algorithms

We describe the specific algorithm as follows.

4.2.1. Global Setup: Setup(λ)→ PPSetup(λ)→ PPSetup(λ)→ PP

The central authority(CA) firstly selects a system security parameter λ, and then
selects a large prime p as the order of multiplicative groups G and GT. Thus, e : G×G→
GT is the bilinear map. Let g be the generator of G. Finally, it chooses a hash function
H : {0, 1}∗ → G, used to map binary sequences such as identifiers or attribute values to
elements in a group.

After these top-level parameters are set, the central authority runs the initialization
algorithm. It generates the master keys MSK by choosing α, τ, a ∈ Zp randomly.

MSK = (α, τ, a)

Then, the public parameter PP is as follows:

PP = (g, ga, e(g, g)α)

In addition, all AAs are required to register with the CA to obtain unique identifiers
aid that are used to prove their legal identities.

4.2.2. Key Generation: KeyGen(GP)→ PKKeyGen(GP)→ PKKeyGen(GP)→ PK

In our system, each AA manages different attributes. The attribute authority with an
identifier aid is denoted as AAaid, and the attribute set managed by is Said. Once an AA is
initialized, it begins to execute a series of key generation programs.

When a task publisher needs to publish a federated learning task, he can pre-determine
the attributes of the participants involved in the training, such as the computational
performance, data set distribution, data quantity, and the willingness to participate, etc. He
then instructs the attribute authority to generate the associated attribute keys on his behalf.

First, to distinguish between different versions of the attribute keys due to attribute
revocation, the authority chooses a random number vx ∈ Zp as the initial version number
of attribute x. The public attribute keys PKx are generated as

PKx = {PK1,x = H(x)vx , PK2,x = H(x)vxτ}

In particular, the attribute authority is also responsible for updating the keys. If the
attribute x of a participant changes, the authority runs the algorithm NKeyGen(MSK, VK)
to generate update keys. The inputs are the new version number vn

x corresponding to
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attribute x and the master key MSK. It generates the current attribute keys by choosing a
number vn

x randomly. After this, the authority computes the update keys as

UKx =

{
UK1,x =

vn
x

vx
, UK2,x =

vx − vn
x

vxτ

}
The new version number of the attribute x, the update keys UKx that can be used to

update the secret keys of unrevoked participants, and the ciphertexts that are associated
with the revoked attribute x are the outputs of this algorithm. In addition to generating the
update keys, the attribute authority also needs to update the public keys of the revoked
attribute as

PKN
x =

(
PKN

1,x = H(x)vn
x , PKN

2,x = H(x)vn
x τ
)

The attribute authority then sends the update keys to the task publisher and all parties
that have not been revoked via a corresponding attribute over a secure channel. The
new public attribute keys for the revoked attribute are available to all owners from the
institution’s public bulletin board. All generated secret keys are centrally managed by AA
and isolated from outside. Malicious adversaries cannot obtain any information about the
private keys through the network, but all public keys are publicized.

4.2.3. Registration: UserReg(MSK, VK, S)→ SKUserReg(MSK, VK, S)→ SKUserReg(MSK, VK, S)→ SK

Participants in federated learning can be community residents with valuable data.
From the perspective of crowdsourcing, when an institution publishes a federated learning
task, since each participant has absolute control over their own data, they can independently
decide whether to join the training of this model and obtain certain benefits. On the other
hand, each participant has a high degree of specificity, as their computing power, the
amount of data, and the data distribution is different. Therefore, they need to register
with the trusted attribute authority before participating in the training, so as to obtain the
corresponding attribute keys according to their respective computed value and data value.

When a participant attempts to join the federated learning system, he can declare his
set of attributes to the attribute authority for verification. If the information provided by
the client is sufficient to prove the set of attributes that he claims, the attribute authority
runs the key generation algorithm UserReg to generate the unique secret keys SK for
the participant. The algorithm takes the master keys MSK, a set of attributes S, and the
version number {vx}x∈S corresponding to the attributes as inputs. It then computes the
participants’ secret keys by choosing a random number t ∈ Zp as

SK={K= gα ·gat, L= gt, ∀x∈S : Kx =H(x)vxt}

When a certain attribute x of a user is revoked—for example, he leaves an
organization—the attribute authority needs to update the decryption private keys for
other members of the attribute group, as follows:

KN
x = KUK1,x

x = H(x)vn
x t

The attribute authority returns the updated keys over a secure channel to the users
who have not been revoked. If the attribute of a participant is revoked, the participant
cannot use the previous attribute keys to decrypt the ciphertext. However, a participant
whose attributes are not revoked only needs to update the keys corresponding to the
revoked attribute as

SKN =
(

K, L, KN
x , ∀x′ ∈ S\{x} : Kx′

)
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4.2.4. Server Encryption: Enc(GP, PK, f ,A)→ CTEnc(GP, PK, f ,A)→ CTEnc(GP, PK, f ,A)→ CT

When a task publisher needs to share global gradient information updated in each
training round with the participants, firstly, the task publisher needs to formulate an
appropriate access policy according to the model to be trained. The specific principle is
that no information, including gradients, can be obtained from a single participant, and all
participants who meet the access policy can obtain positive benefits after model training.
For example, the task publisher can specify quantitative indicators to compute the ability,
data quantity, degree of independence, and data distribution.

The algorithm takes in the access policy created by the task publisher and then outputs
an n× l LSSS access matrix M with ρ(x) mapping its rows to attributes. Now, A = (M, ρ),
where ρ = (attρ(1), attρ(2), . . . , attρ(n)).

Typically, in order to fully ensure gradient privacy, the participant may use homo-
morphic encryption with the server to protect the updated gradient information, which
requires the negotiation of the homomorphic encryption keys with the task publisher. This
means that, before each round of training, the task publisher needs to identify who the
participants are. To do this, the central server secretly selects a flag f as a credential to
participate in the training round. Participants who can successfully decrypt and return the
f can participate in the next training round. Therefore, the flag serves as the ciphertext that
needs to be encrypted.

After this, the central server (CS) chooses a random vector ξ ∈ Zl
p with s as its first

entry. Let λi denote Mi · ξ, where Mi is the row i of M. For each i ∈ [1, n], the central server
randomly chooses ri ∈ Zp and computes the following ciphertext:

C = f e(g, g)αs, C′ = gs,

C0,i = gaλi H(ρ(i))−rivρ(i) ,

C1,i = H(ρ(i))vρ(i)riτ ,

C2,i = gri (i = 0, · · · , n− 1)

Lastly, CS generates ciphertext CT.

CT = {(M, ρ(i)), C, C′,

C0,i, C1,i, C2,i|i ∈ [1, n]}
(2)

As is well known, the attributes owned by participants in federated learning may
change dynamically over time. Thus, in order to support attribute revocation, the central
server controlled by the task publisher needs to re-encrypt the ciphertext. In other words,
when a participant’s attributes are revoked, the central server re-encrypts the ciphertext to
prevent malicious or inappropriate participants from training the model. If some user’s
attribute x′ is revoked, the central server receives an updated message sent by some of the
attribute authorities. Assume that the updated key is UKx. After re-encryption, the new
ciphertext is as follows:

CTN =
(

CN =C, C′N =C′, ∀i=0 to n− 1 : CN
2,i =C2,i,

ρ(i) ̸= x′ : CN
0,i =C0,i, CN

1,i =C1,i

ρ(i)= x′ : CN
0,i =C0,i · (C1,i)

UK2,x′, CN
1,i =(C1,i)

UK1,x′
)

Finally, to achieve IND-CCA security, the central server runs a signature algorithm
to obtain verification key vk and signing key sk, after which the cloud runs Signsk(CT)→
σ. Note that an adversary cannot forge a new signature on a message that has been
signed previously.

Final ciphertext = (vk, CT, σ) (3)
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It is worth mentioning that because homomorphic encryption is used to completely
protect the privacy of a participant’s upload gradient, the task publisher cannot access the
participant’s data. Therefore, the selection of suitable participants by the central server is
based on the authentication of the flag. When a participant decrypts and obtains the flag
successfully within the deadline, the task publisher can include it in the node pool of this
round of training. The central server can then negotiate homomorphic encryption keys
with these participants and execute federated learning algorithms, such as Fedavg.

4.2.5. Participant Decryption: Dec(CT, SK)→ f lagDec(CT, SK)→ f lagDec(CT, SK)→ f lag

Firstly, a potential participant obtains a ciphertext from the central server and checks

whether Vervk(CT; σ)
?
= 1. If it does not hold, the client outputs ⊥. Otherwise, it proceeds.

After successful verification, it selects an appropriate ωi∈Zp with polynomial time
complexity, to make ∑P(x)∈S′ ωi Mi = (1, 0, · · · , 0), i ∈ [1, n] true. If it can find such a set of
constants {ωi}, the decryption algorithm continues to execute as s = ∑i∈I ωiλi; otherwise,
it terminates and outputs ⊥.

The decryption algorithm first computes as follows:

e(C′, K)

∏i∈I

(
e(Ci, L)e

(
Kρ(i), D2,i

))wi

=
e
(

gs, gα · gat)
∏i∈I

(
e
(

gaλiH(ρ(i))−rivρ(i) , gt
)

e
(

H(x)vρ(i)t, gri

))ωi

=
e(g, g)αse(g, g)ast

∏i∈I

(
e
(

gaλi , gt
)
e
(

H(ρ(i))−rivρ(i) , gt
)
e
(

H(x)vρ(i)t, gri

))ωi

=
e(g, g)αse(g, g)ast

∏i∈I

(
e(g, g)atλie(H(ρ(i)), g)−rivρ(i)te(g, H(x))rivρ(i)t

)ωi

=
e(g, g)αse(g, g)ast

∏i∈I

(
e(g, g)atλiωi

)
=

e(g, g)αse(g, g)ast

e(g, g)ast

=e(g, g)αs

Then, it can decrypt the flag as

f =
C

e(g, g)αs

Upon acquiring the flag, the participant can send it to the central server to indicate that
it meets the policy set by the task publisher and can participate in this round of training,
without compromising their privacy. The complete algorithm is shown in Algorithm 1.
At the same time, the flag is uploaded to the blockchain to receive the revenue after the
training is done.
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Algorithm 1 FedAvg-ABE. The K clients are indexed by k; B is the local minibatch size; E is
the number of local epochs; and η is the learning rate.

Server executes:
1: initialize w0
2: for each round t = 1, 2, . . . do
3: m← max(C · K, 1);
4: Enc(GP, PK, f ,A)→ CT
5: for each appropriate client in parallel do
6: [[wk

t+1]]← ClientUpdate(k, CT)
7: end for
8: [[wt+1]]← ∑K

k=1
nk
n [[wk

t+1]]
9: wt+1 ← [[wt+1]] // homomorphic decryption

10: end for

ClientUpdate(k, CT): // Run on client k
11: if Not match policy: then
12: return ⊥
13: else
14: Dec(CT, SK)→ f lag
15: end if
16: Negotiates the keys of homomorphic encryption with server
17: B ← (split Pk into batches of size B)
18: for each local epoch i from 1 to E do
19: for batch b ∈ B do
20: w← w− η∇ℓ(w; b)
21: [[w]]← w // Multi-key homomorphic encryption
22: end for
23: end for
24: return [[w]].

4.2.6. Incentive: Inc(CT, CID, Time)→ (Trans.)Inc(CT, CID, Time)→ (Trans.)Inc(CT, CID, Time)→ (Trans.)

Since data and computing resources are valuable, participants that use local data and
local computing resources should be paid. In this work, if a participant runs the ABE
decryption algorithm and obtains updated global gradient information from the central
server, which also means that the participant meets a series of policies formulated by the
central server, his local data have been used reasonably. Therefore, the task publisher
should pay them after the training according to each participant’s contribution to the global
model. Specifically, in each round of training, participants decrypt messages to obtain the
flag that signifies successful decryption, before using their own digital signature to sign
the flag and upload it to the non-repudiation consortium chain, where smart contracts
are executed. If the client’s cid is in the list provided by the central server, indicating that
the participant is entitled to the benefits arising from the training round, these records are
recorded in the blockchain. After the training, the server can trace back the blockchain and
distribute the actual profits to the various participants.

As shown in Algorithms 2 and 3, the incentive mechanism can be divided into an
upload transaction and confirm transaction. Before each round of training, the task pub-
lisher needs to select a flag as the voucher of this round for profit distribution, and each
participant tries to decrypt and obtain the flag. The participant and the task publisher
together generate the upload transaction TXupload and send it to the blockchain data pool.
The transaction is then broadcast to other nodes in the blockchain for verification. Once
the deal is validated, it is packaged into the consensus block via PBFT. At the end of the
training, the consortium blockchain can be backtracked and the revenue can be distributed
to all clients who participated in the training.
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Algorithm 2 Upload Transaction Generation

Input: f , cid, time
Output: TXupload;

1: The task publisher releases the flag f of round t, computes ξ = H( f ||t), and sends it to
the blockchain secretly.

2: The participant sends client id cid and time to the blockchain
3: Let fc be the flag decrypted from the ciphertext
4: Compute

ζ = H(H( fc||t)||cid||time)

sign = Signcid(ζ)

5: return TXupload = {sign, cid, H( fc||t), time}

Algorithm 3 Confirm Transaction Generation

Input: TXupload
Output: Succ or Fail;

1: Blockchain nodes receive transaction TXupload;
2: The node calculates

ζ = Veri f ycid(sign)

ζ ′ = H(H( fc||t)||cid||time)

3: if ζ = ζ ′ then
4: if ξ = H( fc||t) then
5: Execute smart contract to allocate the revenues of round t to participants corre-

sponding to cid.
6: return Succ
7: end if
8: end if
9: return Fail

5. Security Analysis

Before we begin our security analysis, we need to clarify the security assumptions
of the various entities in the system. First, attribute authorities are considered to be fully
trusted entities, similar to certificate authorities, generally initiated by city governments.
The task publisher can be a commercial institution, which is reflected in the system as
honest and curious, i.e., they faithfully execute the algorithms that they are responsible for
without maliciously destroying the ciphertext uploaded by the clients, but they may spy
on or infer the clients’ private information from the access record. Finally, there may be
malicious clients in the system, trying to collude with other clients to obtain data beyond
their own permissions or trying to destabilize the system.

5.1. Selective CPA Security

Theorem 1. There is no polynomial adversary that can selectively break our system with a challenge
matrix of size l⋆ × n⋆, where n⋆ ≤ q, when the decisional q-parallel BDHE assumption holds.

Proof. Inspired by Waters [34], we can build a simulator B that solves the decisional q-
parallel BDHE problem with a non-negligible advantage under the prerequisite that none
of the updated secret keys SKN that are generated by both the queried secret keys SK and
update keys UKs can decrypt the challenge ciphertext. This is based on the assumption that
we have an adversary A that chooses a challenge matrix M⋆ with the dimension of at most
q columns with a non-negligible advantage ϵ = AdvA in the selective security game against
our construction. The proof is produced by the challenger and the attacker through a series
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of interactions in the game. Because the mathematical discussion of the game details is
beyond the scope of this article and it resembles Waters’ work, it is omitted.

5.2. Data Security

In our scheme, only users with specific attributes can obtain the corresponding keys
through the attribute authorities. Since the underlying protocol is based on elliptic curves,
and ECDLP is unsolvable, clients without the correct attributes cannot obtain any informa-
tion about the private keys from the corresponding public keys in polynomial time.

Based on the training progress and results, the task publisher will select the access
policy and the flag f of the training round, which is hidden in ciphertext C. Since s is
randomly chosen by the task publisher, it is a random number in the eyes of an attacker.
Thus, the attacker cannot obtain any valuable information about f . With a linear secret
sharing scheme, s is a secret divided by λi and can only be recovered if there are enough
parts; in other words, the ciphertext can only be decrypted if the participant has a set of
attributes that match the access policy. For any invalid users who do not have the attributes
declared by the access policy, since they do not have the attributes corresponding to rows of
M, they do not make ∑ρ(i)∈S′ ωi Mi = (1, 0, · · · , 0) true, where ωi ∈ Zp. Then, they cannot
compute the first element of ξ, which is s. Therefore, this scheme ensures data security.

5.3. Forward and Backward Security

Forward security means that any clients that have been revoked cannot access sub-
sequent data unless the remaining set of attributes of the client still satisfies the access
structure. In the scheme proposed in this paper, if the attributes of a client are revoked,
only some of the keys and the ciphertext are updated by the central server, which not only
reduces the local computational overhead but also effectively prevents clients who have
lost access permissions from posing threats to the updated ciphertext in the system, so as to
ensure forward security. Considering that the revoked client already has permission to read
the old ciphertext, the central server must restrict him from downloading the old ciphertext.

Backward security means that new clients cannot decrypt previously encrypted data.
Note that we use ver to control the ciphertext version; thus, new clients cannot decrypt the
old ciphertext using the latest version of the attribute keys.

5.4. Collusion Attack

Theorem 2. The scheme is secure under a multi-user collusive attack.

Proof. In the proposed scheme, the attribute authority will assign a random value t ∈ Z∗p
to each participant. Even if multiple participants have exactly the same attribute, the value
will be different in the keys obtained by them. In the decryption algorithm, t must be
consistent to realize a collusion attack. Therefore, no client can conspire with other users or
groups of users to illegally decrypt the data. For example, one participant P0 has attributes
A, and the other participant P1 has attributes B; for an access policy of “A∩B”, individual
participants P0 or P1 cannot decrypt the data alone. Even if they use their attribute keys
withA and B to collude, the calculation cannot eliminate t; thus, they are unable to perform
decryption.

Tseng et al. [40] found that some attribute-based encryption (ABE) schemes [41,42]
based on elliptic curve scalar multiplication are vulnerable to collusion attacks, because
users with the same attributes can obtain the attribute private key set in the system by
solving linear equations. Our scheme does not have this problem because we use bilinear
pairing instead of scalar multiplication, and no party can obtain the secret parameters of
the system by solving the equations.

6. Performance Comparison and Evaluation

In this section, we use public datasets to evaluate the performance of our scheme and
compare it with previous work. In particular, in addition to showing how the proposed
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scheme improves the model accuracy in federated learning, we analyze the impact of using
attribute-based encryption on the computational efficiency.

First, in Table 1, we present the characteristics of the currently popular federated
learning client selection schemes. It can be seen that our proposed scheme comprehensively
considers the dimensions of the client data quantity, data distribution, and computing
power, avoiding complex importance measurements and reinforcement learning. We then
qualitatively evaluate our work against some of the known incentive mechanisms. As
shown in Table 2, most of the existing schemes use either the quantity or quality of data to
distribute revenues fairly. Fortunately, the task publisher in our scheme can consider two
aspects comprehensively to formulate an access policy, which is more applicable to reality.
With the help of the blockchain, we can easily implement the features of auditing and
traceability. This is why we use post-training allocation rather than simultaneous allocation
during training, to reduce the cost of evaluating the contributions of each participant.

Table 1. Comparison of client selection schemes.

Schemes System
Heterogeneity

Statistical
Heterogeneity Privacy Expansibility Fine-Grained Main Idea

Nishio 2019 [43] ✓ × × ✓ × Select as many clients as possible within a
specified deadline

Cho 2020 [44] ✓ ✓ × × × Select clients with higher local losses

Chai 2020 [12] ✓ ✓ ✓ × × Select clients with similar response latencies

Lai 2021 [22] ✓ ✓ ✓ ✓ × Select clients through importance sampling

Zhang 2021 [14] × ✓ × × × Select clients with lower non-IID degrees of
data

Wu 2022 [45] × ✓ × × × Select clients by comparing the gradients of
the local and the global

Li 2022 [23] ✓ ✓ ✓ × ✓ Select clients with higher importance ranking

Our scheme ✓ ✓ ✓ ✓ ✓ Select clients using attribute-based encryption

Table 2. Comparison of incentive mechanisms.

Schemes Data
Quality

Data
Quantity Privacy Efficiency Auditability Universality Main Idea

Song 2019 [46] ✓ × × low × × Measure the contribution with a Contribution
Index (CI)

Yu 2020 [47] ✓ × ✓ mid × ✓ Participants dynamically receive payoff according
to contributions

Zeng 2020 [48] ✓ × ✓ high × ✓ Auction theory

Zhan 2020 [49] × ✓ ✓ low × ✓ DRL-based reward allocation

Weng 2019 [29] × ✓ ✓ mid ✓ × Use blockchain to record the process of federated
learning

Bao 2020 [30] × ✓ ✓ mid ✓ × Provide a healthy marketplace for collaborative
training models

Our scheme ✓ ✓ ✓ high ✓ ✓ Select clients using attribute-based encryption

Next, we describe some details of the experiments.

6.1. Setup

We trained popular convolutional neural network models on two benchmark datasets,
FashionMNIST and CIFAR-10. The convergence speed and the final model accuracy of
the proposed ABEFedAvg algorithm are compared with three other federated learning
aggregation algorithms FedAvg [3], FedProx [50] and FedIR [51] with randomly selected
clients. The specific experimental Settings are as follows:

Hardware and Software setup: This paper conducts experiments on a set of Linux
servers, each running one experimental task. After all resources have been allocated, the
hardware and software setup of each server is shown in Table 3.
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Table 3. Hardware and Software setup.

Hardware and Software Setup

CPU Intel® Core™
i9-9900X CPU @ 3.50 GHz

Memory 128 G
GPU NVIDIA GeForce RTX 2080 Ti × 8

CUDA Version 12.0
Programming Language python3.9

Operating System Ubuntu 18.04.6 LTS
Federated Learning Framework Pytorch 1.10.2

Dataset: We comprehensively evaluate the efficiency of ABEFedAvg in simulation
experiments using different datasets, namely FashionMNIST and CIFAR-10, which contain
numerous fixed-size images and have been used in a large number of studies. The dataset,
validation set and test set are allocated to different parties with different data distribution
patterns according to Dirichlet distribution to evaluate the performance of ABEFedAvg
under non-independent and identically distributed data. The FashionMNIST dataset is a
very classic dataset in the field of machine learning. It consists of 60,000 training samples
and 10,000 test samples, each of which is a 28 × 28 pixel image representing an item
numbered from 0 to 9. The CIFAR-10 dataset has a total of 60,000 color images, each with a
scale of 32 × 32 pixels, and is divided into 10 categories with 6000 images each. Of these,
50,000 images are used for training to form five training batches of 10,000 images each, and
the remaining 10,000 images are used for testing to form a separate testing batch.

Party: Then this paper uses the method in [52] to generate the partition of Non-IID.
Specifically, the parameters of the Dirichlet distribution are set to partition the dataset to
different parties in an unbalanced manner. When the parameter α is larger, the data of
each party tends to be independently and identically distributed. On the contrary, the data
distribution is more uneven. In this paper, three distribution cases are set, and α = in f
is used to simulate the ideal situation where the data is completely independent and
identically distributed, as Figure 4 shows. Use α = 0.5 to simulate a slightly independent
and identically distributed scenario, which is common in real-world scenarios, as Figure 5
shows. We use α = 0.1 to simulate a worst-case data distribution where almost each party
has only 3–4 classes, as Figure 6 shows. The data distribution of each parameter setting
participant is shown as follows:
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Figure 4. Completely IID.
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Figure 5. Slightly IID.
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Figure 6. Worst-case.

Model: The model used in this article is LeNet-5 convolutional Neural Network
(CNN), which is commonly used for image classification. The model structure of LeNet-5
includes convolutional layer, pooling layer and fully connected layer. The convolutional
layer and pooling layer are used to extract the local features of the image, and the fully
connected layer is used to map the features to the class probabilities. The first and third
layers are convolutional layers with 6 and 16 kernels, respectively, each of size 5× 5 and
step size 1; Convolutional layers are followed by average pooling layers with a pooling
kernel of size 2× 2 and no padding is used, their role is to downsample the input feature
map and reduce the size of the feature map. The last three layers are fully connected
layers with 120, 84 and 10 neurons, respectively. In the convolution kernel and the fully
connected layer, ReLU is used as the activation function to avoid the problem of gradient
disappearance. For the FashionMNIST dataset, the input image is 28× 28× 1, while the
CIFAR-10 dataset has an input image specification of 32× 32× 3.
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Performance index: In order to evaluate the optimization degree of the proposed
party selection mechanism based on attribute encryption on various synchronous federated
learning algorithms, this paper uses the test set accuracy as the main indicator to measure
the performance of the model, trains on the FashionMNIST dataset and CIFAR-10 dataset
for 500 rounds and 1000 rounds respectively, and plots the test set accuracy curve. Finally,
the average accuracy and the highest accuracy are calculated, where the accuracy is defined
as the ratio of the number of correctly classified images to the total number of test sets,
and the range is between 0 and 1. To evaluate the convergence speed of the proposed
ABEFedAvg algorithm, the number of communication rounds for the model to converge to
the target accuracy, ToA@x, is used as the main metric to measure the efficiency of model
training, where x represents the target accuracy.

6.2. Experimental Results
6.2.1. Effect of the Number of Participant Selection on Performance

Firstly, we study the impact of using the stringency of the access policy in the proposed
attribute-based encryption participant selection scheme and the participant selection score
C of the baseline algorithm FedAvg on the performance of federated learning. In this
paper, we assume that there are K = 100 parties in a region, and three different access
strategies are selected, and the stringency is set to “strict”, “moderate” and “loose” respec-
tively. The corresponding comparison of the three participant selection scores is as follows.
mathcalC = 0.1, mathcalC = 0.2, mathcalC = 0.3. The performance evaluation of different
access strategies and selection scores using FashionMNIST and CIFAR-10 picture datasets
is shown in Table 4.

Table 4. Training results for different number of participant selection.

Algorithm Fraction
Size (C)

Average
Accuracy

Highest
Accuracy

ToA@0.85
ToA@0.7

F-MNIST CIFAR-10 F-MNIST CIFAR-10 F-MNIST CIFAR-10

FedAvg c = 0.1 0.8318 0.6498 0.8567 0.6809 393 -
ABEFedAvg 0.8816 0.7346 0.8863 0.7433 70 241

FedAvg c = 0.2 0.8631 0.7046 0.8713 0.7121 175 669
ABEFedAvg 0.8943 0.7508 0.8974 0.7583 62 167

FedAvg c = 0.3 0.8778 0.7115 0.8803 0.7153 127 462
ABEFedAvg 0.8893 0.7378 0.8912 0.7412 73 195

For the FedAvg algorithm, when C = 0.3, the accuracy of the model in the test set
is the highest, and with the decrease of the participant selection score, the accuracy also
decreases in turn. When C = 0.1, the accuracy is only 0.8318, and the training curve has the
largest degree of fluctuation. This is because the small number of selected parties in each
round of training reduces the number of samples for model learning. When the selection
score C is 0.3, the model training time is the shortest, only 127 rounds are needed. When
the selection score C is reduced to 0.2, the number of communication rounds increases by
48 rounds. The training time of the model grows substantially, requiring 393 rounds of
communication to reach the target accuracy, an increase of 266 rounds compared to the
setting with C = 0.3. Therefore, in order to balance the model accuracy and training time
overhead, the party selection score is set to C = 0.2 in the following experiments.

For ABEFedAvg algorithm, the key to affect the number of selected parties is the
stringency of the access policy. When using the “strict” access policy, the central server only
allows the subjects with the largest number of samples and the most uniform distribution
of all participants to participate in the training, while using the “loose” access policy
means accepting the participants with low degree of independent and identical distribution.
Experimental results show that the model has the highest accuracy when selecting the
“moderate” access strategy, reaching an average accuracy of 0.8943 and 0.7508 on the
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FashionMNIST and CIFAR-10 datasets, which shown in Figures 7 and 8, respectively. This
is because choosing a more stringent access policy can improve the quality of the selected
parties, but it also rejects more data samples that are still valuable for training. On the
contrary, choosing a more relaxed access policy will weaken the effect of access control
and introduce more parties with uneven local sample data. Based on this, the “moderate”
access policy is selected in the following experiments.
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Figure 7. FashionMNIST Test accuracy for different number of participant selection.
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Figure 8. CIFAR-10 Test accuracy for different number of participant selection.
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6.2.2. Influence of Independent and Identically Distributed Data on Performance

It is well known that in real scenarios, the degree of independence and identically
distributed data of each participant in federated learning is often unpredictable. Generally
speaking, the higher the degree of independence and identically distributed data of each
participant, the better the accuracy and generalization of the trained model. Therefore, this
section verifies the effectiveness and robustness of the proposed scheme in three different
data distribution scenarios according to the experimental setup described in Section 6.1.

According to the experimental results shown in Table 5, it is obvious that when each
party meets the local independent and identically distributed (IID) data, the proposed
scheme has limited improvement on the accuracy of model training. Compared with the
original algorithm, the proposed scheme only improves 1.05 and 1.17 percentage points
respectively on the FashionMNIST and CIFAR-10 datasets. The reason is that in such an
ideal federated learning environment, the randomly selected clients all have almost the
same data distribution as the clients that satisfy the access policy.

Table 5. Training results under different independent identically distributed Settings.

Dataset
FashionMNIST CIFAR-10

IID α = 0.5 α = 0.1 IID α = 0.5 α = 0.1

FedAvg

Average
Accuracy 0.9118 0.8631 0.7522 0.8120 0.7046 0.6680

Highest
Accuracy 0.9127 0.8713 0.7811 0.8134 0.7121 0.6772

ToA@0.85
ToA@0.7 24 175 - 66 669 -

ABEFedAvg

Average
Accuracy 0.9223 0.8943 0.8303 0.8237 0.7508 0.7286

Highest
Accuracy 0.9228 0.8974 0.8389 0.8253 0.7583 0.7433

ToA@0.85
ToA@0.7 22 62 - 52 167 237

However, it can be seen that when using the setting α = 0.5 for Non-IID, the accuracy
of the CNN model using ABEFedAvg is significantly higher than that of FedAvg with
randomly selected clients, which is 3.12% and 4.62% higher for FashionMNIST and CIFAR-
10 datasets, which shown in Figures 9 and 10, respectively. If we look at the more extreme
case of α = 0.1, the advantage of our scheme will be even more prominent, outdoing the
random selection strategy in traditional federated learning by 7.81% and 6.06% in two
datasets, respectively. The reason here is also obvious, because the proposed scheme can
adaptively select participants with matching access policies in each round of training, which
enables the system to control the data distribution of participants in a better range, so as to
achieve higher training accuracy. It is worth mentioning that under the setting of α = 0.1,
due to the moderate access strategy used in this scheme, there may be a proportion that
the number of selected parties is less than the default, but from the experimental results,
the influence of this factor on the training accuracy is very limited. In addition, the ‘-’ in
Table 5 indicates that the algorithm cannot reach the target accuracy within a given number
of rounds. For example, under the setting of α = 0.1 of FashionMNIST dataset, neither
algorithm can reach the test set accuracy of 0.85 within 500 communication rounds. Under
the setting of α = 0.1 of CIFAR-10 dataset, the traditional FedAvg algorithm cannot achieve
an accuracy of 0.70 within 1000 communication rounds, while the ABEFedAvg algorithm
can achieve the accuracy target with 237 communication rounds.
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Figure 9. FashionMNIST for different IID degrees.
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Figure 10. CIFAR-10 for different IID degrees.

6.2.3. Impact of Federated Learning Algorithms on Performance

This section investigates the applicability and optimization degree of the proposed
attribute-based encryption party selection algorithm to two synchronous federated learning
aggregation algorithms, FedProx and FedIR, when used as a module embeddable in
federated learning. Although these latest schemes proposed many improvement strategies
in the aggregation parameters, which improved the performance of the model to a certain
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extent, most of them still used the random selection method to select participants, which had
a great impact on the accuracy of the model. Therefore, this paper applies the client selection
scheme as a couplable module to each mainstream algorithm to show its performance
optimization effect for each aggregation strategy. Table 6 details the performance metrics
for accuracy and processing time using two different datasets.

Table 6. Training results for different federated learning algorithms.

Algorithm
Average
Accuracy

Highest
Accuracy

ToA@0.85
ToA@0.7

F-MNIST CIFAR-10 F-MNIST CIFAR-10 F-MNIST CIFAR-10

FedAvg 0.8631 0.7046 0.8713 0.7121 175 669
FedProx 0.8747 0.7100 0.8802 0.7192 143 401

FedIR 0.8786 0.7202 0.8827 0.7266 106 293
ABEFedAvg 0.8943 0.7508 0.8974 0.7583 70 167
ABEFedProx 0.8970 0.7597 0.9011 0.7666 61 146

ABEFedIR 0.9025 0.7725 0.9058 0.7803 51 125

Figures 11 and 12 show the training curves of each algorithm on FashionMNIST
and CIFAR-10 datasets, respectively. It can be observed that the performance of different
algorithms on the two datasets is basically the same. In general, the three algorithms
can achieve the target accuracy within a given number of communication rounds, and
FedAvg algorithm produces the lowest performance, followed by FedProx algorithm and
FedIR algorithm. Although FedIR algorithm has higher accuracy, its training curve has
a large degree of fluctuation due to the addition of additional weight information. For
example, FedAvg using FashionMNIST dataset has an accuracy of 0.8631, while FedProx
and FedIR have an accuracy of 0.8747 and 0.8786, respectively. After adding the attribute-
based encryption selection module, it can be clearly seen that the performance of each
algorithm is improved, and the accuracy is increased by 3.12, 2.23 and 2.39 percentage
points respectively compared with the above three benchmark algorithms. Using the
proposed scheme has the most obvious optimization effect on the FedAvg algorithm.
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Figure 11. FashionMNIS Test accuracy for different federated learning algorithms.
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Figure 12. CIFAR-10 Test accuracy for different federated learning algorithms.

On the CIFAR-10 dataset, the proposed scheme can obtain more obvious advantages.
The original FedAvg algorithm achieves an average accuracy of 0.7046 on this dataset,
the FedProx algorithm is 0.7100, and the highest accuracy algorithm is FedIR, which
reaches 0.7202. Using the proposed ABE can also improve the overall performance of the
above algorithms on the test set. For example, for the CIFAR10 dataset, the accuracy of
FedProx and FedIR algorithms with ABE filtering module is 0.7597 and 0.7725, respectively,
which is 4.97 and 5.23 percentage points higher than that of the random selection scheme.
In addition, although the introduction of encryption and decryption mechanism in the
participant selection phase will increase the time overhead, the number of communication
rounds can be greatly reduced once the appropriate participants are selected. The results
show that the number of communication rounds is reduced by 502, 255 and 158 rounds
respectively for the above three schemes. It can be concluded that the scheme in this
paper has a strong optimization effect on various aggregation algorithms of synchronous
federated learning.

6.2.4. Comparison with Other Participant Selection Schemes

The comparison between ABEFedAvg and other party selection schemes is shown in
the related work section. The most successful recent works include Newt proposed by Zhao
et al. [53] and FedFNS proposed by Wu et al. [45]. The former is to find the balance between
accuracy and execution time in each round based on weight difference. The weight change
between two adjacent rounds is defined as a utility that converges quickly. Moreover, since
clients with large data volumes may negatively affect the training time, the ratio of the local
dataset size to the total data size is also added as a coefficient of the client utility. Since
it is not always necessary to select participants in each round of testing, the authors also
designed a feedback control component that dynamically adjusts the frequency of customer
selection; The latter is based on the selection of probability assignment, which designs an
aggregation algorithm to determine the optimal subset of local model updates by excluding
unfavorable local updates. In addition, a probabilistic node selection framework (FedPNS)
was proposed, which dynamically adjusted the selection probability of the device according
to its contribution to the data distribution model.



Computers 2024, 13, 118 25 of 29

Next, the performance of the proposed scheme is compared with the above two
latest federated learning participant selection schemes. Similarly, this section also uses the
most classical FedAvg aggregation algorithm of federated learning to evaluate the test set
accuracy and stability of the two datasets under the setting of C = 0.2 and α = 0.5. The
experimental results are shown in Table 7. On the FashionMNIST dataset, the proposed
attribute-based encryption access control scheme achieves an average accuracy of 0.8943,
Zhao et al.’s scheme achieves an accuracy of 0.8782, and Wu et al.’s scheme achieves
an accuracy of 0.8715. Compared with the above two schemes, the proposed scheme is
improved by 1.83% and 2.62% respectively. On the CIFAR-10 dataset, the average accuracy
of the proposed scheme reaches 0.7508, the other two schemes are 0.7294 and 0.7148, and
the accuracy is improved by 2.93% and 5.04%, respectively. Then we further evaluate
the number of communication rounds required by ABEFedAvg algorithm and other two
schemes applied to federated learning training to achieve the target accuracy. As shown
in Figures 13 and 14, on the FashionMNIST and CIFAR-10 datasets, the accuracy of 0.85
and 0.7 are achieved respectively, and the proposed scheme only needs 29 and 167 rounds.
Although Newt and FedFNS have a great improvement over the original FedAvg random
selection strategy, they are still weaker than the proposed FedABE scheme in this index. In
summary, the party selection strategy based on attribute-based encryption proposed in this
paper has obvious advantages even in the existing latest work, and has great application
and promotion value.

Table 7. Training results for different participant selection schemes.

Algorithm

Average
Accuracy

Highest
Accuracy

ToA@0.85
ToA@0.7

Fashion
MNIST CIFAR-10 Fashion

MNIST CIFAR-10 Fashion
MNIST CIFAR-10

FedAvg 0.8631 0.7046 0.8713 0.7121 65 669
Newt [53] 0.8782 0.7294 0.8814 0.7353 39 213

FedFNS [45] 0.8715 0.7148 0.8766 0.7207 42 341
ABEFedAvg 0.8943 0.7508 0.8974 0.7583 29 167
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Figure 13. FashionMNIST Test accuracy for different participant selection schemes [45,53].
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Figure 14. CIFAR-10 Test accuracy for different participant selection schemes [45,53].

7. Conclusions

In conclusion, our study introduces an innovative attribute-based participant selecting
scheme for federated learning within smart city frameworks that leverages the integration
of ciphertext-policy attribute-based encryption (CP-ABE) and consortium blockchain. This
approach enhances both the security and efficiency of participant selection, mitigating
common risks associated with privacy breaches and malicious attacks.

Our findings demonstrate that the proposed scheme significantly improves the ef-
ficiency of federated learning processes by enabling precise participant selection based
on detailed attribute criteria, rather than relying on the traditional methods of random
or resource-based selection. The attribute-based method ensures that only participants
meeting specific pre-defined criteria contribute to the model training, thus optimizing the
quality and relevance of the aggregated data.

Moreover, the incorporation of consortium blockchain technology provides a robust
incentive mechanism and audit trail that ensures participant accountability and motivates con-
tinued engagement. This novel integration not only supports the scalability and sustainability
of federated learning projects but also enhances their transparency and trustworthiness.

7.1. Theoretical and Practical Implications

Our research introduces a novel attribute-based participant selecting scheme enhanced
with blockchain technology for federated learning in smart cities. This approach theoreti-
cally expands the understanding of federated learning by integrating privacy-preserving
techniques (CP-ABE) and blockchain to safeguard against unauthorized access and ensure
data integrity. Practically, the scheme provides a reliable and scalable solution for smart
city administrators to deploy machine learning models that comply with stringent privacy
regulations while maintaining high efficiency and participant motivation.

The implementation of our scheme in smart cities could significantly enhance the
operational efficiency of various urban systems, such as public transportation networks,
healthcare services, and emergency response systems. By ensuring that only qualified and
authorized participants contribute to federated learning tasks, our model promotes the
creation of more accurate and reliable predictive models, driving smarter decision-making
in urban management.
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7.2. Limitations

While our approach offers substantial improvements in privacy and efficiency, there
are several limitations to consider. The complexity of CP-ABE may lead to an increased com-
putational overhead, particularly as the number of attributes grows. This could potentially
slow down the process in scenarios where real-time data processing is crucial. Additionally,
our study’s focus on theoretical design and simulated environments may not fully capture
the practical challenges encountered in real-world implementations. The effectiveness and
efficiency of the encryption might vary significantly under different operational conditions
and with different data volumes.

7.3. Future Research Directions

Considering the identified limitations, future research should focus on optimizing the
efficiency of attribute-based encryption techniques to reduce the computational demands,
particularly in environments with extensive attributes. Further empirical research is also
necessary to test the scheme across various real-world settings in smart cities, to evaluate
its practicality and performance under diverse conditions. Such studies could help to refine
the model, making it more robust and adaptable to different types of data and applications.

Exploring the application of our federated learning scheme in other domains, such as
healthcare and public safety, could provide insights into its adaptability and effectiveness
in other critical areas of smart city development. Moreover, integrating advanced machine
learning techniques, such as deep learning, might enhance the predictive capabilities of the
models trained using our scheme, thus broadening its applicability and impact.
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