
Citation: Iftikhar, M.; Neal, M.; Hold,

N.; Gregory Dal Toé, S.; Tiddeman, B.

Detection of Crabs and Lobsters

Using a Benchmark Single-Stage

Detector and Novel Fisheries Dataset.

Computers 2024, 13, 119. https://

doi.org/10.3390/computers13050119

Academic Editor: Mariofanna

Milanova

Received: 15 January 2024

Revised: 1 April 2024

Accepted: 10 April 2024

Published: 11 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Detection of Crabs and Lobsters Using a Benchmark
Single-Stage Detector and Novel Fisheries Dataset
Muhammad Iftikhar 1 , Marie Neal 2, Natalie Hold 3 , Sebastian Gregory Dal Toé 1 and Bernard Tiddeman 1,*

1 Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, Ceredigion, UK;
ifi@aber.ac.uk (M.I.); seg18@aber.ac.uk (S.G.D.T.)

2 Ystumtec Ltd., Pant-Y-Chwarel, Ystumtuen, Aberystwyth SY23 3AF, Ceredigion, UK; marie@ystumtec.co.uk
3 School of Ocean Sciences, Bangor University, Bangor LL57 2DG, Gwynedd, UK; n.hold@bangor.ac.uk
* Correspondence: bpt@aber.ac.uk

Abstract: Crabs and lobsters are valuable crustaceans that contribute enormously to the seafood needs
of the growing human population. This paper presents a comprehensive analysis of single- and multi-
stage object detectors for the detection of crabs and lobsters using images captured onboard fishing
boats. We investigate the speed and accuracy of multiple object detection techniques using a novel
dataset, multiple backbone networks, various input sizes, and fine-tuned parameters. We extend
our work to train lightweight models to accommodate the fishing boats equipped with low-power
hardware systems. Firstly, we train Faster R-CNN, SSD, and YOLO with different backbones and
tuning parameters. The models trained with higher input sizes resulted in lower frames per second
(FPS) and vice versa. The base models were highly accurate but were compromised in computational
and run-time costs. The lightweight models were adaptable to low-power hardware compared to
the base models. Secondly, we improved the performance of YOLO (v3, v4, and tiny versions) using
custom anchors generated by the k-means clustering approach using our novel dataset. The YOLO
(v4 and it’s tiny version) achieved mean average precision (mAP) of 99.2% and 95.2%, respectively.
The YOLOv4-tiny trained on the custom anchor-based dataset is capable of precisely detecting crabs
and lobsters onboard fishing boats at 64 frames per second (FPS) on an NVidia GeForce RTX 3070 GPU.
The Results obtained identified the strengths and weaknesses of each method towards a trade-off
between speed and accuracy for detecting objects in input images.

Keywords: crustaceans; object detection; deep learning; YOLO; k-means clustering

1. Introduction
1.1. Background and Motivation

Fisheries-related data are of great importance to fishery organisations worldwide.
The consequences of data not being captured and stored appropriately result in incorrect
stock reporting that leads to overfishing, which is contrary to the ecological integrity of the
ocean. One of the initial steps in this procedure is data collection and analysis, which is
crucial for making well-informed decisions [1]. A lack of accurate data causes uncertainties,
and improving data quality is beneficial for marine scientists and for fish stock management.
Technologies and modern scientific procedures have already improved the level of data
collection for most fisheries. We investigate deep learning methods for collecting data on
crabs and lobsters onboard fishing boats. These two valuable crustaceans have gained less
attention from computer scientists in the past.

The purpose of collecting fisheries data is to monitor commercial fishing, and in this
work, we focus on smaller independent fishers, which are more difficult to monitor and
require that any automated solution be low-cost and unobtrusive on smaller fishing vessels.
The data can include information on catch, bycatch, landings, discard, location, and the
biological or demographic composition of a catch, like sexing and DNA sampling, fishing

Computers 2024, 13, 119. https://doi.org/10.3390/computers13050119 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13050119
https://doi.org/10.3390/computers13050119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0009-0007-5456-5567
https://orcid.org/0000-0003-4263-8435
https://orcid.org/0000-0002-3454-807X
https://orcid.org/0000-0001-7570-1192
https://doi.org/10.3390/computers13050119
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13050119?type=check_update&version=2

Computers 2024, 13, 119 2 of 29

efforts, fishing gears, protected species interactions, coverage, counting, size estimation,
weight, date, time, etc.

One of the conventional methods for collecting fisheries data involves onboard ob-
servers, who are placed onboard for monitoring, compliance, and scientific assessments of
fish stocks [2]. Each country has its own fisheries observer programme, and hence the roles
of observers vary worldwide. They can play the dual roles of collecting data and reporting
on compliance under the fisheries regulations in the country. Other methods include vessel
monitoring systems, electronic monitoring (EM), electronic reporting, logbooks, mobile
computing, fishing surveys, questionnaires, etc. Each method has its strengths and limi-
tations that impact the quality of data obtained. Combining tools for building integrated
systems can optimise the accuracy of the fisheries estimates in a real-time manner [3].

Artificial intelligence (AI) has demonstrated remarkable results in solving complex
computational problems with computer-based learning approaches such as machine learn-
ing (ML) algorithms, in particular deep neural networks. These networks are trained
using given datasets and, once trained, can efficiently produce outputs for unseen data
and events. Some countries, including the UK, are collecting on-site visual data of catch
events through EM and mobile computing [4,5]. These data can be used to train networks
to automate the catch recognition and measurement of species. Automated image analysis
techniques can address these problems and find appropriate solutions through easier access
to data and monitoring of the catch events onboard vessels. Unlike other fields, AI is not
yet extensively integrated into fisheries applications [6]. However, marine biologists and
management recommend that new automated real-time data collection programmes will
help improve the current standards of data collection practices [4].

The ease of access to computer resources, cost reduction, availability of datasets,
and improved algorithms have increased the use of computer-based solutions in the recent
decade. This is a motivation for computer science researchers to develop computer vision
systems for the fishing sector around the globe. Developed countries are incorporating
modern machine learning and computer vision-based applications into their fisheries
setups, while others rely on alternate options to improve the current standards of fishing
data. The ultimate goal is to respond to the seafood needs of the people and to maintain
the integrity of aquatic life.

Collaboration between fishers, marine scientists, and computer scientists is required to
make effective use of the new technological opportunities. Integration of AI, data science,
and information technology will support building state-of-the-art applications for both
aquaculture and capture fisheries [7]. The United Nation’s “Decade of the Ocean” theme [8]
aims to achieve a healthy, safe, and resilient ocean by 2030, where AI can play a pivotal role
in making this theme practical. This will initiate new opportunities for interdisciplinary
collaborations to promote AI-based marine research and development.

Hold et al. [4] evaluated the use of onboard camera systems for collecting crab and
lobster data. GoPro cameras mounted on fishing boats recorded images of crabs and
lobsters. Multiple fishers and onboard observers passed the animals on the designated area
for comparison between the in situ and predicted values of the measurements of the animals.
This was a step towards finding the size and sex of crabs and lobsters through analysis of the
recordings of onboard camera systems. Collecting data without onboard observers reduces
the cost, and computer automation of image extraction and measurements will further
enhance the utility of video systems for data collection. This motivated us to proceed with
our research on computer vision-based automated detection and measurement of crabs
and lobsters onboard fishing boats. We worked in collaboration with marine scientists and
fishermen from Bangor University, UK. They provided us with onboard fishing videos,
which our research utilises for the training and testing of networks [9,10]. We created a large
dataset of 15,100 images of crabs and lobsters, which was used to train and test our models
for detection of crabs and lobsters on fishing boats. The dataset is unique and contains both
the animals in equal proportions of 50% each. Detail about the dataset creation is given in
Section 3.

Computers 2024, 13, 119 3 of 29

The selected two crustaceans have received less attention in scientific research; thus,
this paper contributes towards filling this gap and promoting computer vision-based
solutions for investigating different aspects of fisheries data. Our contributions in this
paper include the following: (1) the detailed evaluation of one- and two-stage object
detectors; (2) the creation of large datasets used for the application of crab and lobster
detection onboard fishing boats; (3) the presentation of both low-power and high-power
hardware solutions for the detection problem; and (4) improvements in the results of the
YOLOv4 base and tiny models using custom anchors and a novel dataset.

1.2. Related Work
1.2.1. Object Detection

This paper focuses on the detection of crabs and lobsters using images captured
onboard fishing boats. The lack of published research on collecting data on crabs and
lobsters prompted us to investigate deep learning as a potential solution. Biologists, marine
scientists, and fishery organisations advise computer automation of data gathering and
monitoring to enhance the effectiveness of current systems deployed on fishing boats.
The video recordings of the fishing activities provided by our collaborators are used to
create datasets for training and testing neural networks. We evaluated the performance of
single- and multistage object detectors for identifying crabs and lobsters.

Object detection is an essential and challenging task of computer vision, with
widespread applications in many disciplines. It is primarily a supervised learning problem
that aims to localise all the instances of the pre-defined classes of the objects and display
their outcome by drawing bounding boxes around the detections. Object detection serves
other computer vision tasks like instance segmentation, image tracking, captioning, etc.
The advent of sophisticated deep learning networks has improved the performance of
object detectors for locating object classes in images and real-time videos [11]. Research to
improve object detection tasks is growing in academia and industrial applications due to
the development of Convolutional Neural Networks (CNNs), access to datasets, and the
availability of faster GPUs (Graphics Processing Units). The fields of multi-class detection,
edge detection, pose detection, face detection, crowd estimation, etc., are receiving more
attention from researchers. Domain-specific object detectors are classified as one-stage,
two-stage, few-shot, and transformer-based detectors. Most two-stage detectors achieve
high localisation and object recognition accuracy, whereas one-stage detectors are highly
responsive to real-time actions with increased inference speed. YOLO [12–15] and Faster
R-CNN [16] are examples of one- and two-stage detectors, respectively. The transform-
ers [17–20] were initially introduced for Natural Language Processing and have performed
well in many vision tasks of classification and object detection, with the need for more
training data. Few-Shot Object Detectors divide objects into base classes with too many
training examples and novel classes with few examples, which suits the problem of having
less training data.

1.2.2. Fish Detection

Electronic monitoring is widely used to monitor fisheries involving human analysts,
with added cost and expense. Biologists are keen to implement ML systems as an alternative
step towards automation and improvement. The first step in an automated pipeline of data
capture is the detection of the catch, which executes the steps of classifying and localising
the objects simultaneously.

Allken et al. [21] presented an image-based detection of pelagic (open sea) and
mesopelagic (living at depths of 200–1000 m) fish types. The dataset images were captured
with the DeepVision trawl camera system between 2017 and 2018 in the Norwegian Sea [22].
They used RetinaNet for the detection of the specified fish types. Using synthetic images to
train the models achieved mAP of 84.5%. The RetinaNet-based object detector successfully
automates locating and classifying fish species. This application contributed to collecting
data on trawl fishing to quantify fish. Unlike tracking, the researchers used Deep Vision and

Computers 2024, 13, 119 4 of 29

a simple linear regression model to estimate fish counting of different classes. This strategy
involves using the individual image frames classified by RetinaNet in the earlier step.

One-stage detectors are ideal for detecting objects in real-time applications. For ex-
ample, Cai et al. [23] combined YOLOv3 and MobileNetV1 aiming to construct a detector
with a lighter backbone for fish detection. The imageNet-based dataset was used with
16 different classes of fish species to pre-train the network. A dataset of 2000 images was
split into 1700 and 300 images for training and testing, respectively. Their method achieved
an AP (average precision) of 78.67%, which was better than that of the YOLOv3 base model
for this specific problem of fish detection. Figure 1b shows detection images from [23].

(b)

Figure 1. (a) automated catch event detection for longline fishing [24]; (b) fish detection results for
YOLOv3 and MobileNetv1 [23].

An automatic fish detection system was proposed by Salman et al. [25] to detect
moving fish objects in an unconstrained underwater environment using R-CNN. Their
approach utilises fish motions in videos through background subtraction and optical flow.
The outcomes combine with a raw image to obtain fish-dependent candidate regions.
The experiments used FCS (Fish4Knowledge with Complex Scenes) and LCF-15 (LifeCLEF
2015) datasets with several underwater videos of different fish species. The base R-CNN
produced an accuracy of 64.99% and 77.30% for the FCS and LCF-15 datasets, respectively.
The proposed system attained a detection accuracy of 87.44% and 80.02% for the FCS and
LCF-15 datasets, respectively, which were higher by 22.45% and 6.72%, respectively, than
that for the base R-CNN.

EM involves recording catch events subsequently reviewed by analysts. The pro-
cess consumes high storage space for recording and additional expense for the analysts.
Qiao et al. [24] proposed an automated DL-based detector that allows recording catch
events to overcome the limitations of EM. The authors examined multiple CNNs to extract
features such as ResNet, DenseNet, and GoogLeNet. The fish and fisher detector adopted
two frameworks of TensorBox progressive for human detection and YOLO for real-time
processing. The datasets included 140 video recordings of 1280 × 720 pixels and a speed
of 10 FPS. The proposed approach is completed in two steps. The first step detects fish
and fishers in a frame-by-frame manner. The second step smooths occasional false and
missing detections, identifying catch events and filtering unwanted or “empty” video
frames. The trained system produced almost 100% accurate results when tested on footage
from three longline fishing trips. The research aims to facilitate EM analysts in producing
catch reports that are fast and accurate. Figure 1a shows detection images from [24].

Tseng and Kuo [26] presented a DL-based system for counting, measuring, and iden-
tifying fish types. The system detects harvested fish in EM video frames and segments
them from the background using mask R-CNN. The counting involved time and distance
threshold methods. The next step determines the fish measurement and classification using
the masks predicted by mask R-CNN and confidence scores, respectively. The trained
model achieved mAP of 93.51% and 77.31% for fish detection and counting, respectively.
The accuracy of fish classification was above 98%. The proposed approach can automate
pre-screening of EM videos to facilitate the process of video analysis by the analysts.

Acoustic signalling (a technique of sending and receiving messages for underwater
communication) allows fisheries stock management and monitoring of marine life. It is

Computers 2024, 13, 119 5 of 29

a challenging task to assign it to the species. Trawl camera systems can implement the
interpretation of acoustics data. The underwater images can help identify the presence of
species at specific locations. Allken et al. proposed a DL neural network aiming to automate
the classification of fish in images captured by the Deep Vision trawl camera system [22].
The dataset included images of multiple surveys conducted at 20 trawl stations using the
Deep Vision system. Also, the authors developed a method for creating synthetic datasets.
The proposed classifier used Tensorflow and Keras libraries and a fully convolutional
Inception 3 network. The CNN-based system achieved 94% accuracy for identifying fish
species of different types.

1.2.3. Crab and Lobster Detection

We include computer vision and image processing techniques for crab and lobster
detection. The literature shows that these two crustaceans received less attention from
scientists than fish and other species. Enough scope of research can explore new systems
for automated data collection and monitoring of the two valuable species.

Crab aquaculture still relies on traditional methods to collect species data. Cao et al. [27]
proposed a real-time robust underwater crab detector named Faster MSSDLite. The experi-
ments involved 5125 images for training and testing the MSSDLite model. A combined
lightweight SSD object detector and MobileNetV2 backbone were selected. A Feature Pyra-
mid Network (FPN) was adopted to the SSD to boost the process of detection. The unified
Quantized-CNN framework helped quantify the error and accelerate the speed. The pro-
posed approach reported an AP of 98.94% and a detection speed of 74 FPS, 8× faster
than SSD.

Accurate detection of crabs can promote the growth of the aquaculture industry at a
rapid speed. Chin et al. [28] proposed a lightweight crab detection and sex classification
method based on YOLOv4 named GMNet-YOLOv4. GhostNet was selected as a backbone
to extract features from the crab images. The standard convolutions of the neck and head
were replaced by depth-wise separable convolutions, reducing the network parameters.
The modified trained model achieved mAP of 97.23%, which was 2.82% higher than the
base model with lower memory consumption and reduced parameters.

Recently, Ji et al. [29] proposed a method to detect underwater river crabs. It was
based on multi-scale pyramid fusion image enhancement using MobileCenterNet. The role
of multi-scale pyramid fusion based on CLAHE (Contrast Limited Adaptive Histogram
Equalization) and UDCP (Underwater Dark Channel Prior) is to enhance the image quality
affected by poor light and low contrast in underwater setups. MobileNetV2 with added
modules was applied to create feature maps. The MobileCenterNet achieved an AP of
97.86% and frame rate of 48 per second. The storage memory required for training the
model was reduced by 81%, and the AP was increased by 3.2% compared to the baseline
model ResNet18-CenterNet for a crab dataset of 3732 images.

Instead of considering the whole body of the crab, Wu et al. [30] proposed a DL
approach based on abdomen parts for identification of swimming and mud crabs using
two different datasets (Crab-201 and Crab-146). The proposed network, named PDN (Part-
based Deep Learning Network) included three overlapping and non-overlapping partition
strategies. Also, the edge texture of the abdomen is richer in features than the sulciform
texture in the lower part of the abdomen. The technique of overlapping partitions and edge
textures resulted in an improved mAP of 94.5% than the counterpart detectors for detecting
specified crab species.

The detection of crabs in images has multiple applications in wider domains. Wang
et al. [31] built an application to automate the meat picking process using CNN. The crab
knuckle is a featured body part that addresses the size and position of the meat compart-
ments of the crab, and it is important to have precise detection of the knuckle. The proposed
work approaches the exact position of the knuckle in images. Initially, the background was
removed from the images using the Otsu algorithm [32]. A CNN-based binary classification
achieved an accuracy of 98.7% for the validation set. Other modifications for k-means

Computers 2024, 13, 119 6 of 29

clustering improved the ability to identify the exact knuckle position based on colour
features of the back-fin area, and the use of template matching generated the cutline in the
XY plane. The authors updated their work in a report published later [33]. They integrated
the model into the crab processing machine. It detects crab legs, crab cores, and knuckles
with an average pixel accuracy of up to 0.9843. Also, the updated model reduced the
computation time by 50 folds compared to the earlier method. The research can extend to
accomplish further tasks in other meat-picking domains.

Chelouati et al. [34] presented their methods to estimate the orientation of lobsters
in images. They used YOLOv3, v4, and v7. The performance of YOLOv7 dropped to
just 8 FPS on NVIDIA Jetson Xavier NX, which is not suitable for capturing activities in
real-time applications. This indicates that the architecture of recent YOLO object detectors
requires powerful hardware to process and detect objects. The application aimed to guide
a robot arm for lobster part detection in the food processing industry.

The detection of objects often occurs in low and poor lighting conditions that substan-
tially reduce the quality of the images needed to train and test the detectors. To overcome a
similar situation, Cao et al. [35] proposed an image enhancer that can improve images in
low-light setups often due to the phototaxis (behaviour of crabs to move towards or away
from a light source) of underwater crabs. Cao proposed an image enhancer called LigED
to improve the lighting condition in images. The combination of LigED and EfficientNet-
Det0 detected crabs in a real-time manner. LigED adjusts the images with sufficient light
for extracting rich feature information. The other contribution is the development of a
lightweight EfficientNet-Det0 live crab detector. The AP of the crab detector increased by
13.84% to 95.40% with a detection speed of 28.41–91.74 FPS.

We found limited research on the detection of lobsters using ML and other computer-
vision techniques. Mahmood et al. [36] published their work on the detection of Western
rock lobster and the creation of synthetic datasets. Deep learning networks are data-driven
and demand big datasets for training purposes. Most synthetic data creation techniques
involve segmentation, which is challenging for objects with complex body structures like
lobsters. The authors proposed a novel Synthetic Parts Data (SPD) approach for creating
synthetic data using body parts of lobsters for training the object detector. They used
the SPD and real datasets to train the YOLOv3 object detector to detect Western rock
lobsters. The use of synthetic data brought significant improvements in the detection
results. The combined (real + SPD) data achieved mAP of 46.0%, which was 25.9% higher
than the original dataset for detecting Western rock lobsters in underwater images.

Chelouati et al. [37] investigated two approaches to direct the FANUC robot arm to
detect the main body parts of lobsters. The first approach aimed to evaluate the ability of
the iRvison system integrated into the FANUC robot to detect lobster body parts. GPM
(Geometric Pattern Matching) and CSM (Curved Surface Matching) locators were employed
to detect the lobster parts. The iRvision uses built-in vision processing functions to conclude
the results, but it did not work well, as it was difficult for the robot to learn and detect
new images of lobsters using the camera. The trial of the embedded vision system based
on YOLOv4 achieved mAP of 99.29% and a detection speed of 0.1806. Thus, the research
suggests that the embedded vision system should be integrated into the robot arm.

Hasan and Siregar [38] discussed multiple solutions for the identification, sexing,
and age estimation of lobsters in Indonesia. The type recognition of the lobsters was
determined using a shell colour and edge detection technique. The edge detection combined
with pattern recognition of the bottom side of the images obtained the sex, and age was
obtained by knowing the length of the carapace. The paper demonstrates qualitative results
but lacks proper evaluation and assessment of the mentioned techniques and procedures.
Table 1 presents the list of articles published for crab and lobster detection.

Computers 2024, 13, 119 7 of 29

Table 1. Summary of the methods from the literature for the detection of crabs and lobsters.

Article Author Method Application

[27] Cao et al. SSD object detector and
MobileNetV2 underwater crab detector

[28] Chin et al. YOLOv4 crab detection and sex
classification

[29] Ji et al. MobileCenterNet underwater river crab detection

[30] Wu et al. Part-based Deep
Learning Network

abdomen parts for identification of
swimming and mud crabs

[31] Wang et al. OTSU algorithm, CNN
Classifier crab knuckle detection

[34] Chelouati et al. YOLOv3, v4, and v7 estimate the orientation of lobsters

[35] Cao et al. LigED and
EfficientNet-Det0

image enhancer for underwater
crab detection

[36] Mahmood et al. YOLOv3 detection of Western rock lobster

[37] Chelouati et al. YOLOv4 detect the main body parts of
lobsters

[38] Hasan and
Siregar Edge detection technique identification, sexing, and age

estimation of lobsters

For the detection and classification of aquatic species, biologists recommend the use of
DL-based applications, which can perform well subject to the correct problem identification
and the availability of large datasets for training and evaluation purposes. The rapid
development of technology has increased the need for automated systems. Le et al. [39]
presented a review on DL recognition and detection of marine species. The authors included
the opportunities, implementation, challenges, and availability for inducting automated
systems for detection and other associated aspects of live aquatic animals. In this paper,
we investigate different techniques and deep learning networks for detecting crabs and
lobsters on fishing boats and also propose a technique based on custom anchors and a
novel dataset that has improved the results of single-stage detection for identifying crabs
and lobsters in real-time images.

We build on our recent work in developing a pipeline for crab and lobster frame
selection, detection, and measurement optimised for the current Raspberry Pi-based hard-
ware [10]. The lack of a GPU and very limited memory necessitated the use of offline
processing after capture, at sub-real-time frame rates. Here, we investigate alternatives for
future iterations of the system, for which we expect to include GPU-enabled hardware.

In this paper, we provided a solution to the problem of detection of crabs and lobsters
onboard fishing boats using YOLO object detectors (v3, v4, v3tiny, and v4tiny). Further-
more, we evaluated the performance of other object detectors, such as Faster R-CNN,
SSD, etc.

The YOLO object detector continues to evolve and has undergone various develop-
ments since its inception. We can predict further developments as there is much scope for
improvement in the existing frameworks. Each YOLO framework focuses on balancing
speed and accuracy for real-time applications and aims to address this trade-off in different
ways. In addition, fine-tuning the parameters and data pre-processing can impact the
suitability factor of the selected framework for a specific problem domain and hardware
requirements.

We achieved promising results with YOLOv4-tiny and recommend it initially for
implementation and testing. YOLO is being improved over time with new versions. We
will consider other versions of YOLO for future research in this specific domain area, as we
would expect even better results with the more recent versions of YOLO. The authors
in [34] found that the recent YOLO object detectors require powerful hardware to process

Computers 2024, 13, 119 8 of 29

and detect objects. A comprehensive review of the various YOLO architectures and their
applications is given in [40].

2. Background of Deep Learning Networks

This section describes the networks we evaluated for the object detection part of the
pipeline.

2.1. Faster R-CNN

Ren et al. [16] proposed Faster R-CNN with further improvements towards the region-
based CNN paradigm. The selective search approach of Fast R-CNN to propose a RoI
(Region of Interest) slows down the process, requiring the same time as the detection
network. Thus, the region proposal computation is a trade-off between speed and accuracy.
Faster R-CNN resolved this by introducing a dedicated fully convolutional region proposal
network (RPN) that allows the prediction of region proposals of variant scales and aspect
ratios. In addition, the inclusion of RPN boosts the ability to generate region proposals with
higher speeds as it shares full-image convolutional features with the detection network
and is a step towards near real-time object detection. The RPN runs on a particular conv
layer while sharing the previous layers with the object detection network. In order to fully
connect to an n × n spatial window, the network slides over the conv feature map depicted
in Figure 2b. Each sliding window yields a low-dimensional vector (256, 512), which is fed
into the sibling box-classification (cls) and box-regression (reg) layers [41]. The architecture
includes n × n and two sibling 1 × 1 conv layers with ReLU (Rectified Linear Unit) applied
to the n × n conv output layer [41]. In addition to the RPN, anchors are used to detect
different-sized objects. Without the requirement for numerous scales of input images or
features, the anchors can substantially simplify the process of generating proposals for
regions of different sizes. Each region proposal is parametrised relative to a reference
anchor box. The distance between the predicted and ground-truth box is estimated to
optimise the location of the predicted box. The process of object detection starts with
the input image passing through CNN to obtain a set of feature maps. In the next step,
the RPN produces bounding boxes and their classification. The selected proposals mapped
back to the feature maps obtained from the previous CNN layer in the RoI pooling layer
and ultimately fed to the fully connected layer. The result is passed to the classifier and
bounding box regressor. The entire process integrates feature extraction, proposal detection,
and bounding box regression into a unified, end-to-end learning framework, as depicted in
Figure 2a.

Classifier

RoI Pooling

Feature Maps

Convolu�onal Layers

Region Proposal Network

Proposals

Image

(a) Single, unified, end-to-end network

4k Coordinates 2k Scores

256-d

Sliding Window

reg layer cls layer

k anchor boxes

Conv feature map

Intermediate Layer

(b) Region proposal network (RPN)

Figure 2. Faster R-CNN with RPN [16].

For training the RPN, Faster R-CNN keeps the multi-task loss function given in
Equation (1).

Computers 2024, 13, 119 9 of 29

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(Pi, p∗i) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i) (1)

The loss function calculates probability (pi) and 4k coordinates (ti) for each i-anchor in
mini batch, whereas p∗i and t∗i are the ground-truth label and ground-truth box, respectively.
The two terms normalise with Ncls, Nreg, and the balancing weight λ. Lcls is the Classifier
Loss (binary log loss over two classes). Lreg is the Regression Loss where Lreg = R(ti − t∗i),
and R is the smooth L1 loss [16].

The bounding box regression parameterises the four coordinates as given in the
equation below.

tx = (x − xa)/wa, ty = (y − ya)/ha, tw = log(w/wa), th = log(h/ha),

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha, t∗w = log(w∗/wa), t∗h = log(h∗/ha),
(2)

where x, y, w, and h denote the box’s center coordinates and its width and height. Variables
x, xa, and x∗ are for the predicted box, anchor box, and ground-truth box, respectively
(similarly for y, w, and h) [16].

2.2. You Only Look Once

YOLO [12] was proposed by Joseph Redmon for detecting objects in real-time images
and videos. It predicts bounding boxes and class probabilities from input images in a single
evaluation. YOLOv3 [14] is an improved version that uses binary cross-entropy loss for the
class predictions. It performs the predictions at three different scales. Features are extracted
from these scales using a similar concept of FPN to predict the bounding boxes [42]. Several
convolutional layers are added to the base feature extractor, and the last layer predicts a 3D
tensor encoding bounding box, objectness, and class predictions. YOLOv3 proposed a new
network for feature extraction called Darknet-53 that is more efficient than Darknet-19 and
the well-known ResNets.

Bochkovskiy et al. [15] proposed YOLOv4 with a higher accuracy and faster operating
speed than YOLOv3. The architecture splits into backbone, neck, and head components.
The CSPDarknet53 backbone extracts features from the input images. YOLOv4 uses SPP
(Spatial Pyramid Pooling) [43] and PAN (Path Aggregation Network) [44] to construct
the neck and retains YOLOv3 in the head for predicting the bounding boxes and class
probabilities of the input images. Figure 3 depicts the structure of YOLOv4. The mAP
increased by 10% compared to that for YOLOv3 (for the MS-COCO dataset) at a real-time
speed of 65 FPS on a Tesla V100 GPU. YOLOv4-tiny is a lightweight version of YOLOv4 with
fewer convolutional layers, CSPDarknet-tiny backbone, three YOLO layers, and smaller
anchor boxes for prediction. It can make faster object detections for running applications
on low-power hardware.

SPP + PAN

Neck

CSPDarknet53

BackboneInput

YOLOv3

Dense Prediction

Figure 3. YOLOv4 built with CSPDarknet53, SPP and PAN neck, and YOLOv3 head [15].

2.3. Single-Shot Detector

Liu et al. [45] proposed SSD with the main contribution of introducing multi-reference
and multi-resolution detection techniques that have improved the accuracy of one-stage
object detectors, mainly on small objects. Having a maximum detection speed of 59 FPS,

Computers 2024, 13, 119 10 of 29

SSD differs from the other single-stage detectors as it detects different scale objects on
multiple network layers, whilst others use the top layer to run detection. It is easy to
train SSD and integrate it into other systems as a detection unit. It is claimed that SSD
is a high-speed detector due to removing bounding box proposals and the successive
feature resampling stage. Also, it uses convolutional filters to recognise object classes and
offsets in the bounding box locations. Dedicated predictors are used to perform detection
with various aspect ratios and multiple feature maps from the onward stages to detect
multiple-scale objects [45]. Figure 4 depicts the SSD framework.

(a) Image with ground-truth boxes (b) 8 x 8 Feature Map (c) 4 x 4 Feature Map

lo
c:

 (

c x
, c
y,

 w
, h

)
co

nf
: (

c 1
, c

2,
...

 ,
c p

)
∆

Figure 4. SSD framework [45].

3. Methods
3.1. Pipeline

We conduct ongoing work on fisheries data collection that covers identification of
crabs and lobsters within captured images onboard fishing boats. Our proposed pipeline
is made up of multiple steps including (1) finding a video segment with the presence
of a crab/lobster; (2) frame selection of individual animals; (3) detecting an animal and
drawing a bounding box around it; (4) keypoint detection; and (5) sex identification. This
is a novel idea for deployment that can integrate multiple components of data collection
like detection, measurement, sexing, counting, etc. It is important to detect the animals in
the initial stage followed by extraction of other information on size, sex, and counting of
species. The process of detection comes across expected challenges of rotation, occlusion,
intra-class variation, illumination, deformation, etc. It is therefore important to explore
the strengths and limitations of various detection techniques to conclude the best selection
for the problem domain. Multiple object detectors have variant performance in different
domains. This paper investigates the performance of distinct object detectors, backbones,
and fine-tuned parameters to identify the most optimal solution for detecting crabs and
lobsters using our novel dataset.

3.2. Video Capture

The fishing boats are equipped with camera units aligned on the top of the catch
table to record video clips when triggered by motion in the field of view, indicating that
something has passed over the catch table. The camera unit (depicted in Figure 5) is a
sealed, tough, and waterproof plastic unit, with a 12V DC power supply and a 6 mm clear
acrylic window on the bottom surface that captures the video. The high-resolution videos
are stored on the camera unit and later downloaded onto WiFi-enabled storage devices.

Computers 2024, 13, 119 11 of 29

() CAD view showin internal coma g ponents (b) Internal hardware removed

Figure 5. Sealed waterproof housing with camera. (a) The internal components of the camera have a
memory and processing unit. (b) The outer cover shields the camera against water and shocks [10].

3.3. Video Processing and Image Annotation

We processed the individual videos for image extraction of crabs or lobsters to train
the networks. This is performed by taking the first frame of the video as a reference
frame and comparing each image to this. If it is different enough, then the image is stored
for processing in the next stage. The difference between images is calculated using a
pixel subtraction algorithm, where individual pixels are compared, and if the difference is
greater than a set threshold, the image is written to a file and stored in a directory. A new
directory of images is created for each set of concurrent frames with a similar threshold.
We used 44 videos of different lengths between 5 to 35 min to create our datasets. The main
challenges in data collection include dissimilar setups (such as the appearance of the catch
tables), highly varied poses of animals, and the presence of unwanted objects in the scene
like bycatch, ropes, pots, mud, and gloves. Another problem is the variation in lighting
due to moving vessels, outdoor weather conditions, and different times of day during the
fishing trips. The selected videos contain crabs and lobsters with different orientations,
poses, and sizes. We annotated the images using the LabelImg [46] tool for bounding
box positions around the animals and created a dataset of 15,100 images. The dataset
was split into 12,080 and 3020 images for the training and test sets, respectively. Figure 6
shows samples from the detection dataset. This novel dataset will allow scientists to extend
research on the selected crustaceans.

Figure 6. Sample images from the crab and lobster detection dataset.

3.4. System Configuration and Evaluation

We performed the training and evaluation of the networks using a Geforce RTX 3070
(16 GB) GPU, 32 GB memory, Core i7 CPU, CUDA toolkit 11.4.0, cuDNN 8.5.2, tensorflow-
gpu 2.5.0, tensorboard 2.10.0, OpenCV 4.5.4.60, Python 3.9.0, and other libraries. We will

Computers 2024, 13, 119 12 of 29

use the results achieved on this hardware to inform the design and specification of future
deployment hardware.

We assessed the performance of the trained models using mAP, IoU, F1 score, and re-
call, calculated by Equations (3)–(7) below.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 − Score =
2

1/Recall + 1/Precision
(6)

mAP =
∑N

i=1 APi

N
(where N is the number of classes) (7)

The evaluation relies on TP (true-positive), TN (true-negative), FP (false-positive),
and FN (false-negative) predictions. IoU is the intersection of the predicted and the actual
bounding boxes divided by their union. A prediction is a true positive if IoU > the set
threshold and a false positive if IoU < the threshold. The mean average precision is an
evaluation metric for object detection. Each bounding box will have a score associated with
it. Based on the predictions, a precision-recall curve (PR curve) is computed for each class
by varying the score threshold. The average precision (AP) is the area under the PR curve.
The AP for each class is computed and then averaged over the total number of classes.

4. Experiments and Results
4.1. Faster R-CNN, SSD, and Lightweight MobileNets

We trained Faster R-CNN and SSD on three different backbones i-e Inception v2,
ResNet-50 (v1), and ResNet-101 (v1). The inclusion of SSD lightweight networks aims
to provide a solution for low-power hardware. The lightweight networks were built of
SSD with MobileNetV1, MobileNetV2, MobileNetV3, SSDLite MobileNetV1, and SSDLite
MobileNetV2. SSD and MobileNets train faster models for detecting objects in images.
The fine-tuned parameters were configured at learning rate (0.0002), momentum optimiser
(0.9), grid anchor values (0.25, 0.5, 1.0, and 2.0), aspect ratios (0.5, 1.0, and 2.0), batch size
(1), and 50k training steps. We used tensorboard to visualise the training and evaluation
graphs. We automated checkpoints at 5k steps to generate the inference graphs and saved
the models. The experiments are performed on a dataset of 15,100 images, with training
and testing splits of 12,080 and 3020 images, respectively. We conducted trainings with
three different input sizes of 320 × 320, 640 × 640, and 1024 × 1024.

We evaluated the results using mAP, recall, and F1 score. The FPS estimates the
response time of the trained model. Faster R-CNN achieved a maximum mAP of 88.8%,
87.1%, and 80.4% with Inception v2, ResNet-50, and ResNet-101, respectively. The FPS
for a lower input size remained high and vice versa. The FPS values varied between 3
and 12 for different trials. The selection of a low input size reduced the training time and
vice versa. SSD achieved maximum mAP values of 56.8%, 75.7%, and 64.3% for the three
backbones, respectively, which were lower by 32%, 11.4%, and 16.1% than Faster R-CNN.
SSD ResNet-50 achieved the highest recall of 75.7%, the lowest training loss of 0.6, and a
3× higher FPS than Faster R-CNN. Inception v2 trained faster than ResNet-50 followed
by ResNet-101. Tables 2 and 3 present the results of Faster R-CNN and SSD, respectively.
Figures 7–9 and 10–12 show the comparison of Faster R-CNN with SSD, respectively.

Computers 2024, 13, 119 13 of 29

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

m
A
P
50

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Tr
ai

n
in

g
 L

os
s

Faster_RCNN_Inceptionv2_320x320 Faster_RCNN_Inceptionv2_640x640
Faster_RCNN_Inceptionv2_1024x1024

Iterations Iterations

Figure 7. Performance analysis of Faster R-CNN Inception v2 on a test set of 3020 images and input
sizes of 320 × 320, 640 × 640, and 1024 × 1024.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

m
A
P
50

0
1.5
3.0
4.5
6.0
7.5
9.0

10.5
12.0
13.5
15.0
16.5

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Tr
ai

n
in

g
 L

os
s

Faster_RCNN_ResNet50_320x320 Faster_RCNN_ResNet50_640x640

Faster_RCNN_ResNet50_1024x1024

Iterations Iterations

Figure 8. Performance analysis of Faster R-CNN ResNet-50 on a test set of 3020 images and input
sizes of 320 × 320, 640 × 640, and 1024 × 1024.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

m
A
P
50

Iterations

0
60

120
180
240
300
360
420
480
540
600
660

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k
Iterations

Tr
ai

n
in

g
 L

os
s

Faster_RCNN_ResNet101_320x320 Faster_RCNN_ResNet101_640x640
Faster_RCNN_ResNet101_1024x1024

Figure 9. Performance analysis of Faster R-CNN ResNet-101 on a test set of 3020 images and input
sizes of 320 × 320, 640 × 640, and 1024 × 1024.

Computers 2024, 13, 119 14 of 29

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

m
A
P
50

0
5

10
15
20
25
30
35
40
45
50
55

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Tr
ai

n
in

g
 L

os
s

SSD_Inceptionv2_320x320 SSD_Inceptionv2_640x640
SSD_Inceptionv2_1024x1024

Iterations Iterations

Figure 10. Performance analysis of SSD Inception v2 on test set of 3020 images and input sizes of
320 × 320, 640 × 640, and 1024 × 1024.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

m
A
P
50

0
1
2
3
4
5
6
7
8
9

10
11

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Tr
ai

n
in

g
 L

os
s

SSD_ResNet50_320x320 SSD_ResNet50_640x640

SSD_ResNet50_1024x1024

Iterations Iterations

Figure 11. Performance analysis of SSD ResNet-50 on a test set of 3020 images and input sizes of
320 × 320, 640 × 640, and 1024 × 1024.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

m
A
P
50

0
2
4
6
8

10
12
14
16
18
20
22

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Tr
ai

n
in

g
 L

os
s

SSD_ResNet101_320x320 SSD_ResNet101_640x640
SSD_ResNet101_1024x1024

Iterations Iterations

Figure 12. Performance analysis of SSD ResNet-101 on a test set of 3020 images and input sizes of
320 × 320, 640 × 640, and 1024 × 1024.

Table 2. Results of Faster R-CNN evaluated on a test set of 3020 images. The best results in the
column are formatted as red bold.

S.No. Network Input Size Training
Time (hhmm)

Training
Steps mAP50 mAP75

Average
Recall F1 Score Training

Loss FPS

1 Faster R-CNN Inception v2 320 × 320 0241 50k 88.8% 68.8% 68.3% 77.2% 1.1 12
2 Faster R-CNN Inception v2 640 × 640 0307 50k 86.0% 62.8% 64.9% 74.0% 1.3 11
3 Faster R-CNN Inception v2 1024 × 1024 0410 50k 85.6% 61.8% 65.7% 74.4% 0.7 8
4 Faster R-CNN ResNet-50 (v1) 320 × 320 0500 50k 87.1% 63.2% 64.7% 74.3% 1.6 5
5 Faster R-CNN ResNet-50 (v1) 640 × 640 0540 50k 84.8% 63.3% 65.5% 73.9% 1.8 4

Computers 2024, 13, 119 15 of 29

Table 2. Cont.

S.No. Network Input Size Training
Time (hhmm)

Training
Steps mAP50 mAP75

Average
Recall F1 Score Training

Loss FPS

6 Faster R-CNN ResNet-50 (v1) 1024 × 1024 0819 50k 77.9% 50.0% 63.4% 69.9% 0.9 4
7 Faster R-CNN ResNet-101 (v1) 320 × 320 0546 50k 80.4% 49.3% 61.7% 69.8% 1.4 5
8 Faster R-CNN ResNet-101 (v1) 640 × 640 0708 50k 65.6% 34.6% 58.0% 61.6% 1.9 4
9 Faster R-CNN ResNet-101 (v1) 1024 × 1024 1036 50k 73.2% 39.2% 59.2% 65.5% 1.0 3

Table 3. Results of SSD evaluated on a test set of 3020 images. The best results in the column are
formatted as red bold.

S.No. Network Input Size Training
Time (hhmm)

Training
Steps mAP50 mAP75

Average
Recall F1 Score Training

Loss FPS

1 SSD Inception v2 320 × 320 0255 50k 56.8% 28.3% 57.9% 57.3% 8.5 37
2 SSD Inception v2 640 × 640 0310 50k 47.7% 30.3% 56.8% 51.8% 8.0 21
3 SSD Inception v2 1024 × 1024 0655 50k 41.8% 18.7% 55.3% 47.6% 7.9 13
4 SSD ResNet-50 v1 FPN 320 × 320 0247 50k 57.2% 46.1% 69.4% 62.7% 0.6 21
5 SSD ResNet-50 v1 FPN 640 × 640 0542 50k 75.7% 62.8% 71.3% 73.4% 0.6 10
6 SSD ResNet-50 v1 FPN 1024 × 1024 1053 50k 71.8% 58.5% 68.0% 69.9% 0.6 5
7 SSD ResNet-101 v1 FPN 320 × 320 0406 50k 47.2% 37.1% 64.9% 54.7% 0.8 14
8 SSD ResNet-101 v1 FPN 640 × 640 1029 50k 54.1% 41.1% 64.2% 58.7% 0.9 5
9 SSD ResNet-101 v1 FPN 1024 × 1024 1105 50k 64.3% 50.2% 69.0% 66.6% 0.7 5

We trained SSD with three different versions of lightweight MobileNet for 50k steps.
The results show that SSD trained on lightweight MobileNets produces a higher FPS than
ResNets and Inception v2. The input size of 1024 × 1024 did not effectively improve
the mAP and decreased in some cases (S.No. 2, 3, 8, 9, and 12 of Table 4). The mAP,
recall, and F1 scores decreased compared to base models but achieved higher FPS rates
up to 47 with SSD MobileNet V3-Small calculated on an Nvidia GTX 1650 GPU. SSDs are
faster but less accurate than Faster R-CNN. The precision of the models in S.No. 1–12 of
Table 4 is around 50%, whereas the results of SSD MobileNetV3 (both the Small and Large
versions) had improved mAP and FPS to 84.8% and 47, respectively. Figures 13–15 depict
the results of SSD MobileNets. Figure 16 depicts the qualitative analysis of the models
discussed above.

0
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

m
A
P
50

0
7
8
9

10
11
12
13
14
15
16
17

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Tr
ai

n
in

g
 L

os
s

SSD_MobileNetv1_320x320 SSD_MobileNetv1_640x640 SSD_MobileNetv1_1024x1024
SSD_MobileNetv2_320x320 SSD_MobileNetv2_640x640 SSD_MobileNetv2_1024x1024

Iterations Iterations

Figure 13. Performance analysis of SSD MobileNet V1, V2 on test set of 3020 images and input sizes
of 320 × 320, 640 × 640, and 1024 × 1024.

Computers 2024, 13, 119 16 of 29

0.05
0.1

0.15
0.2

0.25
0.30
0.35
0.40
0.45
0.50
0.55

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

m
A
P
50

7
8
9

10
11
12
13
14
15
16
17
18

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Tr
ai

n
in

g
 L

os
s

SSDLite_MobileNetv1_320x320 SSDLite_MobileNetv1_640x640 SSDLite_MobileNetv1_1024x1024
SSDLite_MobileNetv2_320x320 SSDLite_MobileNetv2_640x640 SSDLite_MobileNetv2_1024x1024

Iterations Iterations

Figure 14. Performance analysis of SSDLite MobileNet V1 and V2 on a test set of 3020 images and
input sizes of 320 × 320, 640 × 640, and 1024 × 1024.

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

m
A
P
50

0
1
2
3
4
5
6
7
8
9

10
11

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Tr
ai

n
in

g
 L

os
s

SSD_MobileNetv3_small_320x320

SSD_MobileNetv3_small_640x640

SSD_MobileNetv3_small_1024x1024

SSD_MobileNetv3_large_320x320

SSD_MobileNetv3_large_640x640

SSD_MobileNetv3_large_1024x1024

Iterations Iterations

Figure 15. Performance analysis of SSD MobileNetV3 (small and large) on a test set of 3020 images
and input sizes of 320 × 320, 640 × 640, and 1024 × 1024.

Table 4. Results of SSD and SSDLite with MobileNets on a test set of 3020 images and input sizes of
320 × 320, 640 × 640, and 1024 × 1024. The best results in the column are formatted as red bold.

S.No. Network Input Size Training
Time (hhmm)

Training
Steps mAP50 mAP75

Average
Recall F1 Score Training

Loss FPS

1 SSD MobileNetV1 320 × 320 0102 50k 53.0% 35.6% 57.6% 55.2% 8.5 41
2 SSD MobileNetV1 640 × 640 0237 50k 43.7% 26.8% 55.2% 48.8% 8.5 28
3 SSD MobileNetV1 1024 × 1024 0402 50k 40.3% 23.8% 55.7% 46.8% 7.9 16
4 SSD MobileNetV2 320 × 320 0113 50k 36.0% 21.2% 53.2% 43.0% 7.2 41
5 SSD MobileNetV2 640 × 640 0252 50k 41.4% 26.6% 56.5% 47.8% 8.3 22
6 SSD MobileNetV2 1024 × 1024 0512 50k 38.2% 19.2% 55.8% 45.4% 8.0 14
7 SSDLite MobileNetV1 320 × 320 0124 50k 62.9% 31.1% 60.3% 61.6% 7.5 41
8 SSDLite MobileNetV1 640 × 640 0254 50k 51.6% 24.6% 55.8% 53.6% 8.9 30
9 SSDLite MobileNetV1 1024 × 1024 0434 50k 42.5% 26.8% 53.7% 47.5% 11.6 14

10 SSDLite MobileNetV2 320 × 320 0135 50k 54.9% 33.5% 60.4% 57.5% 7.1 41
11 SSDLite MobileNetV2 640 × 640 0259 50k 56.0% 33.2% 59.0% 57.5% 7.6 25
12 SSDLite MobileNetV2 1024 × 1024 0513 50k 41.1% 24.9% 54.9% 47.0% 10.5 13
13 SSD MobileNetV3-Large 320 × 320 0135 50k 74.5% 53.0% 65.8% 69.8% 1.5 47
14 SSD MobileNetV3-Large 640 × 640 0324 50k 84.8% 60.9% 68.4% 75.7% 2.1 30
15 SSD MobileNetV3-Large 1024 × 1024 0713 50k 80.7% 59.1% 67.8% 73.7% 1.3 17
16 SSD MobileNetV3-Small 320 × 320 0117 50k 70.4% 46.0% 64.2% 67.2% 1.0 47
17 SSD MobileNetV3-Small 640 × 640 0158 50k 83.0% 60.2% 68.4% 75.0% 0.6 41
18 SSD MobileNetV3-Small 1024 × 1024 0316 50k 81.6% 56.2% 67.2% 73.7% 1.3 28

Computers 2024, 13, 119 17 of 29

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Faster R-CNN Inception v2 Faster R-CNN ResNet-50 Faster R-CNN ResNet-101

SSD Inception v2 SSD ResNet-50 SSD ResNet-101

SSD MobileNet V1 SSD MobileNet V2 SSDLite MobileNet V1

SSDLite MobileNet V2 SSD MobileNet V3-Large SSD MobileNet V3-Small

Figure 16. Qualitative analysis of Faster R-CNN, SSD, and lightweight models on a sample image
trained for crab and lobster object detection. Left to right: (a–l) Faster R-CNN Inception v2, Faster R-
CNN ResNet-50, Faster R-CNN ResNet-101, SSD Inception v2, SSD ResNet-50, SSD ResNet-101, SSD
MobileNetV1, SSD MobileNetV2, SSDLite MobileNetV1, SSDLite MobileNetV2, SSD MobileNetV3-
Large, and SSD MobileNetV3-Small.

4.2. Object Detection with YOLO (v3, v4)

We trained YOLOv3 and YOLOv4 using the Darknet53 backbone and the 15.1k dataset
with 12,080 and 3020 images in the training and test sets, respectively. We trained YOLO
(v3, v4) with input sizes of 320 × 320, 416 × 416, and 608 × 608, a momentum value of 0.9,
a decay of 0.0005, and a learning rate of 0.001 for a maximum of 6000 training iterations.

The results obtained are given in Table 5. The results improved with increasing
input size. YOLOv4 achieved improved results with a maximum mAP of 97.5%, which is
10.2% higher than YOLOv3. The FPS remained the same for both the YOLO base models.
The average loss was less than 1 in all experiments. We also trained the tiny lightweight
versions of YOLO (v3, v4) which are faster with a lower mAP. The YOLOv4-tiny achieved
a maximum mAP of 85.4%, which is 12.1% less than the base model. However, the tiny
versions support low-power hardware with a faster speed of 64 FPS. Figure 17 depicts the
qualitative analysis of YOLO with default anchors.

Computers 2024, 13, 119 18 of 29

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

YOLOv3 (320 x 320) YOLOv3 (416 x 416) YOLOv3 (608 x 608)

YOLOv4 (608 x 608)YOLOv4 (416 x 416)YOLOv4 (320 x 320)

YOLOv3-tiny (320 x 320) YOLOv3-tiny (416 x 416) YOLOv3-tiny (608 x 608)

YOLOv4-tiny (608 x 608)YOLOv4-tiny (416 x 416)YOLOv4-tiny (320 x 320)

Figure 17. Qualitative analysis of YOLO with default anchors (1–12 of Table 5) on a sample image.

Table 5. Results of YOLO and YOLO-tiny on a test set of 3020 images and input sizes of 320 × 320,
416 × 416, and 608 × 608. The best results in the column are formatted as red bold.

S.No. Network Input Size mAP50 Recall F1 Score Average
IoU FPS BFLOPS Average

Loss
Training

Time (hhmm)
Training
Iterations

1 YOLOv3 320 × 320 76.1% 42% 58% 70.6% 32 38.6 0.12 0504 6k
2 YOLOv3 416 × 416 72.7% 67% 72% 59.0% 21 65.3 0.08 0623 6k
3 YOLOv3 608 × 608 87.3% 78% 84% 74.3% 13 139.5 0.05 1228 6k
4 YOLOv4 320 × 320 97.5% 92% 94% 81.8% 32 35.2 0.92 0446 6k
5 YOLOv4 416 × 416 97.1% 89% 93% 84.2% 21 59.6 0.69 0628 6k
6 YOLOv4 608 × 608 94.6% 88% 92% 79.3% 11 127.2 0.59 1105 6k
7 YOLOv3-tiny 320 × 320 70.8% 61% 72% 60.9% 64 3.2 0.18 0051 6k
8 YOLOv3-tiny 416 × 416 74.3% 68% 72% 54.4% 64 5.4 0.45 0237 6k
9 YOLOv3-tiny 608 × 608 86.6% 54% 70% 72.5% 64 11.6 0.60 0217 6k

10 YOLOv4-tiny 320 × 320 68.0% 59% 68% 59.4% 64 4.0 0.10 0056 6k
11 YOLOv4-tiny 416 × 416 74.2% 80% 74% 50.0% 64 6.8 0.10 0116 6k
12 YOLOv4-tiny 608 × 608 85.4% 68% 80% 71.2% 64 14.5 0.38 0216 6k

Computers 2024, 13, 119 19 of 29

4.3. Comparison of YOLO (v3, v4) and Tiny Models

A trade-off exists between speed and accuracy among different variants of YOLO.
The networks differ in the number of layers and trainable parameters, which is reflected in
the training and inference times of the models. The FPS, BFLOPS, and weight size are other
indicators for measuring the speed of the networks. Larger networks are mostly expensive
and require high memory and processing power to train and operate.

YOLOv3 is based on Darknet-53 and is built of 106 layers including 53 convolutional
and 3 YOLO layers (positioned at 82, 94, and 106) for detection. The network has 62 M
trainable parameters, an inference speed of 50 ms, and a weight size of 235 MB. YOLOv3-
tiny has a lighter structure of 24 layers in total having 13 convolutional and 2 YOLO layers.
The number of trainable parameters is reduced to 8.7 M, the inference time is 8.3 ms, and the
weight size is 33 MB, which accelerates the speed of the network compared to YOLOv3.

YOLOv4 is structured with 162 layers having 53 convolution layers and each convolu-
tion layer connects with a batch normalisation and Mish activation layer. It includes 3 YOLO
layers (positioned at 139,150,161) for detection. The total number of trainable parameters
is 64.4 M, the weight size is 244 MB, and the inference time is 45.8 ms. The YOLOv4-tiny
architecture consists of 38 layers including 21 convolutional layers and 2 YOLO layers. It
is faster than YOLOv4 having 6.8 M trainable parameters, a weight size of 22 MB, and an
inference time of 8.3 ms.

The tiny variants make the training process faster with fewer computations with some
trade-off in detection performance. Table 6 shows the comparison of the size and speed of
the YOLO networks.

Table 6. Structure and speed comparison of the YOLO (v3 & v4) and tiny models.

Model Layers Parameters
(Millions)

Inference Time
(Milliseconds)

Weights
(MB) BFLOPS FPS

YOLOv3 106 62 50 235 65.3 21
YOLOv3-tiny 24 8.7 8.3 33 5.4 64
YOLOv4 162 64.4 45.8 244 59.6 21
YOLOv4-tiny 38 6.8 8.3 22 6.8 64

5. Optimised Benchmark YOLOv3, YOLOv4, and Tiny Versions

YOLO predicts bounding boxes and class probabilities from input images in a single
evaluation. YOLOv3 uses binary cross-entropy loss for class predictions and performs the
predictions at three different scales. Features are extracted from these scales using a similar
concept of FPN to predict the bounding boxes. Several convolutional layers are added
to the base feature extractor, and the last layer predicts a 3D tensor encoding bounding
box, objectness, and class predictions. YOLOv3 uses Darknet-53 for feature extraction with
53 convolutional layers and is better than Darknet-19. YOLOv4 improved YOLOv3 with a
CSPDarknet53 backbone for feature extraction.

YOLO divides each input image into multiple grids that help in identifying objects.
Each grid cell predicts multiple bounding boxes along with their corresponding class
probabilities. YOLO utilises multiple anchors for each grid cell to support object classes of
different shapes and sizes. YOLOv3 uses the pre-defined anchor boxes proposed in [14]
with three scales associated with a specific feature map to detect objects at various scales.
The scale 1 anchors are associated with a 13 × 13 feature map representing the largest
respective field. The scale ratios for this anchor set are (116, 90), (156, 198), and (373, 326).
The scale 2 anchors are associated with a 26 × 26 feature map with scale ratios of (30,
61), (62, 45), and (59, 119), and the scale ratios for the third scale of anchors associated
with a 52 × 52 feature map are (10, 13), (16, 30), and (33, 23). Thus, each scale has three
anchor boxes associated with it. The number of anchor boxes is fixed and independent of
the number of classes detected, and YOLOv3 predicts three bounding boxes per grid cell.
The entire set of anchors of the three scales is {10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90,

Computers 2024, 13, 119 20 of 29

156,198, 373,326}. Similarly, the set of default anchors for YOLOv4 is {12,16, 19,36, 40,28,
36,75, 76,55, 72,146, 142,110, 192,243, 459,401}.

The tiny versions of YOLOv3 and YOLOv4 use anchors to predict object locations and
sizes in images. However, the configurations of the anchors differ for the tiny variants of
YOLO. They are simpler in design than the baseline YOLO models aiming to achieve a
balanced speed and accuracy for real-time resource-constrained applications. The default
anchor set for YOLO-tiny (v3 and v4) is represented as {10,14, 23,27, 37,58, 81,82, 135,169,
344,319}.

K-Means Clustering

The k-means clustering algorithm [47] is an unsupervised learning algorithm used to
solve the clustering problems in ML. It can predict similar data points together, using a
fixed number k of clusters in the dataset. The k-means algorithm finds k centroids, keeps
the centroids as small as feasible, and then assigns each data point to the closest cluster.
The k defines the number of pre-defined clusters that need to be created in the process;
thus, if k = n, then there will be n clusters. It first determines the best value for k centre
points or centroids by an iterative process and then assigns each data point to its closest
k-centre. Finally, the data points closer to the particular k-centre create a cluster. Figure 18
depicts the steps of cluster convergence by the k-means algorithm.

Figure 18. k-means clustering of data points with three randomly initiated centroids represented by
blue, red and green colours [48].

Custom Anchor-Based YOLO Experiments and Results

YOLO depends on set of anchors to predict bounding boxes in images. The precise
configuration of anchors improves the training of object detectors to achieve better results.
We applied k-means clustering algorithm to generates anchors for YOLO using 12,080
images of the train set of our dataset for input sizes of 320 × 320, 416 × 416, and 608 × 608.
The base and tiny models of YOLO use 9 and 6 pairs of anchors, respectively using the
same number of clusters to generate them. Table 7 shows the detail of anchors generated
for YOLO (v3, v4) and their tiny variants. Figure 19 depicts the converged clusters and
anchor boxes for the input sizes of 320 × 320, 416 × 416, and 608 × 608. We trained the
YOLO (v3 and v4) configured for new anchor sets to detect crabs and lobsters. Table 8
shows the results.

The anchors generated for our dataset images improved the results of the YOLO
detectors. We trained the object detectors on 12,080 images and evaluated the results on
3020 images. We selected three input sizes of 320 × 320, 416 × 416, and 608 × 608. The mAP
of YOLOv3 improved by 21.6%, 25.1%, and 8.4% for 320 × 320, 416 × 416, and 608 × 608,
respectively, compared to using the default anchors. The mAP of YOLOv4 improved
by 0.1%, 2.1%, and 1.4% for the three input sizes, respectively. The results of the tiny

Computers 2024, 13, 119 21 of 29

versions show significant improvement with the custom anchor-based training on the
custom dataset. The mAP of YOLOv3-tiny improved by 18.2%, 14.2%, and 8.3% for the
three input sizes, respectively. The mAP of YOLOv4-tiny increased by 26.6%, 21%, and
8.9% for the input sizes of 320 × 320, 416 × 416, and 608 × 608, respectively. The results
improved compared to Table 5 above. We trained models with a highest mAP of 99.2%
and 95.2% for YOLOv4 and it’s tiny version, respectively. Figures 20–23 depict the results
(mAP, recall, F1 score, and average IoU) of the trained object detectors. The training loss
remained less than 1 for the total 6000 training iterations. The tiny models are faster than
the base models with an FPS of 64 and BFLOPS between 3.2 to 14.5. The maximum FPS for
the base models was 32. Figure 24 depicts a comparison of BFLOPS. Table 8 shows the list
of results obtained. Figure 25 presents the qualitative analysis of the results for a sample
image. Figures 26–29 visualises the training loss and mAP of the trained models.

(a) (b) (c)

(d) (e) (f)

YOLO (320 x 320) YOLO (416 x 416) YOLO (608 x 608)

YOLO-tiny (320 x 320) YOLO-tiny (416 x 416) YOLO-tiny (608 x 608)

Figure 19. Visualisation of the clusters based on three different input sizes for YOLO base models (a–c)
and tiny models (d–f).

0

10

20

30

40

50

60

70

80

90

100

YOLOv3 (320 x 320) YOLOv3ca (320 x 320)

YOLOv3 (416 x 416) YOLOv3ca (416 x 416)
YOLOv3 (608 x 608) YOLOv3ca (608 x 608)

YOLOv3 vs YOLOv3ca

7
6

.1

4
2

5
8

7
0

.6

9
7

.7

9
2

9
6

8
4

.9

7
2

.7

6
7

7
2

5
9

.0

9
7

.8

9
1

9
5

8
5

.48
7

.3

7
8

8
4

7
4

.3

9
5

.7

8
0

8
9

8
5

.7

mAP Recall F1 Score Average IoU

Figure 20. Comparison of mAP, recall, F1 score, and average IoU of the YOLOv3 and YOLOv3ca
models. Dark coloured bars represent the optimised results.

Computers 2024, 13, 119 22 of 29

0

10

20

30

40

50

60

70

80

90

100

YOLOv4 (320 x 320) YOLOv4ca (320 x 320)
YOLOv4 (416 x 416) YOLOv4ca (416 x 416)
YOLOv4 (608 x 608) YOLOv4ca (608 x 608)

YOLOv4 vs YOLOv4ca

9
7

.5

9
2 9

4

8
1

.8

9
7

.6

9
4 9

6

8
8

.3

9
7

.1

8
9

9
3

8
4

.2

9
9

.2

9
8

9
8

8
9

.4

9
4

.6

8
8

9
2

7
9

.3

9
6

.0

8
9

9
4

8
9

.1

mAP Recall F1 Score Average IoU

Figure 21. Comparison of mAP, recall, F1 score, and average IoU of the YOLOv4 and YOLOv4ca
models. Dark coloured bars represent the optimised results.

0

10

20

30

40

50

60

70

80

90

100

7
0

.8

6
1

7
2

6
0

.9

8
9

.0

7
4

8
3

7
0

.2

7
4

.3

6
8

7
2

5
4

.4

8
8

.5

6
8

7
9

7
1

.1

8
6

.6

5
4

7
0

7
2

.5

9
4

.9

5
8

7
3

7
9

.3

YOLOv3�ny (320 x 320)
YOLOv3�ny (416 x 416)
YOLOv3�ny (608 x 608)

YOLOv3�nyca (320 x 320)
YOLOv3�nyca (416 x 416)
YOLOv3�nyca (608 x 608)

mAP Recall F1 Score Average IoU

YOLOv3�ny vs YOLOv3�nyca

Figure 22. Comparison of mAP, recall, F1 score, and average IoU of the YOLOv3-tiny and YOLOv3-
tinyca models. Dark coloured bars represent the optimised results.

0

10

20

30

40

50

60

70

80

90

100

6
8

.0

5
9

6
8

5
9

.4

9
4

.6

8
8

9
3

8
5

.0

7
4

.2

8
0

7
4

5
0

.0

9
5

.2

9
3

9
6

8
4

.8

6
8

8
0

7
1

.2

9
4

.3

7
9

8
8

8
0

.7

mAP Recall F1 Score Average IoU

YOLOv4�ny vs YOLOv4�nyca
YOLOv4�ny (320 x 320)
YOLOv4�ny (416 x 416)
YOLOv4�ny (608 x 608)

YOLOv4�nyca (320 x 320)
YOLOv4�nyca (416 x 416)
YOLOv4�nyca (608 x 608)

8
5

.4

Figure 23. Comparison of mAP, recall, F1 score, and average IoU of the YOLOv4-tiny and YOLOv4-
tinyca models. Dark coloured bars represent the optimised results.

Computers 2024, 13, 119 23 of 29

3
8

.6

6
5

.3

1
3

9
.5

3
5

.2

5
9

.6

1
2

7
.2

3
.2 5
.4 1

1
.6

4
.0 6
.8 1

4
.5

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

B
F
L
O
P
S

YOLOv4 (320 x 320)

YOLOv4 (416 x 416)

YOLOv4 (608 x 608)

YOLOv3 (320 x 320)

YOLOv3 (416 x 416)

YOLOv3 (608 x 608)

YOLOv3�ny (320 x 320)

YOLOv3�ny (416 x 416)

YOLOv3�ny (608 x 608)

YOLOv4�ny (320 x 320)

YOLOv4�ny (416 x 416)

YOLOv4�ny (608 x 608)

Figure 24. BFLOPS values for the YOLO v3, v4, and tiny versions.

(1) (2) (3)

(4) (5) (6)

(7)

(10) (11) (12)

(8) (9)

YOLOv3ca (320 x 320) YOLOv3ca (416 x 416) YOLOv3ca (608 x 608)

YOLOv4ca (320 x 320) YOLOv4ca (416 x 416) YOLOv4ca (608 x 608)

YOLOv3-tinyca (320 x 320) YOLOv3-tinyca (416 x 416) YOLOv3-tinyca (608 x 608)

YOLOv4-tinyca (320 x 320) YOLOv4-tinyca (416 x 416) YOLOv4-tinyca (608 x 608)

Figure 25. Qualitative analysis of YOLO with custom anchors (1–12 of Table 8) on a sample image.

Computers 2024, 13, 119 24 of 29

Table 7. Anchor calculation using k-means clustering on a training set of 12,080 images. The YOLO
base and tiny models are trained on a set of 9 and 6 pairs of anchors, respectively, for three input sizes.

S.No. Network Image Size
(Width × Height)

No. of
Clusters Images Boxes No. of

Iterations
Counters
per Class Custom Anchors (ca)

1 YOLOv3/YOLOv4 320 × 320 9 12,080 12,809 173 6479, 6330 {31,70, 71,114, 131,132, 108,198, 165,203, 165,266, 271,243, 219,302, 284,306 }
2 YOLOv3/YOLOv4 416 × 416 9 12,080 12,809 95 6479, 6330 {39,90, 96,130, 124,216, 195,234, 209,327, 313,288, 277,393, 368,345, 364,407}
3 YOLOv3/YOLOv4 608 × 608 9 12,080 12,809 102 6479, 6330 {57,132, 141,190, 181,315, 285,342, 305,478, 458,421, 406,575, 537,504, 532,594}
4 YOLOv3-tiny/YOLOv4-tiny 320 × 320 6 12,080 12,809 82 6479, 6330 {40,79, 92,134, 149,197, 180,274, 272,246, 269,308}
5 YOLOv3-tiny/YOLOv4-tiny 416 × 416 6 12,080 12,809 69 6479, 6330 {52,103, 120,174, 194,256, 234,357, 354,319, 349,400}
6 YOLOv3-tiny/YOLOv4-tiny 608 × 608 6 12,080 12,809 82 6479, 6330 {75,150, 176,254, 284,374, 343,521, 517,467, 511,585}

Table 8. Results of the improved YOLOv3, YOLOv4, YOLOv3-tiny, and YOLOv4-tiny models with
custom anchors on a test set of 3020 images [ca=custom anchors]. The best results in the column are
formatted as red bold.

S.No. Network Input Size mAP50 Recall F1 Score Average
IoU FPS BFLOPS Average

Loss
Training

Time (hhmm)
Training
Iterations

1 YOLOv3ca 320 × 320 97.7% 92% 96% 84.9% 32 38.6 0.14 0322 6k
2 YOLOv3ca 416 × 416 97.8% 91% 95% 85.4% 21 65.3 0.18 0510 6k
3 YOLOv3ca 608 × 608 95.7% 80% 89% 85.7% 13 139.5 0.32 1035 6k
4 YOLOv4ca 320 × 320 97.6% 94% 96% 88.3% 32 35.2 1.85 0416 6k
5 YOLOv4ca 416 × 416 99.2% 98% 98% 89.4% 21 59.6 1.17 0911 6k
6 YOLOv4ca 608 × 608 96.0% 89% 94% 89.1% 11 127.2 2.47 1412 6k
7 YOLOv3-tinyca 320 × 320 89.0% 74% 83% 70.2% 64 3.2 0.20 0052 6k
8 YOLOv3-tinyca 416 × 416 88.5% 68% 79% 71.1% 64 5.4 0.46 0119 6k
9 YOLOv3-tinyca 608 × 608 94.9% 58% 73% 79.3% 64 11.6 0.66 0414 6k

10 YOLOv4-tinyca 320 × 320 94.6% 88% 93% 85.0% 64 4.0 0.31 0042 6k
11 YOLOv4-tinyca 416 × 416 95.2% 93% 96% 84.8% 64 6.8 0.37 0059 6k
12 YOLOv4-tinyca 608 × 608 94.3% 79% 88% 80.7% 64 14.5 0.50 0150 6k

Training Loss: 0.05 mAP: 87%

49

86

No. of Iterations

YO
LO

v3

0

600 1200 1800 2400 3000 3600 4200 4800 5400 60000

2

4

6

8

10

12

14

16

18

20

Training Loss: 0.32 mAP: 96%

YO
LO

v3
 O

Pt
im

is
ed

No. of Iterations

0

600 1200 1800 2400 3000 3600 4200 4800 5400 60000

2

4

6

8

10

12

14

16

18

20

83

89 8889 88 87

41

72 76

92 92 94 93
96

Figure 26. mAP (red) and training loss (blue) of YOLOv3 and corresponding optimised model.

Computers 2024, 13, 119 25 of 29

Training Loss: 0.18 mAP: 71%

No. of Iterations

YO
LO

v3
-t

in
y

0

600 1200 1800 2400 3000 3600 4200 4800 5400 60000

2

4

6

8

10

12

14

16

18

20

7173
69

66

32

59

66

Training Loss: 0.20 mAP: 89%

YO
LO

v3
-t

in
y

O
Pt

im
is

ed

No. of Iterations

0

600 1200 1800 2400 3000 3600 4200 4800 5400 60000

2

4

6

8

10

12

14

16

18

20

89 8989
88

77

72

56

62

36

Figure 27. mAP (red) and training loss (blue) of YOLOv3-tiny and corresponding optimised model.

Training Loss: 0.69 mAP: 97%

No. of Iterations

YO
LO

v4

0

600 1200 1800 2400 3000 3600 4200 4800 5400 60000

2

4

6

8

10

12

14

16

18

20 97
95

97
93

83

Training Loss: 1.17 mAP: 99%

YO
LO

v4
 O

Pt
im

is
ed

No. of Iterations

0

600 1200 1800 2400 3000 3600 4200 4800 5400 60000

2

4

6

8

10

12

14

16

18

20

89

99 99
95

23

91

97
9999 9999

Figure 28. mAP (red) and training loss (blue) of YOLOv4 and corresponding optimised model.

Computers 2024, 13, 119 26 of 29

Training Loss: 0.38 mAP: 85%

No. of Iterations

YO
LO

v4
-t

in
y

0

600 1200 1800 2400 3000 3600 4200 4800 5400 60000

2

4

6

8

10

12

14

16

18

20

8587

40

Training Loss: 0.50 mAP: 94%

YO
LO

v4
-t

in
y

O
Pt

im
is

ed

No. of Iterations

0

600 1200 1800 2400 3000 3600 4200 4800 5400 60000

2

4

6

8

10

12

14

16

18

20

9494949092

50

89 88

43

76

62

84 83

Figure 29. mAP (red) and training loss (blue) of YOLOv4-tiny and corresponding optimised model.

6. Discussion

We presented our work in Section 3 and compared the performance of single- and
multi-stage object detectors for their speed and accuracy. The results are evaluated on
a test set of 3020 images and presented in tables, figures, and charts. The first part of
the experiments includes Faster R-CNN, SSD, and lightweight MobileNets. The results
indicate that Faster R-CNN achieved a higher mAP of 88.8% trained with the three different
backbones, i.e., Inception v2, ResNet-50, and ResNet-101. The FPS value declined with the
selection of a larger input size. The SSD was three times faster, with a reduction of 13.1%
in precision, than Faster R-CNN. We observed increased training and run-time costs for
large backbone networks like ResNet-101. The training loss remained lower in most trials.
The results show a trade-off between speed and accuracy for the single- and multi-stage
object detectors. The combination of SSD and MobileNets achieved balanced speed and
accuracy; however, they need further modifications to perform real-time object detection.
MobilelNets V3 improved over its predecessor versions in terms of its overall performance.
YOLO (v3, v4) is an alternative for object detection, which can produce improved detection
results. Identifying crabs and lobsters onboard fishing boats is challenging due to different
lighting conditions, camera setups, backgrounds, etc., and thus requires an efficient object
detection mechanism. We applied the k-means clustering algorithm to generate custom
anchors and trained YOLO on our large dataset. The comparison of the results shows that
the performance of the single-stage YOLO object detector is improved. The optimised
YOLOv4 and it’s tiny variant achieved mAP of 99.2% and 95.2%, respectively. They are
well-suited for detecting crabs and lobsters on fishing boats. We will extend the work on the
proposed fisheries data collection pipeline to include automated measurement, counting,
and gender classification of the valuable crustaceans.

7. Conclusions

This paper presents a comprehensive practical analysis of the performance of single-
and multi-stage object detectors. We presented an optimised method for detecting crabs and
lobsters onboard fishing boats. We provided a novel dataset of 15100 images for training
and evaluation purposes. The results indicate a trade-off between speed and accuracy
among different types of object detectors. Our solution includes YOLO trained on a custom
anchor-based dataset, as described in Section 4. The optimised detector achieved 21%

Computers 2024, 13, 119 27 of 29

higher results for detecting crabs and lobsters on fishing boats equipped with low-powered
hardware. The custom anchor-based YOLO object detector trained on a large dataset can
provide an improved solution to detect objects in images. Precise detection of crabs and
lobsters will proceed toward the steps of measurement and gender classification in our
proposed pipeline for fisheries data collection. Future work will explore image-based
counting, mass calculation, and disease detection for the species. The multi-disciplinary
research areas include plants, livestock, sea-bed imaging analysis, etc.

Author Contributions: Conceptualisation, M.I., M.N., N.H. and B.T.; methodology, M.I.; software,
M.I.; validation, M.I. and B.T.; formal analysis, M.I.; investigation, M.I.; resources, M.I., N.H. and B.T.;
data curation, M.I., M.N., N.H. and B.T.; writing—original draft preparation, M.I.; writing—review
and editing, M.I., N.H., S.G.D.T. and B.T.; visualisation, M.I.; supervision, B.T. and N.H.; project
administration, B.T. and N.H.; funding acquisition, B.T., M.N. and N.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This work relates to the UK Department for Environment, Food and Rural Affairs (DeFRA)
Fisheries Industry Science Partnership (FISP) funded project ECM_63777 Lot 1—Fisheries Data
Collection (UK Seafood Fund Science and Innovation Pillar)— Improving UK shellfish catch composition
data and the European Marine and Fisheries Fund and Welsh Government project 81917— Innovation
in video and electronic fisheries data capture.

Institutional Review Board Statement: The work reported here was given Aberystwyth University
Ethics Approval, Ethics ID #13109.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset images are available at https://github.com/ifiaber/
Crustaceans (accessed on 9 April 2024).

Acknowledgments: We would like to thank Aberystwyth University, Wales, United Kingdom for
the award of Computer Science Department Overseas PhD Scholarship (CSDOPS) to Muhammad
Iftikhar for a period of three years to conduct this research. The project is led by Seafish [49] and
we would like to thank the staff at Seafish, particularly Lewis Tattersall, for their support. We are
thankful to the Australian Fisheries Management Authority (AFMA) for using an image of paper [24].
We are thankful to the reviewers for providing valuable feedback, comments, and suggestions for
improving this paper.

Conflicts of Interest: Marie Neal was employed by the company Ystumtec Ltd., Pant-Y-Chwarel, Ys-
tumtuen, Aberystwyth SY23 3AF UK. The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EM Electronic Monitoring
VMS Vessel Monitoring System
GPU Graphics Processing Unit
FPS Frames Per Second
CNN Convolutional Neural Network
mAP Mean Average Precision
IOU Intersection Over Union
SSD Singe Shot MultiBox Detector
YOLO You Only Look Once
RPN Region Proposal Network
GPM Geometric Pattern Matching
COCO Common Objects in Context
FPN Feature Pyramid Network
CUDA Compute Unified Device Architecture
ReLU Rectified Linear Unit
NLP Natural Language Processing

https://github.com/ifiaber/Crustaceans
https://github.com/ifiaber/Crustaceans

Computers 2024, 13, 119 28 of 29

References
1. FAO/DANIDA; Fishery and Aquaculture Economics and Policy Division. Guidelines for the Routine Collection of Capture Fishery

Data; FAO Fisheries Technical Paper; FAO: Rome, Italy, 1999; pp. 1–113.
2. Gilman, E.; Legorburu, G.; Fedoruk, A.; Heberer, C.; Zimring, M.; Barkai, A. Increasing the functionalities and accuracy of

fisheries electronic monitoring systems. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 901–926. [CrossRef]
3. Stanley, R.D.; Karim, T.; Koolman, J.; McElderry, H. Design and implementation of electronic monitoring in the British Columbia

groundfish hook and line fishery: A retrospective view of the ingredients of success. ICES J. Mar. Sci. 2015, 72, 1230–1236.
[CrossRef]

4. Hold, N.; Murray, L.G.; Pantin, J.R.; Haig, J.A.; Hinz, H.; Kaiser, M.J. Video Capture of Crustacean Fisheries Data as an Alternative
to On-board Observers. ICES J. Mar. Sci. 2015, 72, 1811–1821. [CrossRef]

5. Calderwood, J. Smartphone application use in commercial wild capture fisheries. Rev. Fish Biol. Fish. 2022, 32, 1063–1083.
[CrossRef] [PubMed]

6. Barbedo, J.G.A. A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and
Management. Fishes 2022, 7, 335. [CrossRef]

7. Gladju, J.; Kamalam, B.S.; Kanagaraj, A. Applications of data mining and machine learning framework in aquaculture and
fisheries: A review. Smart Agric. Technol. 2022, 2, 100061. [CrossRef]

8. The United Nations Decade of Ocean Science for Sustainable Development (2021–2030) Implementation Plan. Intergovernmental
Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization: Paris, France, 2021;
pp. 1–54.

9. Iftikhar, M.; Tiddeman, B.; Neal, M.; Hold, N.; Neal,M. Investigating deep learning methods for identifying crabs and lobsters
on fishing boats. In Proceedings of the 41st Computer Graphics and Visual Computing Conference (CGVC), Aberystwyth, UK,
14–15 September 2023.

10. Toé, S.G.D.; Neal, M.; Hold, N.; Heney, C.; Turner, R.; Mccoy, E.; Iftikhar, M.; Tiddeman, B. Automated video-based capture of
crustacean fisheries data using low-power hardware. Sensors 2023, 23, 7897. [CrossRef]

11. Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 11, 257–276. [CrossRef]
12. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.
13. Redmon, J.; Farhadi, A. You Only Look Once: YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
14. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
15. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
16. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]
17. Chen, J.; Dai, X.; Chen, D.; Liu, M.; Dong, X.; Yuan, L.; Liu, Z. Mobile-former: Bridging mobilenet and transformer. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022;
pp. 5270–5279.

18. Nouby, A.E.; Touvron, H.; Caron, M.; Bojanowski, P.; Douze, M.; Joulin, A.; Laptev, I.; Neverova, N.; Synnaeve, G.; Verbeek, J.;
Jegou, H. Xcit: Cross-covariance image transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 20014–20027.

19. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

20. Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Montreal, BC, Canada, 11–17 October 2021; pp. 568–578.

21. Allken, V.; Rosen, S.; Handegard, N.O.; Malde, K. A deep learning-based method to identify and count pelagic and mesopelagic
fishes from trawl camera images. ICES J. Mar. Sci. 2021, 78, 3780–3792. [CrossRef]

22. Allken, V.; Rosen, S.; Handegard, N.O.; Malde, K. A real-world dataset and data simulation algorithm for automated fish species
identification. Geosci. Data J. 2021, 8, 199–209. [CrossRef]

23. Cai, K.; Miao, X.; Wang, W.; Pang, H.; Liu, Y.; Song, J. A modified YOLOv3 model for fish detection based on MobileNetv1 as
backbone. Aquac. Eng. 2020, 91, 102117. [CrossRef]

24. Qiao, M.; Wang, D.; Tuck, G.N.; Little, L.R.; Punt, A.E.; Gerner, M. Deep learning methods applied to electronic monitoring data:
Automated catch event detection for longline fishing. ICES J. Mar. Sci. 2021, 78, 25–35. [CrossRef]

25. Salman, A.; Siddiqui, S.A.; Shafait, F.; Mian, A.; Shortis, M.R.; Khurshid, K.; Ulges, A.; Schwanecke, U. Automatic fish detection
in underwater videos by a deep neural network-based hybrid motion learning system. ICES J. Mar. Sci. 2020, 77, 1295–1307.
[CrossRef]

26. Tseng, C.H.; Kuo, Y.F. Detecting and counting harvested fish and identifying fish types in electronic monitoring system videos
using deep convolutional neural networks. ICES J. Mar. Sci. 2020, 77, 1367–1378. [CrossRef]

27. Cao, S.; Zhao, D.; Liu, X.; Sun, Y. Real-time robust detector for underwater live crabs based on deep learning. Comput. Electron.
Agric. 2020, 172, 105339. [CrossRef]

http://doi.org/10.1002/aqc.3086
http://dx.doi.org/10.1093/icesjms/fsu212
http://dx.doi.org/10.1093/icesjms/fsv030
http://dx.doi.org/10.1007/s11160-022-09727-6
http://www.ncbi.nlm.nih.gov/pubmed/36124315
http://dx.doi.org/10.3390/fishes7060335
http://dx.doi.org/10.1016/j.atech.2022.100061
http://dx.doi.org/10.3390/s23187897
http://dx.doi.org/10.1109/JPROC.2023.3238524
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1093/icesjms/fsab227
http://dx.doi.org/10.1002/gdj3.114
http://dx.doi.org/10.1016/j.aquaeng.2020.102117
http://dx.doi.org/10.1093/icesjms/fsaa158
http://dx.doi.org/10.1093/icesjms/fsz025
http://dx.doi.org/10.1093/icesjms/fsaa076
http://dx.doi.org/10.1016/j.compag.2020.105339

Computers 2024, 13, 119 29 of 29

28. Chen, X.; Zhang, Y.; Li, D.; Duan, Q. Chinese Mitten Crab Detection and Gender Classification Method Based on Gmnet-Yolov4.
Comput. Electron. Agric. 2023, 214, 108318. [CrossRef]

29. Ji, W.; Peng, J.; Xu, B.; Zhang, T. Real-time detection of underwater river crab based on multi-scale pyramid fusion image
enhancement and MobileCenterNet model. Comput. Electron. Agric. 2023, 204, 107522. [CrossRef]

30. Wu, C.; Xie, Z.; Chen, K.; Shi, C.; Ye, Y.; Xin, Y.; Zarei, R.; Huang, G. A Part-based Deep Learning Network for identifying
individual crabs using abdomen images. Front. Mar. Sci. 2023, 10, 1093542. [CrossRef]

31. Wang, D.; Vinson, R.; Holmes, M.; Seibel, G.; Tao, Y. Convolutional neural network guided blue crab knuckle detection for
autonomous crab meat picking machine. Opt. Eng. 2018, 57, 043103. [CrossRef]

32. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
33. Wang, D.; Holmes, M.; Vinson, R.; Seibel, G.; Tao, Y. Machine Vision Guided Robotics for Blue Crab Disassembly—Deep Learning

Based Crab Morphology Segmentation. In Proceedings of the ASABE Annual International Meeting, American Society of
Agricultural and Biological Engineers, Detroit, MI, USA, 29 July–1 August 2018; p. 1

34. Chelouati, N.; Bouslimani, Y.; Ghribi, M. Lobster Position Estimation Using YOLOv7 for Potential Guidance of FANUC Robotic
Arm in American Lobster Processing. Designs 2023, 7, 70. [CrossRef]

35. Cao, S.; Zhao, D.; Sun, Y.; Ruan, C. Learning-based low-illumination image enhancer for underwater live crab detection. ICES J.
Mar. Sci. 2021, 78, 979–993. [CrossRef]

36. Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Kendrick, G. Automatic detection of Western rock lobster
using synthetic data. ICES J. Mar. Sci. 2020, 77, 1308–1317. [CrossRef]

37. Chelouati, N.; Fares, F.; Bouslimani, Y.; Ghribi, M. Lobster detection using an Embedded 2D Vision System with a FANUC
industrual robot. In Proceedings of the 2021 IEEE International Symposium on Robotic and Sensors Environments (ROSE),
Virtual Conference, 28–29 October 2021; pp. 1–6.

38. Hasan, Y.; Siregar, K. Computer vision identification of species, sex, and age of indonesian marine lobsters. INFOKUM 2021, 9,
478–489.

39. Li, J.; Xu, W.; Deng, L.; Xiao, Y.; Han, Z.; Zheng, H. Deep learning for visual recognition and detection of aquatic animals: A
review. Rev. Aquac. 2023, 15, 409–433. [CrossRef]

40. Juan, T.; Diana, M.C.E.; Julio, A.R.G. A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8
and yolo-nas. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [CrossRef]

41. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A survey of deep learning-based object detection. IEEE Access 2019, 7
128837–128868. [CrossRef]

42. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

43. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

44. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 19–21 June 2018; pp. 8759–8768.

45. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

46. Available online: https://pypi.org/project/labelImg/ (accessed on 12 January 2024).
47. Na, S.; Xumin, L.; Yong, G. Research on k-means clustering algorithm: An improved k-means clustering algorithm. In Proceedings

of the 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, Jian, China, 2–4
April 2010; pp. 63–67.

48. Available online: https://www.learnbymarketing.com/methods/k-means-clustering/ (accessed on 12 January 2024).
49. seafish.co.uk. Available online: https://seafish.org (accessed on 9 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compag.2023.108318
http://dx.doi.org/10.1016/j.compag.2022.107522
http://dx.doi.org/10.3389/fmars.2023.1093542
http://dx.doi.org/10.1117/1.OE.57.4.043103
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.3390/designs7030070
http://dx.doi.org/10.1093/icesjms/fsaa250
http://dx.doi.org/10.1093/icesjms/fsz223
http://dx.doi.org/10.1111/raq.12726
http://dx.doi.org/10.3390/make5040083
http://dx.doi.org/10.1109/ACCESS.2019.2939201
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
https://pypi.org/project/labelImg/
https://www.learnbymarketing.com/methods/k-means-clustering/
https://seafish.org

	Introduction
	Background and Motivation
	Related Work
	Object Detection
	Fish Detection
	Crab and Lobster Detection

	Background of Deep Learning Networks
	Faster R-CNN
	You Only Look Once
	Single-Shot Detector

	Methods
	Pipeline
	Video Capture
	Video Processing and Image Annotation
	System Configuration and Evaluation

	Experiments and Results
	Faster R-CNN, SSD, and Lightweight MobileNets
	Object Detection with YOLO (v3, v4)
	Comparison of YOLO (v3, v4) and Tiny Models

	Optimised Benchmark YOLOv3, YOLOv4, and Tiny Versions
	Discussion
	Conclusions
	References

