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Abstract: In this article, we investigate the relative performance of artificial neural networks and
structural models of decision theory by training 69 artificial intelligence models on a dataset of
7080 human decisions in extensive form games. The objective is to compare the predictive power of
AIs that use a representation of another agent’s decision-making process in order to improve their
own performance during a strategic interaction. We use human game theory data for training and
testing. Our findings hold implications for understanding how AIs can use constrained structural
representations of other decision makers, a crucial aspect of our ‘Theory of Mind’. We show that key
psychological features, such as the Weber–Fechner law for economics, are evident in our tests, that
simple linear models are highly robust, and that being able to switch between different representations
of another agent is a very effective strategy. Testing different models of AI-ToM paves the way for
the development of learnable abstractions for reasoning about the mental states of ‘self’ and ‘other’,
thereby providing further insights for fields such as social robotics, virtual assistants, and autonomous
vehicles, and fostering more natural interactions between people and machines.

Keywords: artificial neural networks; explainable AI; game theory; theory of mind; gradient descent;
artificial psychology; cognitive psychology; collective intelligence

1. Introduction

Developing an effective theory of collective intelligence is a considerable challenge for
both artificial intelligence (AI) and social psychology; see, for example, Wolpert et al. [1],
Suran et al. [2], or Kameda et al. [3]. One aspect of this challenge comes from the tension
between the individual competency of an agent and the co-ordination of group behaviour
that allows for the collective output to be of higher quality than any individual agent.
Some important contributing factors are already understood from social psychology, for
example, the topology of a social network is important, as shown by Momennejad [4], as is
the fractal-like scaling of social group sizes, as shown by Harré and Prokopenko [5]. Work
by Woolley et al. [6] demonstrated this tension between the individual and the collective:
individual skill and effort contribute most to a group’s outcome, but performance is also
improved by individual members possessing a capacity for Theory of Mind (ToM), the
ability to infer the internal cognitive states of other agents, as shown in the work of Frith [7].
This leads to questions regarding the incentive structure, such as which rewards optimise
group performance, a question that was studied by Mann and Helbing [8] using game
theoretical mechanisms.

The relationship between game theory and ToM has been developed extensively
beginning with Yoshida et al. [9] establishing foundational results. More recent work by
researchers in the Meta Team et al. [10] developed the AI Cicero that uses a representation
of other agents’ strategies in order to play the game of Diplomacy at a strong human level.
The type of opponent decision making used in their KL-divergence module piKL is closely
related to the entropic methods of games against nature described by Grünwald et al. [11]
and the MaxEnt methods of game theory developed in Wolpert et al. [12]; see, for example,
the recent review of inverse reinforcement learning algorithms for an AI-ToM in Ruiz-Serra
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and Harré [13]. This ‘game theory of mind’ perspective has proliferated in recent years.
In Lee [14] and Lee and Seo [15], game theory is used in behavioural studies of macaque
monkeys to test for a ToM in animals; in AI research, Bard et al. [16] suggest that ToM is a
necessary element for success in complex games such as Hanabi; in social psychology, Ho
et al. [17] posit that ToM is a part of planning via the need to change others’ thoughts and
actions; and some of the psychological aspects are reported in Harré [18].

With that in mind, we also note that there are multiple scales at which an AI can
be formulated with ‘neural’ reality being balanced against ‘psychological’ reality [19–21],
in particular, the ‘dynamical minimalism’ suggested by Nowak [22]. That psychological
phenomena are an emergent property of biological neural networks embedded in an en-
vironment is not controversial, but it has only been relatively recently that studies have
shown how this may come about. For example, ADHD-related changes in brain function
have been shown to have an impact on global, low-dimensional manifold dynamics [23].
These attractor dynamics have also been used to explain memory [24] and decision mak-
ing [25–27] in biological neural networks, as well as extracting psychological phenomena
from artificial neural networks [28].

In this spirit, the control parameters of the AI models used in the current study are
akin to the ‘. . . slow dynamical variables that dominate the fast microscopic dynamics
of individual neurons and synapses’ [29]. As such, it is not always necessary to model
microscopic elements explicitly in an AI in order to test psychological models in and of
themselves. Thus, here we model decision making at a high level, where learning is by
gradient descent on macroscopic parameters. These parameters are not arbitrary though;
instead, they are representations of known psychological properties and have explicit
interpretations: as constraints, preferences, beliefs, desires, etc. This is because it can be
informative to study the learning and decision-making process from a point of view that
allows us to explicitly encode psychological factors that do not have an immediate or
obvious mapping to the microscopic neurobiology of the emergent phenomenology.

With the previous discussion in mind, neural level models can make it difficult to ex-
plain the structural elements of decision making that mathematical models can make explicit.
An example is the modelling of non-strategic decisions in the work of Peterson et al. [30]
where they gathered data on 9831 distinct ‘problems’ in order to evaluate formal models
of decision making: 12 expected utility (EU) models and a further 8 prospect theory (PT)
models that extend the EU models. Peterson et al. [30] also included an unconstrained
artificial neural network (ANN) that, as would be expected, performed better than any of
the structural models in their analysis and could act as a performance benchmark for com-
parative analysis, an approach we duplicate in this work. They showed that with sufficient
data, new theories can be discovered that shed light on centuries of earlier theoretical work.

In this work, we adapt the formal decision theory models of Peterson et al. [30]
to the task of using an AI-ToM to model the first player’s decisions in the extensive
form game data of human subjects from Ert et al. [31] (see the website of Ert: https:
//economics.agri.huji.ac.il/eyalert/choice (accessed on 15 October 2023). The goal is to
evaluate which AI-ToM decision models most effectively predict first mover choice in
extensive form games, tested against several artificial neural network models that do
not have an explicit ToM aspect, but that do have complete knowledge of the players’
choices and the games’ payoffs. In contrast, AI-ToM models are highly structured decision
models that explicitly include the constraints of the second player’s decision making. This
evaluates constrained AI-ToM models against the theoretical best ANN models available,
but the unconstrained neural network has no explanatory power, whereas the structural
models have well-studied and often psychologically grounded explanations. The main
limitation of this study is in the nature of the experimental games: ‘game theory of mind’ is
a very specific form of ToM and a more complete test of an AI-ToM would be based in a
naturalistic setting.

https://economics.agri.huji.ac.il/eyalert/choice
https://economics.agri.huji.ac.il/eyalert/choice


Games 2024, 15, 1 3 of 11

2. Materials and Methods

In this section, we introduce the games that the human subjects played in the original
article by Ert et al. [31], describing the incentives for each decision and how the incentive
structures can categorise the games. We then introduce the payoff model, Equation (1), in
which the parameters of the players’ payoff function are introduced, again following [31].
The expected utility decision models and then their prospect theory modifications are
introduced in the last two subsections.

2.1. Game Structure

The structure of the interaction between two agents and the labelling convention is
shown in Figure 1.

Figure 1. Sequential interaction between player 1 and player 2 and the payoffs for the joint choices.
Player 1 selects between “Out” and “In”, and then Player 2 selects between “Left” and “Right” if
player 1 is “In”.

The games that were played can be categorised according to the relative relationships
between the payoffs for the various joint strategies { fi, sj} for i, j ∈ {1, 2, 3}. Game cate-
gories are not uniquely identified, and some game configurations can belong to multiple
categories, see Ert et al. [31] for further details:

1. All: all choices are combined without differentiating between games in which they
were made.

2. Common Interest: there is one option that is best for both players, e.g., f3 > f1 > f2
and s3 > s2 > s1.

3. Safe Shot: “In” is the optimal choice for player 1, e.g., f2 > f3 > f1 and s3 > s2 > s1.
4. Strategic Dummy: player 2 cannot affect the payoffs, e.g., f1 > f2 = f3 and s2 = s3 > s1.
5. Near Dictator: the best payoff for player 1 is independent of player 2’s choice, e.g.,

f1 > f3 > f2 and s2 > s1 > s3.
6. Free Punish: player 2 can punish player 1’s “In” choice with no cost, e.g., f2 > f1 > f3

and s1 > s2 = s3.
7. Rational Punish: punishing player 1’s “In” choice maximises player 2’s payoff, e.g.,

f3 > f1 > f2 and s1 > s2 > s3.
8. Costly Punish: punishing player 1’s “In” choice is costly, e.g., f3 > f1 > f2 and

s1 > s3 > s2.
9. Free Help: improving the other’s payoff is not costly, e.g., f1 = f2 > f3 and s2 > s1 > s3.
10. Costly Help: improving the other’s payoff is costly for the helper, e.g., f3 > f1 > f2

and s2 > s1 = s3.
11. Trust Game: choosing “In” improves 2’s payoff but reciprocation is irrational for

player 2, e.g., f2 > f1 > f3 and s3 > s2 > s1 (Trust is a subset of Costly Help).
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12. Conflicting Interest: player 1’s reward is maximised only if player 2 chooses sub-
optimally after player 1 plays “In”, i.e., f2 > f3 but s2 < s3, while “Out” is neither
minimal nor maximal for player 1, e.g., f3 > f1 > f2 and s2 > s1 > s3.

2.2. Experimental Data and Decision Model

The data used are from the Ert et al. [31] study where the experimental setup is as
follows. A total of 116 students were recruited to play extensive form games from a selection
of 240 total games, and four independent sessions were run; presented in Table 2 are the
games of Ert et al. [31], and the original article also has the complete study protocols. All
parametric learning is carried out using gradient descent.

We use the same function as Ert et al. [31] in which their core assumption is an inequity
aversion model developed in Fehr and Schmidt [32] where individuals incur a loss of utility
based on differences between their outcomes and the outcomes of others. In this sense, the
specific value player 1 associates with a joint choice { fi, sj} is given by:

xi ≡ T( fi, sj) = fi − α max(sj − fi, 0)− β max( fi − sj, 0), (1)

where fi ∈ { f1, f2, f3} and sj ∈ {s1, s2, s3} and arguments are reversed for player 2. The α
term provides weights for disadvantageous inequality and the β term provides weights
for advantageous inequality. These parameters are discovered via gradient descent in the
training phase. Note that, in the case where α = β = 0, this simplifies to the first argument:
T( fi, sj) ≡ fi. In Sections 2.3 and 2.4, the utilities U(·) and prospect theory models π(p(·))
are defined, but first we define the probability of player 2 choosing “left” (L) or “right” (R),
from which we can derive player 1’s probability of choosing “in” (I) or “out” (O):

U2(L) = U(T(s2, f2)) (2)

U2(R) = U(T(s3, f3)) (3)

p(L) =
exp(η2U2(L))

exp(η2U2(L)) + exp(η2U2(R))
(4)

U1(O) = U(T( f1, s1)) (5)

U1(I) = π(p(L))U(T( f2, s2)) + π(p(R))U(T( f3, s3)) (6)

p(I) =
exp(η1U1(I))

exp(η1U1(I)) + exp(η1U1(O))
(7)

Note that player 1’s decision model includes their (subjective) model of player 2’s (sub-
jective) preferences and constraints [33]. The ηi terms parameterise uncertainty in choices.

2.3. Expected Utility Models

EU models can incorporate arbitrary transformations U(·) of outcome x, such that their
utility is regarded subjectively, and V(x) = ∑i piU(xi). In general, different forms of U(·)
are typically non-linear, monotonic, parametric functions, and we evaluated 11 parametric
forms of U(·). Next are descriptions of the 5 neural networks and the 8 mathematical
functions of the AI models in Peterson et al. [30] that are further modulated by different
prospect theory models.

UNN: unconstrained neural network. The UNN model is a multi-layer perceptron
with 5 layers: a 6 neuron input layer (one for each for the 2 players’ payoffs), 1 neuron
output, and 3 hidden layers with 5, 10, and 10 neurons each. Model weights are randomly
initialised in the range [0,1]. Training is conducted on a 50% subset of the data with the
remainder reserved for model testing. tanh(·) activation functions are used in the classifier
network. The RMSE is then the observed root mean square error in the predicted choice of
player 1 against observation (the RMSE is used throughout for gradient descent).

UNN Feature Engineering: an unconstrained neural network with feature engineering
on the payoffs. Rather than consider the individual payoffs for each game directly (as in
the unconstrained network), this model takes comparisons between a subset of the payoffs;
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namely ( f1 − f2), ( f1 − f3), ( f2 − f3), (s1 − s2), (s1 − s3), and (s2 − s3). This network is defined
as a multi-layer perceptron comprising 5 layers: a 6 node input layer (the defining payoffs
of each game), a single node output layer, and 25 hidden nodes across the remaining hidden
layers (5,10,10).

EU NN: an expected utility neural network without a PT model. The aim of this
method is to estimate a suitable non-linear form of the utility function from game data.
Following the convention of the non-neural models, a softmax function is used to select
between the two outcomes based on the expected utilities of the two choices each player
faces. The model’s parameters (advantageous inequity and disadvantageous inequity),
and the softmax sensitivity parameter are all estimated using gradient descent along with
the neural network weights. This is achieved with a 4 layer neural net including 1 neuron
input, 1 neuron output, and 2 hidden layers with 5 and 10 neurons in the hidden layers.
ReLU activation functions are employed in the network. The results are not significantly
sensitive to these parameter choices.

MoT NN: mixture of theories neural network. This builds on the MoT model presented
in Peterson et al. [30]—namely, it employs a ‘mixture of experts’ neural network architecture,
where the neural network considers a subset of models, and selects between them based
on the payoffs { f1, f2, f3, s1, s2, s3}. In this specification, the MoT model was designed to
select between a generalised linear EU model, a Kahneman–Tversky PT model, an expected
value model, and a Kahneman–Tversky PT model fixed at unit values. The latter two
were employed because they are the simplest among the EU and PT models (i.e., no free
parameters) and reduce the complexity of the model. The former two models were chosen
because they are among the most stable models for the simple specifications examined. The
MoT model is defined as a multi-layer perceptron comprising 5 layers: a 6 node input layer
(the defining payoffs of each game), 1 node output layer, and 3 hidden layers with 5, 10,
and 10 neurons each. ReLU activation functions are employed in the classifier network.

EU NN + PT NN: the EU NN with an additional neural network for learning a PT
model. The EU NN uses unmodified probability weightings in the calculation of expected
utilities, and the ‘Prospect Theory Neural Network’ also includes a prospect theory function
around the input probabilities. Similar to the EU NN model, the prospect theory function
is defined as a multi-layer perceptron comprising 4 layers: a single node input layer (the
probability outcome), a single node output layer, and 2 hidden layers with 5 and 10 neurons
each. ReLU activation functions are employed in the network and hyperparameter tuning
is conducted through a Gaussian processes Bayesian optimiser. In this model, the network
weights for both functions are optimised simultaneously using gradient descent.

The following mathematical models are highly structured and each has their own
extensive history as noted by Peterson et al. [30]. The advantage of these is that their
structure is motivated by specific conceptualisations regarding how decisions are made
and what information is taken in and then manipulated in the decision-making process, a
view that is not easily taken using conventional ANNs.

Akin to the previously described neural network models, the listed functions that
follow are obtained from Peterson et al. [30]:

Linear Model:

U(x) = λx (8)

Linear Loss Aversion Behaviour:

U(x) =

{
x, if x ≥ 0,
λx, if x < 0.

(9)

General Linear Loss Aversion Behaviour:

U(x) =

{
αx if x ≥ 0
λβx if x < 0

(10)
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Normalised Exponential Loss Aversion Behaviour,

U(x, α) =



1 − e−αx if x ≥ 0, α > 0
x, if x ≥ 0, α = 0
e−αx − 1 if x ≥ 0, α < 0
−λ(1 − e−αx) if x < 0, α > 0
−λx, if x < 0, α = 0
−λ(e−αx − 1) if x < 0, α < 0

(11)

Power Law Loss Aversion Behaviour:

U(x) =

{
xα if x ≥ 0
−λ(−x)−β if x < 0

(12)

General Power Loss Aversion Behaviour:

U(x) =

{
βxα if x ≥ 0
−λ(−δx)γ if x < 0

Exponential Power Loss Aversion Behaviour:

U(x) =

{
γ − exp(−βxα) if x ≥ 0
−λ(γ − exp(−β(−x)α)) if x < 0

(13)

Quadratic Loss Aversion Behaviour:

U(x) =

{
αx − x2 if x ≥ 0
−λ(−βx − x2) if x < 0

(14)

2.4. Prospect Theory Models

Following Peterson et al. [30], the below PT models are employed to transform the
modelled probability judgements:

1. None: π(p) = p
2. Kahneman–Tversky: π(p) = pα(pα + (1 − p)α)−1/α

3. Log-Odds Linear: π(p) = βpα(βpα + (1 − p)α)−1

4. Power law: π(p) = βpα

5. NeoAdditive: π(p) = β + αpα

6. Hyperbolic Log: π(p) = (1 − α + log p)
β
α

7. Exponential Power: π(p) = exp(− α
β (1 − pβ)

8. Compound Invariance: π(p) = exp(β(− log p)α)

9. Constant Relative Sensitivity: π(p) = β(1−α) + pα

3. Results
3.1. Average Root Mean Square Error of Utility Models

Our first results, shown in Figures 2 and 3, measure the performance of the utility mod-
els of the eight parameterised utility models compared with the five neural network models.
The 13 models were each run 50 times using all of the PT models and across all game types,
and the box and whisker plots report the distribution of the 13 models’ performance.
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Figure 2. Root mean square error results for each utility and neural network model using the training
data. It can be readily seen that the neural network models perform well against the other structural
decision models.

Figure 3. Root mean square error results for each utility and neural network model using the
test data (out-of-sample) where ordering is the same as Figure 2. Note that the performance cat-
egorised by model type shows no significant patterns in either the spreads or the means of their
RMSE performance.

We note that in the training phase of Figure 2, the unconstrained neural network
(UNN) performed the best out of all models, and all neural network models performed
better than all other models in the training phase. These results are consistent with what
we should expect of these models as the UNN is the most powerful model, the other neural
network models are constrained versions of the UNN, and the utility models are highly
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constrained models where the linear model, the least flexible and simplest approach, is the
worst performing model of all. In addition, note that there are no options of PT models for
the neural network models, so there are only single point values reported for these.

In the test phase shown in Figure 3, performance is significantly different from the
training phase. As expected, all neural networks and utility models are significantly de-
graded in these out-of-sample results with the best performing model being the UNN with
feature engineering, significantly outperforming the UNN likely due to overfitting. How-
ever, the UNN is also significantly worse than the best in class of some of the parameterised
utility models. Specifically, the linear utility model has relatively low variance across all
of the PT models, and its best PT model, the linear behaviour model with a Kahneman–
Tversky prospect theory model, reported a best error result of 0.01939, which is within 35%
of the RMSE of the UNN with feature engineering and one of the best performers overall
in out-of-sample testing.

We report the more fine-grained results of the individual models averaged across all
games in testing and training in Figure 4 showing the top ten and bottom ten performers.
It is not surprising that the five neural network variants are the best performers during
training and that the linear models are among the lowest performers. However, note that
in Figure 4, for the testing results (out-of-sample evaluation), the linear models as a class
tend to perform very favourably compared with the out-of-sample (test) results for the
UNN with feature engineering, and many do better than the UNN in testing. Another
useful way to see this is as a ratio of testing to training RMSEs: for UNN with feature
engineering, this ratio is 5.12; for UNN, it is 12.4; and for the linear Kahneman–Tversky
model, it is 1.1, implying excellent out-of-sample robustness for the linear model with a
Kahneman–Tversky PT model. Finally, we note that the relative differences in the training
RMSE are quite smooth and relatively small, as can be seen by the quite slow and relatively
minor deterioration in this performance between the top 10 and bottom 10. However, the
test data results show much more volatility, and this volatility is considerably higher for the
top 10 than it is for the bottom 10, both in absolute terms and relative to the training RMSE.

Figure 4. RMSE performance of top 10 and bottom 10 of EU-PT models. Note that there is significantly
less variation in the out-of-sample performance than there is in the in-sample performance, but with
noticeably better performance in the unconstrained neural network and the unconstrained neural
network with feature engineering being highly comparable.
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3.2. Performance: Individual Models by Game Type

Figure 5 shows the RMSE performance of all EU-PT models by game type. There is
considerable variation between the different games; the simpler games such as safe shot
(where In is optimal for player 1 no matter what player 2 does) and strategic dummy (where
player 2 plays no role in the payoff for player 1) have low variance and low overall RMSE,
as would be expected. However, conflicting interest games are much more complex and
involve a more nuanced understanding of what player 2 will do in response to player 1’s
choice. Despite this strategic ambiguity, many of the models performed well in mimicking
what humans do in these situations.

Figure 5. Log10-transformed RMSE performance distribution of all EU-PT models disaggregated by
game type. Logs highlight the low value tails for ‘best in class’ data points with low RMSE values.

The rational punish game is also quite interesting. Here, player 2 punishing player 1
for choosing In, and thereby denying player 2 a higher payoff, would seem to be a simpler
strategic conflict than costly punish, but rational punish has one of the lowest variances and
the highest RMSE scores of all the games (and also the highest average RMSE of 0.0700),
indicating how difficult it is to learn. Similarly, the trust game, where player 1 can improve
player 2’s payoff but player 1’s optimal outcome requires player 2 to reciprocate, requires
understanding a complex but different variation on what player 2 will do in response to
player 1’s choice, manifested in the second highest mean RMSE of 0.0519. This suggests
that as the strategic complexity of the interactions increases, performance of the models
deteriorates in general, but some of the individual models playing rational punish do very
well, coming as close in their ability to simulate real human choices as the best models in
the simplest games such as strategic dummy. We also note that the MoT model’s strong
performance (despite its relative simplicity compared with the UNNs) is reflective of the
advantages associated with choosing different models in different contexts.

4. Discussion

Formal models of decision making have been around for over a century, and for
individual’s to benefit from their joint use, e.g., in collective intelligence, they must be
mutually understood between agents. However, several issues arise that complicate the
issue discussed here. We also recall that the AIs are trained on human responses and tested
on out-of-sample human responses, and so they do not represent optimal behaviour but
rather the natural responses of real people in strategic situations.

With that in mind, it is interesting to note the robustness of the linear models as a
class in the out-of-sample testing and also as a ratio of in-sample to out-of-sample RMSE
values. In Figure 2, we can clearly see that linear models perform poorly across all PT
models during training, but in Figure 3, we see that during post-training testing, the
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linear EU models have exceptionally low variance across all of the PT models compared to
all other other EU models, and some individual linear EU-PT models outperform UNN,
PT NN, and EU NN in out-of-sample testing but, curiously, not the UNN with feature
engineering. As a matter of practicality it might be the case that having a simple approach
to the many different types of games is just an efficient way of addressing the complexity
and uncertainty of the environment. However, while we are not able to explore this point
any further with the data we have, there are other results that shed light on the matter.

One of these results is the performance of the UNN with feature engineering where
it is the relative, rather than absolute, payoffs that the neural network is trained on. We
note that, in general, the psychophysics of relative perception has been very successful in
explaining biases in perception and decision making. As Weber [34] notes, this is also true
in economics, and this is confirmed here in the strong performance of UNN with feature
engineering in out-of-sample, performing better than all models including both the UNN
and linear models, and while the ratio of in-sample to out-of-sample errors is better than
the UNN, it is not as good as the linear models.

The final model we draw attention to is the mixture of theories model. This performed
very well in testing, second only to UNN with feature engineering, and the ratio of training
to testing performance was very good. This raises an interesting question that we are not
able to answer with the data we have, but it is important in terms of the psychocognitive
mechanisms in use when there is uncertainty in both the other player’s ‘rationality’ and the
type of interaction an agent will be confronted with. The MoT model suggests that being
able to switch between different models of the other player depending on the strategic
context is useful, in contrast to having a single model of the other player for all of the
different strategic interactions. In the natural world, agents are confronted with a variety of
different agents where the interactions are of varying degrees of social and strategic com-
plexity, so having a neural network that controls which of these models is used contingent
on the context could be both efficient and highly adaptive in real situations. This suggests it
would be useful to study when and how agents manipulate different models of the ‘other’,
i.e., ToM model selection, as well as models of the ‘self’, i.e., introspectively adjusting the
agent’s own decision model [18].

We believe the main limitation of this study lies in the nature of the experimental
games, where ‘game theory of mind’ is a very specific form of ToM and a more complete
test of an AI-ToM would be based in a naturalistic setting. In addition, a larger dataset
would likely have enabled better generalisation of performance in the out-of-sample test
set, unlocking the performance of the neural network models. However, this does highlight
that the best performing models (the MoT and UNN with feature engineering) are able to
learn efficiently, including from datasets that can be readily processed with commodity
laptop hardware as developed in this study.

Similarly to the work of Peterson et al. [30], here we have been able to show, through
the use of large numbers of individual human decisions and a variety of strategic contexts,
that we can evaluate a large suite of decision models. This has provided both new insights
and provided quantitative confirmation of long standing models, while testing the limits of
recent developments in artificial neural networks.
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