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Abstract: Amidst global climate change and unsustainable human exploitation of water resources,
water has emerged as a critical factor constraining global agricultural food production and ecological
environments. Particularly in agricultural powerhouses like China, irrigation water accounts for a
significant portion of freshwater resource utilization. However, the inefficiency of irrigation water
usage has become a weak link in water resource management. To better assess irrigation water
efficiency, an accurate estimation of regional irrigated areas is urgently needed. This study proposes
a method for identifying actual irrigated areas based on remote sensing-derived evapotranspiration
(ET) to address the challenge of accurately interpreting irrigated areas in tropical regions. Using
Yunnan Province’s Yuanmou irrigation district as a case study, this research combined ground
monitoring data and remote sensing data to identify actual irrigated areas through ET inversion
and downscaling methods using the Penman–Monteith–Leuning (PML) model. In 2023, the total
irrigated area interpreted from remote sensing in the study area was approximately 15,000 hm2, with
a comparison against validation points revealing an extraction error of 16%. The small error indicates
that this method can effectively enhance the reliability of monitoring actual irrigated areas, thus
providing valuable data support for agricultural irrigation water management.

Keywords: tropical regions; evapotranspiration; irrigated areas; PML model

1. Introduction

With the global impact of climate change and human-induced overexploitation and
irrational utilization of water resources, water has emerged as a crucial constraint on world-
wide agricultural food production, influencing the ecological environment significantly [1].
Agricultural irrigation constitutes the largest share of human freshwater usage, playing a
pivotal role in the global hydrological cycle [2]. China, being an agricultural powerhouse,
relies heavily on irrigation, accounting for over 60% of the total water consumption; yet,
overall irrigation efficiency remains suboptimal, representing a relatively weak link in the
efficient utilization and high-quality development of water resources [3]. Since the end of
the last century, China has actively pursued the development of water-saving irrigation in
agriculture and the water-saving transformation of large irrigation areas. There is a growing
emphasis on the assessment of irrigation efficiency, making it imperative to accurately
estimate regional irrigated areas to better evaluate the impact of water-saving irrigation
measures on irrigation areas and water consumption [4].

In the realm of modern agricultural management, the accurate acquisition of the spatial
distribution and area information of irrigated areas is pivotal for efficient data support in
the rational allocation, scheduling, and management of water resources in irrigation zones,
thereby enhancing water use efficiency and irrigation management standards [5–7]. Satellite
remote sensing technology is considered among the most effective means of earth observation
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and comprehensive ground information acquisition. With the birth and development of
various civilian satellites featuring high spatiotemporal and spectral resolutions, coupled
with advancements in quantitative remote sensing technology, the application scope, breadth,
and research depth of remote sensing in agriculture have continuously expanded [8,9]. Data
products such as remote sensing evapotranspiration (ET) and soil moisture content have
become increasingly rich. The identification of actual irrigated areas through remote sensing
information has emerged as a new focal point in research on modern agriculture.

At present, there are two main applications of remote sensing for identifying irrigated
areas. The first approach involves analyzing land use and crop structure information within
irrigation zones, combined with a control range of irrigation projects, to estimate potential
irrigated areas or controlled irrigation areas. The identification of actual irrigated areas
is then achieved by discerning differences in crop vigor [10,11]. The second approach
relies on monitoring changes in remote sensing soil moisture content to determine actual
irrigated areas. This method utilizes multi-temporal remote sensing image data to invert
soil moisture content, analyzing and comparing the characteristics of soil moisture changes
to obtain the actual irrigated area for each irrigation cycle [12–16]. However, both methods
encounter challenges when applied in tropical regions. For the first method, in tropical
areas characterized by abundant rainfall, ample heat, and vigorous vegetation growth,
it is difficult to distinguish between irrigated and non-irrigated areas solely based on
planting structure and crop growth, as the differences in crop growth between irrigated
and non-irrigated areas are not significant. As for the second method, in densely vegetated
tropical regions, optical remote sensing data are hindered by vegetation cover, making it
challenging to accurately reflect information on soil moisture content, thereby impacting
the precision of soil moisture retrieval. Additionally, in tropical regions with abundant
precipitation, it is sometimes challenging to differentiate whether changes in soil moisture
content are caused by irrigation or rainfall [17]. These challenges underline the need for
region-specific adaptations and enhancements in remote sensing-based methods for the
accurate identification of irrigated areas in tropical climates. Overcoming these limitations
is crucial for advancing the effectiveness of water resource management and irrigation
practices in such regions.

ET is a critical component of the global water cycle. In the water balance of agricul-
tural fields, the majority of supplemental water is consumed in the form of ET. There-
fore, ET is often considered essential management data in agricultural water-saving
practices. The advancement of remote sensing technology has enabled the retrieval of
regional ET using remote sensing data [18]. Estimated regional ET is commonly re-
garded as crop water consumption and is utilized for estimating irrigation water re-
quirements, evaluating irrigation efficiency, and monitoring crop water status and yield
estimation [2,19–21]. The inversion of ET typically does not consider the influence of vegeta-
tion cover. Moreover, on long time scales, it is possible to eliminate the impact of rainfall on
irrigation identification by subtracting the cumulative amount of effective rainfall from the
cumulative amount of ET, thereby reflecting variations in irrigation water volume [22,23].
The response characteristics of ET to irrigation [24] make it applicable for identifying irri-
gated areas. Current research primarily focuses on predicting crop water requirements and
estimating irrigation water consumption. This characteristic holds potential for application
in the identification of irrigated areas; yet, research on using ET for identifying irrigated
areas is limited, primarily consisting of qualitative studies [24–26]. In summary, ET exhibits
distinctive responses to irrigation, and its inversion remains unaffected by high vegetation
cover. Furthermore, the deduction of effective rainfall can mitigate the impact of rainfall on
irrigation identification. Therefore, based on ET, it is feasible to identify irrigated areas in
tropical regions.

Fields serve as the fundamental water consumption units in agricultural water re-
source management, with farmers determining various water management practices at
the field scale, such as irrigation frequency, irrigation volume per event, and the selection
of irrigation methods. Other agricultural measures are similarly implemented at the field
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level, including choices regarding land use types and crop types, all of which can influence
field-level ET and consequently lead to differences in ET among fields [27]. However,
coarse spatial resolution data contain a higher proportion of mixed pixels, which can affect
the accuracy of identifying actual irrigated areas. Therefore, to improve the identification
accuracy of actual irrigated areas within the irrigation district, further downscaling of ET
retrieval results is necessary.

This study aimed to utilize remote sensing ET inversion to propose a method for
identifying actual irrigated areas based on remote sensing ET data. The objective was to
address the challenges associated with remote sensing interpretation of actual irrigated
areas in tropical regions, specifically focusing on resolving difficulties encountered in the
remote sensing analysis of actual irrigated areas at an annual temporal scale. The proposed
method seeks to effectively enhance the reliability of monitoring actual irrigated areas.

2. Materials and Methods
2.1. Study Area

This study focused on the Yuanmou Irrigation District as the research area (Figure 1).
Located in Yuanmou County, Yunnan Province, the Yuanmou Irrigation District lies within
the Jinsha River dry and hot valley region in the central Yunnan Plateau, characterized
by a tropical climate. Regional soil types are predominantly loamy. The average annual
rainfall is 642 mm, the average elevation is 1100 m, and the annual average temperature
in the county is 21.9 ◦C, with extreme maximum temperatures reaching 43 ◦C. Benefiting
from abundant solar radiation, suitable elevation, a hot climate, and the absence of a winter
season throughout the year, it is often referred to as a “natural greenhouse.” This region is
suitable for the growth of various plants and serves as a production base for developing
tropical cash crops, early winter vegetables, and flowers.
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The irrigation district covers seven townships in Yuanmou County, with a total popu-
lation of 208,000. Major crops include rice, wheat, and corn, while economic crops mainly
consist of vegetables, melons, and fruits. The water conservancy construction in the irriga-
tion district adopts a combination of storage, diversion, and lifting methods, forming an
irrigation system primarily based on headwater reservoirs and main trunk canals, supple-
mented by numerous water sources and canals under joint scheduling. The total land area
of the irrigation district is 121,300 hm2, with a cultivated area of 22,353 hm2, a designed
irrigation area of 21,333 hm2, and an effective irrigated area of 20,600 hm2.

2.2. Ground Monitoring Data

In this study, the meteorological data utilized were derived from climatic observation
stations. These data encompassed variables such as temperature, pressure, relative humid-
ity, precipitation, and wind speed. To achieve a spatial scale of 500 m, the station data were
interpolated using the inverse distance weighting method. The land use data employed
in this research were sourced from the “China 1985–2022 Annual Land Cover Dataset” re-
leased by Yang and Huang from Wuhan University (https://zenodo.org/records/8176941
(accessed on 1 February 2024)) [28]. Similarly, the land use data were resampled to a spatial
scale of 500 m. These datasets were utilized for the estimation of ET using the Penman–
Monteith–Leuning (PML) model. Furthermore, this study employed a combination of
field surveys and visual interpretation to acquire 150 data points representing different
types of cultivated land within the irrigation district. The cultivated land types included
waterlogged fields, dry farms, and orchards. This study also utilized a dataset of carbon
and water fluxes observed in the Xishuangbanna tropical seasonal rainforest from 2013 to
2015 (http://www.csdata.org/p/866/ (accessed on 14 March 2024)) [29] to validate the
accuracy of ET inversion results and perform a sensitivity analysis of the parameters of PML
model. The dataset was generated based on the Xishuangbanna Tropical Seasonal Rain-
forest Ecological Station (21◦55′ N, 101◦15′ E). This station is equipped with a flux tower,
where an open-path eddy covariance flux system and a multi-layer micrometeorological
observation system are installed for data monitoring purposes.

2.3. Remote Sensing Data

The computation of ET based on the PML model primarily relied on MODIS (https:
//www.earthdata.nasa.gov/ (accessed on 1 February 2024)) Leaf Area Index (LAI) data
from the MCD15A2H product. The LAI product is a synthetic product with an 8-day
temporal resolution and a spatial resolution of 500 m. Savitzky–Golay filtering interpolation
was applied to obtain a daily data sequences. Radiation flux data from the ERA5 (https:
//cds.climate.copernicus.eu/cdsapp#!/home (accessed on 6 February 2024)) atmospheric
reanalysis dataset were also utilized. This dataset includes surface net shortwave radiation
and surface net longwave radiation, which are crucial for the calculation of ET. The spatial
resolution of these flux data was 0.25◦, and a third-order convolution interpolation method
was employed to resample the data to a spatial resolution of 500 m. Sentinel-2 data
(https://code.earthengine.google.com/ (accessed on 3 February 2024)) were used for bands
2, 3, 4, 8, and 11, primarily for calculating the normalized difference vegetation index (NDVI)
and land surface water index (LSWI), which are essential for the downscaling calculation
of ET. In addition to these datasets, MODIS ET data (MOD16A2) were employed for the
accuracy assessment of the inverted ET results. This comprehensive approach involving
multiple datasets contributed to a robust and accurate estimation of ET in the study area.

2.4. Methods
2.4.1. Penman–Monteith–Leuning Model

In this study, we employed the Penman–Monteith–Leuning (PML) model, which
incorporates canopy retention evaporation [30] and distinguishes surface ET into three
components: interception from vegetation canopy (Ei), soil evaporation (Es), and vegetation
transpiration (Ec). The primary equation used by the model is as follows [30–32]. The first
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term on the right represents the heat flux corresponding to Ei, the second term represents
the heat flux corresponding to Ec, and the third term represents the heat flux corresponding
to Es:

λE = Fi +
εAc +

(
ρaCp/γ

)
DaGa

ε + 1 + Ga/Gc
+

f εAs

ε + 1
(1)

in which λ is the latent heat of the vaporization of water, MJ·kg−1; E is ET, mm·day−1; Fi is
the heat flux corresponding to Ei, obtained by inverting the Penman–Monteith equation [33],
MJ·m−2·day−1; ε = s/γ, where s is the slope of the temperature-saturated water pressure
curve, kPa·◦C−1; γ is the psychrometric constant, kPa·◦C−1; Ac is the energy absorbed
by the canopy, MJ·m−2·day−1; ρa is the density of the air, g·m−3; Cp is the specific heat
of the air at constant pressure, J·g−1·◦C−1; Da is the vapor pressure deficit of the air, kPa;
Ga is the aerodynamic conductance, m·s−1; Gc is the canopy conductance, m·s−1; f is the
soil evaporation coefficient, which is set as 0.6; and As is the energy absorbed by the soil,
MJ·m−2·day−1.

This study enhanced the PML model using the vegetation canopy interception model
developed by Duan et al. [32] to compute Ei. This model represents canopy interception as
a function of LAI, with the calculation method as follows:

Ei = Smax

[
1− e−0.04LAI Pcum

Smax

]
(2)

where Smax is the retention capacity, mm·day−1; LAI is the leaf area index, m2·m−2; and
Pcum is the daily precipitation, mm·day−1.

2.4.2. ET Downscales

In order to enhance the accuracy of ET inversion results at the field scale, this study
employed the ET downscaling method proposed by Ma et al. [27]. The crop growth
conditions and field moisture, correlated with crop transpiration capacity based on stomatal
behavior and soil moisture status, collectively influence on-field ET. In our investigation,
we disregarded the potential horizontal vapor transport from adjacent fields. Based on
the two classes of virtually unchanged and field-variant parameters that influenced ET,
the ET capacity of each field could be evaluated. Thus, we could assume that, between
adjacent fields within a coarse ET pixel, some allocation factors derived from the field-
variant parameters could be regarded as equivalent to the ET capacity of each field. The
relation above can be summarized using the following equation [27]:

ETfield1 : ETfield2 : · · ·ETfieldi = AFf ield1 : AFf ield2 : · · · AFf ieldi
(3)

where ETfieldi represents the ET of the ith field (i = 1, 2, ··· n) within each coarse ET pixel
and AFf ieldi

represents the allocation factor of the field i (i = 1, 2, ··· n) within each coarse
ET pixel. Additionally, the relationship between the ET of field i and the coarse ET pixel
can be expressed as follows [27]:

ETfieldi

ETcoarse
=

AFf ieldi

AFcoarse
(4)

where AFcoarse represents the mean allocation factor of the coarse pixel and ETcoarse repre-
sents the ET value of a coarse resolution pixel. With Equation (4), each field ET within the
coarse ET pixel can be calculated based on the allocation factor, which can also be regarded
as the allocation of the coarse pixel-level (500 m level) ET to the farm-level (10 m level) ET.

The following section describes how the field allocation factor was derived. The
Priestley–Taylor (PT) equation is suitable for estimating ET under ample soil moisture
conditions [34,35], such as in irrigated agricultural fields. The PT equation is independent
of surface resistance and aerodynamic resistance and is calculated based on meteorological
data and the coefficient α. The PT equation was primarily developed to estimate potential
evaporation, but, for practical ET applications, the α coefficient should be adjusted using



Atmosphere 2024, 15, 492 6 of 14

several constraint functions, such as surface moisture, temperature, and the fraction of
absorbed photosynthetically active radiation (fapar) [35]. Here, we used the vegetation
cover fraction (FVC) to represent the upper limit of fapar, as done in several studies [36].
We employed the remotely sensed land surface water index (LSWI) as a constraint for
soil water. LSWI is a normalized index based on the near-infrared (NIR) and short-wave
infrared (SWIR) bands [37–39].

The PT equation can be expressed as follows [27]:

LE = f (lswi, f vc, t)α
∆

∆ + γ
(Rn − G) (5)

where the coefficient α in the PT equation is initially set to 1.26 and ∆ and γ are the same as
in the PM equation. f(lswi) represents the surface moisture constraint, where low surface
moisture conditions limit the volume of ET. f(t) represents the temperature constraint,
with the optimal temperature for transpiration being the most suitable temperature for the
process. f(fvc) represents the radiation constraint, where lower FVC limits the net radiation
in the transpiration process.

When focusing on agricultural fields, crop transpiration is a major component of ET.
Ma et al. [27] proposed the assumption that daily environmental conditions (temperature,
relative humidity, wind speed, and net radiation) remain relatively constant at the field
scale within coarse pixels. Based on this assumption, certain parts of the PT equation
can be neglected at the field scale: ∆ and γ are calculated based on relative humidity and
air temperature, while Rn is mainly influenced by solar shortwave radiation, which is
calculated based on sunshine duration and longwave radiation from the surface emissivity
and air temperature. These meteorological components can be neglected because the
vegetation types in agricultural fields are uniform and the differences in emissivity between
fields are minimal. We disregarded the Rn portion of the field allocation factor, and G
could be regarded as a constant part of Rn [40]; thus, G was also neglected. Based on these
assumptions, a method was derived to calculate the field allocation factor using the ET
constraint functions.

The field allocation factor calculation equation was as follows [27]:

AFf ieldi
= 1−max

(
min

(
FVCmax − FVC

FVCmax − FVCmin
, 1
)

, 0
)
·max

(
min

(
LSWImax − LSWI

LSWImax − LSWImin
, 1
)

, 0
)

(6)

where FVC indicates the vegetation cover fraction, LSWI indicates the land surface water
index, LSWImax indicates the high moisture condition, LSWImin indicates the dry condition,
and the FVCmax is set as 0.95.

2.4.3. Irrigation Area Identification Based on ET

Analyses of water in agricultural regions from a water balance perspective reveal that
field-supplied water primarily consists of the irrigation and effective precipitation of ET.
The predominant water consumption in agricultural areas is attributed to field ET, with the
crop’s inherent moisture content deemed negligible. Therefore, ET can be deconstructed
in terms of volume into two components: ET induced by irrigation and ET triggered by
effective precipitation. The extent of irrigation is discernible within the overall ET volume.

Through water balance analysis of irrigation districts, field ET can be further decom-
posed into ET from precipitation and ET from irrigation. By deducting the impact of
precipitation of ET through the computation of effective precipitation, the residual change
in ET is attributed to irrigation-induced effective ET [23]:

ET = P_e f f + ET_e f f (7)

where ET can be retrieved through remote sensing data, while effective precipitation
(P_e f f ) can be calculated using a specific formula. The difference between these two values
yields the variation in ET induced by irrigation (ET_e f f ).
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In rainfed agriculture, effective precipitation is defined as the amount of precipitation
consumed in the ET process during crop growth. In agricultural research, the portion of
precipitation that forms surface runoff and infiltration is considered ineffective precipitation.
We used a method commonly recommended by the U.S. Department of Agriculture Soil
Conservation and the FAO CROPWAT model to calculate P_e f f . This method operates on
a daily calculation basis. The specific formula is as follows [40,41]:

P_e f f =

{
P(4.17−0.2P)

4.17 , P < 8.3 mm/d
4.17 + 0.1P, P ≥ 8.3 mm/d

(8)

where P represents daily precipitation in millimeters (mm).
Irrigation increases ET, but such increments are challenging to discern on a daily

scale due to the multifaceted influences on ET, including meteorological elements and
radiation. There are significant daily-scale fluctuations. However, over longer time scales,
the impact of irrigation on crop ET becomes more apparent [22]. By calculating the effective
ET, this study investigates the response of ET to agricultural irrigation at an annual scale,
appropriate threshold values can typically be selected to identify the actual irrigated area
for a given year.

3. Results and Discussion
3.1. Evaluation of ET Inversion Accuracy

Currently, the methods for evaluating the accuracy of ET inversion mainly include
direct verification and indirect verification. The direct verification method is based on the
surface ET relative true value at pixel or regional scales to verify surface ET remote sensing
products. The relative true value is obtained based on observed data. In the absence of
pixel- or regional-scale relative true values, the cross-validation method and the indirect
verification method can be used. The cross-validation method can be applied when there
are no ground observation data for surface ET in the verification area but there are already
verified surface ET products.

This study first evaluated the accuracy of ET inversion using the 2013–2015 tropical
seasonal rainforest carbon flux observation dataset of Xishuangbanna. Simultaneously,
the sensitivity of the soil evaporation coefficient, as an important parameter in the model,
on the accuracy of ET inversion was assessed. Here, we tested the sensitivity of the soil
evaporation coefficient within the range of 0.5–0.8, with a step size of 0.1. The results
are shown in Figure 2. The results indicate that within this range, the soil evaporation
coefficient has a minor influence on the accuracy of ET inversion, with R2 values consistently
above 0.57. Among the tested values, the highest R2 value of 0.59 was achieved when the
soil evaporation coefficient was set to 0.6. Therefore, in this study, the soil evaporation
coefficient was set as 0.6 for model calculations.

Due to the lack of ET data observation equipment in the study area, a cross-validation
method was used to further indirectly assess the accuracy of ET inversion, and the ET
product used was MODIS ET product MOD16. In order to comprehensively compare the
accuracy of ET inversion results in terms of temporal and spatial scales, this study selected
typical representative points on different types of farmland (waterlogged fields, dry farms,
orchards) and evaluated the comparison between the ET inversion results and MOD16 for
the whole year at each representative point, as shown in Figure 3. Through the analysis,
it was found that the fitting results of the ET inversion results and MOD16 were good,
with R2 values of the three different types of farmland all above 0.7, indicating a high
correlation. Among them, the fitting accuracy of the PML model’s ET inversion results for
paddy fields and orchards was better than that for dry fields, with R2 values above 0.8. In
terms of the annual process, the change trend of the PML model’s ET inversion results was
more consistent with MOD16, and the correlation in summer was better than that in winter,
with the ET inversion results of the PML model in winter lower than those of MOD16. In
addition, comparing the ET values of the three different types of farmland, it was found
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that the annual ET total of paddy fields and orchards was higher than that of dry fields,
indicating that the total annual ET was affected by irrigation.
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3.2. Downscaling Calculation of ET and Spatial Distribution of Annual Cumulative Effective ET
3.2.1. Downscaling Calculation of ET

To enhance the identification accuracy of actual irrigated areas within the irrigation
district, we employed the ET downscaling method proposed by Ma et al. [27] to further
downscale the ET retrieval results of the PML model. The investigation into ET influencing
factors at the parcel scale revealed that ET was primarily influenced by meteorological
conditions, such as atmospheric temperature and the saturation vapor pressure deficit.
Differences in vegetation coverage affected surface net radiation, while variations in soil
moisture led to differences in ET water supply. At the parcel scale, meteorological differ-
ences were relatively small. The main impacts on ET arose from surface crop growth and
differences in soil moisture. Based on the concept of parcel-scale ET, this study focused
on factors contributing to ET variations at the parcel scale. It calculated ET “allocation
factors” [27] that measured water consumption differences between parcels and combined
them with low-to-medium-resolution ET data to distribute ET at the parcel scale.
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However, downsizing within a coarse-resolution pixel based on the overall and in-
ternal high-resolution pixel distribution relationship resulted in the “edge effect”. The
bordering sections of adjacent coarse pixels were retained in the high-resolution result,
introducing spatial result uncertainty. Therefore, prior to downsizing, a three-time convo-
lution method was applied to smooth the 500 m scale ET inversion results, eliminating the
“edge effect”. The final downscaled ET results are presented in Figure 4.
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3.2.2. Spatial Distribution Characteristics of Cumulative Effective ET in 2023

Following the methodology outlined in Section 2.4.3, the cumulative annual effective
ET for the study area in 2023 was computed based on the ET downscaled calculations
mentioned in the preceding research. Concurrently, the effective rainfall for the study
area in 2023 was calculated on an annual scale using precipitation data and Equation (8),
likewise accumulated annually. Subsequently, the annual total of effective ET was obtained
by subtracting the annual total of effective rainfall from the annual total of ET, as illustrated
in Figure 5.
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The annual total of effective ET reflected the frequency and magnitude of irrigation
events and irrigation water volume in the study area in 2023. A higher annual total of
effective ET indicated a greater frequency of irrigation events and a larger irrigation water
volume for the year, while a lower total suggested fewer irrigation events and a smaller
irrigation water volume in the area. As depicted in the figure, the annual total of effective
ET in the study area in 2023 exhibited a spatial pattern of higher values in the northern
region and lower values in the southern region. This distribution pattern may be attributed
to the spatial characteristics of annual precipitation in the study area in 2023, where the
southern region received higher annual precipitation compared to the northern region,
resulting in fewer irrigation events and a lower irrigation water volume in the southern
region of the study area.

3.3. Irrigation Area Identification Based on Cumulative Effective ET

Based on field surveys and visual interpretation of sample points, out of 150 recorded
points, 50 were identified as non-irrigated locations. Extracting the corresponding annual
total of effective ET for the year 2023 from these points, the maximum value among them
was determined to be the threshold for determining the irrigation area in the study region,
set as 87 mm. Thus, areas with an annual total of effective ET greater than 87 mm in 2023
were considered as experiencing irrigation. Furthermore, it was necessary to exclude areas
outside the study region and regions classified as non-agricultural land use types.

Based on the extraction method proposed in this study, the actual irrigated area of the
region can be extracted. The resulting map of the distribution of irrigated areas in the study
area for the year 2023 is shown in Figure 6. The total irrigated area interpreted from remote
sensing data for the study area in 2023 is approximately 15,000 hm2. Verification was
conducted using sample point data from the study area, with 100 sample points identified
as irrigated locations. Upon comparing these irrigated sample points with the remotely
sensed interpreted irrigated areas, 84 sample points were correctly extracted, resulting in
an extraction error of 16%, which is relatively small.
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3.4. Uncertainties and Limitations of This Study

This study employed the PML model inversion and ET downscale methods to esti-
mate ET at a 10 m scale and investigated the identification of annual irrigated areas by
calculating the effective ET. However, these methods entailed some uncertainties arising
from parameter estimation, model assumptions, and data inputs. In this section, we aim to
elucidate the uncertainties associated with each method and propose strategies to address
or mitigate these uncertainties.

Firstly, the PML model is characterized by a high degree of complexity, involving
numerous variables and equations for estimating ET components. Simplifications or
assumptions made during model construction may introduce uncertainty. From the per-
spective of data input, since fine field meteorological data are not easily available, this study
performed ET inversion by interpolating the data from meteorological stations, which can
introduce uncertainty in ET simulation. Subsequent efforts are needed to improve the
spatial and temporal accuracy of meteorological data.

There was also uncertainty in the analysis of ET due to irrigation. Firstly, the calculation of
effective precipitation relied on empirical relationships. However, the accuracy of the rainfall
monitoring data and the local applicability of the effective rainfall methodology adopted
in this paper will have impacted the results of the effective rainfall analysis. Secondly, the
definition of thresholds used for identifying irrigated areas relied on empirical analysis and
spatial pattern recognition. However, uncertainties in threshold definition were influenced by
factors such as data quality, spatial heterogeneity, and dynamics of the cropping structure, all
of which need to be optimally adjusted in subsequent threshold analyses.

4. Conclusions

This study employed remote sensing-based ET inversion and downscaling calculations
to achieve an actual irrigated area identification method at an annual temporal scale. The
key findings of this approach are summarized as follows:

(1) Evaluation of ET Inversion Accuracy: The evaluation of ET inversion accuracy re-
vealed promising results. The R2 between the simulation results of ET in this paper
and the measured data of Xishuangbanna station was 0.59, which was in good agree-
ment. The ET obtained in this paper was also in good agreement with the MODIS ET
product, particularly evident in the fitting accuracy across different types of farmland.
The R2 obtained, exceeding 0.7 for all land types and surpassing 0.8 for paddy fields
and orchards, underscores the reliability of the PML model in capturing ET variations.

(2) Downscaling of ET: To address the limitations posed by coarse spatial resolution, a
downscaling approach was implemented, enhancing the accuracy of ET estimation at
the parcel scale. By considering factors influencing ET variations at the parcel level,
such as meteorological conditions and surface characteristics, this study successfully
distributed ET at a finer spatial resolution of 10 m.

(3) Spatial Distribution Characteristics of Cumulative Effective ET: The spatial distri-
bution of cumulative effective ET in 2023 elucidated distinct patterns influenced by
regional climatic factors and agricultural practices. The observed higher values in the
northern region compared to the southern region corresponded with precipitation
patterns, indicating a correlation between effective ET and regional climate conditions.

(4) Irrigation Area Identification: Leveraging remote sensing data, this study identified
irrigated areas based on cumulative effective ET, achieving a close approximation
to actual recorded data with a small margin of error. The interpretation of remote
sensing data proved effective in delineating irrigated areas, highlighting its utility in
agricultural water resource management.

Despite the valuable insights gained from this research, it is essential to acknowledge
the inherent limitations inherent in the methodologies employed. Challenges related to
model parameter accuracy, data scale conversion, and uncertainties in remote sensing-
derived ET estimation underscore the need for the ongoing refinement and validation of
methodologies. Efforts to address these limitations are crucial to improve the accuracy and
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reliability of ET estimation and irrigation area identification and to promote agricultural
water management capacity.

Author Contributions: Conceptualization, H.X.; methodology, H.X. and H.D.; resources, Q.L.; data
curation, C.H.; writing—original draft, H.X.; writing—review and editing, H.X. and H.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China (2021YFB3900602) and the National Natural Science Foundation of China (52130907).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ERA5 data used in this study are available from ECMWF (https:
//cds.climate.copernicus.eu/cdsapp#!/home (accessed on 6 February 2024)). The MODIS LAI and ET
products are available from Earth Data (https://www.earthdata.nasa.gov/ (accessed on 1 February
2024)). The Sentinel-2 data are available from Google Earth Engine (https://code.earthengine.google.
com/ (accessed on 3 February 2024)).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Leakey, A.D.B.; Ferguson, J.N.; Pignon, C.P.; Wu, A.; Jin, Z.; Hammer, G.L.; Lobell, D.B. Water Use Efficiency as a Constraint and

Target for Improving the Resilience and Productivity of C3 and C4 Crops. Annu. Rev. Plant Biol. 2019, 70, 781–808. [CrossRef]
2. Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints

and Potentials of Future Irrigation Water Availability on Agricultural Production under Climate Change. Proc. Natl. Acad. Sci.
USA 2014, 111, 3239–3244. [CrossRef]

3. China Water Resources Bulletin Ministry of Water Resources of the People’s Republic of China. 2020. Available online:
http://www.mwr.gov.cn/sj/tjgb/szygb/202107/t20210709_1528208.html (accessed on 3 February 2024).

4. Liu, M.; Yang, L.; Min, Q. Water-Saving Irrigation Subsidy Could Increase Regional Water Consumption. J. Clean. Prod. 2019, 213,
283–288. [CrossRef]

5. Chen, F.; Zhao, H.; Roberts, D.; Van De Voorde, T.; Batelaan, O.; Fan, T.; Xu, W. Mapping Center Pivot Irrigation Systems in Global
Arid Regions Using Instance Segmentation and Analyzing Their Spatial Relationship with Freshwater Resources. Remote Sens.
Environ. 2023, 297, 113760. [CrossRef]

6. Ozdogan, M.; Gutman, G. A New Methodology to Map Irrigated Areas Using Multi-Temporal MODIS and Ancillary Data: An
Application Example in the Continental US. Remote Sens. Environ. 2008, 112, 3520–3537. [CrossRef]

7. Zhang, C.; Dong, J.; Ge, Q. Mapping 20 Years of Irrigated Croplands in China Using MODIS and Statistics and Existing Irrigation
Products. Sci. Data 2022, 9, 407. [CrossRef]

8. Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.-P.; Pickens, A.; Shen, Q.; Cortez, J. Global
Maps of Cropland Extent and Change Show Accelerated Cropland Expansion in the Twenty-First Century. Nat. Food 2021, 3,
19–28. [CrossRef]

9. Massari, C.; Modanesi, S.; Dari, J.; Gruber, A.; De Lannoy, G.J.M.; Girotto, M.; Quintana-Seguí, P.; Le Page, M.; Jarlan, L.; Zribi, M.;
et al. A Review of Irrigation Information Retrievals from Space and Their Utility for Users. Remote Sens. 2021, 13, 4112. [CrossRef]

10. Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L. Influence of Resolution in
Irrigated Area Mapping and Area Estimation. Photogramm. Eng. Remote Sens. 2009, 75, 1383–1395. [CrossRef]

11. Ambika, A.K.; Wardlow, B.; Mishra, V. Remotely Sensed High Resolution Irrigated Area Mapping in India for 2000 to 2015. Sci.
Data 2016, 3, 160118. [CrossRef]

12. Yao, Z.; Cui, Y.; Geng, X.; Chen, X.; Li, S. Mapping Irrigated Area at Field Scale Based on the OPtical TRApezoid Model (OPTRAM)
Using Landsat Images and Google Earth Engine. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4409011. [CrossRef]

13. Dari, J.; Quintana-Seguí, P.; Escorihuela, M.J.; Stefan, V.; Brocca, L.; Morbidelli, R. Detecting and Mapping Irrigated Areas in a
Mediterranean Environment by Using Remote Sensing Soil Moisture and a Land Surface Model. J. Hydrol. 2021, 596, 126129.
[CrossRef]

14. Gao, Q.; Zribi, M.; Escorihuela, M.; Baghdadi, N.; Segui, P. Irrigation Mapping Using Sentinel-1 Time Series at Field Scale. Remote
Sens. 2018, 10, 1495. [CrossRef]

15. Zohaib, M.; Choi, M. Satellite-Based Global-Scale Irrigation Water Use and Its Contemporary Trends. Sci. Total Environ. 2020, 714,
136719. [CrossRef]

16. Zaussinger, F.; Dorigo, W.; Gruber, A.; Tarpanelli, A.; Filippucci, P.; Brocca, L. Estimating Irrigation Water Use over the Contiguous
United States by Combining Satellite and Reanalysis Soil Moisture Data. Hydrol. Earth Syst. Sci. 2019, 23, 897–923. [CrossRef]

17. Zhang, Y.; Li, X. Analyses of Supply-Demand Balance of Agricultural Products in China and Its Policy Implication. J. Nat. Resour.
2021, 36, 1573. [CrossRef]

https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://www.earthdata.nasa.gov/
https://code.earthengine.google.com/
https://code.earthengine.google.com/
https://doi.org/10.1146/annurev-arplant-042817-040305
https://doi.org/10.1073/pnas.1222474110
http://www.mwr.gov.cn/sj/tjgb/szygb/202107/t20210709_1528208.html
https://doi.org/10.1016/j.jclepro.2018.12.152
https://doi.org/10.1016/j.rse.2023.113760
https://doi.org/10.1016/j.rse.2008.04.010
https://doi.org/10.1038/s41597-022-01522-z
https://doi.org/10.1038/s43016-021-00429-z
https://doi.org/10.3390/rs13204112
https://doi.org/10.14358/PERS.75.12.1383
https://doi.org/10.1038/sdata.2016.118
https://doi.org/10.1109/TGRS.2022.3148274
https://doi.org/10.1016/j.jhydrol.2021.126129
https://doi.org/10.3390/rs10091495
https://doi.org/10.1016/j.scitotenv.2020.136719
https://doi.org/10.5194/hess-23-897-2019
https://doi.org/10.31497/zrzyxb.20210617


Atmosphere 2024, 15, 492 14 of 14

18. Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A Process Driving Mass Transport and Energy
Exchange in the Soil-plant-atmosphere-climate System. Rev. Geophys. 2012, 50, 2011RG000366. [CrossRef]

19. Merlin, O.; Chirouze, J.; Olioso, A.; Jarlan, L.; Chehbouni, G.; Boulet, G. An Image-Based Four-Source Surface Energy Balance
Model to Estimate Crop Evapotranspiration from Solar Reflectance/Thermal Emission Data (SEB-4S). Agric. For. Meteorol. 2014,
184, 188–203. [CrossRef]

20. Idso, S.B.; Jackson, R.D.; Reginato, R.J. Estimating Evaporation: A Technique Adaptable to Remote Sensing. Science 1975, 189,
991–992. [CrossRef]

21. Jensen, M.E.; Haise, H.R. Estimating Evapotranspiration from Solar Radiation. J. Irrig. and Drain. Div. 1963, 89, 15–41. [CrossRef]
22. Geli, H.M.E.; González-Piqueras, J.; Neale, C.M.U.; Balbontín, C.; Campos, I.; Calera, A. Effects of Surface Heterogeneity Due to

Drip Irrigation on Scintillometer Estimates of Sensible, Latent Heat Fluxes and Evapotranspiration over Vineyards. Water 2019,
12, 81. [CrossRef]

23. Li, X.; Zhang, Y.; Ma, N.; Zhang, X.; Tian, J.; Zhang, L.; McVicar, T.R.; Wang, E.; Xu, J. Increased Grain Crop Production Intensifies
the Water Crisis in Northern China. Earth’s Future 2023, 11, e2023EF003608. [CrossRef]

24. Chemin, Y.; Platonov, A.; Ul-Hassan, M.; Abdullaev, I. Using Remote Sensing Data for Water Depletion Assessment at Adminis-
trative and Irrigation-System Levels: Case Study of the Ferghana Province of Uzbekistan. Agric. Water Manag. 2004, 64, 183–196.
[CrossRef]

25. Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R. A Landsat-Based Energy Balance and Evapotranspiration Model in Western US
Water Rights Regulation and Planning. Irrig. Drain. Syst. 2005, 19, 251–268. [CrossRef]

26. Alexandridis, T.K.; Panagopoulos, A.; Galanis, G.; Alexiou, I.; Cherif, I.; Chemin, Y.; Stavrinos, E.; Bilas, G.; Zalidis, G.C. Combin-
ing Remotely Sensed Surface Energy Fluxes and GIS Analysis of Groundwater Parameters for Irrigation System Assessment.
Irrig. Sci. 2014, 32, 127–140. [CrossRef]

27. Ma, Z.; Wu, B.; Yan, N.; Zhu, W.; Zeng, H.; Xu, J. Spatial Allocation Method from Coarse Evapotranspiration Data to Agricultural
Fields by Quantifying Variations in Crop Cover and Soil Moisture. Remote Sens. 2021, 13, 343. [CrossRef]

28. Yang, J.; Huang, X. The 30 m Annual Land Cover Datasets and Its Dynamics in China from 1985 to 2022. 2023. [CrossRef]
29. Liu, Y.; Zhang, J.; Zheng, H.; Fei, X.; Sha, L.; Zhou, W.; Zhou, L.; Deng, X.; Luo, Y.; Deng, Y.; et al. A Dataset of Carbon and

Water Fluxes Observed in Xishuangbanna Tropical Seasonal Rain Forest from 2011 to 2015. 2023, 23617225 bytes, 1 files. 2023, 8.
[CrossRef]

30. Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation
Using MODIS Leaf Area Index and the Penman-Monteith Equation. Water Resour. Res. 2008, 44, 2007WR006562. [CrossRef]

31. Leuning, R. A Critical Appraisal of a Combined Stomatal-photosynthesis Model for C3 Plants. Plant Cell Environ. 1995, 18,
339–355. [CrossRef]

32. Duan, H.; Lu, S. The Inffuence of Canopy Interception on Evapotranspiration and Energy Distribution of PML Model. China
Rural. Water Hydropower 2021, 9, 80–84.

33. Zheng, C.; Jia, L.; Hu, G.; Lu, J. Earth Observations-Based Evapotranspiration in Northeastern Thailand. Remote Sens. 2019, 11,
138. [CrossRef]

34. Hao, Y.; Baik, J.; Choi, M. Developing a Soil Water Index-Based Priestley–Taylor Algorithm for Estimating Evapotranspiration
over East Asia and Australia. Agric. For. Meteorol. 2019, 279, 107760. [CrossRef]

35. Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global Estimates of the Land–Atmosphere Water Flux Based on Monthly AVHRR and
ISLSCP-II Data, Validated at 16 FLUXNET Sites. Remote Sens. Environ. 2008, 112, 901–919. [CrossRef]

36. Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled Estimation of 500 m and 8-Day Resolution
Global Evapotranspiration and Gross Primary Production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [CrossRef]

37. Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) Response to Rainfall and NDVI
Using the MODIS Vegetation Index Product. Int. J. Remote Sens. 2010, 31, 3987–4005. [CrossRef]

38. Xiao, X.; Zhang, Q.; Saleska, S.; Hutyra, L.; De Camargo, P.; Wofsy, S.; Frolking, S.; Boles, S.; Keller, M.; Moore, B. Satellite-Based
Modeling of Gross Primary Production in a Seasonally Moist Tropical Evergreen Forest. Remote Sens. Environ. 2005, 94, 105–122.
[CrossRef]

39. Zheng, Y.; Zhang, M.; Zhang, X.; Zeng, H.; Wu, B. Mapping Winter Wheat Biomass and Yield Using Time Series Data Blended
from PROBA-V 100- and 300-m S1 Products. Remote Sens. 2016, 8, 824. [CrossRef]

40. Cao, X.; Zeng, W.; Wu, M.; Guo, X.; Wang, W. Hybrid Analytical Framework for Regional Agricultural Water Resource Utilization
and Efficiency Evaluation. Agric. Water Manag. 2020, 231, 106027. [CrossRef]

41. Döll, P.; Siebert, S. Global Modeling of Irrigation Water Requirements. Water Resour. Res. 2002, 38, 8-1–8-10. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1029/2011RG000366
https://doi.org/10.1016/j.agrformet.2013.10.002
https://doi.org/10.1126/science.189.4207.991
https://doi.org/10.1061/JRCEA4.0000287
https://doi.org/10.3390/w12010081
https://doi.org/10.1029/2023EF003608
https://doi.org/10.1016/S0378-3774(03)00209-9
https://doi.org/10.1007/s10795-005-5187-z
https://doi.org/10.1007/s00271-013-0419-8
https://doi.org/10.3390/rs13030343
https://doi.org/10.5281/zenodo.8176941
https://doi.org/10.11922/11-6035.csd.2023.0053.zh
https://doi.org/10.1029/2007WR006562
https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
https://doi.org/10.3390/rs11020138
https://doi.org/10.1016/j.agrformet.2019.107760
https://doi.org/10.1016/j.rse.2007.06.025
https://doi.org/10.1016/j.rse.2018.12.031
https://doi.org/10.1080/01431160802575653
https://doi.org/10.1016/j.rse.2004.08.015
https://doi.org/10.3390/rs8100824
https://doi.org/10.1016/j.agwat.2020.106027
https://doi.org/10.1029/2001WR000355

	Introduction 
	Materials and Methods 
	Study Area 
	Ground Monitoring Data 
	Remote Sensing Data 
	Methods 
	Penman–Monteith–Leuning Model 
	ET Downscales 
	Irrigation Area Identification Based on ET 


	Results and Discussion 
	Evaluation of ET Inversion Accuracy 
	Downscaling Calculation of ET and Spatial Distribution of Annual Cumulative Effective ET 
	Downscaling Calculation of ET 
	Spatial Distribution Characteristics of Cumulative Effective ET in 2023 

	Irrigation Area Identification Based on Cumulative Effective ET 
	Uncertainties and Limitations of This Study 

	Conclusions 
	References

