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Abstract: Ambient pollen proteins play key roles in the incidence of allergenic respiratory health,
and numerous reports have focused on respiratory diseases caused by air pollutants. However, there
is still a lack of understanding of the specific mechanisms underlying the involvement of microbiota
in the respiratory tracts and effects induced by air pollutants. Therefore, an allergenic animal model
was established to investigate the characterization of microbials in the lung induced by allergenic
Platanus pollen protein (Pla a3) and ambient fine particulate matter. Our data showed that the
mice exhibited strong immune and inflammatory responses after being exposed to PMs and Pla a3
protein. This included increased levels of immunoglobulins IgG and IgE, as well as elevated levels
of cytokines TNF-α, IFN-γ, IL-4, and IL-13. Furthermore, the amounts of pathogenic bacteria, such
as Desulfobacterota, Enterococcus, Ferruginibacter, and Pseudoxanthomonas, in the lung microbiota of
the Pla a3 exposure group increased significantly. Correlation analysis revealed a strong association
between specific lung bacteria and alterations in cytokines from the lung samples. Probiotic bacteria,
Deferribacterota and Bifidobacterium, was associated with changes in the level of IgG and IgE. However,
pathogenic bacteria, like Prevotella and Fusobacterium, were linked with the cytokines IL-4 and TNF-α.

Keywords: microbial; allergenic pollen protein (Pla a3); PM2.5; inflammatory responses

1. Introduction

With global climate change and rapid urbanization, the prevalence of allergic dis-
eases caused by pollen is rising dramatically [1]. Studies showed that pollen imposes a
considerable burden on public health, especially for high-risk atopic individuals. With
the increase in the extensive planting of trees and flowers, pollen has become the most
abundant biological aerosol particle in the atmosphere [2]. Statistics show that pollen
could cause allergic rhinitis in approximately 20% to 30% of the world’s population [3].
In recent years, there has been a significant increase in the incidence of allergic diseases
among the Chinese population, and even though air quality has been improved greatly,
allergenic pollen is the most important outdoor allergen, accounting for 30–58% of patients
with allergic rhinitis [4]. Research has also demonstrated that air pollutants could lead
to changes in the diversity of the airway microbiota, accompanied by inflammation and
oxidative stress [5]. Hosgood et al. [6] reported that exposure to household air pollutants
could increase the abundance of pathogenic bacterial operational taxonomic units (OTUs)
in the lower airways, specifically in sputum samples. Pollen grains could lead to a decrease
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in beneficial gut bacteria such as Ruminococcaceae, Lachnospiraceae, and Clostridiales, as well
as an increase in pathogenic bacteria, such as Akkermansia and Helicobacter [7]. It has been
shown that the gut microbiota may have an impact on the microbial composition in the
lungs and have a positive effect on lung protection [8]. Even if there are numerous studies
on the effects of air pollution on the respiratory system, there is still a lack of understanding
of the specific mechanisms underlying involvement of microbiota in pollutant-induced
respiratory effects. Therefore, we focused on the variety of microbiota after the mice were
exposed to allergenic pollen protein and PMs, and tried to provide scientific data that
helped to elucidate the role of the microbiota in the development of allergic diseases.

2. Materials and Methods
2.1. Preparation of Particulate Matter Samples

The urban aerosol standard particulate matter (PM) was purchased from the National
Institute for Environmental Sciences (Japan). The physical and chemical characteristics
of the PMs are listed in the Supplementary Materials (Table S1). The PMs were mixed
with sterilized phosphate-buffered solution (PBS) to a concentration of 1500 µg/mL for
intraperitoneal injection and 3000 µg/mL for nasal drops. The mixture solution was
sonicated for 30 min, centrifuged at 5000 rpm to obtain the supernatant, and then a water-
soluble PM solution was obtained. The solution was then kept at −20 ◦C in the dark
until used.

2.2. Preparation and Purification of Pla a3 Protein

Due to the numerous types of proteins in pollen and Pla a3 not being the dominant
protein, it is difficult to isolate sufficient amounts of highly pure Pla a3 allergen directly
from the natural extract of pollens. Therefore, a recombinant Pla a3 (rPla a3), referred
to as A3, was expressed in a prokaryotic system, purified by affinity chromatography,
and was used in this study. A detailed protocol was described by Zhou et al. [9]. Briefly,
the Rosetta strain transformed with pET30a-Pla-His was induced with IPTG to promote
bacterial growth, followed by ultrasonic treatment to disrupt the bacteria. The supernatant
was collected after centrifugation at 13,000× g for 15 min at 4 ◦C and stored for future use.

2.3. Establishment of Allergenic Animal Model

Twenty-one 6-week-old female BALB/C mice, weighing 18–24 g (SLAC, Shanghai,
China) were housed in a sterile animal facility at Shanghai University. The animal ex-
periments were approved by the Animal Experimental Committee of the College of Life
Sciences at Shanghai University. The mice were randomly divided into three groups (n = 7):
the control group, the PM exposure group, and the Pla a3 protein exposure group. After
a three-day acclimatization period, the mice were intraperitoneally injected on days 0,
7, and 14 to induce immunization, followed by intranasal instillation from day 21 to 25
to further stimulate the immune response. The dosages for intraperitoneal injection and
nasal instillation were determined based on previous studies [10]. Detailed information
regarding the drugs used for injection, injection concentrations, and other pertinent details
are provided in Figure 1.
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Figure 1. Immunological experiment of mice.

2.4. Histopathological Analysis

The lung apex tissues of mice were fixed in 4% paraformaldehyde (0.1 M PBS, pH 7.4)
at 25 ◦C for 24 h after being immersed under vacuum for 15 min to allow the paraformalde-
hyde to penetrate the lung tissues. After rinsing three times with 0.1 M PBS (pH 7.4), the
samples were dehydrated, replaced, and embedded in paraffin, following a previously
described method [11]. The paraffin-embedded tissues were sectioned into 10-µm slices
using a Leica RM2235 microtome. The slices were then stained with hematoxylin and eosin
(H&E) (C0105S, Biotech, Shanghai, China) and mounted using a neutral resin (CAS number:
96949-21-2, Shanghai Pharma, Hong Kong, China). The sections were observed using a
Leica DM2500 microscope.

2.5. Immunoglobulin Assays

The measurement of allergic reactions in mice was performed according to the method
previously described [12]. After administering anesthesia and euthanizing the mice, blood
was collected into 1.5 mL EP tubes. The tubes were then centrifuged at 13,000× g for
15 min at 4 ◦C to collect the serum. Then, the IgG and IgE in the serum were detected
using antibody assays, and all procedures were performed according to the manufacturer’s
instructions. Finally, the protein content was measured using a microplate reader (iMark,
Bio-Rad, Hercules, CA, USA).

2.6. Detection of Inflammatory Factors from the Pulmonary Tissues

The levels of inflammatory cytokines in mouse lung tissue were measured following
a previously described method [12]. The lung tissue was homogenized in PBS at a ratio
of 1:10 (g/mL), and the homogenate was centrifuged at 12,000× g for 20 min to collect
the supernatant for analysis. The supernatant was used to detect the cytokines’ Tumor
Necrosis Factor-α (TNF-α), Interferon-γ (IFN-γ), Interleukin-4 (IL-4), and Interleukin-13
(IL-13) using ELISA kits (Elabscience Biotechnology Co., Ltd., Wuhan, China) according to
the manufacturer’s instructions.

2.7. 16SrRNA Gene Sequence Analysis

Microbial flora analysis was performed on lung tissue samples from the control group,
PM group, and Pla a3 protein group using 16S rRNA sequencing. Specific primers with
barcodes targeting the V3V4 region (343F: TACGGRAGGCAGCAG and 798R: AGGGTATC-
TAATCCT) were used for PCR amplification with Takara’s Tks Gflex DNA polymerase.
Sequencing was performed using the MiSeq platform (Illumina, San Diego, CA, USA).
More information is listed in the Supplementary Materials.

2.8. Bioinformatic Analysis

The 16S/18S/ITS amplicon sequencing and analysis were conducted by OE Biotech
Co., Ltd. (Shanghai, China). The raw data were processed using QIIME 2 (2020.11) software.
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2.9. Statistical Analysis

Statistical analysis was conducted using SPSS 25.0 and GraphPad Prism 8.4.3 soft-
ware. The data were obtained from three independent experiments and presented as
mean ± standard error of the mean (SEM). There were 7 samples in the control group, and
6 samples in the PM exposure group and in the Pla a3 protein exposure group. Differences
among the three groups were compared using a one-way analysis of variance (ANOVA)
followed by Tukey’s post hoc test. Data that did not follow a normal distribution were ana-
lyzed using the Kruskal–Wallis test. A p value < 0.05 was considered statistically significant,
and each experiment was repeated three times.

3. Results
3.1. Expression Level of IgE and IgG Induced by Pla a3 Protein and PMs

Compared to the control group, the expression of both IgG (p < 0.01) and IgE (p < 0.001)
significantly increased after exposure to the A3 protein (Figure 2A) and PMs (Figure 2B).
These findings suggested that the mouse sensitization model was successfully established.
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Figure 2. Immunoglobulin levels in the mice serum after exposure to PMs and Pla a3 protein.
(A) Concentrations of IgG in serum. (B) Concentrations of IgE in serum. Statistical significance
among the three groups was analyzed using ANOVA. * p < 0.05; ** p < 0.01; *** p < 0.001. PBS, PBS
control; PM, PMs exposure; A3, Pla a3 protein exposure.

3.2. Inflammatory Cytokines in the Lung

Inflammatory cytokines, including TNF-α, IFN-γ, IL-4 and IL-13, in the lung tissue of
mice increased after the mice were exposed to the A3 protein and PMs (Figure 3). However,
only the mass level of the inflammatory cytokines in the A3 protein exposure group showed
significant differences compared to that of the control group, while the PMs exposure group
did not exhibit any significant differences compared to the control group.

Pathological sections and hematoxylin–eosin (HE) staining images were shown in
Figure 4. Compared to the control group, the lung tissue of mice exposed to PMs showed
inflammation, cell infiltration, enlarged airway epithelial cells, and a loose arrangement
(Figure 4B). In the A3 protein exposure group, there was a significant enhancement in the
inflammatory response, characterized by multiple inflammatory cell infiltrations and a
significant increase in alveolar ratio (Figure 4C).
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Figure 3. Mass levels of cytokine levels in lung tissues of mice exposed to standard particulate matter
and Pla a3 protein. (A) Concentration of TNF-α in lung tissue, (B) concentration of IFN-γ in lung
tissue, (C) concentration of IL-4 in lung tissue, (D) concentration of IL-13 in lung tissue. ANOVA
was used to analyze the statistical significance of experimental results between the three groups.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. PBS, PBS control; PM, PMs exposure; A3, Pla a3
protein exposure.
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3.3. Microbial Diversity in Lung Tissue

A total of 19 samples (including seven samples from the PBS group, six samples
from the A3 group, and six samples from the PM group) were analyzed using 16S rRNA
gene sequencing. The average Amplicon Sequence Variant (ASV) values of both the PMs
exposure group and the A3 protein exposure group increased, but there was no significant
difference (Figure 5A). In total, 57 shared ASVs could be found among the three groups,
90 (33 + 57) between the control group and the PMs exposure group, 95 (38 + 57) between
the control group and the A3 protein treatment group, and 90 (33 + 57) between the PMs
exposure group and the A3 protein exposure group, respectively (Figure 5B).
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microorganisms, (B) ASV flower plot of each sample.

Alpha diversity, which reflects the evenness of individual distribution among the
community, was associated with two factors, i.e., species richness and diversity [13,14].
The alpha diversity indices of the study were shown in Figure 6, including Chao1 in-
dex (Figure 6A), Good’s coverage (Figure 6B), Phylogenetic Diversity (PD) whole tree
index (Figure 6C), and ACE index (Figure 6D). Chao1 is an estimator based on the distri-
bution of species abundance used to estimate the number of unobserved species. ACE
(Abundance-based Coverage Estimator) also estimates the number of unobserved species
based on abundance information. Both indices can take into account the contribution of
low-abundance species, providing a representation of community richness. Good’s cover-
age estimates the proportion of observed species in the overall population. PD whole tree is
a metric based on the length of the phylogenetic tree, representing the overall length of the
phylogenetic relationships among all species in a sample. It places a greater emphasis on
the phylogenetic relationships among species in a community. The alpha diversity indices
(Chao1 index, Good’s coverage, Phylogenetic Diversity (PD) whole tree index, ACE index)
of the microbial in the A3 protein exposure group had higher high value compared with
that in the control group. Additionally, differences were observed in some alpha diversity
indices between the group exposed to PMs and the group exposed to A3 protein.

Beta diversity was assessed using principal component analysis (PCA), and nonmetric
multidimensional scaling analysis (NMDS). The parameters were used to determine the
diversity of microbial communities across different groups. The PCA plot displayed
differences in the composition of the lung tissue microbiome among different groups
(Figure 7A). Unweighted Unifrac calculations were performed, followed by Anosim test
(p = 0.002, R > 0); p < 0.05 indicated that the analysis was statistically significant, and
R > 0 indicated that the difference between the groups was greater than that in individual
groups. The NMDS plot (Figure 7B) showed that differences in the lung microbiome
between the groups (i.e., the control group, PMs group and A3 group) were greater than
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that in individual groups. These results suggested that the lung tissue microbiome of mice
exposed to PMs and A3 protein differed from that of the control group.
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3.4. Microbial Community in the Lung Tissue

At the phylum level, the five bacterial phyla most predominant in the measured
samples (PBS, PMs and A3 group) were Firmicutes (its percentage among the microbial
community was 33.96%, 46.11%, 43.98% in the PBS, PMs and A3 samples, respectively);
Proteobacteria (23.39%, 26.90%, 22.95%); Bacteroidota (15.81%, 12.55%, 16.09%); Spirochaetota
(13.26%, 5.67%, 3.41%); and Actinobacteriota (2.34%, 2.83%, 2.95%). The first four bacterial
phyla accounted for over 85% of the total bacteria (Figure 8A), and the abundance of the
bacterial phyla was different in the three exposure groups (Figure 8B).
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At the phylum level, the five bacterial phyla most predominant in the three sam-
ples were Mycoplasmatales (15.13%, 36.31%, 21.92%), Bacteroidales (11.36%, 9.38%, 10.24%),
Brevinematales (13.26%, 5.67%, 2.67%), Lactobacillales (3.50%, 5.41%, 12.44%), and Lachnospi-
rales (8.59%, 2.13%, 4.38%) (Figure 8C,D). Among them, Lactobacillales showed significant
differences between the control group and the A3 protein exposure group (p < 0.01). In
the lung tissue of mice exposed to the A3 protein, the abundance of Mycoplasmatales and
Lactobacillales increased; however, that of Brevinematales and Lachnospirales decreased.

At the genus level, the top five most abundant microbiota in all groups included
Mycoplasma (its percentage in the PBS, PMs and A3 samples was 15.13%, 36.26%, 21.90%,
respectively), Brevinema (13.26%, 5.67%, 2.67%), Muribaculaceae (3.47%, 5.33%, 7.45%), Lacto-
bacillus (3.07%, 2.71%, 4.98%), and Clade Ia (6.03%, 3.91%, 0.40%) (Figure 8E,F). Significant
differences (p < 0.01) of the abundance of the Lactobacillus could be found between the
control group and the A3 protein exposure group. The data also showed that the abundance
of the Mycoplasma, Muribaculaceae, and Lactobacillus increased, and that of Brevinema and
Clade Ia decreased after the mice were exposed to the A3 protein.

The LEfSe (linear discriminant analysis (LDA) coupled with effect size measurements)
analysis method was used to analyze the genera of bacteria that were relatively enriched
among different groups; our data revealed that the control group of mice had the following
biological markers: Coriobacterialesd (belonging to Coriobacteriiae), Vibrionaceaej (belonging
to Vibrionales), Methyloversatilis (belonging to Rhodocyclaceae), Azospirillum (belonging
to Azospirillaceaeg and Azospirillalesh), and Diaphorobacter. The biological marker in the
PMs treatment group was Pseudoxanthomonas. The biological markers in the A3 protein
treatment group were Acidobacteriales (belonging to Acidobacteriae), Enterococcus (belong-
ing to Enterococcaceae), Desulfovibrio (belonging to Desulfobacterota), and Ferruginibacter
(Figure S3). All of these markers increased in abundance after exposure to the protein.

3.5. Comparison of Differences of the Microbiota at Phylum, Order, and Genus Levels in the
Samples

Differences in the relative abundance of microorganisms at the phylum, order, and
genus levels were analyzed by one-way analysis of variance (ANOVA) analysis and the
Kruskal–Wallis test. Significant differences in the abundance of the microbial between the
three groups were observed (Figure 9).

As shown in the ANOVA analysis, the relative abundance of Desulfobacterota (p < 0.01)
and Acidobacteriota (p < 0.05) was significantly decreased at the phylum level in the A3
group compared with the control group (Figure 9A). In contrast, in the Kruskal–Wallis
analysis, the A3 group exhibited significantly lower relative abundance of Desulfobacterota
(p < 0.01) and Acidobacteriota (p < 0.05) at the phylum level compared to the control group
(Figure 9B).

At the order level, in the ANOVA analysis, the relative abundance of Azospirillales was
significantly decreased (p < 0.001), while that of Lactobacillales (p < 0.05) and Desulfovibri-
onales (p < 0.05) was significantly increased in the A3 group compared to the control group
(Figure 9C). In the Kruskal–Wallis analysis, Azospirillales (p < 0.001), Vibrionales (p < 0.05),
Coriobacteriales (p < 0.05), and Acidobacteriales (p < 0.05) exhibited significant differences in
abundance (Figure 9D).

At the genus level, in the ANOVA analysis, Methyloversatilis (p < 0.001) and Azospiril-
lum (p < 0.001) exhibited a significant decrease in relative abundance, while Desulfovibrio
(p < 0.01) and Enterococcus (p < 0.05) demonstrated a significant increase in relative abun-
dance in the A3 group compared to the control group (Figure 9E). In the Kruskal–Wallis
analysis, Azospirillum (p < 0.001) and Methyloversatilis (p < 0.01) had a significantly lower
relative abundance, while Desulfovibrio (p < 0.01), Enterococcus (p < 0.01), Ferruginibacter
(p < 0.05), Pseudoxanthomonas (p < 0.05), and Diaphorobacter (p < 0.05) had a significantly
higher relative abundance in the A3 group compared to the control group (Figure 9F).
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Figure 9. ANOVA analysis and Kruskal–Wallis analysis of the abundance differences at the phylum,
order, and genus levels of lung microbiota in mice exposed to standard particulate matter and Pla a3
protein. Differences in relative abundance between the three groups are shown for (A) Desulfobac-
terota and Acidobacteriota, (B) Desulfobacterota and Acidobacteriota, (C) Azospirillales, Lactobacillales, and
Desulfovibrionales, (D) Azospirillales, Vibrionales, Coriobacteriales, and Acidobacteriales, (E) Methylover-
satilis, Azospirillum, Desulfovibrio, and Enterococcus, (F) Azospirillum, Methyloversatilis, Desulfovibrio,
Enterococcus, Ferruginibacter, Pseudoxanthomonas, and Diaphorobacter. * p < 0.05; ** p < 0.01; *** p < 0.001.
PBS, PBS control; PM, PMs exposure; A3, Pla a3 protein exposure.

3.6. Functional Prediction of Lung Microbiota

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
2 (PICRUSt2) method was employed to investigate the impact of microbial communities
on the related disease [15]. Our data showed that the KEGG pathways of the microbial
proteins and enzymes, including K01021 protein-tyrosine sulfotransferase (TPST), K12261
2-hydroxyacyl-CoA lyase 1 (HACL1), K02891 large subunit ribosomal protein L22e (RPL22),
K13611 bacillaene biosynthesis, polyketide synthase/nonribosomal peptide synthetase
(PksJ/BaeJ), K18815 aminoglycoside 6‘-N-acetyltransferase I (aac6-I), K10855 acetone car-
boxylase (acxA), K03930 putative tributyrin esterase (estA), K11912 serine/threonine-
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protein kinase (PpkA), K04767 acetoin utilization protein (Acub), K10530 L-lactate oxidase
(lctO), K02190 sirohydrochlorin cobaltochelatase (cbiK), K00437 hydrogenase large sub-
unit (hydB), K10670 glycine/sarcosine/betaine reductase complex component A (grdA),
K13940 dihydroneopterin aldolase/2-amino-4-hydroxy-6-hydroxymethyldihydropteridine
diphosphokinase (sulD), and K08720 outer membrane protein (OmpU), varied differently
after the mice were exposed to PMs and the A3 protein (Figure 10). These changes could
contribute to the development of allergenic diseases.
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The bar chart on the left represents the comparison of the mean abundance of pathways among
the three groups, while the line chart on the right illustrates the significant differences between the
pathways among the three groups (−log10(p-value)). PBS, PBS control; PM, PMs exposure; A3, Pla
a3 protein exposure.

3.7. The Relationship between Inflammatory Cytokines and Microbiota Alterations in Lung Tissue
Samples

Different samples of the mice induced by the relative abundance of microbes in the
lung tissue and cytokines in mice test results in OE cloud platform (https://cloud.oebiotech.
com/task/, accessed on 12 April 2024) were analyzed as regards correlation. The Spear-
man’s correlation coefficient between microbiota and inflammatory factors was calculated,
and the correlation between them was listed in the correlation heatmap (Figure S4A,B).
The test results are shown in Table S2. Firmicutes, which accounted for the majority of the
lung microbiota, showed a positive correlation with IgE. In addition, Desulfobacterota and
Acidobacteriota showed a positive correlation with IgE, while Deferribacterota showed a neg-
ative correlation with IgE. Similarly, Desulfobacterota and Acidobacteriota showed a positive
correlation with IgG. All of the aforementioned correlations exhibited significant disparities.
Our data showed that alterations in lung microbiota were strongly correlated with the
levels of immunoglobulins in the mouse serum. Furthermore, Fusobacteriota showed a
positive correlation with TNF-α.

In addition, at the genus level, several bacteria, including Coprococcus, Enterococcus,
Bifidobacterium, Desulfovibrio, Methylophaga, Pseudoxanthomonas, and Clade Ia, showed corre-
lations with IgG. Notably, Pseudoxanthomonas and Clade Ia exhibited negative correlations.
The microbes correlated with IgE included Enterococcus, Bifidobacterium, Desulfovibrio, Pseu-

https://cloud.oebiotech.com/task/
https://cloud.oebiotech.com/task/
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doxanthomonas, and Clade Ia, with Pseudoxanthomonas and Clade Ia exhibiting negative
correlations.

Photobacterium, Prevotella, and Parabacteroides showed negative correlations with IL-4.
Fusobacterium, Lachnospiraceae NK4A136 group, and Prevotellaceae NK3B31 group exhibited a
positive correlation with TNF-α. IFN-γ was positively correlated with Parabacteroides and
Alloprevotella, but positively correlated with Lachnospiraceae NK4A136 group. IL-13 showed
a negative correlation with Parabacteroides, Alloprevotella, and Chryseobacterium.

4. Discussion

Microbial diversity in mice lung was investigated after the mice were exposed to
standard urban PMs and the allergenic pollen protein A3. Our data showed that the PMs
and A3 protein could cause immune and pulmonary inflammation in mice lung, and
significantly altered the microbial diversity in lung tissue.

IgE levels in mouse serum samples increased after the mice were exposed to the
PMs and the protein (Figure 2B). Our finding was consistent with the study reported by
Saravia et al. [16], who showed elevated IgE levels in mouse serum due to exposure to
combustion-derived particles and house dust mites.

Previous studies demonstrated that the abundance of potentially pathogenic bacteria in
the lung microbiota could increase after the mice were exposed to higher levels of particulate
matter [17,18]. Our analysis showed that the abundance of Firmicutes tended to increase,
but with no significant difference, while the abundance of Proteobacteria, Bacteroidota, and
Actinobacteriota did not show a significant change after exposure to PMs and the A3 protein.
This is in agreement with Chen et al. [19], who detected an increase in Firmicutes abundance
in the intestine of SHR rats exposed to PMs. The diversity index of the lung microbiota
increased, and the composition changed in the group of mice that were exposed to the PMs
and the protein. Our result was consistent with those previous studies, which reported that
microbiota diversity increased after mice were exposed to particles [20].

Our data also showed that the dominant genera, including Desulfovibrio [21,22], Ente-
rococcus, (could cause severe inflammation of the skin and respiratory tract [23,24]) Ferrug-
inibacter, Pseudoxanthomonas (could be found in plants) and Desulfovibrio could be enriched
in the A3-protein-exposed group. In comparison with the control group, the abundance of
Azospirillum, Methyloversatilis, and Diaphorobacter in the lung tissues of mice exposed to the
A3 protein decreased significantly [25].

The PICRUSt2 software was employed to forecast the gene functions’ composition of
the microbials (KEGG function prediction). It was found that the oxidoreductase HACL1
is upregulated after exposure to sensitizing components [26,27]. Furthermore, a diverse
range of enzymes was found to be associated with the bacteria, including PksJ, an en-
zyme from Bacillus subtilis involved in the production of the uncharacterized antibiotic
bacillaene [27,28]; PpkA, which is involved in the formation of biofilms in Pseudomonas
aeruginosa [29,30]; LctO, a reductase enzyme derived from Escherichia coli [31,32]; GrdA,
another reductase enzyme derived from Thermus acidaminophilum [33]; SulD, a bifunctional
complex enzyme from the respiratory pathogen Streptococcus pneumoniae that catalyzes
folate biosynthesis; and OmpU, which is related to Vibrio cholerae [34,35].

Studies have shown that air pollutants can cause oxidative stress and inflammation,
which can disrupt the balance of microorganisms in the body, resulting in microbial dys-
regulation [36–41]. Our data showed that Acidobacteriota had a positive correlation with
the mass level of IgE and IgG. A previous study reported a positive correlation between
the abundance of Acidobacteriota in the nasal and pharyngeal passages of adults exposed
to PM2.5 and the level of PM2.5 [42]. Deferribacterota was negatively correlated with the
immunoglobulin IgE. This may be because Deferribacterota belongs to the probiotic group,
and a study found that mice regularly exercising under a high-fat diet had higher levels of
Deferribacterota in their feces [43].

Furthermore, this study identified several microbial species at the genus level, includ-
ing Enterococcus, Desulfovibrio, and Pseudoxanthomonas, which were associated with changes
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in lung injury markers. Bifidobacterium, a probiotic, was found to have a positive correlation
with immunoglobulin levels. Previous studies have shown that Bifidobacterium in the gut
can promote the maturation of dendritic cells (DCs) and induce the secretion of TNF-α,
IL-4, and IFN-γ, which aligns with our findings [44–46]. Prevotella, a pathogenic bacterium
belonging to the phylum Bacteroidetes, is often associated with inflammation and has been
detected in biological aerosols emitted from waste-sorting plants [47]. Previous studies
have shown that Prevotella may cause oral-related diseases and induce inflammation. Large
amounts of Prevotella have been detected in the oropharynx of asthma patients exposed to
polycyclic aromatic hydrocarbons [48–50]. Fusobacterium is a Gram-negative bacterium that
is primarily associated with periodontitis. However, it is also linked to colorectal cancer
and can act as the main pathogen causing localized abscesses, pharyngeal infections, or
even life-threatening diseases [51–53].

5. Conclusions

Our data showed that the mice exhibited strong immune and inflammatory responses
after being exposed to PMs and the Pla a3 protein. This included increased levels of
immunoglobulins IgG and IgE, as well as elevated levels of cytokines TNF-α, IFN-γ, IL-
4, and IL-13. Furthermore, the amounts of pathogenic bacteria, such as Desulfobacterota,
Enterococcus, Ferruginibacter, and Pseudoxanthomonas, in the lung microbiota of the Pla a3
exposure group increased significantly. Correlation analysis revealed a strong association
between specific lung bacteria and alterations in cytokines from the lung samples. Probiotic
bacteria, Deferribacterota and Bifidobacterium, were associated with changes in the levels of
IgG and IgE. However, pathogenic bacteria, like Prevotella and Fusobacterium, were linked
with cytokines IL-4 and TNF-α.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos15040503/s1, Text S1. Sequencing data information; Table S1.
chemical element in the PMs; Table S2. Results of the correlation between inflammatory cytokines
and microorganisms; Figure S1. Data Processing Flow Chart; Figure S2. ASV level barplot of each
sample; Enrichment of microbial taxa in lung tissue of mice in different groups; Figure S3. Enrichment
of microbial taxa in lung tissue of mice in different groups; Figure S4. Correlationship between lung
injury markers and varieties of microbial in lung tissue after the mice exposed to PMs and Pla
a3 protein.
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