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Abstract: Microplastics (MPs) and antibiotics (ATs) have been detected in various aquatic environ-
ments and characterized as novel contaminants that have attracted worldwide attention. This review
summarizes the characteristics of MPs and ATs, analyzes the sources of MPs and ATs in aquatic
environments, reviews the concentration distribution of the two pollutants in China, and introduces
the environmental effects of mixing MPs and ATs. Studies on single pollutants of MPs or ATs are well
established, but the interactions between the two in aquatic environments are rarely mentioned. The
physicochemical characteristics of MPs make them carriers of ATs, which greatly increase their risk of
being potential hazards to the environment. Therefore, in this article, the interaction mechanisms
between MPs and ATs are systematically sorted out, mainly including hydrophobic, electrostatic,
intermolecular interactions, microporous filling, charge-assisted hydrogen bonding, cation-bonding,
halogen bonding, and CH/π interactions. Also, factors affecting the interaction between ATs and
MPs, such as the physicochemical properties of MPs and ATs and environmental factors, are also
considered. Finally, this review identifies some new research topics and challenges for MPs and ATs,
in order to gain deeper insight into their behavioral fate and toxic mechanisms.

Keywords: microplastics; antibiotics; aquatic environment; sorption; interaction mechanism;
combined pollution

1. Introduction

One of the great inventions of the 20th century, plastics are widely used in the foodstuff,
textile, automotive, construction, and pharmaceutical industries, leading to a dramatic
increase in plastic production [1]. In 1950, the global plastic production was 500,000 tons
per year. However, it is projected that it could reach 1.8 billion tons per year in 2050;
the plastic recycling rate is only about 9%, while 12% is incinerated, and the majority of
plastic waste is discharged into the natural environment [2,3]. Plastics released into the
environment are difficult to break down naturally and will degrade into microplastics
(MPs) over time. Plastic particles less than 5 mm in diameter are usually defined as MPs
and have been found in the ocean [3], rivers [4], atmosphere [5], soil [6], groundwater,
and even drinking water [7]. Not only that, microplastics have been detected in marine
organisms [8], freshwater organisms [9], soil organisms [10], and even human blood [11],
seriously affecting biological health. MPs have properties such as hydrophobicity, surface
charge, long molecular chain arrangement, large specific surface area, size, shape, color,
and diversity of functional groups. The physicochemical properties of MPs confer strong
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adsorption and migration abilities and are considered ideal carriers for many pollutants in
the environment [12,13].

Since their discovery in the 1830s, antibiotics (ATs) have significantly improved hu-
man and animal health and agricultural yields. Worldwide, ATs are used in more than
100,000 tons per year and have gained increasing interest in recent years as an emerging
pollutant [14]. ATs are antimicrobial drugs that interfere with the developmental functions
of bacteria and are widely used in the livestock, medical, and aquaculture industries [15].
Most ATs are not completely absorbed and degraded by organisms upon entry, and approx-
imately 5–90% of ATs are released to soil and water as prototypes or metabolites [16]. ATs
released into the environment are accidentally ingested by organisms, either directly or in-
directly. Accidentally ingested ATs can accumulate in plants, animals, and humans through
the food chain, causing ecosystem and health problems [17,18]. ATs have been reported
in wastewater [19], hospital wastewater [20], farming wastewater [21], surface water [22],
groundwater [23], oceans [24], drinking water [25], soil [26], and sediment [27]. AT residue
in the environment not only endanger human health and disrupt the balance of ecosystems
but may also accelerate the spread of antibiotic resistance genes (ARGs) and antibiotic-
resistant bacteria, thereby threatening public health and global health security [28].

Due to their physicochemical properties, MPs can be used as carriers to create
complexes to disperse other toxic contaminants such as heavy metals [29] and organ-
ics [30]. Among the toxic contaminants adsorbed by MPs, ATs are important organic
pollutants [28]. MPs and ATs are both pollutants with high detection rates in aquatic
environment. When they meet, MPs will adsorb ATs, leading to their dispersion into
different environmental media, which in turn causes wider and more complex contam-
ination [3,27]. The coexistence of MPs and ATs forms a prominent form of composite
pollution, but there is a lack of dedicated and comprehensive reports on the behavioral
characteristics and interactions of the two pollutants. This paper reviews published
journal papers on the interactions of MPs and ATs to better understand the environ-
mental effects of the two pollutants. A total of 139 journal articles (2018.01–2023.12)
were searched in the Web of Science library using the keywords “antibiotics” and “mi-
croplastics”. The keyword metrics analysis of the 139 retrieved papers was performed
using CiteSpace software (v.6.2.6), and the clustering results are shown in Figure 1. The
analysis of seven clusters in the cluster view and the summary of the literature revealed
that the 139 existing studies mainly focused on single pollutants of MPs or ATs, and their
interaction mechanisms and environmental effects have not received the same attention.
Therefore, after discussing the environmental effects of MPs and ATs, this paper will
provide an in-depth study of the interactions between MPs and ATs, with a view to
accurately evaluate the potential risks of MPs adsorbed to ATs.

As the world’s largest developing country, how China can effectively improve its eco-
logical environment in the process of rapid economic development has become an essential
topic of human concern and research. Since 1978, China has implemented the economic
policy of reform and the opening of its economy, and the rapid economic growth has
created a number of environmental problems. Rapid population growth, urbanization, and
the expansion of scale in the agricultural industry has been accompanied by an explosion in
the production and use of chemicals, including MPs and ATs. With its large economy and
population, China has a large share of the global production and use of MPs and ATs. At
present, China’s marine, river, and lake ecosystems are facing increasing pollution pressure
from MPs and ATs. Based on this situation, this study reviewed the relevant studies on
MPs and ATs in China, summarized the distribution characteristics of MPs and ATs in
China, analyzed the environmental effects of MPs and ATs, and explored the interaction
mechanisms and influencing factors of MPs and ATs in the aqueous environment.
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2. Structure, Properties, and Distribution of MPs and ATs
2.1. Structure, Characteristics, and Distribution of MPs

MPs include primary MPs and secondary MPs. Primary MPs are plastic microparti-
cles that are inherently small in size, such as those used in skin care products, cosmetics,
detergents, and medical supplies [31]. Plastics released into the environment are known as
secondary MPs, which are small plastic fragments produced by the fracture and decomposi-
tion of plastics through physical (weathering, mechanical, and water interference), chemical
(photo-oxidation, UV radiation, and freeze–thaw cycles), biological (microbial degradation),
and other actions [32]. During the production process of plastics, numerous additives such
as plasticizers, surfactants, flame retardants, antioxidants, lubricants, adhesives, etc., are
added to improve their plasticity and practicality [33]. Plastic waste will gradually fragment
and degrade when it enters the aquatic environment. As the MPs degrade, these additives
leach out of the MPs and affect the quality of the aquatic environment [2,34]. In addition,
MPs are hydrophobic substances and can adsorb various hydrophobic organic pollutants
floating on the ocean [35], resulting in more severe ecotoxicity. There are many types of
MPs; polyethylene terephthalate (PET), polyethylene (PE), polystyrene (PS), polypropylene
(PP), polyamide (PA), and polyvinyl chloride (PVC) are the most commonly detected MPs
in aquatic environments [36]. The structures and physicochemical properties of different
types of MPs are listed in Table S1.

The main sources of MPs in the environment are waste disposal, surface runoff, indus-
trial production, and wastewater treatment plants (WWTPs). WWTPs existing treatment
technologies are less effective in removing nanoscale plastic particles that end up in the
environment and cause multiple environmental impacts [37,38]. To date, specific treatment
technologies have not been developed specifically for the removal of MPs from wastewater
and sludge, in addition to the conventional treatment technologies available [39]. In general,
wastewater treatment plants do not achieve good removal performance for wastewater
collected with many MPs particles. On the other hand, the influent base of WWTPs is so
large that even if the MPs removal rate achieves a good result, huge amounts of MPs will
still be discharged into the aquatic environment [40].

MPs in the environment are easily transported, dispersed, and redistributed globally
due to their small particle size, chemical stability, and hydrophobicity. For example, MPs
have been found in the Mariana Trench [41], Antarctica [42], the Arctic Ocean [43], the deep



Water 2024, 16, 1435 4 of 24

seabed [44], and pristine mountainous areas [45]. This is likely due to the long residence
time of MPs, which allows sufficient residence time for currents, sedimentation, and other
effects to move them into these relatively extreme environments. Certainly, the concentration
of MPs and the degree of contamination vary from one geographic region to another. In
general, the abundance of MPs is higher in waters near urban areas than in waters near rural
areas due to population density and the level of industrial facilities. Population density, the
number and type of industrial facilities, and the methods used to dispose of plastic waste
are the key variables influencing the concentration of MPs in aquatic environment. The
abundance of MPs in various environmental media in China is shown in Table S2 [46–76], and
the visualization results are shown in Figure 2. There are three characteristics of MPs pollution
in China (Table S2): (1) Spatial distribution: MPs were widely distributed spatially, and MPs
were detected from beaches, surface waters to sediments. (2) Geographical distribution: The
concentration of MPs is positively correlated with the level of economic development, and
Beijing–Tianjin–Hebei, the Yangtze River Delta, and the Pearl River Delta are the main areas
enriched with MPs. (3) Distribution characteristics of MPs: PE, PP, PS, and PET are the types
with the highest detection rates in aquatic environments in China, with colors mostly colored
and colorless, and morphology mostly fibers and fragments. Specifically, the most polluted
river in China is the Lower Yellow River and its estuary with 65,400–93,200 n/m3 of pollutants,
the most polluted ocean is the Northern Yellow Sea with 545 ± 282 n/m3, and the highest
concentration of pollutants in lakes is Poyang Lake with 5000–34,000 n/m3. It is worth noting
that the collection, detection, and quantification methods of MPs have not yet been unified, the
above statistical results have certain limitations, and the establishment of a complete analytical
method for microplastic characterization is also an urgent problem to be solved at this stage.
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2.2. Structure, Characteristics, and Distribution of ATs

ATs can be classified into fluoroquinolones, tetracyclines, macrolides, and sulfon-
amides according to their chemical structure [77], and their structural and physicochemi-
cal parameters are shown in Table S3. Different types of ATs have differences in their
physicochemical properties (octanol–water partition coefficient (Log Kow), acidity coef-
ficient (pKa), sorption behavior, and photo reactivity), resulting in different biological
properties (activity and toxicity) and forms of presence (neutral, cationic, anionic, or
amphoteric) of ATs in aquatic environments [12], as supported in Table S3.

The widespread global use of ATs has led to a dramatic increase in the concentration of
ATs in nature [78]. The production and use of ATs in China occupies an important position,
and the management of ATs in China is a major challenge. According to the model established
by Zhang et al. [79], in 2013, the total production of ATs in China was 248,000 tons, the import
was 600 tons, the export was 88,000 tons, and the total use was about 162,000 tons. ATs
enter surface waters mainly through leachate from landfills, fertilization, and agricultural
runoff from aquaculture [80]. In addition, pharmaceutical manufacturing plants, medical
effluents, and animal husbandry effluents with high concentrations of ATs are discharged into
municipal sewer systems with only little treatment and eventually collected by WWTPs [81].
However, the current removal of ATs by WWTPs is extremely limited, and the concentration
of ATs in treated water that is ultimately discharged in receiving waters is still at a high
level [82–84]. Due to the widespread use and point source discharge of ATs, a variety of ATs
can be monitored in aquatic environments and sediments in several regions of China, with flu-
oroquinolones, tetracyclines, and sulfonamides being the types with the highest detection rates
(Table S4 [85–123] and Table S5 [72,97,100,104,124–133]). Residual ATs in the environ-
ment not only adversely affect non-target organisms but also enhance bacterial resistance,
which ultimately has unimaginable consequences for aquaculture, agriculture, animal
husbandry, humans, and the ecosystem [134].

The distribution and degree of pollution of ATs in different regions varies from
region to region, and the pollution of ATs in China is mainly concentrated in the Yangtze
River Basin, the Bohai Bay, the Pearl River Delta, and the Beijing–Tianjin–Hebei region
(Figure 3). From the data collected in Table S4, the highest pollution concentrations of
tetracyclines, fluoroquinolones, and macrolides were 4720.0 µg/L, 9281.7 µg/L, and
1112.2 µg/L, respectively, and the above-mentioned polluted places appeared in Taihu
Lake in the Yangtze River Delta region, Qinghe River in Beijing–Tianjin–Hebei region,
and Zhujiang River in Pearl River Delta, respectively, which represented the highest
pollution levels of several types of ATs in China. Characterization of the distribution
of ATs in sediments is generally consistent with the aquatic environment (Figure 3 and
Table S5). The local industrial structure, the disposal of ATs by the pharmaceutical
industry, the use of ATs by the livestock industry, the climate, and the distribution of
water bodies in the region are all key factors contributing to the appearance of the above
data characteristics. For example, in the economically developed eastern region of China,
the pharmaceutical industry is concentrated, and the discharge of large amounts of
AT-rich pharmaceutical wastewater leads to a high concentration of ATs pollution in the
eastern region [135]. By comparing the distribution of MPs and ATs in China, it is found
that the two have similar overlapping areas and pathways, providing a realistic basis for
studying their interaction.
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3. Mixed Ecological Effects of MPs and ATs

The corrosion resistance of MPs makes it difficult for them to degrade under natural
conditions, giving them enough time to interact with ATs and generate new environmental
effects, and the environmental impacts and behavioral characteristics of the two are shown
in Figure 4. As carriers of contaminants, MPs will interact with ATs in terms of adsorption
and migration to form new combined contaminants, producing toxicity different from that
of individual contaminants [136,137]. For example, an intestinal histopathology study on
zebrafish found that combined exposure to oxytetracycline (OTC) and MPs attenuated
intestinal damage induced by OTC alone [138]. When MPs enter the interior of an organism,
they disrupt the structural integrity of cells, and the addition of tetracycline reduces
the percentage of cell membrane damage by 18.4% and reduces cell-particle contact and
individual toxicity [139]. A recent study suggests that coexistence of MPs with TCs reduces
phenol removal efficiency in wastewater treatment plants, affects sludge characteristics, and
accelerates the spread of certain ARGs [140]. The coexistence of MPs and ATs, as described
above, has led to a reduction in contaminant toxicity, but exacerbation of toxicity due to
mixing of the two is also common. A study on the synergistic immunotoxicity of MPs and
ATs found significantly lower phagocytosis and total blood cell counts in mussels using
both MPs and ATs compared to mussels using ATs alone [141]. In addition, phosphorus
removal is an important process segment in wastewater treatment. In this process, MPs
inhibit the phosphorus removal rate of phosphorus-accumulating organisms (PAOs) mainly
through physical and oxidative damage, while the toxic mechanism of ciprofloxacin (CIP)
is binding to the DNA of PAOs [142]. When MPs are present with CIP, CIP can cause PAOs
to produce more extracellular polymerized material, thereby reducing the oxidative stress
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of MPs on PAOs [14]. Additionally, the adsorption of MPs decreases the concentration of
CIP, thereby inhibiting its binding to DNA and thus its effect to PAOs [143]. The synergistic
effect of MPs and TC affects the growth of bacteria and consequently the nitrification
process in the wastewater treatment process [144]. Current toxicity studies of ATs and
MPs have mostly focused on the toxicity of single substances, while the environmental
effects of combined exposure to MPs and ATs are still unclear. In general, the combined
effects of MPs and ATs have a multidimensional impact on ecosystems, so more in-depth
studies should be devoted to assessing the individual effects and the combined behavior of
the pollutants.
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Figure 4. Environmental effects and behavioral characteristics of microplastics and antibiotics in
the environment.

A significant correlation was found between the concentration of ARGs and ATs in
aqueous environments [145]. The improper treatment of ATs leads to the proliferation
of ARGs, making bacteria more resistant and able to evade the controlling effects of
antimicrobial drugs [146–148]. MPs and ARGs coexist widely in aquatic environments,
and MPs can act as storage units to influence the type and abundance of ARGs [149–151].
For example, in aquaculture, MPs can act as carriers of ARGs and enter aquatic or-
ganisms through the food chain, posing a significant risk to aquaculture and human
health [152]. In wastewater treatment, MPs can block UV beams and affect the UV disin-
fection efficiency of ARGs [153]. In riverine environments, MPs can carry and disperse
ARGs in different locations, and urban rivers pose a higher potential environmental risk
compared to rural and peri-urban areas [154]. In waste leachate, MPs can selectively
enrich for specific pathogens, and the carriage of 11 pathogens was positively correlated
with ARGs, suggesting that the presence of MPs greatly increases the enrichment of
ARGs and pathogens [155]. In addition, MPs provide new substrates for biofilm for-
mation and may act as new carriers of ARGs into the aquatic environment, creating
ecological risks and adversely affecting human health [156]. The interaction between
MPs and ARGs has been shown to affect community structure and produce toxic effects
in aquatic ecosystems. Overall, MPs in aquatic environments enriched ARGs; caused
contamination, proliferation, and accumulation of ARGs; and stimulated a vicious cycle
of ARGs, leading to greater pathogenic potential and more severe ecological impacts.
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4. Factors Influencing the Interaction between MPs and ATs

In aquatic environments, MPs and ATs interact with each other in various ways. The
interaction process is influenced by the physicochemical properties of MPs, the physico-
chemical properties of ATs, and environmental factors (Figure 5).
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4.1. Physicochemical Properties of MPs
4.1.1. Types

The diversity of MP types determines the diversity of their properties. The type of
MP plays an important role in determining the polarity, pHpzc (point of zero charge),
crystallinity, and functional group species; the properties of different types of MPs are
shown in Table S1. The functional group type determines the type of interactions between
MPs and ATs, such as hydrogen bonds, π-π interactions, and halogen bonds. The polarity
of MPs is not a direct factor affecting their adsorption capacity, but the polar groups of MPs
and polar ATs may generate electrostatic reaction energy between them through dipole–
dipole and dipole-induced dipole attraction, leading to a stronger adsorption effect [157].
The pHpzc can be used to reflect the nature of charge properties exhibited by the MPs
particles, which in turn affects the electrostatic interaction of MPs with ATs. The different
types of MPs lead to differences in the physicochemical characteristics of the polymers,
which in turn lead to differences in their adsorption properties.

4.1.2. Crystallinity

The crystallinity of MPs may also affect the interaction between MPs and ATs. Accord-
ing to the available literature, there are controversial points on the effect of the crystallinity
of MPs on the adsorption of ATs. One theory suggests that the crystallinity may affect the
ability of MPs to adsorb organic micropollutants because the crystalline fraction has lower
oxygen permeability and is less susceptible to oxidation [158]. In the amorphous part, the
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polymer molecules are disordered and move randomly, and there is space and conditions
for the adsorption of pollutants, and the ratio of this region determines the adsorption rate
of MPs on ATs and their concentration at equilibrium [159,160]. For example, in a study of
norfloxacin (NOR) adsorption by PS, PP, PE, and PA, it was found that PS, which had a
lower crystallinity, had more amorphous regions and higher surface activity, and therefore
had the strongest adsorption capacity [161]. After subsequent aging treatments of the four
MPs, the crystallinity increased, and the adsorption capacities were all weakened [161].
However, it has also been suggested that there is no significant relationship between the
crystallinity of MPs and their adsorption properties. The research shows that MPs with high
crystallinity have obvious diffraction peaks. Based on this feature, the pure crystallinity of
MPs order is PP > PA > PS [162]. However, the order of the actual adsorption capacity for
pollutants was PA > PP > PS, which was not significantly related to the size of crystallinity,
indicating that crystallinity was not a critical factor affecting CIP adsorption [163]. In
conclusion, the crystallinity of MPs affects the interaction of MPs with ATs under certain
conditions, but further experimental verification is needed.

4.1.3. Size

Variation in size affects the adsorption of MPs in different ways, mainly by changing
the number of adsorption sites and the size of the specific surface area required to influence
their adsorption of ATs [32]. Degradation of plastics under natural conditions is usually ac-
companied by changes in size, and these changes give them different adsorption properties.
In a comparative study between MPs and nanoplastics, it was found that the rate constant
for CIP adsorption decreased significantly when the size of PS changed from micron to
nanoscale, which may be due to strong surface competitive adsorption. However, when the
diameter of PVC was decreased from 74 µm to 1 µm, the adsorption of CIP was significantly
accelerated [164]. Another result on the effect of particle size on the adsorption of Triclosan
on PS showed that the amount of Triclosan adsorbed gradually increased as the PS particle
size decreased [165]. Overall, the adsorption behavior is completely different as the size of
the plastic decreases, which is highly dependent on the type of MP and contaminant.

4.1.4. Aging Behaviors

MPs show aging behavior under environmental conditions such as oxidation, thermal
radiation, UV radiation, wind, etc., thus changing their microstructure and adsorption
behavior [166,167]. Aged MPs are characterized by a rough surface and large surface area,
while oxygen-containing functional groups such as hydroxyl and carboxyl groups are
formed under the action of aging factors such as light and oxygen [168]. Aging causes the
appearance of hydrophilic groups, microcracks, pores, and pits on the surface of MPs, which
enhances the adsorption of pollutants [169]. For example, weathered MPs undergo surface
interfacial behavior with hydrophilic ATs, and the weathered MPs adsorb much more CIP
than the original MPs [170]. By studying the adsorption behavior of naturally aged MPs
in freshwater and simulated seawater, it was found that aged MPs can be carriers of ATs
and cause long-term effects on organisms and the aquatic environment [171]. A recent
study demonstrated that the adsorption capacity of PE to chlortetracycline and amoxicillin
(AMX) increased 1.08–14.24-fold after aging [172]. In a study simulating the aging of MPs,
it was demonstrated that the aging process induces oxygen-containing functional groups
such as -OH, C=O, and C-OH [168,173]. Firstly, the physicochemical properties of MPs
such as hydrophilicity, polarity, and surface charge are influenced by the aforementioned
functional groups, which in turn enhance the hydrophobic, intermolecular, and electrostatic
interactions between MPs and ATs [168,173]. However, the presence of functional groups
also forms hydrogen bonds with water molecules in the surrounding environment, which
reduces the adsorption sites of pollutants and hinders the adsorption process [173].

The aging behavior of MPs mentioned above mainly changes the physicochemical
properties of MPs themselves, which in turn affects the interaction between MPs and
ATs. And during the aging process, biofilms are formed on the surface of MPs, and the
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formation of biofilms will indirectly change the roughness, surface charge, and surface free
energy of MPs, thus affecting the interaction between MPs and ATs [174]. Although it has
been found that the bacterial organisms present in the biofilm formed on the surface of
MPs have a certain degradation effect on ATs [175], the degradation effect is poor and the
degradation period is long compared to its adsorption, such that the bacterial degradation
in the biofilm is negligible [176]. In summary, MPs undergoing the aging process—resulting
in increased surface areas, increased adsorption sites, the production of oxygen (increased
polarity), oxygen-containing functional groups, biofilms, and fouling—will also increase
the charge, roughness, and porosity, and will accumulate greater concentrations of ATs
or other contaminants [177]. MPs that undergo aging behavior enhance the adsorption of
ATs, indicating that the research direction should lean toward the adsorption behavior of
aging MPs and presume that aging is the most common phenomenon of MPs in natural
aquatic environments.

4.2. Physicochemical Properties of ATs

The type of ATs determines physicochemical parameters such as hydrophobicity,
functional group species, pKa, Log Kow, etc., which can affect the adsorption of MPs. It
was shown that the Log Kow of ATs is crucial to determine their adsorption range on
MPs [173,178]. The intensity of ATs adsorption by MPs was found to be significantly and
positively correlated with the Log Kow of ATs in a study of the interaction of MPs and
ATs [162]. ATs with higher hydrophobicity (having higher Log Kow values) have a higher
affinity for MPs. As ionizable compounds, the pKa of ATs are usually veritably different due
to the different functional groups possessed by different species of ATs. Therefore, under
specific pH conditions, various ATs exhibit different cationic, amphoteric, and anionic
forms, which are important factors affecting the interaction between ATs and MPs. Table S3
in the supporting material summarizes the structural formula, Log Kow, pKa, and other
parameters of various types of ATs in order to facilitate the interpretation of understanding
the interaction mechanism between MPs and ATs.

4.3. Environment Factors
4.3.1. pH

The pH primarily influences the electrostatic interaction of MPs and ATs to modify
adsorption behavior, which is determined by the degree of ionization of the substance
in the solution. Also, the pH of a solution and the acid dissociation constant (pKa) of a
chemical substance are important parameters for the degree of ionization. For example,
TC has multiple ionizable functional groups, including amino and hydroxyl groups,
in multiple forms throughout the pH range [179]. In aqueous solutions, TC exhibits
three pKa values of 3.3, 7.7, and 9.7. When pH < 3.3, the solution is acidic, and the
dimethylamine group attracts protons under this condition, and TCH3+ is the main
component of the TC group, resulting in the TC molecules in the solution exhibiting
a cationic nature [180]; When 3.3 < pH < 7.7, the dominant group in TC is TCH20,
which exhibits no external electrical properties; When pH > 7.7, TC is dominated by
negatively charged TCH2- and TC2-, resulting in the anionic nature of TC molecules
in solution [181,182]. Changes in pH also affect the adsorption capacity of MPs by
influencing their zeta potential, i.e., surface potential [183]. MPs polymers are always
negatively charged in alkaline solutions and tend to protonate on the surface of MPs
as the pH decreases [184,185]. The natural aquatic environment has a pH range of
5–10, where most MPs are negatively charged, and thus the pKa of ATs determines
the adsorption or repulsion of MPs with ATs [3]. The pKa values of common ATs
are provided in Table S3 to facilitate the understanding of the states of ATs present at
different pH conditions (including anionic, cationic, molecular, and amphiphilic ions)
for the preliminary prediction of electrostatic interactions between ATs and MPs.
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4.3.2. Ionic Strength

The ionic strength is a key factor affecting the interaction between MPs and ATs. The
mechanism of ionic strength action is to control the electrostatic and non-electrostatic in-
teractions between the surfaces of MPs and ATs by affecting the thickness and interfacial
potential of the bilayer, which in turn affects the binding of MPs and ATs. Ionic strength
influences electrostatic interactions to some extent because electrolytes can compete with
ATs for electrostatic sites, resulting in weaker MPs adsorption to ATs [186]. When the
ionic strength in the environment is high, positively charged ions will replace the ATs
adsorbed on the negatively charged MPs. In the adsorption study of MPs, the adsorption
of TC by PE was found to decrease with increasing ionic strength, indicating that the en-
hancement of ionic strength is not favorable to the adsorption behavior of TC on PE [187].
The reason may be that the enhanced ionic strength compresses the thickness of the
bilayer and weakens the electrostatic force between MPs and ATs, leading to a decrease
in their adsorption capacity [187,188]. Previous studies have shown that hydrophobic
interactions between ATs molecules can overcome repulsive electrostatic interactions
when the ionic strength is high, leading to the aggregation of ATs molecules [189]. The
ATs molecules become larger after polymerization and have difficulty in accessing the
adsorption sites inside the MPs, leading to a weaker adsorption capacity than at low ionic
strength [189]. In summary, the increase in ionic strength mainly played an inhibitory
role in the adsorption properties of MPs.

4.3.3. Salinity

Based on the available research data, salinity has both a positive effect and a negative
effect on inhibiting the interaction between MPs and ATs. It is hypothesized that the presence
of salt compresses the bilayer on the surface of MPs, leading to the formation of nano-plastic
clusters, similar to the coalescence mechanism of Fe3+ and Al3+ salts. The clusters of nano-
plastic particles may exert stronger electrostatic interactions on the CIP compared to individual
particles, thus improving the adsorption capacity. However, the concentration of Na+ increases
gradually with increasing salinity, and the positively charged Na+ is more easily adsorbed
on MPs by electrostatic attraction due to the negatively charged surface of MPs [190,191]. In
this process, the acidic groups of MPs can be replaced by H+, which can affect the formation
of hydrogen bonds, thus hindering electrostatic interactions and reducing the adsorption
capacity [168,192]. This was similarly concluded in a previous study which found that the
adsorption capacity of PE decreased with increasing salinity, suggesting that high salinity is
detrimental to the adsorption behavior of TC on PE [187]. It was found that the adsorption
capacity of Sulfamethoxazole on PA, PE, PET, PVC and PP all showed a decrease in the
presence of salt, while the adsorption capacity of PS on Sulfamethoxazole increased slightly
with decreasing salinity and then decreased again with increasing salinity to 35‰ [193]. The
NaCl concentration gradient indicated that the amount of SMT adsorbed on MPs decreased
with increasing salinity, suggesting that the presence of salt decreases the adsorption of MPs
on ATs [157]. Furthermore, increasing salinity reduces the solubility of non-polar and weakly
polar ATs in water, resulting in relatively easy pollutant adsorption by MPs [194,195]. Overall,
the sorption of ATs by MPs was susceptible to the effect of salinity and mostly exhibited
inhibited sorption behavior between MPs and ATs.

4.3.4. Dissolved Organic Matter

It has been found that the aqueous environment contains a variety of heterogeneous
organic compounds, such as humic acid (HA), microbial products, bovine serum proteins and
polysaccharides, etc [196–198]. The interaction of MPs with dissolved organic matter (DOM)
can lead to the formation of an ecological corona on the surface of MPs, which in turn can alter
the physical and chemical properties of MPs and affect their interaction with ATs [196,199].
Specifically, functional groups on HA molecules can alter the surface charging properties of
MPs, which leads to a decrease in the adsorption affinity of MPs for TC. In addition, HA also
competes with the adsorption sites on the surface of MPs, thus decreasing the adsorption of
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TC. In addition to interacting with MPs, DOM in aquatic environment also interacts with ATs,
which in turn affects the interactions between MPs and ATs. It was found that the presence of
DOM all significantly decreased the adsorption of MPs to TC and enhanced the inter-sorption
of TC with DOM, probably because the affinity of TC for DOM was higher than that for
MPs [200]. On the other hand, in the adsorption of ATs on MPs, DOM plays the role of a
“bridge” in the process and enhances the adsorption of ATs on MPs. For example, Zhang
et al. [201] found that the π-π conjugation between HA and the surface of MPs leads to the
enhancement of electrostatic attraction to OTCs upon the addition of HA. Similar results were
found in another study of NOR adsorption by MPs, in which the adsorption capacity of NOR
by MPs increased with the increase of HA concentration when the concentration of HA was
higher than 10 mg/L [199]. The main reason is that MPs interact with the aromatic structure
of HA through π-π conjugation to form highly conjugated copolymers, resulting in larger
intermolecular forces [161]. Overall, DOM in the environment affects the adsorption behavior
of MPs and ATs from two perspectives. The first scenario is that DOM occupies adsorption
sites on the surface of MPs, which in turn inhibits adsorption between the two. In the second
case, the DOM in the environment wraps around the MPs, affects the spatial resistance and
electrostatic effect of the MPs, and acts as a “bridge” to enhance the adsorption effect between
the MPs and ATs.

5. Factors Influencing the Interaction between MPs and ATs

The interaction between ATs and MPs has various principles of action, mainly includ-
ing hydrophobic interactions, intermolecular interactions, and electrostatic interactions,
among other forces. The dominance of the above forces varies between different types of
MPs and ATs, depending on MPs properties, ATs properties, and environmental factors. In
addition, micropore filling, charge-assisted hydrogen bonding (CAHB), cation-π bonding,
halogen bonding, and CH/π interactions may occur between some specific types of MPs
and ATs, but further studies are needed to confirm their involvement processes and impor-
tance. The sources and interaction mechanisms of MPs and ATs in aquatic environment are
shown in Figure 6.
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5.1. Hydrophobic Effect

Plastics are polymers formed from monomers by addition or condensation reactions,
which determines the structure of MPs to be rich in alkyl groups and strongly hydrophobic.
Hydrophobic interaction is the phenomenon by which hydrophobic groups cluster together
to avoid water and is a weak, non-covalent interaction between non-polar molecules [202].
The strong hydrophobicity exhibited by MPs allows for a higher adsorption capacity for
hydrophobic contaminants. For example, it has been suggested that the adsorption rate
and capacity of PE particles on Sulfamethoxazole may be positively correlated with the
hydrophobicity of the compound [203]. An experiment on the adsorption of ATs by MPs
showed results indicating that the ability of different ATs to adsorb specific types of MPs
varies greatly [162]. Except for PA, the adsorption of the other four MPs (PE, PS, PP, and
PVC) on the five ATs decreased in the order of CIP > AMX > trimethoprim > sulfadiazine >
TC. Coincidentally, the Log Kow values of the studied ATs decreased in the order of CIP >
trimethoprim > AMX > sulfadiazine > TC. Definitely, exceptions cannot be ruled out, and
the above correlation does not hold for PA, because PA has amide functional groups [204].
Hydrogen bonds can be formed between the amide group of PA and the carbonyl groups of
AMX, TC, and CIP, when hydrogen bonding forces are dominant compared to hydrophobic
interactions dominate. In general, the strength of adsorption of the four MPs to the five
ATs, except PA, maintained a great correlation with the hydrophobicity of the ATs. A
literature review shows that hydrophobic interactions occupy an important position in the
adsorption process of MPs on ATs [171,173,195].

5.2. Intermolecular Interactions (Hydrogen Bonding, π-π Interactions, and Van Der Waals Forces)

The physicochemical properties of MPs and ATs with high detection rates in aquatic
environments are shown in Tables S1 and S3, which will be more useful for understanding
the hydrogen bonding, π-π interactions, and Van der Waals forces during the adsorption
of ATs by MPs. Hydrogen bonding, Van der Waals forces, and π-π interactions have been
identified as the driving forces affecting the adsorption of ATs on MPs [164,168,205]. Firstly,
Van der Waals forces are a prevalent force between molecules and do not involve weak
interactions forces that occur between molecules with covalent or ionic bonds. For example,
aliphatic PE can only have intermolecular interactions with ATs by Van der Waals forces,
while the adsorption of non-polar PP and PS on CIP can only be driven by Van der Waals
forces, but PS containing benzene rings can also have π-π interactions [206]. Since MPs
contain a large number of alkyl groups, the formation of hydrogen bonds is common in
MPs, often formed between or within molecules, and hydrogen bonds are intermolecular
interactions. For example, in a study on the adsorption of ATs by MPs, it was found that the
adsorption of AMX, TC, and CIP by PA was higher than that of PE, PS, and PP [162]. The
reason is that the amide group of PA can form hydrogen bonds with the carbonyl groups
of AMX, TC, and CIP, which is the main reason for the high adsorption of PA [207]. π-π
interactions are a special spatial arrangement of aromatic compounds, and MPs containing
aromatic groups exhibit π-π interactions [208]. For example, aliphatic PS may have π-π
interactions with ATs, and studies have shown that the stronger adsorption ability of
aromatic PS to ATs may be caused by π-π bonds that enhance the interaction between MPs
and ATs [32,173].

5.3. Electrostatic Effect

In electrostatic interactions, the interaction force between ATs and MPs is mainly due
to their charge characteristics, and then, the attractive or repulsive force occurs [195]. The
magnitude of the electrostatic force between MPs and ATs can be determined by the degree
of ionization of the substance in the solution. It has been shown that the main factors
affecting the electrostatic attraction/repulsion interaction between MPs and ATs are the pH
of the solution, the pKa of the ATs, and the pHpzc of the MPs particles [203], because the
pKa and pH of the solution may determine the isoelectric charge of the compound [209].
When the value of pHpzc of the MPs is lower than the pH of the solution, their surfaces



Water 2024, 16, 1435 14 of 24

become negatively charged and readily attract positively charged chemicals, at which point
the electrostatic effect of MPs on ATs manifests itself as a gravitational force and vice versa
as a repulsive force [210]. Most MPs, such as PP, PS, and PE, have a pHpzc lower than the
pH of most aquatic media (4.26, 3.96, and 4.30, respectively), which enhances the adsorption
of positively charged ATs [200]. Overall, the relationship between the pKa of ATs, the pH
of the solution, and the pHpzc of MPs determine the electrostatic attraction/repulsion
interactions and may consequently affect the adsorption process between ATs and MPs.

5.4. Other Mechanisms of Action

The adsorption performance of biochar is related to its physicochemical properties
such as its own surface parameters and microporous structure, which are similarly reflected
in this study of the interaction mechanism between MPs and ATs. In a study on TC
adsorption by PE, it was found that a large number of free binding sites (micropore filling)
existed in PE for the adsorption of TC molecules in the initial stage of adsorption [187].
When all the adsorption sites on the PE surface are occupied, the adsorption rate of PE
decreases significantly. Microporous filling generally occurs when the following two
conditions are met [211,212]: (1) The number of MPs micropores is sufficient; (2) The MPs
micropores are 1.7–3 times the size of ATs molecules. When the above conditions are met,
micropore filling should be considered as an important mechanism of action.

CH/π interactions exist between the hydrogen atom of the alkyl group (H donor) and
the π-face of the aromatic ring (H acceptor), and they are considered to be an important
driving force between polyolefinic substances and aromatic compounds [213]. Existing
studies have found that alkyl groups (-CH) on PVC provide protons to the off-domain
aromatic rings of bisphenol analogues, leading to changes in the adsorption behavior of
bisphenols on PVC [214]. Therefore, MPs containing alkyl groups may undergo CH/π
interactions with aromatic ATs to enhance adsorption.

The halogen bond is formed between the halogen atom and the π electron of the ben-
zene ring, which is a non-covalent interaction [215]. PVC branched chains contain halogen
atoms Cl, which can behave as electron-deficient (electrophilic, electron acceptor) centers
and undergo mutual attractive forces with electron-rich (nucleophilic, electron donor)
substances [216]. Phenolic compounds contain benzene rings and hydroxyl groups that
allow halogen bonding with PVC, which was also confirmed in a subsequent study [217].
TC, OTC, and AMX also have the same conditions for halogen bonding by containing
benzene rings and hydroxyl groups, so we hypothesize that halogen bonding can also
occur between MPs and ATs, but further evidence is needed.

Cation–π interactions are a key force in the adsorption of fluoroquinolone ATs on
thermogenic carbonaceous materials. For example, on graphite and graphene-based ma-
terials, the amino group on the R3 ring of CIP obtains H+ and undergoes protonation,
producing cation-bonds with electrons [218]. In this process, cation-π interactions induced
species conversion (CIP (0) combines protons to form CIP (+1)), and the above process has
been verified experimentally and theoretically [218]. MPs and ATs have conditions for the
occurrence of cation–π interactions, but further experimental verification is needed.

CAHB refers to the charge distribution between two substances that form a hydrogen
bond, as opposed to a normal hydrogen bond, which can directly form a CAHB with a
much stronger bond than a normal hydrogen bond and with properties comparable to
those of a covalent bond [219,220]. It was found that CAHB, as a class of low-resistance
hydrogen bonds or salt bridges similar to cation bridges, are commonly found in envi-
ronmental processes [219]. Meanwhile, the researchers borrowed CAHB to explain some
unexplained experimental phenomena in the adsorption of ionic compounds by carbon-
based adsorbents [221]. Under natural conditions, anionic ATs can undergo CAHB with
MPs as the acceptor H- donor, and such a charge distribution enables the formation of
more stable hydrogen bonds between the donor and acceptor due to the negative charge
on the acceptor proton group, but the occurrence of this behavior requires a certain pH of
the aquatic environment [218,219,221].
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6. Conclusions and Perspectives

Taking the aquatic environment in the Chinese region as the research background,
this paper explores the mechanisms and influencing factors of the interaction between
MPs and ATs and synthesizes the effects of the interaction between MPs and ATs on the
environment. The main findings are as follows: (I) The diversity of types of MPs and ATs
leads to the diversity of their structures and properties, which is a key factor affecting
the interaction of the two pollutants. The pollution of MPs and ATs in Chinese regions is
mainly concentrated in Beijing–Tianjin–Hebei, the Yangtze River Delta, the Pearl River
Delta, etc. The degree of pollution is related to the level of economic development, in-
dustrial structure, water allocation, climate, and other factors. In addition, the similarity
in the regional distribution of MPs and ATs is mainly due to the similar sources and
migration pathways of the two pollutants. (II) The adsorption of ATs by MPs is driven
by a variety of mechanisms that have been confirmed by studies, including hydrophobic
interactions, intermolecular interactions (hydrogen bonds, Van der Waals forces, and
π-π interactions), and electrostatic interactions. (III) The process of interaction between
MPs and ATs is influenced by several factors: pH and ionic strength mainly affect the
electrostatic interactions between MPs and ATs to modify the adsorption behavior, and
changes in salinity affect the solubility of nonpolar and weakly polar ATs in water and
may affect the formation of hydrogen bonds. Aging MPs have changes in their surface
morphology and microstructure, leading to changes in the adsorption behavior of MPs.
In addition, the crystallinity, polarity, and size of MPs are also important factors that
affect the adsorption of ATs by MPs. Based on the existing studies, we propose three
directions for future research:

(1) Some factors influencing the interaction process between MPs and ATs are still
unclear. For example, the influence of the crystallinity of MPs on the adsorption of ATs is
controversial and needs to be further investigated. In addition, the morphology of MPs
also affects the interaction with ATs. The present study shows that colloidal MPs have high
surface area and have stronger enrichment effects on pollutants such as ATs in the water
column, and that colloidal MPs have stronger mobility [136], so colloidal MPs may be an
important direction for future research.

(2) The adsorption mechanism of ATs by MPs should be further investigated, including
but not limited to hydrophobic interactions, hydrogen bonding interactions, π-π interac-
tions, Van der Waals forces, electrostatic interactions, etc. In addition, the effects of MPs on
the environmental behavior of other pollutants, such as organophosphates, heavy metals,
perfluorooctane sulfonate, etc., should be carried out to gain a more comprehensive under-
standing of MPs as a new pollutant. In addition, the above studies are only at the laboratory
stage and future research should focus on the sorption and environmental impacts of mixed
pollutants in the natural environment, where laboratory results may differ significantly
from those in the natural environment.

(3) China is the largest developing country in the world, and its production and use
of MPs and ATs are among the highest in the world. The Chinese aquatic environment is
facing serious pollution risks, and the establishment of pollution evaluation standards and
treatment methods for MPs and ATs to better balance the relationship between economic
development and environmental management is an important reflection of China’s role
in global environmental governance. Meanwhile, China’s experience and research results
on the management of these chemicals can provide useful references and suggestions for
other countries.

(4) MPs and ATs as new pollutants have attracted extensive attention from scholars,
but there is no uniform standard on the detection of MPs. In addition, how ATs may be
extracted from MPs under natural conditions is also a difficult problem. Due to the variety
and low concentration of ATs under natural conditions, extracting ATs from MPs accurately
and correctly is a problem that needs to be solved urgently.
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