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Abstract: Traditionally, the assessment of heavy metal concentrations using remote sensing tech-
nology is sample-intensive, with expensive model development. Using a mining area case study of
Daxigou, China, we propose a cross-time-domain transfer learning model to monitor heavy metal
pollution using samples collected from different time domains. Specifically, spectral indices derived
from Landsat 8 multispectral images, terrain, and other auxiliary data correlative to soil heavy metals
were prepared. A cross time-domain sample transfer learning model proposed in the paper based on
the TrAdaBoost algorithm was used for the Cu content mapping in the topsoil by selective use of
soil samples acquired in 2017 and 2019. We found that the proposed model accurately estimated the
concentration of Cu in the topsoil of the mining area in 2019 and performed better than the traditional
TrAdaBoost algorithms. The goodness of fit (R2) of the test set increased from 0.55 to 0.66; the relative
prediction deviation (RPD) increased from 1.37 to 1.76; and finally, the root-mean-square deviation
(RMSE), decreased from 8.33 to 7.24 mg·kg−1. The proposed model is potentially applicable to more
accurate and inexpensive monitoring of heavy metals, facilitating remediation-related efforts.

Keywords: transfer learning; mining area; soil pollution; heavy metal; multispectral remote sensing

1. Introduction

According to previous investigations and studies, e.g., [1–3], land worldwide, such as
in the United States, Europe and China, is contaminated with heavy metals and other toxins
to varying degrees. Heavy metals are the primary source of pollution in mining areas or
around smelting plants in China, with land degradation and ecological and human health
impacts [2,3]. The efficient monitoring of heavy metal pollution is important, as it facilitates
efforts to either prevent or remediate heavy metal pollution. Ground hyperspectral tech-
nology allows for the acquisition of soil-linked continuous spectral information, yielding
accurate estimates of soil organic matter, heavy metals, and other soil components; how-
ever, this method cannot be used for large-scale monitoring. Hyperspectral remote sensing
imaging can be used to conduct large-scale soil parameter investigations and monitoring.
For example, Han et al. [4] used domestic GF-5 hyperspectral satellite imagery to retrieve
the content of heavy metals in the soil based on the XgBoost algorithm, and Zhang et al. [5]
used GF-5 hyperspectral remote sensing images to develop an inversion model intended
to estimate the content of heavy metals in soil. However, the previous inversion methods
using hyperspectral technology have shown limitations and challenges as stated in Ref. [6].
The acquisition cost of commercial hyperspectral imagery with a high spectral and spatial
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resolution, such as Zhuhai-1 satellite-based, airborne imaging platforms, etc., is currently
relatively high, despite being more favourable for detecting heavy metal concentrations in
the soil.

To reduce the cost of remote sensing data acquisition, efforts have been made to
retrieve heavy metal concentrations in soil. This is achieved using multispectral remote
sensing images in conjunction with auxiliary data that indicate the spatial distribution of
heavy metals in soil rather than using expensive hyperspectral remote sensing imagery.
For example, Bou et al. [7] combined multiple environmental variables to develop an
inversion model for the estimation of soil heavy metal content and verified its effectiveness.
Ghrefat et al. [8] proposed integrating remote sensing data, geochemical, GIS and statistical
data to assess heavy metal contamination in soil. Yu et al. [9] estimated the nitrogen content
in wheat using UAV-based and satellite multispectral imagery, together with topographic,
plant and soil metrics using Random Forests (RF) and support vector regression (SVR) mod-
els. Several studies (e.g., [10,11]) have also demonstrated that an alternative to the retrieval
of heavy metal concentrations in soil is using low-cost multispectral imaging supplemented
with multiple environmental variables instead of high-cost hyperspectral images.

In view of the methodology adopted in the retrieval of heavy metal concentrations in
soil, most of the abovementioned inversion models were developed based on the partial
least squares regression model of the linear hypothesis. In recent years, many machine
learning models, such as random forests, have been widely used, such as by [12–14]. Com-
pared to the currently popular deep learning networks, these machine learning models
have a simple structure, are rapidly trained, and can be applied toward modelling non-
linear systems. For example, the performance of AdaBoost, owing to a weighted random
forest combination, is generally better than a traditional random forest and support vector
machine with equal weight, and its training efficiency is high when evaluated through the
lens of regression accuracy [12].

Previous research has contributed to characterising heavy metal concentrations in the
topsoil (i.e., through various approaches), however, traditional machine learning models
exhibit weak generalizability when applied to soil heavy metal content inversion tasks, even
across different spatiotemporal contexts. This results in pollution-related investigations and
long-term monitoring tasks that are plagued by low operation efficiency and high sample
cost. Therefore, improving the accuracy of soil heavy metal content inversion within the
context of using few samples is a global challenge.

Transfer learning theory is a solution to the problem of parameter learning when
the data distribution between source and target domains differs, as in the case of a few
training samples [15]. Remote sensing studies, e.g., Zhang et al. [16], have mainly focused
on the extraction of qualitative information, such as object recognition. Recent studies
have explored the transferability of soil heavy metal content inversion models and training
samples from one region to another [17]. Furthermore, Liu et al. [18] constructed a transfer
learning model based on a convolutional neural network using LUCAS open soil spectral
dataset and verified the effectiveness of the model for recording clay concentrations using
a few samples.

Collecting a substantial number of training samples for soil contamination monitoring
is expensive, particularly in mountainous terrain or woodland environment. Moreover,
collecting training data for the parameters of machine learning models is expensive, unlike
in the field of target detection and classification. Fortunately, transfer learning theory has
emerged as an alternative solution in the application of soil heavy metals retrieval; it can
reduce the data acquisition cost by transferring sample data or other useful information
from one task to another. For example, Tao et al. [19] used the transfer component analysis
method to reduce the differences in the probability distribution of soil samples from
two or more regions, enabling the application of a model developed using samples from
one region to other regions. Wang et al. [20] adopted the transfer component analysis
method to analyse the distribution differences between artificial and natural samples



Water 2024, 16, 1439 3 of 16

to improve the regression accuracy under limited heavy metal samples data using an
expanded training dataset.

We have also made efforts to estimate the content of heavy metals based on transfer-
ring learning theory using remote sensing technology; however, a key issue on how to
alleviate negative transfers of training samples, which keep higher regression precision,
must be solved. Therefore, we proposed a novel inversion model for the retrieval of heavy
metal (e.g., element Cu) concentrations in topsoil based on a traditional TrAdaBoost al-
gorithm. This model should allow the accurate and efficient characterization of heavy
metal concentrations with less field-measured data by integrating the Landsat 8 image
spectrum and its transform spectrum, as well as a variety of auxiliary data. Reduced costs
and higher efficiency in characterising soil heavy metal contamination may facilitate more
robust efforts to prevent soil heavy metal pollution. Furthermore, our findings provide
information for decision-making within the context of land degradation and ecological
management, and restoration in mining areas.

2. Materials and Methods
2.1. Materials
2.1.1. Overview of the Study Area

The Daxigou mining area, approximately 4.33 km2 in Zhashui County, Shangluo City
of Shaanxi province in China, in the hinterlands of the Qinling Mountains, at an altitude of
1000–1600 m (Figure 1), is the case study in the paper.
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Figure 1. A map of the study area.

The mine is one of the largest siderite mines in China, accounting for 47.6% of the
total iron ore reserves in Shaanxi Province. In 1982, it was discovered that the Daxigou-
Yindongzi deposit was rich in Cu, Pb, Zn, Ag, and other minerals [21]. The mining
activity officially began through open-pit mining in 1988. The long-term mining activities
have severely impacted the land with heavy metal pollution, with the loss of ecological
integrity [22]. These changes warrant continuous monitoring of the mining area and its
surroundings for heavy metal pollution and the development of scientifically informed
strategies to address pollution effects.

The study area has a complex terrain with medium and low gullies, tectonically eroded
landforms, slag piles that are stacked in the valleys and waste dumps in the west and
north of the slope, which have had a great impact on the landform and landscape.Land use
types include mining areas, cultivated land, forestland, grasslands, industrial and mining
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facilities, and residential areas. Of these, the mining areas, industrial and mining facilities
and forestland account for most of the land area. Other categories cover a small portion.
The soils in the area have relatively high copper–lead concentrations.

2.1.2. Data Preparation
Heavy Metals Data

Soil samples were collected along the three main ridge lines, based on the charac-
teristics of terrain and land cover types of the study area, to ensure that they were fully
representative of the area. Most sampling points were in the middle of mountain slopes
and near valleys. Heavy metals accumulated in the valley soils due to erosion with a
sampling depth of approximately 20–30 cm, whereas the sampling depth in the middle
of the slope was approximately 10–20 cm. After sampling, an area of 30 m × 30 m was
isolated, and 1 kg of soil was extracted and placed in a dedicated sample bag. The WGS84
coordinates of the centre point of the sampling area for each sample were also recorded, as
were the soil properties and environmental parameters. Professional technicians, from the
laboratory of environmental testing center of Guolian Quality Inspection Technology Co.,
Ltd. in Xi’an, China, collected 44 and 43 soil samples using professional instruments from
the area in October 2017 and 2019, respectively. The distribution of the sampling sites is
shown in Figure 2.
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The soil samples were processed and analysed in the laboratory of the environmental
testing center of Guolian Quality Inspection Technology Co., Ltd. in China. The soil samples
were crushed, dried, and passed through a nylon sieve. Other methods, such as flame
atomic absorption spectrophotometer, were then used to characterise the concentrations of
common heavy metal elements in all the processed samples. The soils were then studied
for concentrations of Cu for subsequent use in the study, based on the extent to which the
detected values of heavy metal elements in the samples exceeded the background values of
heavy metal content in the soil, and the enrichment level of metals in the Daxigou-Yindongzi
polymetallic deposit. A histogram analysis of Cu content derived from field-measured soil
samples collected in 2017 and 2019, respectively, was performed to eliminate outliers.

Landsat 8 Multispectral Image and GIS Data

A radiometric correction on Landsat 8 multispectral image, followed by a geometric
correction was performed. The corrected Landsat 8 OLI image is shown in Figure 3.
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In addition, the spatial distribution of heavy metals in soil is influenced by various
factors, primarily terrain, human activity, and physical, chemical, and thermal factors. As
stated in [7], using remote sensing images alongside other data as auxiliary information
is necessary. However, acquiring additional auxiliary data is challenging. According
to previous studies [11,23], auxiliary data, including DEM and some other GIS data, are
beneficial in describing the spatial distribution of soil heavy metal concentrations. Therefore,
in this study, DEM data and GIS auxiliary data related to human activities in the area were
integrated with Landsat 8 satellite imagery.

2.2. Methodology
2.2.1. Analysing Factors Contributing to Cu Concentrations
Factors Derived from Landsat 8 Imagery

Vegetation coverage and clay minerals indirectly reflect the concentrations of heavy
metals in the soil [11,23,24]. According to Ref. [24], many studies have shown that good
correlations exist between vegetation indices and heavy metal concentrations. This is
primarily due to the vegetation’s root uptake of water and nutrients, which also include
heavy metals. Certain plants, like hyperaccumulators, can accumulate high concentrations
of heavy metals within their tissues, thereby reducing the overall soil concentration. Clay
minerals can also effectively adsorb heavy metal ions in the soil, reducing their mobility [25].

According to the arguments, the paper proposes a combination of Landsat 8 spectral
reflectance data and a variety of spectral indices and topographic data, alongside factors
affecting human activities (e.g., distance to mining areas and distance to roads). The
approach was intended to enhance the spatial characterisation of heavy metals in the soil,
reducing issues largely caused by the lack of spectral information from Landsat 8 images.
Additionally, the normalised difference vegetation index (NDVI), enhanced vegetation
index (EVI), soil-adjusted vegetation index (SAVI), and clay mineral ratio (CMR) were
selected as spectral indices. These spectral indices are listed in Table 1.

Table 1. Definition and application of vegetation indices based on Landsat 8 multispectral images.

Spectral Index Formula Description

NDVI (B5 − B4)/(B5 + B4) Describes the growth status and coverage of vegetation
EVI 2.5 × (B5 − B4)/(B5 + 6 × B4 − 7.5× B2 + 1) More sensitive to vegetation cover than NDVI

SAVI 1.5 × (B5 − B4)/(B5 + B4 + 0.5) Reduces the impact of soil background compared to NDVI
CMR B6/B7 Enhances rock mineral information in cohesive soil
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In Table 1, B2—Blue band, B4—red band, B5—near infrared band, B6 and B7 represent
two short wave infrared bands (SWIR1 and SWIR2) of Landsat 8 images. The four spectral
indices derived from Landsat 8 image are shown in Figure 4.
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Figure 4a,b,d, show that most of the study area was densely vegetated, with the mining
area and roads the least covered. Bare soil was observed in areas of sparse vegetation. The
NDVI, EVI, and SAVI vegetation indices enhanced the resolution so that the bare soil areas
could be characterised. The index of CMR enhances the rock mineral information in bare
land and cohesive soil, which is beneficial for identifying vegetation cover areas, roads,
and rock mineral enrichment areas. Figure 4c shows that there are significant differences in
CMR values between the mining areas, ore stacking areas, mining roads, and forestland.

Factors Derived from GIS Auxiliary Data

According to previous studies, e.g., [7,11,23,24], some auxiliary data can be supple-
mentary to spectral information of remote sensing imagery. In the paper, we introduced
four factors, shown in Figure 5a–d, derived from DEM data and a land use map, favourable
for retrieving heavy metal content in topsoil as shown in the following:
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(c) Aspect; (d) Slope.

(1) Distance to road: the higher concentrations of heavy metals in the soil along the
roads in the mining area because the ores and slag were dropped by vehicles carrying the
ores. (2) Distance to mining area. The closer to the mining area, the higher the heavy metal
content in the soil, and vice versa. (3) Aspect: it can reflect the differences in soil temperature.
Temperature changes the form and distribution of heavy metals in the soil by affecting soil
solid–liquid surface reactions, soil physicochemical properties, microbial processes, and
so on. Reflecting differences driven by the orientation of each slope. (4) Slope: the slopes
around the valley in the study area were relatively low, whereas other areas exhibited
varying slopes, enhancing differences in terrain undulation and steepness in the area.

In order to analyse the correlation between those auxiliary data and Cu content in soil
samples, in this study, we performed a correlation analysis on the five auxiliary variables,
namely, the elevation, slope, aspect, distance to the mining area, and distance to the road in
the mining area, with Cu content in topsoil, as shown in Table 2.
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Table 2. Correlation analysis of auxiliary data with Cu content in topsoil.

Factor Type Auxiliary Data
Coefficients

Cu

Terrain-related
Elevation 0.490

Slope −0.041
Aspect 0.300

Human activity related Distance to mining area −0.499
Distance to road in the mining area −0.103

Note: Here, the negative sign “−” in Table 2 represents a kind of negative correlation relationship that exists
between some of the influence factors and the concentrations of the Cu in topsoil.

As seen in Table 2, the elevation, aspect, and distance to the mining area reached
significant or extremely significant levels. Among them, the distance to the mining area
reached a highly significant level, with the highest negative correlation coefficient of
0.499 for Cu. This indicates that the closer the site is to the mining area, the higher the
content of the Cu element in the topsoil. According to the field survey, tramcars frequently
traverse the roads in the mining area, resulting in the accumulation of mineral dust, which
ultimately leads to an increase in the heavy metal content in the soil. Elevation values of the
mining area also exhibit highly significant correlations with Cu concentrations, reaching
a positive correlation value of 0.490. This indicates that the content of the Cu increases
with a rise in the altitude, which is related to the terrain conditions of the mining area:
samples with high heavy metal concentrations are typically found near the mining area,
where the elevation is high. The elevation value indirectly reflects the relationship between
the concentrations of heavy metals in soil and the distance to the mining site. The aspect
can inhibit rain from washing away the heavy metals in soil towards the bottom of the
mountain depending on the circumstance of vegetation growth. As shown in Table 2, the
aspect is correlated with heavy metal content, however, the correlation coefficient is lower
than that of elevation and distance to the mining area.

A visualisation of the relationship between the elevation, aspect, distance to the
mining area (in short, Dis_MA), NDVI, and Cu concentrations in topsoil is useful for a
more intuitive understanding of their relationships, as shown in Figure 6.
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Based on Figure 6, only the Dis_MA factor has a significant impact on the spatial
distribution difference of the Cu content; that is, the higher the content of Cu at a sampling
site, the lower the Dis_MA value. In addition, the correlation between the above several
factors is not apparent. This indicated that the conclusions drawn from the scatter plot
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in Figure 6 align closely with those of the correlation analysis in Table 2, and that it can
more intuitively reflect the correlation between Cu concentrations and various influencing
factors. In conclusion, the terrain-related factors and human activity-related factors in the
mining area in topsoil are favourable to retrieving Cu concentrations in the topsoil. This is
in addition to the use of spectral indices, such as NDVI, as highlighted in this study.

2.2.2. Our proposed Model for Cu Retrieval in the Topsoil
The Traditional TrAdaboost Algorithm

AdaBoost is a boosting algorithm commonly used for different classification tasks [12].
The basic idea was to continuously update the sample weights during the learning process
of the classifier parameters to generate different training sets. This assigns different weights
based on the correct and incorrect classification of the samples. Specifically, the weights
of the correctly classified samples were reduced, whereas those of incorrectly classified
ones were increased. The results of each classifier were weighted to obtain the final results.
However, when the samples are spatiotemporally distinct, the probability distribution of the
data varies, resulting in the sample weight update mechanism of the AdaBoost algorithm
exhibiting poor adaptability. Transfer learning involves transferring the information or
knowledge learned in the source domain to the target domain. Among them, sample
(instance) transfer learning selectively transfers samples from the source domain to the
target domain. In the training process of target model, different weights are assigned
to the samples from source or target domain, which can achieve an effective transfer of
information, such as cross-domain samples.

TrAdaBoost is an AdaBoost algorithm based on sample transfer learning [26] that
uses a different sample weight update method than AdaBoost. The TrAdaBoost regression
algorithm updates the weights of samples based on the error between the predicted and
measured values during the iteration process. In response to the issue of “even small errors
can lead to a decrease in weight”, in the sample update method of traditional TrAdaBoost
regression algorithms, Pardo et al. [27] proposed a two-stage sample weight update the
TrAdaBoost algorithm. The algorithm entails the gradual reduction of the source domain
sample weight to a certain threshold during the training process. The weights of the source
samples are frozen, and the weights of the target samples are updated.

Our Cross Time-Domain Transfer Learning Model Based on TrAdaboost for
Cu Concentrations

We used historical sample information measured in 2017 and prior information on the
soil heavy metal spatial distribution in the area, to compensate for the shortage of training
sample data in 2019. Therefore, a cross-time-domain transfer learning model based on
TrAdaboost algorithm for Cu concentration retrieval in the topsoil in 2019 was established
based on the TrAdaBoost algorithm proposed in [27]. The model is described as follows:

The training dataset DS = {xi, yi}n
i=1 in the source domain was acquired in 2017,

where xi(i ∈ [1, n]) is the feature vector of the training samples and yi is the corresponding
measured value, with a probability distribution of P(xS). The dataset DT = {xi, yi}m

i=n+1 in
the target domain was acquired in 2019. It was divided into a training dataset DT-Train and
a test dataset DT-Test. P(xT), P(xT) ̸= P(xS) is the probability distribution of the dataset.

Given a total training dataset DSTrain = DS ∪ DT-Train with a size of n + m, a decision
tree was chosen as the base learner of AdaBoost model, we constructed a crosstime-domain
sample transfer learning model based on the TrAdaBoost algorithm to predict the Cu
concentrations of unknown samples in target domain.

We defined a weight Wt = Wt
S ∪Wt

T using the total training set DST-Train at tth iteration
for the training of our model, where Wt

S =
(
wt

1, wt
2, . . . , wt

n
)

is the weight vector of the
training data in the source domain and Wt

T =
(
wt

1, wt
2, . . . , wt

m
)

in the target domain. The
parameter training algorithm of our model can be described as follows:

Input: The source dataset Ds and the target dataset DT.
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Set the following parameters, such as the total number of execution steps S, the
maximum iteration of the learning process N, and the K-fold of cross-validation;

Normalise the source dataset Ds and the target dataset DT;
Input the training dataset DST-Train and initialise the weight of each training sample as

w1
i = 1/(n + m), i ∈ [1, n + m];

For t = 1 to S do
Empty the base learner ft and normalise the weights of each training sample;
Train the parameters of the model and update the weight Wt

T using TrAdaBoostR2,
while keeping the weight Wt

S unchanged;
For k = 1 to K do
Construct a subset of Dk

ST-Train of DST-Train;
Train the model using training dataset Dk

ST-Train and calculate the predicted value of
test data using the TrAdaBoost algorithm;

For i = 1 to m + n do
Calculate the relative error et

i of ith training sample using Equation (1),

et
i =

∣∣∣yi − ( f t
i )

k
∣∣∣/et

max, where et
max = maxn+m

i=n+1

∣∣∣yi − ( f t
i )

k
∣∣∣ (1)

where ( f t
i )

k is the predicted value of Cu concentration of the ith training sample using the
tth base learner in the process of the kth fold cross-validation. yi is the actual measured
value of the ith sample;

Calculate the average error et over later n + m samples using Equation (2),

et = ∑n+m
i=n+1

wt
i e

t
i

∑n+m
i=n+1 wt

i
(2)

Define the weight βt of the base learner as Equation (3)

βt = et/(1 − et), (3)

Update the weight wt+1
i of the ith sample using Equation (4) by minimising et based

on the principle while keeping
m
∑

i=n+1
wt

i =
m

n+m + t
S−1 (1 −

m
n+m ) unchanged in the process

of cross-validation;

wt+1
i =

{
wt

i β
et

i
t /Zt, 1 ≤ i ≤ n

wt
i /Zt, n + 1 ≤ i ≤ n + m

, where Zt =
n+m

∑
i=1

wt
i , (4)

Resample X = {xi}n+m
i=1 using Bootstrap many times;

Update the weight Wt of the training samples in DT-Train using the base learner;
Output: The optimal weight W∗ of the training dataset, the optimal weight β∗ of the

base learner.
In this process, the decision tree was selected as the basic learner for regression.

Weights of each learner and each sample were constantly adjusted and updated in the
process of training using the K-fold cross validation (CV) method. With an optimal weights
W∗ and the optimal weight β∗ of weak learners, a final strong learner fT can be calculated
using weighted average method, and our sample transfer learning model was constructed.
Then, the value of Cu concentration at each unknown site in the study area can be predicted
using Equation (5),

ypred
j = model(fT , W∗), (5)

The main parameters were set as follows: a decision tree (the maximum depth was 4)
was selected as the base learner. The maximum number of iterations is 50. The learning
rate was set to 0.01. The loss function is linear. The initial weight was set as the reciprocal
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of the total number of training sets, i.e., 1/46 here. The total iterations S was 10. The
cross-validation fold is 5. For our cross-time-domain transfer learning model mentioned
above, training samples selected from samples collected in 2017 and 2019 with different
probability distribution.

2.2.3. Evaluation Metrics

Three measures, including the root-mean-square deviation (RMSE), goodness of
fit (R2), and relative prediction deviation (RPD) [24], were used to evaluate the perfor-
mance of our model. RMSE measures the deviation between the observed and measured
values, and the smaller its value, the higher the inversion accuracy of the model. RPD re-
flects the predictive ability of the model, and R2 reflects the fitting effect of the model, with
a value range of [0, 1]. A higher R2 is indicative of a better-fitting model. The calculation
formulae for the abovementioned indicators are shown in Equations (6)–(8).

RMSE =

√√√√√ N
∑

i=1
(ŷi − yi)

2

N
, (6)

RPD =

√
N
∑

i=1
(yi − ŷi)

2

(N − 1)2RMSE
, (7)

R2 =

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(ŷi − ŷi)

2
, (8)

In Equations (6)–(8), yi is the measured value of heavy metal concentrations (regarded
as the true value), ŷi is the predicted value of heavy metal concentrations, ŷi is the average
of all predicted values, and N is the total number of samples.

3. Results and Validation
3.1. Experiments

To evaluate the performance of the model proposed in this study, three groups of
the experiment were designed based on different training sample conditions, which were
compared with the traditional Adaboost [12] and the TrAdaBoost algorithm [27] under
different training strategies, as shown in Table 3.

Table 3. Experimental settings.

Group Item Purpose

A Training samples from only in 2019 To evaluate the performance of traditional Adaboost model in case of the
same probability distribution but fewer training samples.

B Training samples from all samples
collected in 2017 and 2019

To evaluate the performance of traditional TrAdaboost model in case of
different probability distribution but all of training samples.

C Training samples selected from samples
collected in 2017 and 2019

To evaluate the performance of our TrAdaboost model in case of different
probability distribution and a selective use of training samples by
transfer learning.

In the experiment group A, B, and C, the main parameters were same (details can
be seen in Section Our Cross Time-Domain Transfer Learning Model Based on TrAd-
aboost for Cu Concentrations). Our algorithm mentioned above was implemented in
Windows 10 using Python 3.7 programming language, and the PyCharm environment.
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3.2. Results and Validation

The accuracy of retrieving Cu concentrations in 2019 was evaluated using test set
collected in the field. To furthermore analyse the performance of our proposed model in
group C, the contrast to others in groups A and B were shown in Table 4.

Table 4. Comparison of the accuracy of our model to the two other experiments.

Group
Number of Samples Evaluation of Training Data Evaluation of Test Data

Training Test R2 RMSE RPD R2 RMSE RPD

A 31 11 0.82 7.30 1.95 0.60 7.84 1.64
B 46 11 0.74 11.78 1.93 0.55 8.33 1.37
C 46 11 0.78 10.83 2.51 0.66 7.24 1.76

As shown in Table 4, we can see 31 training samples from the same period in 2019 were
used to train the model in group A, and the R2 value of the training set reached 0.82 due
to the same distribution as that of the test set, while the R2 value of the test set was 0.60.
This indicates that the traditional AdaBoost regression model exhibits over-fitting under
these conditions; In group B, the training set was directly expanded, and 15 training data
points from 2017 were randomly added to the 2019 training data. We found that the
R2 value for the test set decreased from 0.60 to 0.55, and the accuracy of the training set
also decreased. It showed that traditional AdaBoost regression models do not perform
well (RPD ≤ 1.5); In group C, our model was used to selectively transfer the samples from
2017. Consequently, the R2 value of the test set increased to 0.66, the RPD was 1.76, and the
RMSE was 7.24 mg·kg−1. This indicates that the model reached an approximate standard.

Therefore, the following conclusions can be drawn: the accuracy of our proposed
model was not impacted by the samples driving the negative transfer in the source domain.
The selective use of effective training samples in the source domain improved the regression
accuracy of the model. It showed that the performance of our model on the test set data
has been improved compared with that of group A and B.

The mapping of the Cu concentrations in the study area using our proposed model as
in group C in the Tables 3 and 4 was shown in Figure 7.
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Figure 7 shows that the area was filled with higher concentrations of Cu, mainly in the
mining area and its surrounding areas. Cu was distributed in the soil along the roads in
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the northern and southern parts of the mining area, as the ores and slag were dropped by
vehicles carrying the ores. According to Ref. [28], the screening value of soil contamination
risk on agricultural land for Cu content is 50 mg·kg−1. From Figure 7, Cu concentrations in
the mining area (red colour) and a part of its out-ring (ore stacking area) exceeded the risk
value of soil contamination on agricultural land, but did not exceed the state standard of
soil environment background value in China. Thus, soil environment monitoring in the
area should be strengthened. In addition, this spatial distribution pattern is consistent with
the spatial distribution patterns of heavy metals obtained in previous studies [4,11]. Note
that a masking treatment was applied (white area) owing to the lack of soil on roads and
buildings in the study area.

4. Discussion

From Table 4, the R2 value for the training set is mainly better than that of the test
set, which shows the generalisation of our model is not enough. One possible reason is
that the data distribution between the training and the test sets is inconsistent, resulting in
insufficient generalisation ability of the model on the test set. In addition, it is relevant to
an inappropriate parameter setting, an insufficient dataset, and sensitivity to noise from
the dataset. However, the results showed that the accuracy of the regression model on the
test set data improved compared to two other groups.

To furthermore analyse and compare the performance of our proposed model in
group C with A, B, the estimated values of the model in this study were fitted to the
measured values, as shown in Figure 8a–c.
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Based on a comprehensive analysis of Table 4 and Figure 8, the following conclusions
can be drawn:
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In group A, the test set scatter points along the y = x line exhibited a relatively larger
deviation than those of the training set in the scatter plot. According to the evaluation
criteria of the model’s inversion ability [24], this indicates that the model has ordinary ability
in regression of heavy metal content (0.5 ≤ R2 ≤ 0.65 or 1.5 ≤ RPD ≤ 2.0) but does not meet
the approximate standard of the regression model (0.65 ≤ R2 ≤ 0.81 or 2.0 ≤ RPD ≤ 2.5).

In group B, the structure of the scatter plot represents the negative impact associated
with the cross-time-domain transferring of samples (i.e., training samples). This is because
of the significant difference in the probability distribution between the training and test
datasets. Therefore, either indiscriminately combining training sample data with different
probability distributions or setting the same weight for each sample is not conducive to
improving model accuracy.

In group C, the training data were the same as those of group B, however, the results
showed that the accuracy of our model on the test set data was improved compared with
the results of groups A and B. It proved that the selective use of effective training samples
in the source domain improved the regression accuracy of the model.

5. Conclusions

We propose a cross-time-domain transfer learning model to monitor heavy metal
pollution based on the traditional TrAdaBoost algorithm under the condition of a few
samples, which realised the effective transfer and reuse of samples collected in the historical
period in 2017 to the new monitoring period in 2019. This approach avoided problems
associated with sample collection costs and improved the efficiency at which long-term
soil monitoring efforts (i.e., within the context of heavy metals) can be conducted. By
comparing and analysing the regression accuracy of the model with the measured sample
data, several important findings were derived. The proposed cross-time-domain transfer
learning model, based on the condition of few samples, can selectively use sample data
obtained in the past to improve the regression accuracy of soil heavy metal content in the
new monitoring period when the number of training samples is limited. Additionally,
directly combining source domain samples with target domain samples does not improve
the model prediction accuracy. We found that the proposed model accurately estimated
the content of Cu in the topsoil of the mining area in 2019 and was more accurate than
the traditional TrAdBoost algorithm. The model holds potential for more accurate and
cost-effective monitoring of heavy metal pollution in soil, facilitating remediation-related
efforts. The spatial distribution of Cu concentrations in the study area obtained from this
model was consistent with those derived from previous studies, which further validates
the effectiveness of the proposed model in the study.
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