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Abstract: A high amount of nutrients can be found in urban wastewater (UW), which makes it
difficult to treat. The purpose of this research was to evaluate the potential of the aquatic macrophytes
Eichhornia crassipes, Pistia stratiotes, and Salvinia molesta in the treatment of UW. To evaluate the
potential of each macrophyte, phytoremediation bioassays were established; the hydraulic retention
time for each bioassay was 15 days. The physicochemical analysis of the water samples considered
pH, turbidity, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO),
chemical oxygen demand (COD), total carbon (TC), phosphates (PO4

3-P), nitrate (NO3-N), and total
nitrogen (TN). To evaluate the phytoremediation potential of each plant, the bioconcentration factors
(BCFs) and translocation factors (TFs) for NO3-N and PO4

3-P were evaluated. Likewise, the relative
growth rates (RGRs) and total chlorophyll production of the macrophytes were measured. The results
showed that the highest efficiency was achieved with the bioassays with E. crassipes, with removal
values of 69.7%, 68.8%, 58.7%, 69.4%, 56.3%, and 40.9% for turbidity, COD, TOC, PO4

3-P, NO3-N, and
TN, respectively. The phytoremediation potential results showed that, for BCF, the highest value was
4.88 mg/g of PO4

3-P with E. crassipes, and for TF, it was 6.17 mg/g of PO4
3-P with S. molesta. The

measurement of RGR and total chlorophyll for E. crassipes showed an increase of 0.00024 gg−1d−1

and an increase of 4.5%, respectively. On the other hand, the other macrophytes suffered decreases
in chlorophyll content and RGR. Thus, E. crassipes is defined as the macrophyte with the greatest
potential for the UW phytoremediation process.

Keywords: phytoremediation; floating macrophytes; eutrophication; nutrient pollution

1. Introduction

In recent decades, the world’s population has grown at an astonishing rate, and cities
have been constantly growing, causing a serious shortage of fresh water [1,2]. According
to the United Nations, around two-thirds of the world’s population currently faces water
scarcity [3]. On the other hand, as urbanization accelerates, wastewater-related problems in-
crease due to the discharge of untreated wastewater into various water bodies [4]. Pollution
reaching freshwater bodies in urban areas is a serious global problem [1].

Urban wastewater contains large amounts of nutrients (nitrogen- and phosphorus-
based compounds); when these waters are discharged into bodies of water, their effect is
harmful, directly affecting the deterioration of the trophic state of freshwater [2]. One of
the harmful effects is eutrophication; this occurs when there is an excessive presence of
nutrients, causing the proliferation of algae, some of which release toxic substances, such
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as cytotoxins, which represent a threat to humans, fish, and shellfish, as well as marine
mammals and birds [5,6]. Eutrophication can also change the composition of species in an
ecosystem, resulting in the loss of vital ecological services [7]. Additionally, the economic
impacts of eutrophication are significant and can include increased water treatment costs
and loss of recreational opportunities [7,8]. Mitigation of eutrophication in freshwater
bodies has been tested with a wide range of technical and regulatory approaches [9–11].
One of the factors that most limits the use of these techniques is usually their high cost [12].
This is why, in the last 40 years, plant-based treatment methods such as phytoremediation
have had a greater impact. Compared with biological and chemical treatment processes,
phytoremediation processes are more feasible and effective in most cases [13–15]. Phytore-
mediation is a plant-based process that absorbs or degrades excess nutrients in terrestrial
and aquatic environments. It is a profitable, sustainable, and environmentally friendly
technology; it can be used in artificial wetlands or hydroponic systems [16]. Artificial
floating islands (AFIs) are a variation of constructed wetlands [17]. They are structures
designed to float on the surface of a body of water and structured to develop plants whose
roots grow at the bottom of the water [18,19]; the vegetation can imitate natural wetlands
and perform multiple physical, chemical, and biological functions. For this reason, they
have been tested as an alternative for the treatment of wastewater from different polluting
sources [20–22] and used as an ecotechnology to mitigate eutrophication and improve
water quality [18]. AFIs have gained popularity as low-cost solutions [22].

AFIs are constructed using emergent and free-floating aquatic macrophytes, which
provide valuable habitats and theoretically improve ecological function [23]. The hydro-
ponic nature of floating macrophytes presents a significant advantage over traditional
phytoremediation treatment systems (constructed wetlands), since, in their extensive float-
ing rhizospheres, a greater surface area is available for biofilm growth [24]. Macrophytes
that have been used in wastewater phytoremediation include the following: Eichhornia
crassipes, Pistia stratiotes, Ceratophyllum dermesum L., Potamogeton perfoliatus, Lemna minor,
Limnobium laevigatum, Typa orientalis, Vertiveria zizaniodes, carrizo común, maná, malva de
Virginia, Salvinia molesta, Stuckenia pectinate, Phragmites australis, Alternanthera, Arundo donax,
Mentha Aquatica, Nelumbo nucifera, and Nymphaea [16,25]. In particular, the macrophytes
E. crassipes, P. stratiotes, and S. molesta have a significant advantage over other plants, due
to their exceptional nutrient uptake, resistance to pollution, and massive growth. Consid-
ered hyperaccumulator plants, they are efficient in capturing chlorides, sulfates, nitrates,
phosphates, carbonates, and heavy metals [26,27]. However, the mechanisms of absorption,
translocation, and transformation in these plants are not yet fully characterized [28], such
that there is disagreement about the nutrient elimination pathways (absorption or sedi-
mentation). Recent review articles have attributed the majority (50.8%) of nutrient removal
to sedimentation [29] and have concluded that “sedimentation caused by the root system
is the primary route for removal” [20]. However, there is no consensus on the criteria for
determining nutrient capture pathways. It is for all the above reasons that the objective
of this study was to evaluate the performance of Eichhornia crassipes, Pistia stratiotes, and
Salvinia molesta regarding the removal of NO3-N and PO4

3-P from urban wastewater using
artificial floating islands.

2. Materials and Methods
2.1. Description of the Study Area

The urban wastewater (UW) used in this study was taken from a body of water into
which various unregulated and untreated drainage discharges are discharged, located in the
urban area of Mineral de la Reforma, Hidalgo, Mexico (N 20◦6′33.790′′, W 98◦43′29.680′′),
where in the months of August to January the temperature can range between 4 and 24 ◦C,
and in the period where the experiment was carried out, the range was 17.5 to 21.3 ◦C. The
studies were carried out in batches, at a microcosm scale; the plants were placed in glass
containers and designated a protected area under shade that allowed adequate exposure to
air and sunlight.
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2.2. Construction of the AFI

The AFI was constructed using elbows and 0.5-inch PVC piping to form a 12 cm × 36 cm
outer frame, over which plastic mesh, jute fiber mesh, and plastic bottles were installed
(Figure 1A). The basal part of the plant rests between the plastic mesh and the jute mesh.
The first mesh serves as a support for the plants, and the second gives a better appearance
to the floating structures. The plastic bottles ensure that the structure remains floating and
are located under the PVC structure [30]. The aerial parts of the plants protrude above the
plant fiber, and the roots extend below the floating structure and towards the bottom of the
body of water.
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2.3. Selection of Macrophytes

The aquatic macrophytes E. crassipes, P. stratiotes, and S. molesta were collected from
a body of water in Veracruz, Mexico (N 18◦47′ 20.360′′, W 97◦11′′ 50.751). Healthy plants
were selected, with a length of 10 ± 3 cm above the roots and an average individual weight
of 20 ± 5 g.

2.4. Operation of Phytoremediation Bioassays

This research was performed in UW 20 L batch glass cells without water flow. There
were three plants in each glass cell. The experiments were carried out in a laboratory
with sufficient sunlight under a natural day–night regime, that is, 12 h of light and 12 h of
darkness. The experiments were carried out from 1 August to 15 December 2023. The plants
were acclimatized to the glass cells with tap water five days before the start of the study [28].
For the phytoremediation bioassays, the hydraulic residence time was 15 days. Sampling
was carried out at intervals of two days. The collected wastewater samples were transferred
to the laboratory for water quality analysis. Readings were recorded in triplicate, and the
average results obtained were expressed as means ± standard deviations. The GraphPad
PRISM® package (version 8.0.1) was used for the analysis of variance (ANOVA) to evaluate
the significance of differences, and the Student’s t-test was also used. Furthermore, a
p-value less than 0.05 was considered statistically significant.

2.5. Physicochemical Characterization of UW

Determinations of temperature, turbidity, pH, DO, EC, and TDS were made with the
portable multiparameter analyzer HANNA HI 9829. NO3-N concentrations were measured
with a nitrate test kit (Hanna Instruments HI97728B, Romania); for PO4

3-P, a phosphate
colorimeter (Hanna Instruments HI713, USA) was used. The determinations of TOC, IC,
and TN were quantified using a Shimadzu-brand total organic carbon analyzer (32442).
The 5220 D colorimetric method was used [31–33] to determine the COD.

2.6. Analysis of Water Samples

The collection, conservation, and physicochemical analysis of the samples followed
the procedures established in the Standard Methods [31]. The concentrations of DO, TDS,
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EC, COD, PO4
3-P, TOC, NT, and NO3-N, as well as pH and turbidity, were evaluated

during the retention time. Subsequently, removal efficiencies (E) were calculated using
Equation (1).

E(%) =

(
C0 − ct

C0

)
× 100 (1)

where C0 is the initial concentration of a contaminant (mg/L) and Ct is the final concentra-
tion of the same contaminant (mg/L).

2.7. Phytoaccumulation Evaluation

The ability of macrophytes to absorb and accumulate potentially toxic elements from
water can be described by the bioconcentration factor (BCF). The BCF is determined by
the relationship between the concentrations of toxic elements in the dry mass of the roots
of macrophytes and in the sediment generated in the water. The translocation factor (TF)
is defined as the ability of macrophytes to transfer potentially toxic elements from the
roots to the upper parts of the plant. In this study, the TF value was estimated as the ratio
between the concentrations of potentially toxic elements (NO3-N and PO4

3-P) in the leaves
of macrophytes and in the roots. BCF and TF values were calculated using the following
equations [34]:

BCF =
Croots

Cwater
(2)

TF =
Cleaves
Croots

(3)

where Croots and Cleaves represent the concentrations of NO3-N and PO4
3-P in the macro-

phyte tissues (mg/g) and Cwater is the concentration of NO3-N and PO4
3-P in the UW

(mg/L).
Bioaccumulation can be evaluated using BCFs and the following categories: 0.001

< BCF < 0.01, very weak absorption; 0.01 < BCF < 0.1, weak absorption; 0.1 < BCF < 1,
intermediate absorption; 1 < BAC < 10, strong absorption; and 10 < BCF < 100, intensive
absorption [35]. On the other hand, a TF value >1 indicates a good transfer system and
phytoextraction capacity [36]. A BCF >1 and a TF > 1 show phytoextraction capacity, while a
BCF >1 and a TF <1 may only show phytostabilization (phytoimmobilization) capacity [35].

To determine the concentration of NO3-N and PO4
3-P in roots and leaves, each plant

was cut and divided into roots, stems, and leaves; subsequently, these were dried in an
oven at 100 ± 5 ◦C for 4 h. Once the vegetative parts were dry, each part was ground in a
mortar and then passed through a 40-mesh mesh [37,38]. The powder obtained was stored
in polyethylene bags for the determination of nitrate and phosphate concentrations. For
this, 100 mg of sample was weighed, and 20 mL of distilled water at 80 ◦C was added. The
resulting solution was stirred for 30 minutes using a magnetic stirrer. Then, the resulting
solution was filtered through borosilicate membrane filters of 0.45 mm porosity [39]. The
method used to determine nitrates is based on the reduction that nitrate undergoes to
nitrite when passing through a cadmium column. The phosphate method is an adaptation
of the ascorbic acid method [40].

2.8. Evaluation of Growth Attributes in Macrophytes Exposed to UW

Each plant was weighed individually before the experiment, and at the end of the
hydraulic retention time, a digital scale (SOLI, USS-DBS15-5, IN) was used. The average
weight of three plants was taken as the effective fresh plant biomass, and the results were
expressed as relative growth rates (RGRs). For this, the logarithmic equation [41] was used
to express the relative changes in biomass over a period of experimental time (Equation (4)).

RGR
(

gg−1d−1
)
=

(
ln wt − ln w0

∆t

)
(4)

where Wt and W0 are estimated fresh plant biomasses and ∆t is a 15-day time interval.
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To estimate the total chlorophyll content, the leaves of each macrophyte were washed
and subsequently crushed in a mortar; 1 g of the crushed sample was taken and mixed
with 5 ml of 80% acetone. After grinding the sample, the content was brought to 50 mL
by adding more acetone solution and then centrifuged at 10,000 rpm for 30 min (Z 383,
Hermle LaborTechnik GmbH). Finally, the supernatant was separated, and the absorbance
was taken using a double-beam UV-Vis spectrophotometer (4001/4, Scientific™ GENESYS
20) at 645 and 663 nm, as described by Pérez-Patricio et al. [42] and Kumar et al. [43].

Total Chlorophyll
(

mgg−1
)
= (8.2 ∗ A663) + (20.2 ∗ A645) (5)

where A663 and A645 are the absorbances at 663 nm and 645 nm, respectively. The spec-
trophotometer was set to zero using 80% acetone.

3. Results and Discussion
3.1. Physicochemical Characterization of UW

Table 1 shows the average values for the physicochemical characterization of the
wastewater. The values were as follows: 1.63 mg/L for DO, 2639.5 µS/cm for EC, 781
mg/L for COD, 29.04 mg/L for PO4

3-P, 170 63 mg/L for TOC, 117 mg/L for NT, 22.6 mg/L
for NO3-N, 7.81 for pH, and 248 FTU for turbidity. Mendoza et al. [44] characterized
municipal wastewater from the city of Riohacha in Colombia, where the water had a pH of
7.60 ± 0.16 and the other values were as follows: DO: 1.19 ± 0.79, COD: 355 ± 115, NO3-N:
1554 ± 1694, and PO4

3-P: 2975 ± 2457. Similar values, such as those for pH, DO, and COD,
were found in this research. On the other hand, Kobir et al. [45] sampled urban wastewater
in Kushtia and Jhenaidah, Bangladesh. Determinations in the Kushtia municipal area
ranged between 0.21 and 1.24 mg/L, 97.33 and 592.34 mg/L, and 431.34 and 849.33 mg/L
for DO, COD, and TDS, respectively. In Jhenaidah Municipality, levels ranged between 0.34
and 1.72 mg/L, 55.33 and 491.67 mg/L, and 412.34 and 895.66 mg/L for DO, COD, and
TDS, respectively.

Table 1. Physicochemical characterization of the UW.

Parameter Value

Temperature (◦C) 17.4 ± 2.6
pH 7.81 ± 0.71

EC (µs/cm) 2639 ± 14.85
TDS (mg/L) 1319 ± 7.78
DO (mg/L) 1.63 ± 0.04

Turbidity (FNU) 248 ± 31.82
COD (mg/L) 741 ± 4.36
TOC (mg/L) 170 ± 3.73

PO4
3-P (mg/L) 29 ± 0.51

NO3-N (mg/L) 22 ± 1.06
TN (mg/L) 117 ± 0.45

The temperature range of water considered appropriate for the growth of aquatic
plants is 15 to 38 ◦C. A temperature of 20 ◦C is considered optimal, and the lowest value
that plants can withstand for their development is 6 ◦C [46]. The water temperature
throughout this study was 17.4 ± 2.6 ◦C, which shows that the phytoremediation process
was carried out under adequate conditions and that this factor did not significantly affect
the phytoremediation process.

3.2. Monitoring and Evaluation of Bioassays

Table 2 shows the parameters evaluated in the bioassays using E. crassipes, P. stratiotes,
and S. molesta.
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Table 2. Output values for phytoremediation bioassays.

Parameter E. crassipes P. stratiotes S. molesta

pH 8.3 ± 0.28 8.44 ± 0.02 8.39 ± 0.4
EC (µs/cm) 2943 ± 9.65 2885 ± 15.6 3007 ± 21.9
TDS (mg/L) 1479 ± 14.10 1417.5 ± 2.8 1463.0 ± 3.5
DO (mg/L) 1.6 ± 0.3 0.5 ± 0.0035 0.18 ± 0.008

Turbidity (FNU) 75.14 ± 24.7 94.24 ± 28.3 186.0 ± 29
COD (mg/L) 231.19 ± 26.8 285.28 ± 61 315.67 ± 26
TOC (mg/L) 70.21 ± 4.5 55.08 ± 2.7 84.92 ± 4.5

PO4
3-P (mg/L) 8.99 ± 0.51 8.99 ± 0.3 27.26 ± 0.7

NO3-N (mg/L) 9.61 ± 0.8 16.54 ± 1.5 20.28 ± 0.4
TN (mg/L) 69.14 ± 0.5 67.86 ± 1.3 81.67 ± 3.5

For the bioassays where only E. crassipes was used, there was an increasing trend in
some parameters; the increase was 6.3%, 11.5%, and 12.1% for pH, EC, and TDS, respectively.
However, the DO decreased by 1.8%. For the tests using P. Stratiotes (Table 2), it was
observed that the pH showed an increase of 8.1%, while EC increased by 9.3% and TDS
increased by 7.5%. On the contrary, DO values decreased by 69.3%. In the case of the
bioassays with S. molesta, the pH values increased by 7.4%, EC by 13.9%, and TDS by 10.9%;
however, DO decreased by 89% (Table 2).

Alkaline pH is favorable for wastewater treatment by aquatic plants [44]. During the
phytoremediation bioassays with the three macrophytes, an increase in pH from 7.81 to 8.4
occurred, indicating that the bioassays underwent alkalinization. In general, the experiment
was carried out at an optimal pH (7–8) for nutrient absorption and the biochemical reactions
of living organisms. The change in pH may have been due to the consumption of CO2
resulting from the photosynthetic activities of the macrophytes; on the other hand, in the
rhizospheres of plants, an imbalance may occur due to the absorption of cations and anions,
which can change the pH [44]. In the phytoremediation process with aquatic plants, various
mechanisms operate, the main ones being sedimentation and filtration of contaminants [46].
Due to these mechanics and alkalinization, an increase in TDS and EC may occur. For this
research, in the three phytoremediation bioassays, an increase in TDS and EC occurred,
which may have been due to the generation of carbonates and sediment generation.

DO dynamics for an aquatic system are often complex and considered an essential
component for assessing water quality. In this investigation, there were low DO concentra-
tions due to the concentration in the influent and probably because aeration in the systems
was not successful. The dissolved oxygen was higher before the treatment and tended to
decrease due to various factors; the most relevant in this context was the decomposition
of the plants; this reduces the amount of dissolved oxygen, and therefore it could also
have affected the performance of the treatment [47]. Similar observations were presented
by Mera and García [48], who treated urban wastewater with a pH of 5.5 and an EC of
156 S/cm; for the treatment with E. crassipes, the treatment time was nine days, the pH
increased to 8.17, and the EC was 256.4 S/cm.

3.3. Removal Efficiency of Physicochemical Parameters

The removal efficiencies for turbidity, COD, TOC, PO4
3-P, NO3-N, and NT can be seen

in Table 3.
For the bioassays with E. crassipes, efficiencies greater than 40% were achieved, and

for COD (68.8%), PO4
3-P (69.7%), and turbidity (69.7%), the efficiencies were close to

70%. The results obtained for the pollutant removal efficiencies by P. stratiotes (Table 3)
were mostly higher than 40%, except for nitrate removal, with only 24.8% removed. The
highest elimination achieved was for PO4

3-P, with a value of 67.6%. The bioassays with
S. molesta (Table 3) were diverse; the lowest efficiency achieved was 7.8% for NO3-N,
while the highest removal was 57.4% for COD. In comparison with the other bioassays,
significant differences were noted (p < 0.05). As can be seen in the present study, the three
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macrophytes can eliminate various contaminants. Still, it is E. crassipes that showed a
more extraordinary absorption capacity than the other aquatic plants. Mendoza et al. [44]
evaluated the potential of E. crassipes in the treatment of municipal wastewater over 14 days.
The wastewater had initial concentrations of 355 ± 155 mg/L of COD, 2975 ± 2457 mg/L of
PO4

3-P, and 1,554 ± 1694 mg/L of NO3-N. For the study, 40 liters were used per experiment,
and elimination efficiencies of 74.8%, 44.4%, and 21.1% were achieved for COD, PO4

3-P,
and NO3-N, respectively. These results are like those presented in our research; however,
the other group achieved higher removals, which can be attributed to the fact that more
plants were used in their research, with up to 16 plants per experiment.

Table 3. Removal efficiency of phytoremediation bioassays.

E (%) E. crassipes P. stratiotes S. molesta

Turbidity 69.7 ± 1.2 62 ± 7.0 25 ± 3.1
COD 68.8 ± 5.0 61.5 ± 14.1 57.4 ± 9.5
TOC 58.7 ± 0.1 59 ± 1.2 50.5 ± 1.6

PO4
3-P 69.4 ± 1. 4 67.6 ± 0.6 6.0 ± 1.8

NO3-N 56.3 ± 0.10 24.8 ± 0.2 7.8 ± 0.7
TN 40.9 ± 0.9 42.2 ± 2.4 30.2 ± 2.8

Cárdenas et al. [49] studied the purification capacity of Pistia stratiotes L. in the treat-
ment of synthetic waters, and the hydraulic retention time was nine days. The results
showed that there was an increase in pH (5.4 to 6.2) and DO (4.78 to 12.09 mg/L of O2).
The COD content was 214.8 mg/L, reaching an elimination of 40.8%. On the other hand,
Haydar et al. [50] evaluated the phytoremediation potential of P. stratiotes in the treat-
ment of municipal wastewater; the hydraulic retention time was eight days. The initial
concentrations were 451 ± 452 mg/L of COD, 1.4 ± 0.2 mg/L of phosphorus (P), and
37.5 ± 1.85 mg/L of Total Kjeldahl Nitrogen (TKN), and removal efficiencies of 80% for
COD, 88% for P, and 82% for TKN were achieved.

Mustafa and Hayder [51] evaluated the performance of S. molesta in phytoremediation
of domestic wastewater samples treated for 14 days, with a retention time of 24 h; the
efficiencies were 97.7%, 99.7%, 99%, and 90.6% for turbidity, phosphate, ammoniacal
nitrogen, and nitrate, respectively. In this research, a hydroponic system was used, which
kept the water in recirculation and under constant aeration, which could have allowed
greater removal of the macrophyte. On the other hand, Ng and Chan [52] investigated
the phytoremediation performance of S. molesta in an AFI; for this, they used a palm oil
manufacturing effluent, and the hydraulic retention time was 16 days. According to the
obtained results, turbidity decreased from 7.56 NTU to 0.94 NTU in just two days. The initial
concentration of phosphate was 3.5 mg/L, eliminating 95%; for COD, the concentration
was 9 to 64 mg/L COD, reaching an elimination of 39%. What this suggests to us is
that the conditions in which the phytoremediation process is developed using S. molesta
considerably affect the performance and that recirculation and aeration passively benefit
the elimination of contaminants.

3.4. Phytoaccumulation Evaluation

The BCF and TF values for nitrates and phosphates in the three macrophytes are
represented in Figure 2. The BCF values (Figure 2A) referring to nitrates for P. Stratiotes
and S. molesta were below 1; the highest value was 2.89 ± 0.23 mg/g with E. crassipes. The
BCF values for phosphates for E. crassipes were 4.88 ± 0.08 mg/g, and for P. stratiotes, they
were 3.48 ± 0.20 mg/g, which exceeded the value of 1, suggesting strong absorption by
these two macrophytes. S. molesta showed an intermediate absorption (0.1 < BCF < 1) with
0.15 ± 0.03 mg/g.
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Figure 2. (A) BCF values and (B) TF values for the three macrophytes.

The highest TF values (Figure 2B) were reached by S. molesta with 3.72 ± 0.61 mg/g
and 6.17 ± 0.21 mg/g for nitrates and phosphates, respectively. P. stratiotes reached values
of 1.38 ± 0.17 mg/g and 1.03 ± 0.06 mg/g for nitrates and phosphates, respectively. These
results suggest a high translocation capacity from the roots to the leaves. On the other
hand, E. crassipes reached values of 0.32 ± 0.12 mg/g and 0.46 ± 0.03 mg/g for nitrates and
phosphates, respectively. A TF < 1 indicates ineffective translocation.

The BCF results showed that the three macrophytes have a higher affinity for phos-
phates, which are considered important nutrients for vegetative reproduction. Vegetative
growth is the main resource for the assimilation of PO4

3-P. During the growth stages, plants
need PO4

3-P to develop their biomass [46], such that aquatic plants are more susceptible to
its assimilation.

The results suggest that S. molesta and P. stratiotes have a high translocation capacity for
toxic compounds and a high phytoextraction capacity. On the other hand, E. crassipes has a
low translocation transfer; this macrophyte has a tolerance strategy for toxic compounds
with a high retention capacity in the roots. This may be due to its long and dense roots,
which are responsible for absorbing nutrients and therefore act to intercept and absorb
suspended particles [50], which suggests that the mechanism of contaminant retention is
phytostabilization.

Wibowo et al. [53] investigated the bioaccumulation of E. crassipes and P. Stratiotes
using water contaminated with Fe and Mn; both plants showed that the bioaccumulation
of heavy metals is achieved in greater proportions in the roots: the BCF in the root of
E. crassipes was 0.075 mg/g, and in the root of P. stratiotes, it was 0.070 mg/g. The TF value
for E. crassipes was 0.85 mg/g, and that for P. stratiotes was 0.90 mg/g, indicating that the
plants are hyperaccumulator plants. One of the factors that could have affected the higher
concentration of heavy metals in the roots may have been that the roots were closer to the
source of metal ions, and, as in the aforementioned study, this suggests that the mechanism
used by these plants is phytostabilization.

Li et al. [54] studied the mechanisms underlying the uptake, accumulation, and translo-
cation of organophosphate esters and brominated flame retardants in a typically polluted
river using free water hyacinth. Passive absorption by the roots was the dominant route,
with a higher concentration of contaminants in the roots and the possibility of translocation
to the leaves. Translocation in water hyacinth also showed a close association with its degree
of bromination, but its accumulation in the roots showed anomalies, indicating possible
transformations. Plant biomass showed significant effects on root accumulation and translo-
cations in water hyacinth. Lao et al. [28] investigated accumulation and transformation
in E. crassipes through a series of hydroponic experiments to measure phosphate contents.
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It was discovered that phosphates can enter the roots of plants through passive diffusion
pathways, but they can also return to a solution when concentration gradients exist.

3.5. Effects of UW on Macrophyte Attributes

The bioavailability of nutrients within water is the most important factor affecting
plant growth [55]. In the phytoremediation experiments with the three macrophytes,
the UW contained significant nutrients that promote growth. However, different plant
growth parameters, such as total fresh biomass, total chlorophyll content, and RGR, were
significantly affected (p < 0.05) by the effluent concentration and its nutrient composition.
The total chlorophyll content for E. crassipes was 45.97 ± 0.8 mgg−1 fwt, and for P. stratiotes
it was 2.94 ± 0.1 mgg−1 fwt. For S. molesta, it was 2.20 ± 2.3 mgg−1 fwt (Figure 3A), and
the RGR for E. crassipes was 0.00024 gg−1d−1; however, for P. stratiotes, there was a loss of
biomass reflected in the decrease of 0.0046 gg−1d−1, and for S. molesta the biomass similarly
decreased by 0.018 gg−1d−1 (Figure 3B). These phenomena may have been due to the
composition of the UW, which tended to have an adequate nutrient content for E. crassipes
and to be toxic for P. stratiotes and S. molesta; this medium is unfavorable, since it affects
the growth of and causes necrosis in these plants.
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Figure 3. (A) Total chlorophyll and (B) RGR values for the three macrophytes.

The increase in total chlorophyll content for E. crassipes was like that presented by
Kumar et al. [56], who reported that the maximum total chlorophyll content for E. crassipes
was 1.50 ± 0.3 mgg−1fwt. It increased by 50% after 60 days of phytoremediation with
wastewater from the manufacture of pulp and paper. Photosynthetic pigments, such as
chlorophyll, in green plants are important components of the photosynthesis system. A
significant change in the number of pigments can have adverse consequences for the entire
metabolism of the plant through the degradation of membrane lipids and reactive oxygen
species, which implies that plants reduce their nutrient intake [41]. This research shows
that P. stratiotes and S. molesta plants exhibited a decrease in chlorophyll production, which
was related to a low removal of contaminants due to a decrease in nutrient intake.

Likewise, exposure to high concentrations of contaminants directly affects the growth
of aquatic macrophytes; they can have harmful effects, such as loss of biomass, wilting, and
leaf chlorosis, which leads to the RGR being directly affected. Singh et al. [57] studied the
effectiveness of E. crassipes for the reduction of heavy metals from highly toxic effluents of
the glass industry. The evaluation period was 40 days, and the total chlorophyll content
was 3.53 ± 0.11 mgg−1fwt and the RGR was 0.0026 gg−1d−1, showing that there was an
increase in biomass and an increase in chlorophyll generation.
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The nutrients present in UW act as food for plants and are essential for their growth.
The growth rate is directly related to the plant’s nutrient removal capacity. Aquatic macro-
phytes have the potential to double their biomass within 7 to 15 days [46], indicating that
RGR needs to increase. An increase in RGR is directly related to nutrient removal capacity.

The term “hormesis” refers to the increase in chlorophyll in certain aquatic plants
such as E. crassipes. Through this mechanism, they control an alteration of homeostasis
due to the induction of environmental stress. It is one of the defense mechanisms that are
stimulated in adverse environmental conditions [58]. Due to the hormesis mechanism and
the increase in RGR, it is evident that E. crassipes can adapt to toxic environments such as
UW, and, in the same way, a greater removal of contaminants by this plant is reflected.

4. Conclusions

The use of an AFI with floating macrophytes proved to be effective for the removal of
residual nutrients present in the UW utilized in this study. The selection of suitable plants
can help to create a system with greater removal capacity. Of the three macrophytes used,
it was observed that E. crassipes surpassed P. stratiotes and S. molesta in removal efficiency
with respect to turbidity (69.7%), COD (68.8%), PO4

3-P (69.4%), and NO3-N (56.3%), and
only in the elimination of TOC (59%) and NT (42.2%) did P. stratiotes achieve the highest
efficiency. In the uptake of nitrates and phosphates by the three macrophytes, greater
assimilation of phosphates was shown. These nutrients tend to be ingested by roots through
passive diffusion from a solution and transported to the leaves. However, for E. crassipes,
there was greater accumulation in the roots, which could indicate slower translocation.
However, P. stratiotes and S. molesta showed greater accumulation in the leaves, indicating
a higher translocation speed. Biomass generation and chlorophyll production in plants
were affected during the study period, with decreases in both P. stratiotes and S. molesta. On
the other hand, for E. crassipes, the RGR was 0.00024 gg−1d−1, and the total chlorophyll
production increased by 9.46%, which demonstrates its greater capacity for adaptation and
nutrient sequestration. Of the three macrophytes used, based on the parameters evaluated,
Eichhornia crassipes has the greatest potential. The impressive overall performance of
Eichhornia crassipes makes it the best candidate for AFI applications aimed at nutrient
remediation. However, this study investigated only three floating macrophytes, and
it would be necessary to expand this research by including different plants. Thus, its
applicability in other regions may be limited. Future studies should focus on investigating
AFIs in field experiments to understand their performance under dynamic conditions more
broadly. Furthermore, performing biomass nutrient analyses for large-scale AFIs will help
gain a deeper and more appropriate understanding to optimize the performance of AFIs.
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