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Abstract: Conservation tillage technology (CTT) provides a new solution to the problem of cultivated
land protection. Using effective policy tools to ensure that farmers adopt conservation tillage
technology is crucial to the sustainable utilization of cultivated land resources and the development
of agricultural modernization. This study aims to explore the decision-making and the dynamic
influence mechanism involved in using policy tools to influence farmers’ technology adoption
behaviors by constructing a theoretical framework. Based on survey data of farmers in Liaoning
Province, China, the Agent Belief–Desire–Intention (BDI) model is applied. The results show that
the implementation of policy tools promotes farmers’ adoption of CTT, but different types of policy
tools have different impacts on the decision-making behavior of farmers; a change in the intensity
of the policy tools will also cause differences in farmers’ behavioral responses. In addition, policy
tools must be implemented in a timely manner, as the number of farmers adopting CTT reaches the
maximum within 2–3 years. Based on the above research results, in order to effectively promote
farmers’ adoption of CTT, the government should pay attention to the role of information-inducing
policy and set flexible policy subsidies and punishment standards.

Keywords: conservation tillage technology; farmers’ technology adoption behavior; policy tools;
agent model; BDI structure

1. Introduction

Cultivated land resources are essential for human survival and production and a
non-renewable natural resource [1]. In recent years, due to long-term and intensive de-
velopment and utilization, the amount and quality of cultivated land have decreased
significantly, which poses a serious threat to the comprehensive grain production capacity
and the sustainable development of agriculture [2]. To effectively improve the ecological
resources and resolve environmental problems associated with cultivated land, the Central
Government of the People’s Republic of China emphasizes the innovation of the ecological
and environmental protection system, and the formulation and implementation of policy
tools, as the means and measures to solve such problems are crucial [3]. In the context of
cultivated land resources protection, conservation tillage has become an important tool, and
a major national strategy [4]. CTT originated in the United States and developed rapidly
after being introduced in China in the 1960s [4,5]. It is generally defined internationally
as the use of tillage technology to cover the ground with a large volume of straw residue,
restricting tillage to the period of guaranteed seed germination, and mainly uses pesticides
to control weeds, diseases, and pests [6,7]. Conservation tillage takes mechanized equip-
ment as the carrier, and straw residue mulching, tillage reduction, and no-tillage sowing
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technology are its core principles. It has the effects of improving soil quality and protecting
the farmland ecological environment [8–11]. However, the transformation of the agricul-
tural production model is not easy. On the one hand, the implementation of CTT is strictly
dependent on the guidance and support of national policies [12]; on the other hand, farmers
are not only the direct users of cultivated land and the implementers of farming technology,
but also the recipients of policies. The promotion of technology also requires the active
participation of farmers [13]. Since the beginning of the 21st century, the No. 1 Document
of the Central Committee of the Communist Party of China has repeatedly proposed and
encouraged the implementation of conservation farming; the central government has made
several investments to increase subsidies for the purchase of agricultural machinery; at the
same time, the Ministry of Agriculture and other relevant departments have successively
introduced straw burning control and reductions in pesticide and fertilizer usage. Such
policies encourage farmers to shift away from traditional farming behaviors [12,14]. Under
the combined effect of multiple policy tools, in 2017, the conservation tillage area in China
accounted for 5.62% of the total cultivated land area. However, the implementation of
the technology has not achieved the designated target; there is still considerable room for
development [4]. Therefore, research on farmers’ behavior and policy tools has attracted
the attention of academics and politicians [14], and it is of great significance to explore the
influence mechanism between policy tools and farmers’ technology adoption behavior.

At present, the existing literature mainly focuses on the following aspects. In terms of
conservation tillage, research has focused on the benefits of conservation tillage [8,15,16],
the status quo of its implementation, and the problems with its extension [4,9–11], etc. The
results show that it is of great significance to the improvement of cultivated land quality
and grain yield. However, there are still obstacles to the implementation and promotion of
this technology. In terms of farmer behavior, the existing results mostly discuss the factors
influencing technology adoption behavior in terms of internal and external factors. The
results show that farmer behavior is affected by internal characteristics and external key
factors [17–20]. In terms of policy tools, scholars often study the impact of policy tools on
macro land use changes [21–24] or explore a specific incentive policy [25–28]; some scholars
also research the effect of policy stimuli, proving that policies can effectively stimulate
farmers’ behavior [14,22,27,28]. In terms of the use of research methods, generally, simple
linear regression models such as logistic regression [29] or structural equation models [30]
are used for quantitative analysis. Although the existing literature has been studied in
depth, several aspects can be improved. The existing research focuses on the micro-level of
farmers, and there is little research on the influence mechanism of multiple policy tools
and dynamic changes in farmers’ behavior at the micro level. In terms of research content,
the existing research lacks a reasonable description of the overall decision-making process
of farmers and an analysis of the decision-making mechanism of farmers. Moreover, under
the effect of different policy tools, the exploration of the decision-making process involved
in farmers’ behavior is insufficient. In terms of research methods, existing studies by
most scholars use simple quantitative models to analyze the decision-making mechanism
of farmers’ behavior, but farmers’ decision-making processes have the characteristics of
being nonlinear, complex, and dynamic [17–20,29–31]. It is difficult to reflect the complex
decision-making process of farmers by applying simple linear regression models and
quantitative analysis; a combination with the dynamic simulation model method needs to
be considered.

In summary, this study will clarify the decision-making process involved in farm-
ers’ CTT adoption behavior under the influence of different policy tools based on the
Agent Belief–Desire–Intention (BDI) model structure. The policy tools considered in this
study can be divided into three types: information-induced, fund-subsidy, and control-
constrained. The structure of the Agent BDI model can reasonably describe the behavior
of farmers through their beliefs, desires, and intentions, and portray the complex relation-
ships between farmers and their dynamic decision-making process [32–37]. A theoretical
analysis framework for farmers’ technology adoption behavior is constructed. Taking
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CTT as an example, using the Liaoning Provincial Statistical Yearbook and 364 micro
survey data of farmers for empirical analysis, multiple linear regression models and Agent
simulation modeling methods are combined to construct a simulation model of farmers’
adoption behavior regarding CTT. Using the NetLogo 6.2.0 simulation platform, we de-
sign and implement simulation scenarios for the information-induced, fund-subsidy, and
control-constrained policy tools, and we explore the dynamic impact of them on farmers’
technology adoption behavior under different implementation intensities. This reveals
their behavioral impact mechanisms. In theory, this study enriches the CTT research
content by using a combination of econometrics and simulation models to study farmers’
adoption of CTT, move from qualitative analysis to dynamic analysis from the perspec-
tive of complex systems, clarify the mechanism and direction of the impact of multiple
policy tools, and provide new research ideas. In practice, the study is expected to offer a
theoretical basis for formulating diverse and flexible related policies, optimize targeted
policy tools to effectively increase the enthusiasm of farmers’ towards adopting technology,
provide a practical reference for mitigating the degradation of arable land, and promote
the sustainable production of food crops.

2. Theoretical Framework

Based on the existing research content and results [32,33,38], the agent of the farmer
is divided into four modules: knowledge base, perceptron, communicator, and decision-
maker. The interaction between the modules forms a closed loop, which can directly
reflect the state of the agent, as well as the external environment’s influence on it and
internal feedback. First of all, the knowledge base refers to the agent’s cognition, generated
by farmers under the continuous updating of internal characteristics and the external
environment, so that each farmer’s agent is heterogeneous. The internal characteristics of
farmers include factors such as individual characteristics of farmers and family resources.
The external environment includes policy tools and the influence of mutual information
exchange between agents. Secondly, the communicator indicates that the agent of the
farmer is interactive, able to receive information about the external environment and, at the
same time, display its technology adoption behavior. Thirdly, the perceptron indicates that
the agent can perceive changes in the external environment, thereby generating perceptual
behaviors and then updating the knowledge base. Finally, the decision-maker is the most
important component of the agent and can reflect the decision-making process of farmers
based on the BDI structure and generate technology adoption behavior [39–41].

The BDI structure is derived from the work of Bratman, a psychologist [39]. It shows the
agent’s decision-making process through their beliefs, desires, and intentions. Its advantage
lies in its ability to reflect the actual situation. A belief is generated when the agent under-
stands themselves and the environment; a desire is a state that the agent hopes to achieve,
but it may not necessarily be achieved; an intention is a goal that the agent most wishes to
achieve, a promised “desire”, and it influences the agent’s behavior [40,41]. The BDI has
been applied in the field of land use change research, such as urban development planning
simulation, farmer household land-use behavior simulation [42,43], etc. The knowledge
base, the communicator, and the perceptron work together as the decision-maker so that
farmers’ decision-making behavior generates feedback. Specifically, according to the con-
cepts and framework of Peirce, Bromley, and Del Corso from the American School of
Institutional Economics [44,45], the formation of a farmer’s “belief” depends on receiving
external environmental stimuli through the communicator and perceptron, combining
these with their knowledge in order to modify the agent’s beliefs and form a belief set (B).
On this basis, the agent of the farmer filters the belief set to produce a “wish”, i.e., the goal
that the farmer wishes to achieve the most, and then forms the wish set (D). Based on this,
the agent forms an intention set (I), which ultimately affects the behavior of the farmer
regarding whether to adopt protective farming techniques.

As an external factor, policy tools will directly act on the agent’s perceptions, thereby
changing the knowledge base of the farmer. In the context of information-induced policy
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tools, the government provides technical information to farmers through demonstration,
publicity, education, etc., which can enhance farmers’ technical awareness and farmland
protection awareness, and achieve the purpose of promoting technology [23,24]. They
can provide farmers with technical information. Regarding subsidized policy tools, these
refer to the government’s disbursement of capital subsidies to promote the enthusiasm of
farmers, such as the “Guiding Opinions on Agricultural Machinery Purchase Subsidies”,
which can appropriately alleviate the input costs in the farming process [25,26]. Farmers
enthusiasm towards technology adoption can thus be enhanced. Regulating and restrictive
policies can impose fines or ensure accountability among farmers who violate the regu-
lations of environmental quality standards and other policies and regulations to achieve
goals, such as the “Implementation Opinions on the Comprehensive Utilization of Crop
Straw and Banning Work” [27]; this can enhance farmers’ awareness of farming techniques
for cultivated land, etc. Therefore, this research hypothesizes that, under the influence of
policy tools, farmers are induced to adopt CTT technology, and the impacts vary. On this
basis, the theoretical analysis framework shown in Figure 1 is constructed, which presents
the cyclic mechanism of mutual influence between the modules of a single agent, and the
mechanism of action of external factors on the internal behavior of the agent.
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Figure 1. Theoretical framework of farmers’ adoption behaviors towards CTT based on Agent BDI
structure.

3. Materials and Methods
3.1. Study Areas

Northeast China is an important corn-producing area, known as one of the three major
black soil zones in the world. Liaoning Province is located in the south of Northeast China
(see Figure 2), with a total cultivated land area of 4.97 million hm2. Its black soil area
accounts for nearly 10.07% of the total area in Northeast China. It is a largely agricultural
province and a major grain production area. However, in recent years, the intensification
of the conflict between socio-economic construction and cultivated land protection has
introduced a threat to food security [46,47]. Changtu County, Jianping County, and Beipiao
City in Liaoning Province were selected as the study areas. Among them, Changtu County
is the key protected county with black soil. In 2017, there were 0.82 million farmers, and
it has been designated as a pilot area for the extension of CTT. Jianping County contains
barren land, with poor climate conditions, serious land desertification, and frequent ten-
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year droughts. In 2017, there were 0.46 million farmers. Beipiao City is located in the
transition zone between arid and semi-arid, with a severe lack of water resources. In 2017,
there were 0.43 million farmers. There are some problems in this area, such as a shallow
farming layer, soil hardening, a decline in organic matter content, and so on [48]. The above
areas are suitable for the implementation of CTT. Therefore, exploring farmers’ adoption
of CTT in this area can not only effectively promote the sustainable development of dry
farming agriculture, but also provide a theoretical and empirical reference for other areas.
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The basic data of this study were derived from a questionnaire survey conducted
from July to September 2017. The research group applied the farmer survey to obtain
the data. To ensure the reliability of the data, the survey was carried out according to
the methods of stratification and random sampling. During the survey process, first,
the research team and county-level agricultural and land management personnel jointly
analyzed the information of all towns in the selected county in the early stage, including
the promotion and application of conservation tillage technology, crop planting patterns,
and resources of farmers, etc. Second, the research team classified all towns and villages
based on the analyzed information and adopted a stratified sampling method to select
2–3 typical townships in the three survey areas. Several administrative villages, namely
Maojiadian Village, Baoli Village, Mayang Village, Shahai Village, Wujianfang Village, and
Quanju Village, were selected. A member of the farming community who was familiar with
the family situation was randomly selected for interview. The contents of the questionnaire
and interview included the basic circumstances of the farmers, family resources, policies,
and technology adoption. The research group distributed 380 questionnaires and recovered
364 valid questionnaires, including 113 in Changtu County, 88 in Jianping County, and 163
in Beipiao City, with an effective completion rate of 95.79%. The basic characteristics of
the farmers are shown in Table 1. In terms of personal characteristics, the sampled farmers
were older, mostly aged 40–60. The educational level of the villagers in the survey area
was low, and nearly 90% of the farmers graduated from primary and secondary school.
Village cadres accounted for 17.03% of the total sample. The attitude towards risk was
relatively varied, and there were more peasants with a risk preference, accounting for
45.05%; moreover, 85.44% of peasants had a herd mentality. In terms of family resources,
the average number of laborers in each family was roughly two, and the income of the
farmers was mainly derived from agricultural crop planting, accounting for 73.63%. The
number of farmland plots is less than 5, and only 20.33% of peasants have agricultural
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machinery and facilities; the scale of cultivated land is relatively small, and the sample of
less than 3.3 hectares accounts for 78.02%.

Table 1. Basic characteristics of sample (Unit: household, %).

Index Value Frequency Proportion Index Value Frequency Proportion

Age

Under 30 years old 14 3.85 Proportion of
agricultural income

<50% 268 73.63
30–40 years old 52 14.29 >=50% 96 26.37
41–50 years old 142 39.01

Net agricultural
population

0–1 people 127 34.89
51–60 years old 104 28.57 2–3 people 224 61.54

Over 60 years old 52 14.28 4 people 13 3.57

Education
Primary school 86 23.63

Fineness degree of
cultivated land

<=5 pieces 248 68.13
Junior middle school 249 68.41 5–10 pieces 98 26.92

High school
and above 29 7.96 10–15 pieces 16 4.39

Risk attitude
Risk preference 164 45.05 15–20 pieces 1 0.28

Risk neutral 90 24.73 >20 pieces 1 0.28
Risk aversion 110 30.22 Ownership of

agricultural
machinery

yes 74 20.33

Social stratum
Village cadres 62 17.03 no 290 79.67

Non-village cadres 302 82.97

Cultivated land scale

<3.3 hectares 284 78.02

Group
psychology

yes 311 85.44 3.3–6.7
hectares 43 11.81

no 53 14.56 >6.7 hectares 37 10.17

3.2. Research Method
3.2.1. Modeling Process

The basic component of the agent model is the “agent”. The agent usually has the four
basic attributes of autonomy, reactivity, initiative, and interactivity. It can autonomously
control its behavior and internal state, interact with other agents through communication
language, and perceive external environmental stimuli to “display” complex behaviors
such as learning, adaptation, etc. [34]. Compared with other models, the agent model can
flexibly describe the evolution of complex spatial systems “from bottom to top” in a visual
manner, portray the dynamic behaviors of interactive activities between farmers in the
complex system, and form an interactive “agent–environment” relationship within the
system, in order to explore in depth its influence mechanism and, finally, the global behavior
that emerges in a nonlinear manner according to their respective behavior rules [32–34].
Recently, the application of the agent model to study farmers’ behaviors has become a
research trend [35,36]. In this study, Netlogo6.2.0 simulation software was selected to build
the simulation model of farmers’ adoption of conservation tillage technology. The software
includes three parts: the user operation page, the model information page, and the routine
writing page [49,50]. The software has three types of agents. Firstly, turtles are agents that
can move within the simulation space according to instructions. In this study, turtles refer
to farmers. Secondly, tiles refer to the virtual world, i.e., the production and living area of
farmers. Thirdly, links are the connections between agents, i.e., the interactive connections
between farmers. The operation of the model is realized through a combination of program
settings and tools (buttons and sliders). The running time and speed of the model can
be controlled by the modeler. The simulation results can be observed via a monitor, or
a drawing curve can be generated using the software. Compared with other simulation
software, this program has the advantages of simple syntax, complete functions, and wide
coverage. It can reflect people in the real world on the network, and the agent can evolve
according to the behavior rules specified by the modeler. It is suitable for research on
farmers’ behavior. Moreover, the software has been widely used in fields related to land
use change, such as the evolution of farmers’ behavior [51–53].

Based on the above analysis and existing research results [50–52], the simulation
model process was designed with six stages, as shown in Figure 3. Firstly, the objective of
the simulation was to explore the evolution of farmers’ adoption behavior towards CTT
under the influence of policy tools. Secondly, we sought to determine the agent attribute:
in the initial stage, the main task was to create heterogeneous agents, including the number
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of agents, agent type, the initial attributes of the agent (belief, desire, and intention), and
an association between principles. To ensure that the model was consistent with the actual
situation, the main body of farmers was determined based on the data collected from
the farmer survey and statistical yearbook data relating to Liaoning Province. Thirdly,
we wished to establish the agent model by applying the Netlogo simulation platform,
importing the agent attributes and assigning values based on the simulation objectives, and
building a complex network of the agent representing the farmer, including basic attributes
such as agent distribution, communication, color, shape, and so on. Fourthly, we conducted
agent behavior refinement, including the setting of agent decision-making behavior rules
to study the farmers’ decision-making process and their behavior change rules based on
the BDI structure, in order to evaluate their behavior evolution; we also performed the
design of policy tools, wherein, according to the existing policies, three types of policy
tools were set up, namely the realization scenarios of information guidance, capital subsidy,
and regulatory constraints in the model. Fifthly, we conducted the simulation operation:
the simulation model could be directly realized on the computer through routine writing.
With time, the changes in agent attributes and the interactive relationship between agents
will be intuitively presented in the system. Finally, we generated simulation results. The
Netlogo simulation platform has three modules: control, input, and output. The simulation
results can be exported through the software’s drawing function to demonstrate the agent’s
evolution.

1 
 

 Figure 3. Simulation process for peasants’ adoption behaviors towards CTT.

3.2.2. Agent Attributes

The establishment of the agent model emphasizes the behavior rules of the agent.
Based on the above analysis, considering the reliability, effectiveness, and stability of the
model, combined with the existing research and data acquisition, the agent attributes of
farmers were set [32–36]. It is known that, in the process of selecting farming technology,
farmers mainly face two choices: using the current farming technology and adopting new
farming technology. The classification tree method can be used to roughly divide the
main body into three categories based on two criteria (whether to adopt straw mulching
technology and straw burning): set P = {“P1”, “P2”, “P3”} (see Figure 4). “P1” reflects
farmers who adopt straw mulching technology, “P2” refers to those who adopt straw
burning, and “P3” refers to farmers who use other straw utilization methods. In accordance
with the survey data, 364 agents were created in the model. In addition, considering the
contingency and reality of farmers’ communication, the composition of the farmers’ social
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network and technology adoption were obtained according to the survey. Each agent was
randomly assigned 1–5 agents with close contact, and the type was not limited. At this
point, there were 137 “P1” farmers, accounting for 37.64% of the total sample; there were
65 farmers in the “P2” category, accounting for 17.86% of the total sample; and there were
162 “P3” farmers, accounting for 44.50% of the total sample.
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3.2.3. Agent Behavior Decision

Based on the above theoretical analysis and framework construction, this research
adopted the BDI structure to describe and interpret the decision-making process involved
in farmers’ adoption of CTT. This included three stages. The first was the belief stage.
This refers to the generation of a certain set of beliefs under the influence of the farmers’
characteristics and the perception of the external environment. The second was the desire
stage: farmers will generate multiple sets of desires based on their farming goals (when
they have their own beliefs) and the choice of farming technology. The third stage involved
determining the intention: under the established beliefs, through the screening of the set of
desires, the intention of the farmers is finally determined. This has a direct effect on their
technology adoption behavior. The following paragraphs describe the specific process of
farmers’ decision-making behavior.

Belief (B)

Belief refers to the viewpoint or cognition held by the agent through the combination
of their perceptions of the external environment and its characteristics, and the belief set
is formed by updating the belief function under the constantly updated perception of
the external environment [39–41]. In the process of technology adoption, the external
environment perceived by farmers includes social networks, policy tools, and various
means by which farmers obtain agricultural technology information; the formation of
farmers’ features includes their characteristics and family resources, such as age, farming
population, degree of cultivated land fragmentation, and other factors [18–20]. The farmers’
belief function is constructed as follows:

BT = {PT, ET} (1)

PT =
n

∑
i=1

si × PTi (2)

ET =
n

∑
i=1

si × ETi+q2 (3)

In Formula (1), BT is the belief of farmers at time t; PT represents the characteristics of
farmers at time t; Et is the external environment perceived by farmers at time t. PTi is the
influencing factor of farmers characteristics; ETi represents the ith external environmental
factor; and q1 and q2 are error terms. In Formulas (2) and (3), Si represents the weight of
the ith influence factor. According to the above analysis, Table 2 shows the definition and
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description of the influencing factors. The adoption of straw returning technology was set
as the dependent variable. If adopted, the value is 1, and if not, it is 0. Age, educational
background, social class, risk attitude, number of farmers, fragmentation of cultivated
land, ownership of agricultural machinery and tools, the proportion of agricultural income,
awareness of environmental protection, and benefit cognition were set as independent
variables to adjust “belief”. According to the setting of relevant research variables, the
value was assigned based on a 5-level Likert scale and actual data.

Table 2. Variable description and statistical analysis.

Name Assignment Description Mean Standard
Deviation Minimum Maximum

Adopted or not Whether straw mulching technology is adopted?
1 = yes; 0 = no 0.376 0.485 0 1

Age What is your age? 1 =< 30; 2 = 30~40; 3 = 41~50;
4 = 51~60; 5 => 60 years old. 3.352 1.016 1 5

Education
What is your educational background?

1 = primary school and below; 2 = junior high
school; 3 = high school and above.

1.843 0.54 1 3

Social stratum Are you a village cadre? 1 = yes; 0 = no. 0.17 0.376 0 1

Risk attitude

Are you willing to take risks and losses in order to
obtain more income? 1 = totally disagree;

2 = disagree; 3 = General; 4 = relatively agreed;
5 = fully agree.

3.206 1.049 1 5

Number of farmers What is the number of pure business farmers in
your family? The value is 0–4 persons. 1.712 0.807 0 4

Farmland
fragmentation

What is the number of cultivated land plots in
your family? 1 =< 5; 2= 5~10; 3 = 10~15; 4 = 15~20;

5 = > 20 pieces.
1.372 0.606 1 5

Agricultural
machinery

Does your family have agricultural machinery
facilities? 1 = yes; 0 = no. 0.203 0.403 0 1

Proportion of
agricultural

income

What is the proportion of your family’s
agricultural income? 1 = 0–20%; 2 = 20–40%;

3 = 40–60%; 4 = 60–80%; 5 = 80~100%.
3.728 1.068 1 5

Environmental
awareness

Do you think straw mulching can protect the
environment? 1 = totally disagree; 2 = disagree;

3 = General; 4 = relatively agreed; 5 = fully agree.
3.887 0.945 1 5

Benefit cognition

Do you think straw mulching technology can
improve crop yield? 1 = totally disagree, 2 = not

quite agree, 3 = average, 4 = relatively agree,
5 = totally agree.

3.967 1.033 1 5

Desire (D)

Desire is combined with a belief in the state that the agent wishes to achieve or
maintain, and it is the initial motivation behind the agent’s behavior. Generally, the agent’s
wish is an expectation and judgment based on the current environment and state. The
agent can have multiple wishes, but not all of them will be realized [39–41]. When faced
with the choice of farming technology, on the one hand, as social citizens, driven by policy
constraints and a sense of social responsibility, farmers have a spiritual desire to protect
the natural environment. On the other hand, as “rational, economic individuals”, farmers
have a real desire to obtain the maximum income. However, due to the income from
straw treatment, this is not only reflected in the increase in capital income, but also in
the relatively long income period [7,54,55]. Therefore, this study only considered farmers’
activity-based costs under different straw treatment methods. Based on this, the farmers’
desire function is constructed as follows:

DT = {BT, Cα} (4)
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Cα =
cα
364

m=364

∑
m=1

Cm (5)

In Equation (5), DT represents the desire of farmers at time T; Cα is the relative cost
of straw treatment, i.e., the ratio of the activity cost of straw treatment per hectare to the
overall average cost, α. The values are 1, 2, and 3, which, respectively, represent the relative
costs of different straw treatment methods, i.e., straw mulching, straw incineration, and
others. cα is the cost of straw treatment for farmers; Cm is the total cost of straw treatment
for all samples; m is the total number of farmers, and the values are 1, 2, 3, ..., 364.

Intention (I)

The intention is the agent’s action trend and the key to whether the agent can take
action. Desire is the basis of intention, but intention is more specific than desire [37–41]. For
example, farmers who adopt straw mulching are more willing to seek information about
agricultural technology, and their initial intention value is greater. With the evolution of the
model, their intention was found to be more inclined towards maintaining the status quo.
For farmers who do not adopt straw returning, their initial intention value is small, but
their intention changes significantly during the evolution of the model. Generally, farmers’
decision-making intention is a function expressed comprehensively by belief and desire,
and its expression is:

ITβ
= {BT, DT} (6)

where ITβ
is the farmer’s intention at time T, and the farmer’s behavior is determined by

its intended value. The greater the intention value, the stronger the farmer’s intention.
Therefore, according to the characteristics of heterogeneous farmers, the behavior decision-
making rules of P1, P2, and P3 agents are set as shown in the Table 3. Specifically, farmers’
decision-making can be divided into three categories according to the change in their
intention value: if the current intention value is greater than the previous period, the main
body’s willingness to adopt conservation tillage technology is enhanced, and it is easy to
make random changes to the farming technology. If the current intention value is equal
to the previous period, this indicates that the agent’s intention to adopt technology has
not changed significantly. At this time, the technology will be selected according to the
adoption behavior of relatives and friends. If the current intention value is less than the
previous stage, farmers’ willingness to adopt technology will weaken, and the farming
technology is unlikely to change easily.

Table 3. Agent behavior decision rule description.

Intention Decision Characteristics Behavior Description

IT < IT+1
Random
selection

It is easy to make random
changes to farming

techniques.

P1: Maintain the status quo.
P2: Farmers randomly transformed into “P1” or “P3” type.

P3: Randomly transformed into “P1” type farmers.

IT = IT+1

Emulate
relatives and

friends

Easily influenced by
social networks to make

changes.

P1: If more than half of the “P2” and “P3” farmer are present, they will be
randomly transformed into “P2” or “P3” farmers.

P2: If more than half of the surrounding “P1” and “P3” farmers are randomly
transformed into “P1” or “P3” farmers.

P3: If more than half of the “P1” type farmers are present, they will be randomly
transformed into “P1” type farmers; If more than half of the “P2” type farmers are

around, they will be randomly transformed into “P2” type farmers.

IT > IT+1
Choose

carefully

It is not easy to change
the choice of farming

technology.

P1: If the intention value is greater than the average value of “P1”, follow the
example of relatives and friends; on the contrary, maintain the status quo.

P2: If the intended value is greater than the average value of “P2”, follow the
example of relatives and friends; on the contrary, maintain the status quo.

P3: If the intended value is greater than the average value of “P3”, follow the
example of relatives and friends; on the contrary, maintain the status quo.
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3.2.4. Policy Tool Simulation Scenarios

To achieve the research purpose, referring to the existing research simulation scenario
design [49–51], we controlled each group of experiments within 20 cycles. As each cycle
corresponded to one year, we were able to imitate the evolution of farmers’ adoption
behavior regarding conservation tillage technology over the next 20 years. At the same
time, in order to reduce random errors in the simulation process, the three types of policy
tools were designed to run 50 times at each implementation intensity; finally, the effective
data average of the successful runs was calculated as the final simulation result. To
observe the dynamic changes in farmers’ behavior under the implementation of information
guidance, fund subsidy, and regulation constraint policy tools, it is necessary to introduce
the implementation intensity in order to quantify the policy, i.e., the policy intensity referred
to in this study is the implementation intensity of government policy, which is unrelated to
its effect.

Scenario 1: The “information-induced” policy tool, as an external environmental
factor, can change farmers’ technical cognition and information acquisition [25,26]. Based
on this, the implementation of an information-induced policy can be used as an external
factor to change farmers’ beliefs and intentions and ultimately affect the main decision-
making behavior. The updated belief function is:

FBt+1 = (1 + µi)Bt (7)

where Bt+1 is the farmer’s belief at time t+1, and Bt is the farmer’s belief at time t; µ1 is
the implementation intensity of the information-induced policy. The change step of policy
intensity in the simulation scenario is 0.1; µ1 = 0 is the initial scenario without the effect of
the policy; when µi = 1, the policy implementation is the strongest, and µi = {0, 0.1, ..., 1}.

Scenario 2: The “fund-subsidy” policy tools generally include tax preferential policies,
agricultural machinery subsidy policies, etc. [27,28]. To reduce farmers’ operating costs
and encourage them to adopt CTT, at the same time, the implementation of the policy is
accompanied by the improvement of farmers’ technical cognition. Therefore, the design of
the simulation scenario will ultimately affect farmers’ decision-making by changing their
beliefs and aspirations. Its function is updated to:

FBt+1 = (1 + µ2)Bt (8)

FCt+1 = (1 − µ2)Ct (9)

where Bt+1 and BT are farmers’ beliefs at t + 1 and t, respectively; Ct+1 is farmers’ straw
treatment cost at t + 1, and Ct is farmers’ straw treatment cost at t. µ2 is the implementation
intensity of the fund-subsidy policy, and the value is {0, 0.1, ..., 1}. The value changes from
small to large, i.e., the implementation intensity of the policy changes from weak to strong.

Scenario 3: A “control-constrained” policy tool generally provides administrative in-
structions, such as incineration standards, and implementation methods include warnings,
fines, etc. [21,54]. It plays a warning role for ordinary farmers, while it is implemented for
farmers who use straw burning, which increases the farmers’ operating costs and improves
their awareness of cultivated land protection. Based on this, the design of the simulation
scenario can change farmers’ beliefs and wishes, and the function is updated as follows:

FBt+1 = (1 + µ3)Bt (10)

FCt+1 = (1 + µ3)Ct (11)

where Bt+1 is the farmer’s belief at time t + 1; BT is the farmer’s belief at time t; CT+1 is the
farmer’s straw treatment cost at time t + 1; Ct is the farmer’s straw treatment cost at time
t; µ3 is the policy punishment intensity, and the value is {0, 0.1, ..., 1}. It is worth noting
that, due to the differences in the main types of farmers, the policy is implemented for P2



Land 2021, 10, 1075 12 of 23

farmers, i.e., farmers’ beliefs and wishes are affected. For P1 and P3 farmers, only their
beliefs change, and this ultimately changes the farmers’ intentions.

4. Results
4.1. Model Checking

Based on the Agent model as a forecasting tool for real scenes, the validity, reliability,
and stability of the model needed to be tested. Therefore, we further tested the consistency
between the model prediction results and the actual survey results in a statistical sense,
using SPSS20.0 statistical analysis tools, and using a hierarchical chi-square test method to
test the results of the policy tool stimuli in the two groups. It should be noted that, due to
the limitations of field surveys, this process only involved a period of result verification. In
addition, the implementation intensity of the subsidy policy could be directly quantified
through field surveys. The implementation intensity of the subsidy policy in the survey
area was approximately 0.3, so only the results of such policy tools at an intensity of 0.3
were tested. The results showed that the “Breslow-Day Tarone’s” value was 0.732, the
“Cochran’s” value was 0.528, the “Mantel–Haenszel” value was 0.829, and the significance
test size of each index was greater than 0.05. These values indicate that the actual results
and the predicted results were not statistically different from each other, i.e., it passes the
inspection.

4.2. Farmers’ Decision Parameters

Based on the above-mentioned model construction, in this study, we standardized
the survey data in advance, i.e., the dependent variables and independent variables of
the survey data were standardized to eliminate the influence of differences in dimensions
and quantities, so that different variables were comparable. Then, SPSS20.0 software
was used for multiplexing. Linear regression was used to obtain standardized regression
coefficients, i.e., the impact factor coefficients. Normally, the factor coefficient is between
−1 and 1. By comparing the absolute value of the coefficient, the influence of each factor
is determined. The larger the absolute value, the greater the influence. To simplify the
model, the importance of the research setting factors could be determined by the weight
of the coefficient; the standard regression coefficient of a factor is the proportion of the
total standard regression coefficient, and the value range is set to a total value of 1. As
shown in the following Table 4, the regression results indicated that social class, agricultural
machinery, environmental awareness, and benefit perception all passed the 1% level of
significance positive test. Farmers’ age and cultivated land characteristics had a 5% level of
significant positive impact. Risk attitude was significant at the 10% level. The educational
background, the number of farmers, and the proportion of agricultural income failed the
test, so they were removed from the model construction. In addition, according to the
multicollinearity of the VIF detection variables, the maximum value of VIF was 2.384,
which was less than 10, indicating that there was no collinearity problem.

Farmers’ willingness is determined by their beliefs and operating costs. According to
the National Agricultural Product Cost and Benefit Collection (2018), the total cost of corn
crops in Liaoning Province was 13,659.60 yuan/ha, including production costs of 10,102.80
yuan/ha and land costs of 3556.80 yuan/ha. To reflect the differences in the operating costs
of different farmers, three types of relative production costs were introduced. For such
farmers, in addition to the basic production cost, an additional fee for the straw shredder
is required. Without considering multiple cropping, according to the market price of
agricultural machinery and the “Liaoning Provincial Statistical Yearbook (2018)”, the cost
of the straw shredder is generally around 600 yuan/ha. At the same time, straw mulching
on the field can reduce the use of chemical fertilizers. Referring to the existing research on
the cost of straw treatment [7,52,53], it is known that the cost of compound fertilizer per
hectare can be reduced by straw mulching on the field by around 30 yuan/ha. For similar
farmers, in addition to paying the basic production costs, straw burning can effectively
kill insects and sterilize the field under a high-temperature environment, thereby reducing
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pesticide use costs by 215.55 yuan/ha. For P3 farmers, the costs and cost savings of these
treatment methods are difficult to calculate, so we have not considered them here. As the
desire function is determined by the relative cost, the total average cost of the research
setting was set to 1, and the relative cost of each straw treatment method was calculated, as
shown in Table 5.

Table 4. Regression results and model settings.

Variable
Non-standardized Coefficient Standardization Factor

Significance
Model Setting

Coefficient Standard Error Beta Result Weight

Age 0.044 0.020 0.093 0.028 Keep 0.076
Risk attitude 0.038 0.019 0.083 0.051 Keep 0.068

Cultivated land
fragmentation 0.065 0.028 0.100 0.020 Keep 0.082

Social class 0.282 0.051 0.233 0.000 Keep 0.190
Agricultural machinery 0.241 0.049 0.208 0.000 Keep 0.170

Benefit perception 0.089 0.021 0.189 0.000 Keep 0.154
Environmental awareness 0.163 0.023 0.318 0.000 Keep 0.260

Education −0.021 −0.04 −0.024 0.582 Remove 0.000
Number of farmers 0.023 0.025 0.039 0.347 Remove 0.000

Proportion of
agricultural income 0.024 0.019 0.053 0.216 Remove 0.000

Constant −1.266 0.167 - - - -

Table 5. Costs of straw treatment methods for farmers.

Type
Basic Cost Cost Saving Total Cost

Relative Cost
Cost Structure Yuan/ha Cost Structure Yuan/ha Yuan/ha

Returning straw to the field (P1) Production cost
+ crusher cost 10,162.80 Compound

fertilizer cost 450.00 9712.80 1.013

Straw burning (P2) Production cost 9562.80 Pesticide cost 14.37 9347.25 0.981
Other types (P3) Production cost 9562.80 - - 9562.80 0.997

Total cost average 9591.3 1.000

From the above analysis, it can be seen that the initial intention value was calculated
according to the belief and desire in order to quantify the decision-making behavior of
farmers. For farmers who adopted the straw mulching technique, the initial intention value
was the highest, with an average of 2.697. For P2 farmers, their initial intention value was
the lowest, with an average of 1.840. For P3 farmers, the average intention value was 2.379.
Farmers’ decision-making behaviors are a process in which the subject’s perception of the
internal and external environments is transformed into internal cognition. Consequently,
different types of farmers have significant differences in environmental awareness and
technological cognition, as well as their ability to learn and accept new technologies in the
initial period. In addition, the main agricultural operation process of farmers is different
from the constraints of cost, individual cognition, and resources. This result is consistent
with modeling expectations.

4.3. Farmers’ Decision-Making Behavior under Information-Induced Policy

To explore the impact of policy on farmers’ technology adoption behavior, the main
behavior was observed from “horizontal” and “vertical” perspectives. Horizontal obser-
vation refers to the change in farmers’ main behaviors over time under the same policy
intensity; vertical observation refers to the change in peasants’ behavior with policy inten-
sity in the same period. The following Figure 5 shows that the implementation intensity
of the information-induced policy is µ1 = 1.0, reflecting the horizontal change process for
the agent’s decision-making behavior. On the whole, the curve of farmers’ adoption of
conservation tillage technology shows a changing trend of first increasing, then decreasing,
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and then becoming stable. In 1–3 cycles, the number of farmers adopting CTT increased
steadily, overlapping with the “not adopted” trend line for the first time. In the third cycle,
an “inflection point” appeared on the trend line. At this time, the number of agents adopt-
ing CTT reached the maximum, nearly 195, accounting for 53.57% of the total sample. Then,
during the third to sixth weeks of the simulation operation, the number of agents adopting
CTT decreased steadily. During this period, the number of two types of agents overlapped
for the second time, and, finally, the curve tended to flatten after the seventh year. At this
time, the number of agents adopting the technology was nearly 176, accounting for 48.35%
of the total sample.
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Figure 5. Dynamic process of change in quantity of agents in different periods under information-
induced policy.

Therefore, the support of an information-induced policy can promote farmers’ adop-
tion of CTT. The reason for this is that it is difficult to meet the requirements for the
acceptance, learning, and understanding of new technologies due to the limitations of the
age, educational level, and resources of farmers. The implementation of the policy can
effectively improve the overall quality of information consumer groups and their cognition
of the technical benefits, ecological benefits, and operational difficulties. Farmers with
high cognition levels are more likely to demand technology. In addition, the circulation of
agricultural technology information can effectively reduce the awareness of agricultural
risks and effectively solve the problems in production. However, the simulation results
show that an information-induced policy does not have a significant effect in the short term,
and it will take at least 3 years for the policy to achieve the best effect. The implementation
of an information-induced policy must be timely; it is only effective within a period of
1–3 years. Therefore, if we wish to meet the diversified information needs of farmers in
different periods, governments at all levels should exploit their communication channels
in order to ensure that relevant agricultural technology information is provided to farmers
in a timely and efficient manner.

The following figure shows the behavior changes of three types of farmers under
different policy intensities. It should be noted that the simulation results were obtained
from the average value of the third cycle of the implementation of the policy intensity after
several runs of the model. On the whole, with the increase in policy intensity, the number
of farmers adopting CTT increased significantly. Compared with P2 farmers, the impact of
the information-induced policy on P3 farmers was more significant. The behavior change
in these types of farmers is more obvious, and the P3–P1 curve is steeper than the P2–P1
curve. This shows that, for P2 farmers, the impact of a belief change on their behavior is
only auxiliary, and the impact of straw incineration is significant. The impact of this policy
on the change in agent cognition is limited. For P3 farmers, most of them adopt a wait-
and-see attitude at the initial time. Under the guidance of the information-induced policy
and the influence of social networks, stimulating their initial belief change can promote
their proactive behavior. In detail, when the policy intensity µ1 = 0–0.1, the change in the
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number of P1 farmers is the most obvious, and the change ratio of the P2–P1 and P3–P1
curves is 2:8. At this time, mutual communication among farmers has the greatest effect
on their behavior. When µ1 = 0.1–1.0, with the increase in policy intensity, the adoption
of conservation tillage technology also increases. During this period, the changes in the
three curves in Figure 6 (right) almost maintain a parallel trend. When the final policy
continues to strengthen to 1, the number of P1 agents reaches a peak, accounting for 52.20%
of the total. The results show that the implementation of the information-induced policy
has a positive impact on farmers’ technology adoption behavior. With the change in policy
intensity, the impact becomes increasingly obvious. Therefore, attention should be paid
to the leading role of the government in communicating information about conservation
tillage, improving the agricultural information service system, and filling the gap in farmers’
technical information needs. In addition, information transmission among farmers is also
a major factor to promote technology adoption. Farmers should carefully consider their
role in information dissemination, make use of the guiding role of pilot objects, and use
intuitive and efficient information dissemination methods to drive surrounding farmers to
change their farming methods.
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Figure 6. Dynamic changes in farmers technology adoption behaviors under information induction policies of different
intensity: (a) changes in the number of farmers; (b) changes in farmers’ technology adoption behaviors.

4.4. Farmers’ Decision-Making Behavior under Fund–Subsidy Policy

Figure 7 shows that the implementation intensity of the fund-subsidy policy is
µ2 = 1.0. From the changing trend of the curve, it can be seen that, over time, farmers’
adoption of conservation tillage technology has undergone significant dynamic changes,
and the trend line of the “adoption agent” still shows a changing trend of first increasing,
then decreasing, and then becoming stable. In the 0–2 cycle, the number of farmers adopt-
ing the conservation tillage technology increased sharply, and the behavior of 120 farmers
changed, accounting for 32.97% of the total sample. Moreover, there is an intersection
with the two trend lines for the first time during this period, and the number of “adopted
agents” is then always higher than the number of “unaccepted agents”. In the second cycle,
the only “inflection point” appears in the trend line. At this time, the number of farmers
adopting conservation tillage technology is the highest, nearly 252, accounting for 69.23%
of the total sample. Then, during the second to ninth weeks of the simulation operation,
the “adopted agent” curve decreased rapidly in the early stage and steadily in the later
stage, finally becoming stable after the ninth year. In the 9th–20th cycle, the fluctuation
range of the trend line is less than 5, and the number of agents adopting the technology is
nearly 197, accounting for 54.12% of the total sample.
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Figure 7. Dynamic process of the change in the quantity of agents in different periods under fund-
subsidy policy.

Therefore, the implementation of the fund-subsidy policy has a significant impact on
the adoption of CTT, but the effect of a single policy mechanism is not significant in the later
stage, and such policies still have some defects. As shown in the figure, in the second year
after the implementation of the fund-subsidy policy, nearly 70 farmers chose to abandon the
conservation tillage technology, and, finally, nearly 167 people did not adopt conservation
tillage technology. On the one hand, the policy must be implemented in a timely manner;
two years later, the fund-subsidy policy is unable to meet the current needs of farmers. On
the other hand, due to the simplification of designed subsidy methods, providing farmers
with fixed cash subsidies is conducive to the development of policies, but the incentive
effect for farmers is very limited, and they cannot meet the actual needs of all farmers.
Therefore, to maintain or improve the effectiveness of the policy, the government should
appoint professionals to carry out farmer censuses regularly or to dynamically observe
farmers’ agricultural costs and benefits and other relevant information through the big
data platform, to facilitate the timely adjustment of the policies.

To explore the impact mechanism of the fund-subsidy policy on farmers’ adoption
of CTT in detail, the model observed the changes in their main behavior under different
policy intensities. The results are shown in the figure below. The simulation results of the
second cycle after the model operation were finally obtained. From the transformation of
the number of entities (left of Figure 8), µ2 = 0–0.1, a small number of farmers changed
their behaviors because the social network and technical information update exert an effect
at this stage. When µ2 = 0.1–0.4, the numbers of three types of farmers fluctuate only
slightly, indicating that the fund-subsidy policy can only alleviate the pressure of some
activity costs, but it is difficult to encourage farmers to adopt the technology. When the
policy intensity increases from 0.4 to 0.7, the number of farmers who choose to adopt
straw mulching technology increases rapidly, which indicates that the implementation of
a fund-subsidy policy at this intensity can effectively stimulate farmers’ enthusiasm for
participation and successfully transfer the cost of some groups giving up straw mulching
with high mechanical costs. In addition, the number of P1 agents is much larger than that
of the other two agents; this demonstrates that the impact of the surrounding environment
on farmers’ behavior cannot be ignored. When µ2 = 0.7–1.0, the growth rate of the adopters
slowed down to 247 farmers, accounting for 67.86% of the total sample.

From the behavior change of heterogeneous agents (right in Figure 8), the three
curves maintain an upward trend, but there are obvious differences in the range of change.
According to the P2–P1 curve, there is a slow and steady upward trend. When the policy
intensity is 1, the curve reaches the highest point, and 38.46% of such agents change their
technology adoption behaviors. According to the P3–P1 curve, the curve change path is
consistent with the “total change” curve. At the peak of the curve, nearly 47.53% of P3
farmers changed to P1. When the “total change” curve reaches the peak, the proportion
of P2 and P3 agents is 22.73% and 77.27%, indicating that P3 farmers are more sensitive to
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subsidy policies. In conclusion, there are obvious differences in farmers’ behavior changes
under different fund-subsidy policy intensities. Therefore, the government should be
more flexible when formulating relevant fund-subsidy policies. The “one size fits all”
compensation standard cannot meet the interest demands of all farmers. According to
the simulation results, when the policy intensity is between 0.4 and 0.7, the efficiency
of mobilizing the change in agent behavior is the best. In addition, there are obvious
differences in the responses of farmers to the policy. Therefore, dynamic fund-subsidy
policies should be formulated pertinently and flexibly to avoid overly unified subsidy
standards.

Land 2021, 10, 1075 19 of 25 
 

  

(a) (b) 

Figure 8. Dynamic changes in farmers’ technology adoption behaviors under fund-subsidy policies of different intensity: 

(a) changes in the number of farmers; (b) changes in farmers’ technology adoption behaviors. 

4.5. Farmers’ Decision-Making Behavior under Control-Constrained Policy 

The implementation intensity of the control-constrained policy is μ3 = 1.0, and the 

change in farmers’ decision-making behavior is shown in Figure 9. Similar to the curve 

change trend under the above two scenarios, the “adoption agent” curve presents a 

change process of first increasing, then decreasing, then becoming stable. Specifically, 

during the 0–2 cycle of the model, the number of farmers adopting CTT increased sharply 

and exceeded the number of farmers not adopting CTT. In the second cycle, the curve 

reached the “peak”. At this time, the number of farmers adopting CTT was the highest, 

nearly 217, accounting for 59.62% of the total sample. In the second to seventh years of the 

simulation operation, the number of adopters decreased by a stable range of 8 to 10, and 

finally fluctuated within the same range in the seventh to twentieth years. At this time, 

the number of adopters was nearly 187, accounting for 51.37% of the total sample. The 

simulation results show that the control-constrained policy has a significant impact on 

farmers’ use of CTT in 1–2 years, but the effect gradually decreases after the second year. 

This shows that such policies are still time-effective, and some results can be achieved 

under the control of fines, monitoring, and the control of farmers in the short term; how-

ever, in the long term, there are still some farmers with no substantive and fundamental 

changes in their behavior. 

  

0

40

80

120

160

200

240

280

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

P1-Agents P2-Agents P3-Agents

Subsidy-policy intensity

N
u

m
b

er
 o

f 
h
o

u
se

h
o

ld
s 

/ 
h

o
u

se
h

o
ld

0

20

40

60

80

100

120

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Total change P2-P1 P3-P1

Subsidy-policy intensity

N
u

m
b

er
 o

f 
h
o

u
se

h
o

ld
s 

/ 
h

o
u

se
h

o
ld

Figure 8. Dynamic changes in farmers’ technology adoption behaviors under fund-subsidy policies of different intensity:
(a) changes in the number of farmers; (b) changes in farmers’ technology adoption behaviors.

4.5. Farmers’ Decision-Making Behavior under Control-Constrained Policy

The implementation intensity of the control-constrained policy is µ3 = 1.0, and the
change in farmers’ decision-making behavior is shown in Figure 9. Similar to the curve
change trend under the above two scenarios, the “adoption agent” curve presents a change
process of first increasing, then decreasing, then becoming stable. Specifically, during the
0–2 cycle of the model, the number of farmers adopting CTT increased sharply and ex-
ceeded the number of farmers not adopting CTT. In the second cycle, the curve reached
the “peak”. At this time, the number of farmers adopting CTT was the highest, nearly 217,
accounting for 59.62% of the total sample. In the second to seventh years of the simulation
operation, the number of adopters decreased by a stable range of 8 to 10, and finally fluctu-
ated within the same range in the seventh to twentieth years. At this time, the number of
adopters was nearly 187, accounting for 51.37% of the total sample. The simulation results
show that the control-constrained policy has a significant impact on farmers’ use of CTT in
1–2 years, but the effect gradually decreases after the second year. This shows that such
policies are still time-effective, and some results can be achieved under the control of fines,
monitoring, and the control of farmers in the short term; however, in the long term, there
are still some farmers with no substantive and fundamental changes in their behavior.

Furthermore, we explored the impact of policy intensity on farmers’ technology
adoption behavior. The simulation results of the main decision-making behavior in cycle 2
are shown in the Figure 10. On the whole, with the increase in the policy implementation
intensity, the number of P1 agents increased steadily, and the number of P2 agents and P3
agents decreased, indicating that the strengthening of policy implementation has a positive
impact on the policy’s effect. Policy intensity implementation µ3 = 0.1–1.0, and for every 0.1
increase in policy implementation, the average number of farmers adopting CTT increased
steadily by 8. In the dynamic situation of farmers’ behavior, when µ3 = 0.1–0.3, the three
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curves have no obvious fluctuation. When the policy intensity is strengthened from 0.3
to 1.0, the change range of farmers’ behavior also increases. When µ3 = 1.0, 50.77% of P2
farmers chose to adopt CTT, and 31.48% of P3 farmers changed their behavior. It is known
that the control-constrained policy is targeted, and it changes the “belief” and “desire” of
P2 agents, but it is ultimately still unable to eliminate the phenomenon of straw burning.
According to the simulation results, nearly 50% of farmers did not adopt conservation
tillage. Even under policy vigilance and financial constraints, farmers still chose straw
incineration, abandonment, and other treatment methods.
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Figure 9. Dynamic process of the change in the quantity of agents in different periods under control-
constrained policy.

Land 2021, 10, 1075 21 of 25 
 

  

(a) (b) 

Figure 10. Dynamic changes in farmers technology adoption behaviors under regulatory constraints of different intensity: 

(a) changes in the number of farmers; (b) changes in farmers’ technology adoption behaviors. 

4.6 Summary of Results 

According to the above results, the three types of policy tools, namely “information-

induced”, “fund-subsidy”, and “control-constrained”, have markedly different effects on 

the adoption of protective farming techniques by farmers under different implementation 

intensities. In terms of the time characteristics of the policy tools, when the unified inten-

sity of the three types of policy tools is 1.0, farmers’ behavior changes are the same on the 

whole, and the number of farmers adopting conservation tillage technology shows a trend 

of first increasing, then decreasing, then becoming stable. In detail, there are differences 

in the time-effectiveness of the policy tools. The information-induced policy is most effec-

tive only in the third year, which is one year later than the other two types of policy tools. 

After the 9th year, the fund-subsidy policy has a stable effect, which is two years longer 

than the other two types of policy tools. In terms of the characteristic of policy implemen-

tation intensity, the effects of the three types of policy tools on farmers’ technology adop-

tion behaviors vary. For information-induced policies, the higher the intensity, the 

stronger the effect, showing a steady upward trend. For the fund-subsidy policy, the effect 

of the impact presents a trend of rapid growth initially, followed by slow growth. When 

the intensity is between 0.4 and 0.7, the effect of changes in farmers’ behavior is the best. 

Regarding control-constrained policies, they tend to have small effects in the early stage 

and larger effects in the later stage. When the three types of policy tools achieve the best 

impact, the numbers of farmers adopting CTT are 190, 247, and 221, respectively. The spe-

cific situation is shown in Table 6. 

Table 6. Comparison of simulation results. 

Type 

Time Characteristics Strength Characteristics 

Features Timeliness 
Stationary 

Period 
Features 

Optimal 

Strength 

Optimal 

Strength Util-

ity 

Information-in-

duced  
Increase 

first, de-

crease, 

One to three 

years 

Seven years 

later 

The effect gradually increases 

with intensity 
1.0 190 adopters 

Fund-subsidy 
One to two 

years 

Nine years 

later 

The effect is multiplied by the 

rapid increase in the early 
0.4–0.7 247 adopters 

0

40

80

120

160

200

240

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

P1-Agents P2-Agents P3-Agents

Punishment-policy intensity

N
u

m
b

er
 o

f 
h
o

u
se

h
o

ld
s 

/ 
h

o
u

se
h

o
ld

0

20

40

60

80

100

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Total change P2-P1 P3-P1

Punishment-policy intensity

N
u

m
b

er
 o

f 
h
o

u
se

h
o

ld
s 

/ 
h

o
u

se
h

o
ld

Figure 10. Dynamic changes in farmers technology adoption behaviors under regulatory constraints of different intensity:
(a) changes in the number of farmers; (b) changes in farmers’ technology adoption behaviors.

The reason for the above is that the policy implementation measures are too formal.
It is necessary to pay attention to the effectiveness of the implementation of control and
restraint policies. Most of the existing policies involve the surface management of farmers,
i.e., “treating the symptoms but not the root cause”. When the government issues orders
or instructions with too little punishment, on the one hand, farmers’ cultural literacy,
low awareness of environmental protection, and blocked access to information limit their
technology choices. Most of them choose to ignore warnings and slogans, resulting in a
lack of participation in low-intensity control policies. On the other hand, taking the straw
returning technology as an example, farmers in Northeast China have a large annual straw
output and spend a great deal of money to dispose of straw, which reduces the economic
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benefits. Due to the high operation cost and great technical difficulty, even if farmers fully
realize the importance of conservation tillage and the seriousness of straw burning, to
maximize their benefits, they must bear the cost of fines; local incineration will also be
selected. Therefore, the use of mild punishments does not ensure farmers’ awareness of
the seriousness of the situation.

4.6. Summary of Results

According to the above results, the three types of policy tools, namely “information-
induced”, “fund-subsidy”, and “control-constrained”, have markedly different effects on
the adoption of protective farming techniques by farmers under different implementation
intensities. In terms of the time characteristics of the policy tools, when the unified intensity
of the three types of policy tools is 1.0, farmers’ behavior changes are the same on the
whole, and the number of farmers adopting conservation tillage technology shows a trend
of first increasing, then decreasing, then becoming stable. In detail, there are differences in
the time-effectiveness of the policy tools. The information-induced policy is most effective
only in the third year, which is one year later than the other two types of policy tools. After
the 9th year, the fund-subsidy policy has a stable effect, which is two years longer than
the other two types of policy tools. In terms of the characteristic of policy implementation
intensity, the effects of the three types of policy tools on farmers’ technology adoption
behaviors vary. For information-induced policies, the higher the intensity, the stronger the
effect, showing a steady upward trend. For the fund-subsidy policy, the effect of the impact
presents a trend of rapid growth initially, followed by slow growth. When the intensity
is between 0.4 and 0.7, the effect of changes in farmers’ behavior is the best. Regarding
control-constrained policies, they tend to have small effects in the early stage and larger
effects in the later stage. When the three types of policy tools achieve the best impact, the
numbers of farmers adopting CTT are 190, 247, and 221, respectively. The specific situation
is shown in Table 6.

Table 6. Comparison of simulation results.

Type

Time Characteristics Strength Characteristics

Features Timeliness Stationary
Period Features Optimal

Strength

Optimal
Strength
Utility

Information-
induced Increase first,

decrease,
then stabilize

One to three
years Seven years later The effect gradually increases

with intensity 1.0 190 adopters

Fund-subsidy One to two
years Nine years later

The effect is multiplied by the
rapid increase in the early stage

and the slow increase trend in the
later stage

0.4–0.7 247 adopters

Control-
constrained

One to two
years Seven years later

As the intensity increases, the
utility is smaller in the early stage

and larger in the later stage
>0.3 247 adopters

5. Conclusions and Discussion

In this study, we construct a theoretical framework of farmers’ adoption behaviors
towards CTT, based on the Agent BDI model, using survey data of Liaoning Province, and
taking the straw mulching technology as an example; we also apply the NetLogo simulation
platform to simulate the complex, dynamic effects of policy tools on farmers’ adoption
of CTT. The results show that (1) the three policy tools, namely information-induced,
fund-subsidy, and control-constrained, have a positive impact on farmers’ decision-making
behavior. These three types of policy tools are all time-sensitive. Within 2–3 years of
implementing the policy, the number of farmers adopting CTT will reach the maximum.
However, over time, the effect is significantly weakened. and stabilizes in the 7th or 9th
year. (2) The greater the intensity of the implementation of the information-induced policy,
the steadier the increase in the number of farmers adopting CTT. This shows that changing
the subject’s beliefs and eliminating the constraints of personal characteristics and resource
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factors can continue to have a significant positive impact on farmers’ decision-making
behavior. Regarding the fund-subsidy policy, when the government subsidy amount is
between 40% and 70% of the operating cost, the agent’s “belief” and “desire” change at the
same time, and the main body’s response is most notable; the policy continues to increase,
but the impact of continued policy intensity slows down. For control-constrained policies,
when the penalty amount is higher than 30% of the operating costs, the effect is more
significant. The impact of policy stimulus on the agents of farmers is different. (3) For
straw burning farmers, the significance of the policy response effect is “control-constrained
> fund-subsidy > information-induced”; for farmers who use straw mulching, the response
effect is in the order of “fund-subsidy > control-constrained > information-induced”.

The above conclusions confirm the hypothesis of this study that policy tools have
a positive impact on farmers’ adoption of CTT, but the impacts are not the same. The
following policy insights can be obtained: first, attention should be paid to the positive role
of the information-induced policy, and farmers’ limitations regarding technical information
knowledge should be eliminated. Local agricultural service publicity departments should
deliver agricultural technical information to farmers in a timely and efficient manner, fill
in the agricultural information gaps via multiple channels and methods, guide peasants
to dialectically assess conservation agriculture, and change farmers’ traditional farming
thinking. Second, it is necessary to improve and refine the fund-subsidy policy mechanism
to reduce the limitations of farmers’ breeding costs. To increase farmers’ enthusiasm for
conservation farming, combined with local farming conditions, it is necessary to establish
a diversified compensation standard, appropriately increase the number of subsidies,
and establish a targeted differentiation policy mechanism for subsidies, so that farmers
are less affected by resource and production cost constraints. Third, it is necessary to
implement and strengthen control policies and substantively guide farmers to participate
in the transformation of breeding technology. The effective combination of government
supervision and social supervision will strengthen the governance and control capabilities
of local governments and intuitively increase awareness of education-related laws. It
is crucial to stablish and clarify policies and punishment standards, combine modern
advanced technology, and appropriately control farmers’ behavior.

This study also has some limitations, which might open up avenues for future research.
First, the research results show that the CTT adoption behavior of farmers is dynamically
affected by various policy tools, but in reality, the change in farmers’ behavior is not affected
by a single policy tool. Therefore, it is necessary to strengthen the mixed research of policy
tools and analyze their impact and effectiveness in depth. Second, the research only
emphasizes the primary quantification of policy characteristics, because policy formulation
is a relatively complex process, accompanied by high administrative costs, human resources,
and material resources. Therefore, expanding the model to establish a direct connection
with the real situation, strengthen the rationality of policy tool design, and obtain a more
scientific policy standard are areas that need further research in the future. Third, this
study uses three policy tools to examine scenarios to explore farmers’ technology adoption
behavior, and there are limitations in the choice of policy tools and simulation models.
Specifically, policy tools have a positive impact on farmers’ adoption of CTT. However, this
study finds that policy tools have obvious effects only in the short term. Therefore, the
effects of long-term policy tools need to be explored, and it is necessary to strengthen mixed
research on policy tools to obtain more scientific policy standards. These are additional
areas that need to be further explored in the future.
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