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Abstract: Ecosystem service value (ESV) is a crucial indicator for evaluating ecosystem health, and
identifying its spatial driving factors will help to provide scientific decision support for ecological
protection and restoration. This study took the Liuxi River Basin in China as the research object
and used the value equivalent method to estimate regional ESV. In the process of using the Geode-
tector model (GDM), the study area was spatially stratified by using the local bivariate spatial
correlation pattern to mine the potential driving factors of ESV. The results show that: (1) From
2005 to 2018, the total value of ecosystem services in the Liuxi River Basin showed a fluctuating
and increasing trend. ESV had high-value aggregation in the northeastern mountainous areas with
high green space coverage and high river distance accessibility and low-value aggregation in the
central and southwestern urban areas with frequent human activities. Its spatial heterogeneity
and aggregation patterns were of statistical significance. (2) The spatial distribution characteristics
of ESV were affected by various driving factors to varying degrees. The order of their degree of
influence on ESV was per capita green area > slope > the proportion of urban and rural human
settlements > river distance accessibility > population. (3) Compared to the previous study, the
stratification method employing the local bivariate spatial correlation pattern more fully considers
spatial autocorrelation and spatial heterogeneity. It effectively captured the spatial explanatory power
of driving factors. This study can provide new ideas for capturing the driving mechanisms of ESV and
insights into the sustainable development of the ecological environment in other regions with similar
characteristics worldwide.

Keywords: ecosystem service value; spatial correlation pattern; spatial heterogeneity; driving factor

1. Introduction

There is a universal coupling relationship between human activities and the health
of the ecological environment [1]. As natural resources and assets, ecosystems play an
important role in human survival and development [2]. Natural constraints and social pref-
erences are necessary for maintaining ecosystem health [3]. The benefits to human beings
from ecosystem characteristics, functions, or processes can be represented by ecosystem
service values (ESV). ESV also represents services and products that directly or indirectly
contribute to humans [4,5]. It is often used as a common indicator to characterize ecosystem
change in measuring the interaction between ecosystems and human activities [6]. Current
ecosystem services are increasingly unable to withstand the pressure of continued socioeco-
nomic and population growth in China [7]. Therefore, using ESV to measure ecosystem
health facilitates people’s intuitive understanding of ecological conservation and provides
effective guidance for harmonious coexistence between humans and nature.

ESV and its sustainability are often key criteria for evaluating ecosystem health [8,9].
Currently, the commonly used methods for estimating regional ESV mainly include the
functional value assessment and the equivalent factor assessment. In particular, the func-
tional value assessment method evaluated some key service functions through a series of
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biological equations and parameters, such as food production, carbon sequestration, oxygen
production, water conservation, soil conservation, recreation, and habitat provision [10–13].
Although this method can measure the number of service functions more accurately, the
calculation process is complicated and can bring uncertainty to the assessment if it lacks a
careful consideration of the regional ecological background [4,14]. The equivalent factor
assessment method can directly link regional land use and ecological quality [15,16]. Such
a method is more convenient for assessing the spatial-temporal distribution of ESV in
regional and global studies [17]. This method has been widely used in evaluating ESV in
China, including provisioning services, regulating services, support services, and cultural
services [7]. Therefore, this study selected the equivalent factor assessment method to
estimate the ESV.

Evaluating the ESV cannot form adequate ecosystem management decision sup-
port [4,18], and only determining which factors influence its status can benefit ecosystem
management and restoration [19,20]. The current research on factors influencing ESV
mainly involves natural condition factors and human activity factors. Natural condition
factors come from within the ecosystem and directly impact the ecosystem [21,22]. Human
activity factors cause unsustainable resource depletion, reduce the quantity and quality of
natural resources, and put pressure on the natural environment [23]. In order to improve
ESV, it is crucial to understand how ecosystem services respond to natural conditions and
drivers of human activities [24]. Different quantitative methods have investigated the
relationship between ESV and multiple drivers. These were usually based on statistical
methods, including correlation analysis, principal component analysis, redundancy analy-
sis [25], linear regression analysis [26,27], spatial econometric models [28], and geographic
regression models [26,29].

Because ESV has a specific spatial autocorrelation and usually has a spatial correlation
with the influencing factors on the local spatial scale [30], the results obtained by traditional
statistical analysis and spatial analysis are somewhat biased. However, bivariate-based
spatial autocorrelation was able to identify the spatial correlation between ESV and driving
factors at a fine scale and thus provide a clear understanding of how driving factors affect
the spatial distribution of ESV [31]. Shi et al. [32] analyzed the spatial response of ESV
to urbanization based on Getis-Ord Gi*. Cui et al. [33] analyzed the spatial clustering
pattern between ESV and urbanization by global and local bivariate Moran’s I method. In
addition, Wang et al. [12] explained the reasons for the formation of spatial heterogeneity
of ecosystem services by studying the impact of urbanization in the Beijing-Tianjin-Hebei
region on ecosystem services at the hotspot scale.

Existing studies rarely consider the differences brought about by spatial stratification
heterogeneity [26,34]. Ignoring it in ecological analysis misses valuable information and
may lead to the misspecification of models and the misunderstanding of nature [35]. The
GeoDetector model (GDM) is suitable and promising for measuring the significance of
stratified heterogeneity of a global division into any number of clusters [36]. Hundreds
of classifications and partitioning algorithms were available to stratify the heterogeneity
of ESV, including K-means clustering, natural breaks, and more [21,37]. In addition, the
GDM can both detect the explanatory power of a single factor on ESV and quantify the
combined effects of bivariate interactions on ESV caused by the complexity of geographic
processes [38,39]. At the same time, the spatial pattern formed by the spatially stratified
heterogeneity of driving factors may determine the status of ESV. This study used the
bivariate local spatial autocorrelation method to visualize the spatial correlation patterns
between ESV and influencing factors, then used it for spatial stratification in GDM to
explore these potential influencing factors to explain well the ESV in the Liuxi River Basin.

In selecting research areas, most of the previous studies on ecosystem services were
carried out in urban areas, and little attention was paid to basins. Many studies have
explored the factors of regional differences in urban ecosystem health in China [19,28]. Some
studies examined the impact of socioeconomic factors on ESV in urban agglomerations,
such as the Guangdong-Hong Kong-Macao Greater Bay Area [30,40], Beijing-Tianjin-Hebei
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region [12], and urban agglomeration in the middle reaches of the Yangtze River [25].
However, as one of the best geographical units to study ecosystem services, basins are
specific areas closely related to humans and the environment. The study area, the Liuxi
River Basin, is a multifunctional area that combines the functions of a key economic zone,
a major food production area, a water source area, and an ecological reserve. Current
studies on this basin ecosystem have focused on land use, landscape pattern evolution,
water quality environmental conditions, and biophysical variables of the basin [41]. There
is no comprehensive quantitative assessment of the spatial pattern of ESV. The influence of
the natural conditions, human activities, and other factors on ESV in the Liuxi River Basin
remains ambiguous.

This study took the Liuxi River Basin in China as the case study using the equivalent
factor method to estimate its ESV at the grid scale. Then, it considered spatial correlation
and spatial heterogeneity to determine ESV’s driving factors. Specifically, the goals of this
study are: (1) to investigate the temporal and spatial variation characteristics of ESV in the
Liuxi River Basin from 2005 to 2018; (2) to analyze the reasons for the formation of ESV
spatial distribution characteristics using bivariate correlation indicators; (3) to explore the
explanatory power of driving factors for the spatial distribution of ESV using the GDM.
The results are expected to support the scientific decision for environmental conservation
in the Liuxi River Basin.

2. Materials
2.1. Study Area

The Liuxi River Basin (23◦12′30′′ N–23◦57′36′′ N, 113◦10′12′′ E–114◦2′00′′ E) is located
in Guangzhou City, Guangdong Province, China (Figure 1), with a total length of 157 km,
area of 2290 km2 (Guangzhou Water Authority. Available online: http://swj.gz.gov.cn/
xxgk/bmwj/qtwj/content/post_1321252.html (assessed on 1 June 2022)). The basin is in
the subtropical monsoon climate zone, which has a humid and mild climate and ample
rainfall. The average annual rainfall is 1823.6 mm, and the rainy season is from April
to September. The basin’s upper reaches are mainly forested, with dense forests and a
high greening rate; agricultural activities and tourist attractions dominate the middle and
lower reaches.

As one of the crucial parts of China’s Pearl River Delta, the Liuxi River Basin has
excellent potential for developing water resources and biodiversity and provides many
benefits for maintaining and improving human livelihoods and quality of life. However,
due to rapid economic growth, urbanization, and frequent human activity, the demand
for ecological resources and some environmental issues have grown in recent years. The
rapid urbanization and industrial development in the middle and lower reaches of the
basin seriously threaten the ecological security of the entire basin and affect the supply
capacity of its ecosystem services. Therefore, studying the influence of various driving
factors on the spatial distribution of ESV can provide an essential decision-making basis
for the ecological conservation and enhancement of the basin.

2.2. Data Sources

This study used a variety of data sources, including vector data, remote sensing data,
and statistical data (Table 1). The scope and location of the study area are obtained from
the Liuxi River Basin Management Office, Guangzhou City, China.

Since the spatial resolution of the original data was different, in order to facilitate
the spatial overlay analysis, the data were converted to a uniform spatial resolution. In
addition, a regular grid was used as the spatial statistics unit to ensure the invariance of
data capacity within the unit and facilitate quantitative spatial statistics. According to the
scope of the study area, data availability, and computational efficiency, the coefficient of
variation (CV) of ESV values of 250 m, 500 m, and 1000 m regular grids was selected and
compared. The spatial research unit selected the 250 m grid with the maximum CV.

http://swj.gz.gov.cn/xxgk/bmwj/qtwj/content/post_1321252.html
http://swj.gz.gov.cn/xxgk/bmwj/qtwj/content/post_1321252.html
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Figure 1. Location map of the study area: (a) the location of Guangdong Province in China; (b) the
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Table 1. Data source and description.

Data Category Type of Data Resolution Time (Year) Source

Land use/cover Data Raster data 30 m 2005, 2010,
2015, 2018

Land cover remote sensing monitoring data set for
multi-period land use in China (CNLUCC). Available

online: http://www.resdc.cn (assessed on 1 June 2022)

Soil Erodibility Raster data 500 m 2005, 2010,
2015

Erosion Area of China in Five-year Increments. Available
online: https://doi.org/10.3974/geodb.2021.05.03.V1

(assessed on 1 June 2022)

Digital Elevation Model
(DEM) Raster data 250 m 2000 NASA dataset. Available online:

https://earthdata.nasa.gov (assessed on 1 June 2022)

Average Monthly
Precipitation Raster data 1000 m 2005, 2010,

2015, 2018
National Earth System Science Data Center. Available

online: http://www.geodata.cn (assessed on 1 June 2022)

Population Raster data 100 m 2005, 2010,
2015, 2018

WordPress Project. Available online:
https://www.worldpop.org/ (assessed on 1 June 2022)

Human Settlements
(urban and rural) Raster data 30 m 2005, 2010,

2015, 2017
Impervious surface dataset. Available online:

http://data.ess.tsinghua.edu.cn/ (assessed on 1 June 2022)

16-day Net Primary
Productivity (NPP) Raster data 500 m 2005, 2010,

2015, 2018

MODIS/Terra Net Primary Production Gap-Filled Yearly L4
Global 500 m SIN Grid. Available online:

https://lpdaac.usgs.gov/products/mod17a3hgfv006/
(assessed on 1 June 2022)

Water System Vector data / 2017
National Geographic Information Resources 1:1,000,000
National Basic Geographic Database. Available online:
https://www.webmap.cn/ (assessed on 1 June 2022)

Food Data Statistical data / 2005, 2010,
2015, 2018

Guangdong Statistical Yearbook. Available online:
http://stats.gd.gov.cn/gdtjnj/ (assessed on 1 June 2022)

http://www.resdc.cn
https://doi.org/10.3974/geodb.2021.05.03.V1
https://earthdata.nasa.gov
http://www.geodata.cn
https://www.worldpop.org/
http://data.ess.tsinghua.edu.cn/
https://lpdaac.usgs.gov/products/mod17a3hgfv006/
https://www.webmap.cn/
http://stats.gd.gov.cn/gdtjnj/
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2.3. Driving Factors Selection and Data Processing

In this paper, taking into account both natural conditions and human activities, as
well as the limited availability of data, five spatial factors were selected as potential driving
factors that might impact the spatial distribution of ESV. They were slope (SLO), river
distance accessibility (RDC), per capita green area (GRE), the proportion of urban and rural
human settlements (UR), and population (POP). The spatial distribution of the above five
factors in 2018 is shown in Figure 2. In addition, the average annual precipitation and the
average NPP were calculated from the average monthly precipitation data and the 16-day
NPP data, respectively.
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POP, population.

As a stable endogenous driver, natural conditions are an essential basis for deter-
mining the formation of the spatial distribution of critical ecosystem services in the basin.
Topographic factors affect various ecosystem processes by regulating ecological conditions
such as surface temperature and water storage capacity. The unit SLO value was obtained
by calculating the maximum change rate of the elevation value of each grid to the elevation
value of the immediate neighbor (3 × 3 window) grid by inverse trigonometric function.
The green area has a protective effect on the regional ecological environment and can also
provide residents with recreational functions. The unit GRE value was calculated by divid-
ing the sum of forest and grassland areas by the population. In addition, because of the
abundance of freshwater supplies near rivers, the spatial accessibility of rivers is critical for
human well-being, economic growth, and ecological sustainability [42,43]. It can be used to
characterize freshwater availability. We set the weights of the Liuxi River’s mainstream
and tributary water systems to 2 and 1, respectively. The ArcGIS nearest neighbor analysis
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tool calculated the distance from each grid’s center point to the nearest water system. The
inverse distance weighting model calculated the unit RDC value.

As a manageable external driver [25], human activities often lead to the degradation of
ecological environment quality [44], and the influence on ecosystem services is more signif-
icant in a short period [45]. Urbanization-related built-up areas and transportation systems
are essential indicators of human activities’ stress and disturbance intensity [17]. In urban-
ization, more natural and semi-natural ecosystems are converted to impervious surfaces,
so timely and accurate information on impervious surfaces is crucial in socioeconomic and
natural environments [46]. At the same time, crowded transportation networks can also
negatively impact the integrity of ecological landscapes [30]. Human settlements obtained
by inversion of impervious surfaces mainly include roofs, paved surfaces, hardened floors
of human settlements, and main pavements [46]. The unit UR value was obtained by
calculating the ratio of the area of human settlements to the area of grids. In addition, the
increase in population density has produced unsustainable natural resource consumption
and put pressure on the ecological environment [47], which is an essential factor affecting
the spatial distribution of ESV. Converted the 100 m population raster data into vector
data, performed area-weighted superposition processing with the grids, and counted the
population in each grid to obtain the unit POP value.

3. Methodology
3.1. Estimation of Ecosystem Service Value
3.1.1. Calculation of ESV

This research used the ESV evaluation method to conduct ESV estimation research in
the Liuxi River Basin. Calculated as follows:

ESVj = ∑n
i=1 AijEijv (1)

where ESVj is the ESV (US dollars) in a research unit in year j; Aij is the area (ha) of the
ecosystem i in year j in a unit. The ecosystems were divided into nine categories: field, dry
land, broadleaf forest, shrubs, grassland, water area, wetland, construction, and barren
land. Eij is the dynamic equivalent factor for the ecosystem service function per unit area
of the ecosystem i in year j; v is the economic value (US dollars/ha) of a unit equivalent
factor which can characterize the potential contribution of various ecosystems to services
(Detailed calculations refer to XIE Gao-di et al. [15]).

3.1.2. Correction of Equivalent Factor

Because services of ecological mechanisms regulate how ecosystem services are pro-
vided, different periods and different ecosystem service functions are affected by various
environmental processes and conditions. Therefore, this study adopted the improved
equivalent factor to make corresponding spatial corrections to the ecological service value
equivalent. The formula is as follows:

Eij = QkjEiq + RkjEir + NkjEin (2)

where Qkj is the spatial and temporal regulation factor of NPP, which is the ratio of the
NPP in region k in year j to the national average NPP; Rkj is the regulation factor of
precipitation, which is the ratio of the precipitation in region k in year j to the national
average precipitation; Nkj is the regulation factor of soil conservation, which is the ratio of
the soil conservation in region k in year j to the national average soil conservation; Eiq is
the sum of the equivalent coefficient for the natural environment comprehensive service
functions corresponding to the ecosystem i; Eir is the sum of the equivalent coefficient
for the water source conditions comprehensive service functions corresponding to the
ecosystem i; Ein is the equivalent coefficient for the soil conservation service functions
corresponding to ecosystem i. The values of Eiq, Eir, and Ein refer to the equivalent
coefficients table for China’s ecosystem service (Table 2) constructed by Xie et al. [7].
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Table 2. Ecosystem services equivalent coefficients table.

Ecosystem Classification

Land Use Type
Dry
Land

Paddy
Field

Broadleaf
Forest Shrubs Grass Wetland Water Construction Unused

Natural
environment

comprehensive
service functions

food production 0.85 1.36 0.29 0.19 0.38 0.51 0.8 0 0
raw materials 0.4 0.09 0.66 0.43 0.56 0.5 0.23 0 0
gas regulation 0.67 1.11 2.17 1.41 1.97 1.9 0.77 0 0.02

climate regulation 0.36 0.57 6.5 4.23 5.21 3.6 2.29 0 0
environmental

purification 0.1 0.17 1.93 1.28 1.72 3.6 5.55 0 0.1

nutrient cycle
maintenance 0.12 0.19 0.2 0.13 0.18 0.18 0.07 0 0

biodiversity
maintenance 0.13 0.21 2.41 1.67 2.18 7.87 2.55 0 0.02

aesthetic landscape 0.06 0.09 1.06 0.69 0.96 4.73 1.89 0 0.01

Water source
conditions

comprehensive
service functions

water supply 0.02 −2.63 0.34 0.22 0.31 2.59 8.29 0 0

water regulation 0.27 2.72 4.74 3.35 3.82 24.23 102.24 0 0.03

Soil conservation
service function soil conservation 1.03 0.01 2.65 1.72 2.4 2.31 0.93 0 0.02

3.2. Spatial Autocorrelation

Since the influence of spatial interaction and spatial diffusion, the attribute values of
adjacent units may no longer be independent but related. This potential interdependence is
called spatial autocorrelation [48].

3.2.1. Univariate Spatial Autocorrelation

This study adopted the global Moran’s I to test ESV, SLO, RDC, GRE, UR, and POP’s
global spatial autocorrelation. Then, the local Moran’s I to measure ESV’s local spatial
clustering pattern. The formula is as follows:

Ig =
NΣiΣjwij(xi − µ)

(
xj − µ

)(
ΣiΣjwij

)
∑i(xi − µ)2 (3)

Il =
xi − µ

Σi(xi − µ)2 ∑j wij(xi − µ) (4)

where Ig and Il are the global and Moran’s I, respectively; N is the total spatial unit of the
Liuxi River Basin; Wij is the spatial weight matrix for the unit i and unit j. In this study, an
inverse distance element associated with spatial relationship weight matrix was established
by setting a distance threshold of 500 m; xi and xj are the attribute values for spatial units i
and j; µ is the average attribute values of all units. See Hu and Xu [49] for more details.

3.2.2. Bivariate Spatial Autocorrelation

This study adopted the global bivariate Moran’s I to test the global spatial correlation
between ESV and a factor. Then, the local bivariate Moran’s I displayed the local spatial
correlation pattern between ESV and factors [50]. The formula is as follows:

Is f =
NΣN

i ΣN
j 6=iWijzs

i z f
j

(N − 1)ΣN
i ΣN

j 6=iwij
(5)

I ′s f = zsΣN
j=1wijz

f
ij (6)

where Is f and I′s f are the global and local bivariate Moran’s I for ESV and factors, respec-
tively. N and Wij have the same meaning as Formula (3); zs

i is the ESV for space unit i;
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z f
j is the attribute value of a factor for unit j; The values of Is f /I′s f range from −1 to 1. A

positive Is f /I′s f value indicates a positive spatial correlation between ESV and a factor,
which signifies that a unit with a high(low) ESV value is likely to be surrounded by units
with high(low) factor values. A negative Is f /I′s f indicates a negative spatial correlation, sig-
nifying that a unit with a high(low) ESV is likely to be surrounded by units with low(high)
factor values. The greater the absolute value of Is f /I′s f is, the more significant the spatial
correlation between ESV and this factor will be. See Zhang et al. [31] for more details.

3.3. Spatial Heterogeneity

Spatial heterogeneity refers to differences in attribute values or phenomena between
spatial locations beyond random variation. Spatial hierarchical heterogeneity is the hier-
archical regularity exhibited by spatial heterogeneity, that is, the phenomenon that the
variance within a layer is smaller than the variance between layers [51], which is common
in ecological phenomena such as ecological areas and several ecosystems’ processes [36].
This study used the univariate local spatial clustering pattern of ESV to divide the study
area into five layers: high-high (HH), low-low (LL), high-low (HL), low-high (LH), and
not significant, and analyzes the spatial stratified heterogeneity of ESV itself. In addition,
the whole study area was divided into five levels: HH, LL, HL, LH, and not significant by
using the clustering results of bivariate local spatial correlation patterns and analyzing the
ability of five factors to explain the spatial distribution of ESV.

3.3.1. GDM Factor Detection

The factor detection in GDM was employed to investigate the significance of spatial
stratified heterogeneity of ESV and the explanatory power of each spatial factor to the
stratified variance of ESV. Calculated using the q statistic:

q = 1− ∑L
h=1 Nhδ2

h
Nδ2 (7)

where Nh and N are the number of units in layer h and the overall region, respectively;
δ2

h and δ2 are the variance of the ESV of layer h and the overall region, respectively. The
values of q statistic range from −1 to 1, and the greater the value of q statistic is, the
more substantial the spatial stratified heterogeneity will be. Suppose ESV generates the
stratification, then 100q% reflects the degree of differentiation of the ESV. Suppose the
stratification is generated by a spatial factor (SLO, RDC, GRE, UR, and POP). In that case,
100q% reflects the interpretation of the ESV by a spatial factor. At this time, the spatial
stratified heterogeneity reveals the controlling factors behind the spatial pattern.

3.3.2. GDM Interaction Detection

The interaction in GDM was used to explore the effect strengths of combinations of
any two spatial factors, X1 and X2, on ESV. By comparing the value of q(X1∩X2) with q(X1)
and q(X2), there are five types of interaction effects on ESV: nonlinear attenuation, single-
factor nonlinear attenuation, and two-factor enhancement, independent, and nonlinear
enhancement. See Wang and Xu [38] for more details.

3.4. Research Framework

This section exposed the reader to this study’s primary methods and objectives. The
framework of this study included two separate modules (Figure 3): data processing and
driving mechanism analysis.

The data processing module included the ESV-related data processing and the Driv-
ing factors-related data processing submodules. The dynamic equivalence factor was
obtained based on the equivalence factor table and environmental variables. Dynamic
equivalence factor and statistical yearbook were used for interannual ESV estimation, and
land use/cover data was used for spatial ESV mapping. In the Driving factors-related
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data processing section, the original raster or vector data of natural conditions and human
activity variables were subjected to spatial analysis and processing, and then mapping was
performed. For more details, see Section 2.3.
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In the driving mechanism module, global spatial autocorrelation analysis was per-
formed on ESV and driving factors to verify whether they have a significant spatial cor-
relation. Then, local spatial autocorrelation analysis was performed on ESV, and GDM
was used to explore the spatial heterogeneity of ESV. Secondly, bivariate-based spatial
autocorrelation analysis was used to explore the reasons for forming the spatial distribution
of ESV. Then, the local spatial correlation patterns obtained by the local bivariate-based
autocorrelation analysis were used to stratify the study area, and GDM was used to investi-
gate the impact of driving factors on ESV. Finally, the results of the two analysis methods
were compared to judge whether the GDM analysis method was effective.

4. Results and Analysis
4.1. The Spatiotemporal Characteristics of ESV

Calculated and aggregated according to Formula (1), the total value of ecosystem
services in the study area in 2005, 2010, 2015, and 2018 were 3649.4923, 3684.7445, 3664.2962,
and 3665.7068 million US dollars, respectively. There was an upward trend from 2005–2010
and 2015–2018 and a clear downward trend from 2010-2015. Overall, from 2005 to 2018, the
total value of ESV in the Liuxi River Basin experienced a volatile increase, an increase of
approximately 16.2145 US million dollars. It shows that the environmental conditions of
the basin have been effectively improved during the study period, and this trend can offset
the adverse effects of economic development and human activities to a certain extent.
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In order to better observe and analyze the spatial distribution of ESV and its changes,
the natural discontinuous point method was used to divide ESV into five grades: well,
relatively well, ordinary, relatively weak, and weak. Figure 4a–d show that there were
spatial differences in the distribution of ESV in 2005, 2010, 2015, and 2018. The well and
relatively well areas were mainly distributed in the forest cover area in the northeastern
part of the basin. The highest values appeared in the water body and surrounding areas
and maintained a dominant state. However, weak and relatively weak areas were mainly
distributed in urban areas in the central and southwest of the basin, with the lowest values
appearing in the built-up areas in the southwest. Figure 4e shows the statistics of the ESV
area at different levels. During the study period, the total area at the relatively good level
was the largest, and the total area at the poor level was the smallest. Figure 4f shows the
temporal changes of the five ESV levels. The combined area of the well and relatively well
levels was the smallest in 2015 and the largest in 2010, while the combined area of the
ESV weak and relatively weak levels was the largest in 2015 and the smallest in 2005. By
combining the total value of ecosystem services in different periods, it was estimated that
2010 was the best year while 2015 was the worst year for the ecological environment of
the basin.

Figure 4. Spatial distribution of ESV in (a) 2005, (b) 2010, (c) 2015, and (d) 2018; (e) the percentage
of areas with different levels in each year; and (f) the percentage of all grids in each ESV level. ESV,
Ecosystem service value.
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According to Formula (3), the global Moran’s I index (by the significance test) of ESV
in 2005, 2010, 2015, and 2018 were 0.568, 0.550, 0.552, and 0.554, respectively, there was a
significant spatial aggregation phenomenon, and the degree of aggregation first decreased
and then increased. According to Formula (7), ESV’s q-statistics (by the significance test) in
2005, 2010, 2015, and 2018 were 0.5415, 0.5376, 0.5382, and 0.5388, respectively, significant
spatial stratified heterogeneity phenomenon, and the degree of heterogeneity first decreased
and then increased. The clustering pattern of ESV obtained by Formula (4) also indicates
that ESV has apparent differences in different spatial locations and has the characteristics of
two-pole spatial aggregation. ESV high-value accumulation areas occurred in the northeast,
and ESV low-value accumulation areas occurred in the central and southwest. The low-
value accumulation areas were contiguous, whose area was larger than the high-value
accumulation areas.

4.2. Correlation Analysis Results of Spatial Factors

Considering that the information overlap between factors may affect the analysis of the
driving relationship between them and ESV, the stepwise regression method of SPSS was used
to test whether there was multicollinearity among the selected factors. The regression equation
can pass the test only when p < 0.01. Table 3 shows that there was no multicollinearity problem
(variance inflation factor (VIF) < 10 or tolerance (TOL) > 0.1) among the factors during the
study period, indicating that they were independent of each other. In addition, according
to Formula (4), the factors themselves all showed a statistically significant (p < 0.05) spatial
autocorrelation (Moran’s I > 0.65), see Table 4. Therefore, further probing the five factors’
spatial influence on ESV was necessary.

Table 3. Multicollinearity test results in 2005, 2010, 2015, and 2018. SLO, slope; RDC, river distance
accessibility; GRE, per capita green area; UR, the proportion of urban and rural human settlements;
POP, population.

2005 2010 2015 2018

p TOL VIF p TOL VIF p TOL VIF p TOL VIF

SLO 0 0.824099 1.213447 0 0.777684 1.285870 0 0.755122 1.324289 0 0.749637 1.333978
GRE 0 0.888490 1.125505 0 0.827045 1.209124 0 0.814747 1.227374 0 0.809450 1.235407
UR 0 0.640032 1.562421 0 0.559448 1.787476 0 0.562794 1.776848 0 0.551702 1.812574

POP 0 0.662943 1.508425 0 0.611686 1.634826 0 0.660070 1.514992 0 0.664477 1.504943
RDC 0 0.845667 1.182499 0 0.838894 1.192046 0 0.827211 1.208882 0 0.823948 1.213669

Table 4. Moran’s I for five factors in 2005, 2010, 2015, and 2018. SLO, slope; RDC, river distance
accessibility; GRE, per capita green area; UR, the proportion of urban and rural human settlements;
POP, population.

SLO RDC GRE UR POP

2005 0.760 0.993 0.923 0.666 0.857
2010 0.760 0.993 0.924 0.751 0.865
2015 0.760 0.993 0.929 0.805 0.858
2018 0.760 0.993 0.938 0.815 0.857

4.3. Moran Bivariate Analysis

According to Formula (5), the global bivariate Moran’s I between ESV and five spatial
factors was calculated by Geoda software. All Moran’s I were statistically significant
(p < 0.01) (Figure 5). There were spatial correlations between ESV and the five spatial
factors, and the degree of correlation differs. There was a positive spatial correlation
between ESV and SLO, ESV and GRE, indicating spatial agglomeration among them. The
bivariate Moran’s I value of ESV and SLO was stable at around 0.2, and the bivariate
Moran’s I value of ESV and GRE increased from 0.199 in 2005 to 0.227 in 2018. Its spatial



Land 2022, 11, 1852 12 of 19

correlation showed an increasing trend. At the same time, there was a negative spatial
correlation between ESV and UR, POP, and RDC, indicating spatial dispersion among them.
The negative correlation between ESV and UR was always the strongest and showed an
increasing trend; at the same time, the negative spatial correlation between ESV and POP
showed a trend of “increase, decrease and increase”; in addition, the bivariate Moran’s I of
ESV and RDC was close to 0, implying their spatial correlation was insignificant. Overall,
the global bivariate Moran’s I absolute values of the mean order over the study period
were: UR > GRE > SLO > POP > RDC.
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According to Formula (6), the LISA clustering map was generated by GeoDa’s bivariate
LISA method, and the local spatial correlation between ESV and each factor was visualized,
see Figure 6. Taking 2018 as an example, by observing the aggregation of HH, LL, HL, and
LH values in the area, ESV and SLO can be found. The LL accumulation areas between
ESV and GRE were concentrated in the middle and southwest of the basin, covering a
large area and distributed in contiguous areas. In these areas, units with low ESV values
were surrounded by units with low elevation, a slight SLO, and a small GRE. The HH
accumulation areas between ESV and SLO, GRE, and RDC were primarily spread in the
northeastern part of the basin, where high ESV values were surrounded by high SLO and
high GRE close to the river. The HH and HL accumulation areas of ESV and RDC were
mainly distributed in the basin northeast with sufficient water supply.

In contrast, their LH accumulation areas were distributed on both sides of the main-
stream of the Liuxi River. These areas were mainly paddy fields and construction land,
resulting in significant water demand. In addition, the HL accumulation areas between
ESV and UR, ESV and POP were distributed in the northeastern part of the basin, and
units surround the units with high ESV values with small UR and small POP; at the same
time, their LH accumulation areas concentrated in the basin’s central and southwestern
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regions, where construction land was concentrated, social and economic activities were
frequent. The increase in urbanization level may lead to a decrease in the ESV value of
their surrounding units.
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4.4. GDM Factor Detection
4.4.1. Single Factor Detection

According to the clustering results in Figure 6, the study area was stratified, and the
q-statistic of the explanation degree of five factors for the spatial differentiation of ESV was
obtained through the GDM factor detector. The significance test p values of the five factors
all reached the significance level of 1%, indicating that ESV resulted from many factors’
action (Figure 7). Five spatial factors explained the spatial heterogeneity of ESV in the
whole basin to different degrees; that is, each factor was significantly consistent with the
spatial distribution of ESV. Among them, the q-statistic of GRE remained above 0.42, and
its explanatory power for the spatial heterogeneity of ESV has always been the strongest.
The q-statistic of the SLO was stable above 0.41, and its explanatory power showed an
upward trend. Both UR and the explanatory power of RDC were rising. Compared with
other factors, the explanatory power of POP was the weakest, showing a trend of “first
increase and then decrease.” Overall, the q-statistics of the five factors during the study
period were sorted by mean: GRE > SLO > UR > RDC > POP.

4.4.2. Two-Factor Interaction Detection

Through the GDM interaction detector, the q statistic of the explanatory degree of
the interaction between the two factors on the spatial differentiation of ESV was obtained
(significance test p-value < 0.01). Table 5 lists the explanatory power level in the top four
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main interactions. It can be found that the interaction between factors had a significant
two-factor enhancement or nonlinear enhancement effect on the explanatory power of
the spatial differentiation of ESV, which indicated that the synergistic effect of the two
factors exceeded the individual effect of a single factor or the cumulative effect of the two
factors. In the whole basin, the interaction between SLO and RDC had the most potent
explanatory power for the spatial differentiation of ESV (q statistic > 0.49), and it showed an
upward trend; the interaction between SLO and UR provided the most potent explanatory
power. The explanatory power of the interaction between SLO and GRE, SLO, and POP
was declining relative to other interactions.
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Figure 7. GDM detection q statistic for ESV for five factors. SLO, slope; RDC, river distance
accessibility; GRE, per capita green area; UR, the proportion of urban and rural human settlements;
POP, population.

Table 5. GDM detection q statistic for interaction between factors on ESV. SLO, slope; RDC, river
distance accessibility; GRE, per capita green area; UR, the proportion of urban and rural human
settlements; POP, population.

Dominant
Interaction 2005 2010 2015 2018

1 SLO∩POP 0.48914 SLO∩RDC 0.50597 SLO∩RDC 0.51013 SLO∩RDC 0.51112
2 SLO∩RDC 0.49076 SLO∩POP 0.49619 SLO∩UR 0.50460 SLO∩UR 0.50825
3 SLO∩GRE 0.48693 SLO∩GRE 0.49619 RDC∩UR 0.50105 RDC∩UR 0.50501
4 SLO∩UR 0.47996 SLO∩UR 0.49606 SLO∩POP 0.50009 SLO∩GRE 0.50279

5. Discussion

The highlight of this study was the use of bivariate Moran’s I clustering results to
stratify the study area. This stratification method made the GDM detection results find
that five factors have significant explanatory power for the spatial distribution pattern
of ESV. Compared with the stratification of the study area using the univariate Moran’s
I clustering results, the explanatory power of the five factors for ESV was significantly
enhanced after the bivariate Moran’s I clustering results were stratified. At the same
time, when spatial correlation and heterogeneity were not considered, only the natural
discontinuity method on attribute values, K-means clustering method, and equal interval
classification method were used to stratify the study area [44,52], the q-statistics of the
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five factors obtained by GDM were all small, resulting in their loss of explanatory power
for ESV. In addition, the comparison between different factors can provide a direction of
tendencies for ecological protection policy trade-offs. However, existing research on ESV
has not been able to determine the priority of the importance levels of various factors.
However, this study not only identified the spatial dependence characteristics between
each influencing factor and ESV at the grid scale but also mined the importance order and
temporal change of the influence degree of each factor on ESV by combining GDM. The
results were beneficial in providing ecological protection recommendations for the basin.

5.1. The Reason for the Formation of the Spatial Distribution of ESV

This study found significant spatial autocorrelation and spatial heterogeneity of ESVs
in the Liuxi River Basin. Therefore, identifying the spatial clustering pattern between
ESV and impact factors helped explore the reasons for forming the spatial distribution
characteristics of this ecological environment quality [32]. The following conclusions
can be inferred by combining the spatial distribution of ESV with the local bivariate
spatial correlation patterns. The formation of high-value ESV accumulation areas in the
northeastern river basin may be affected by factors such as excellent GRE, high RDC, and
high SLO, which exert positive external forces on ESV. It was located in a hilly area with
a wide area of forests and rivers. Due to natural conditions such as temperature and
topography, the cost of urban construction and economic development was relatively high,
which protected ecosystem services. The formation of low-value accumulation areas in
southwestern urban areas may be affected by factors such as the large UR, the large POP,
and the high RDC, which exerted opposing external forces on ESV. Most of these areas were
located in plains and areas near rivers. The level of urbanization was high, and the surface
coverage was mainly impervious surface. Compared with other types of land cover, the
surface evapotranspiration was lower, and the natural ecosystem was quickly disturbed
by the development of human society [26], adversely affecting ecosystem services. In
addition, Cui et al. [33] conducted a study on Zhuhai, China, and found that ecosystem
health was negatively connected with the urbanization of the economy, construction area,
and population.

5.2. Driving Mechanism of ESV

The explanatory power of each driving factor detected by GDM factors stratified
was more substantial than that of using the global bivariate-based spatial autocorrelation
analysis, and the relative importance of different factors on the explanatory power of
ESV changed.

The GDM results showed that the GRE had the most decisive influence on ESV,
and the natural barrier it provided for ESV protection is significant to maintaining the
dominant state of ESV; The influence of SLO on ESV was relatively stable, and it played an
essential role in protecting the basin ecosystem from human disturbance [29]; the impact of
RDC on ESV was stable; the impact of UR on ESV showed a gradually increasing trend.
Peng et al. [27] also indicated that land urbanization had a more significant and direct
influence on ESV than population urbanization. In addition, POP had the weakest and
most fluctuating impact on ESV during the study period, indicating its effect on ESV was
unstable. This finding conflicts with studies by Wang et al [29] in the Pearl River Delta
region, which found that population density was becoming increasingly important. In
addition, according to the q-statistic of the interaction between two factors, it can be found
that the interaction between factors had a significant two-factor enhancement or nonlinear
enhancement effect on the explanatory power of the spatial heterogeneity of ESV. The
interaction between the three natural conditions has always been the dominant factor
affecting ESV. In addition, in recent years (2015–2018), the interaction between urbanization
level and natural conditions has become significant. It suggested that the effects of land
urbanization gradually played a leading role in the combined effects [39]. Studies have also
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shown that socioeconomic variables serve as links and reinforce other variables in regions
with low and moderate ecosystem health levels [39].

5.3. Policy Recommendations for the Liuxi River Basin

In light of the study’s conclusions, the following suggestions were put forward for
the ecologically sustainable development planning of the Liuxi River Basin: (1) As the
ecological environment energy guarantees the area of the whole river basin, the high-value
ESV accumulation areas can be maintained green coverage and protect biodiversity by
delimiting nature reserves and continue to play its beneficial role. In contrast, as the
main contributor to the deterioration of ecological environment health, ESV low-value
accumulation areas can adopt ecological conservation projects such as returning farmland
to forests to improve and manage their ecosystem services, thereby promoting the healthy
restoration of their ecosystems. (2) To maintain an excellent natural ecosystem in the entire
basin area, future protection measures in the basin should focus on human settlements.
Due to the excellent water conservation conditions and biodiversity in the area near the
river, proper control of the expansion rate of human settlements near the river and the
avoidance of unreasonable reclamation is conducive to enhancing the organization of the
natural ecosystem. (3) The influence of human economic activities on the service value
of the basin ecosystem was gradually increasing. In the future, it is necessary to focus on
balancing the relationship between economic growth and environmental protection so that
the ecological environment of the basin can be coordinated with economic development
and more suitable for human habitation.

5.4. Study Limitations and Prospects for Future Research

Although research on the driving mechanisms of basin ecosystem services has pro-
gressed, further study must address the following issues. First, there is an intimate in-
teraction between humans and the environment in the basin and an intricate coupling
between economic development and the ecological environment. In this case, future re-
search needs to incorporate more diverse socioeconomic data for analysis. Furthermore,
this research only evaluated the spatial distribution of ESV, ignoring detailed changes over
time. Although the temporal changes of small basins in shorter years were not necessarily
noticeable, further mining the temporal characteristics of multi-source geographic data is
needed to capture detailed changes. Therefore, it is necessary to continuously pay attention
to the dynamic process of the driving mechanism, such as capturing trends through long-
term series models and making scenario simulation predictions. Finally, treating a small
basin as a single study area does not provide a clear understanding of the uniqueness of the
area. Different basin regions may produce very different results of the driving mechanism
of ESV, and only a comparative analysis of multiple basins can learn from each other. Future
research can add a comparative analysis of ESV drivers in multiple regions, supplying a
scientific foundation for comprehending and improving management practices.

6. Conclusions

This study used the grid of 250 m ∗ 250 m as the research unit. The value equivalent
method was used to estimate the ESV of the Liuxi River Basin in 2005, 2010, 2015, and
2018 and obtained ESV’s temporal and spatial distribution. Based on the principles of
spatial correlation and heterogeneity. We explored the relationship between ESV and five
potential spatial driving factors. Its main research conclusions are: (1) The total value
of ecosystem services in the Liuxi River Basin experienced an increase in volatility in
the time series from 2005 to 2018, with an increase of about 16.2145 million US dollars.
(2) The spatial autocorrelation and spatial heterogeneity of ESV within the basin were highly
significant. ESV high-value aggregation areas were mainly distributed in northeastern
mountainous regions, and ESV, SLO, GRE, and RDC had a positive spatial correlation.
ESV low-value aggregation areas were concentrated in the southwestern urban areas,
and there was a negative spatial correlation between ESV and the UR, POP, and RDC.
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(3) The spatial distribution characteristics of ESV were affected by various driving factors
to varying degrees. The order of their degree of influence on ESV during the study period
was GRE > SLO > UR > RDC > POP. (4) The interaction between factors had a significant
two-factor enhancement or nonlinear enhancement effect on the explanatory power of
the spatial distribution of ESV. The interaction of SLO and RDC, SLO and UR has been
the strongest during the study period and showed an upward trend. (5) Compared with
traditional stratification methods, we used the local bivariate spatial pattern of ESV and
influencing factors for spatial heterogeneity stratification, which made each factor’s capacity
for an explanation for ESV significant in the basin. This study considered both the spatial
correlation and heterogeneity of ESV and driving factors and determined the priority of
the influence degree of the factors of ESV in the basin. The research results are expected to
support the scientific decision to alleviate the contradiction in the basin between human
activities and environmental protection.
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