
Citation: Chang, J.; Sun, P.; Wei, G.

Spatial Driven Effects of

Multi-Dimensional Urbanization on

Carbon Emissions: A Case Study in

Chengdu-Chongqing Urban

Agglomeration. Land 2022, 11, 1858.

https://doi.org/10.3390/land11101858

Academic Editors: Zihao Zheng and

Qifei Zhang

Received: 9 September 2022

Accepted: 6 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Spatial Driven Effects of Multi-Dimensional Urbanization on
Carbon Emissions: A Case Study in Chengdu-Chongqing
Urban Agglomeration
Jie Chang 1 , Pingjun Sun 2 and Guoen Wei 3,4,*

1 School of Economics, Jilin University, Changchun 130012, China
2 College of Geographical Sciences, Southwest University, Chongqing 400700, China
3 School of Resources and Environment, Nanchang University, Nanchang 330031, China
4 Central China Research Center for Economic and Social Development, Nanchang University,

Nanchang 330031, China
* Correspondence: dg1927034@smail.nju.edu.cn; Tel.: +86-18874901502

Abstract: Previous studies lacked attention to the spatial heterogeneity of the impact of urbanization
on carbon emissions. To fill this knowledge gap, this study analyzed the spatio-temporal variations
of carbon emissions (TCE), the per capita carbon intensity (PCI), and the economic carbon intensity
(ECI) in the Chengdu-Chongqing urban agglomeration (CUA) based on the Open-Data Inventory
for Anthropogenic Carbon dioxide (ODIAC) from 2000–2018. Bivariate spatial autocorrelation, and
spatial Durbin models were combined to quantify the spatial correlation and driving mechanisms
between carbon emission intensity and multi-dimensional urbanization (population, economic, and
land urbanization). The following are the main results: (1) The TCE in CUA increased by 3.918 million
tons at an average annual growth of 6.86%; CUA ranked last among China’s national strategic urban
agglomerations in terms of TCE, PCI, and ECI. (2) High carbon emission values were concentrated in
the Chengdu and Chongqing metropolitan areas, presenting a spatial feature of “Core-Periphery”
gradient decay. (3) Nearly 30% of the agglomeration had carbon emission growth at low rates, with
the growth cores concentrated in the main urban areas of Chengdu and Chongqing. (4) The “Low-
Low” positive correlation was the main correlation type between multi-dimensional urbanization
and carbon emissions and was distributed mainly in mountainous areas (e.g., Leshan and Ya’an).
(5) Among the urbanization dimensions, the impacts on carbon emissions in local and adjacent
areas exhibited varying levels of spatial heterogeneity. Economic urbanization was found to have
the strongest positive direct and spillover effects; land urbanization inhibited the growth of carbon
emissions in local and adjacent areas; population urbanization promoted carbon emission reduction
in adjacent areas. Our findings provide support for CUA to carry out cross-city joint governance
strategies of carbon emissions, also proving that regional carbon emission reduction should be
an integration of various efforts including low-carbon living of residents, green transformation of
economy and optimal land management.

Keywords: carbon emission; multi-dimensional urbanization; spatial spillover effect; spatial durbin
model (SDM); Chengdu-Chongqing urban agglomeration (CUA)

1. Introduction

Since the mid-20th century, climate change characterized by global warming has pro-
foundly affected human society and the global environment, causing sea level rise, sharp
declines in biodiversity, urban heat island effects, and a global decrease in agricultural
production [1]. According to the 6th Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC AR6), carbon dioxide produced by fossil fuel consumption and hu-
man production is the main cause of global warming [2]. In 2018, the global energy-related
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carbon emissions increased to 33.6 billion tons, while the atmospheric carbon dioxide con-
centration has risen to its highest level in at least two million years [3]. Net-zero emissions
and accelerated carbon neutrality have become major targets in global climate governance
to achieve sustainable urban construction (Goal11, SDG), effective climate change response
(Goal13, SDG), and ecosystem protection (Goal15, SDG) in the Anthropocene.

The IPCC have confirmed the considerable impact of human settlements and urban-
ization on the intensification of global carbon emissions [4,5]. As the world’s largest emitter
of carbon dioxide, China’s carbon emissions were estimated to be about 9.6 billion tons,
accounting for 28.57% of total global carbon emissions in 2018 (WDI, 2021). The country’s
carbon emissions have increased in parallel with the rapid rise in urbanization since the
economic opening up and reforms in 1978 [6]. In recent years, China has implemented emis-
sion reduction efforts addressing climate change; for instance, the “double carbon” goals
(i.e., peak carbon by 2030 and carbon neutral by 2060) proposed at the Climate Ambition
Summit have become central to China’s environmental policies and serve as an important
node in the world’s carbon reduction process [7,8]. The World Bank report suggests that by
2030, 70% of China’s population will live in urban areas. The high carbon consumption
of residents and industries will accelerate the growth of carbon emissions, posing severe
challenges to regional emission reduction and carbon governance [9]. Exploring the driving
mechanisms of urbanization on carbon emissions is essential in developing low-carbon
sustainable cities and alleviating the pressure of net-zero emissions in China and the world.

There has been no consensus on whether urbanization has a positive or negative
on carbon emissions and whether it is consistent with the environmental Kuznets curve
(“EKC”) hypothesis [10–12]. Some studies have suggested that urbanization contributes to
carbon-related climate deterioration by affecting economic growth, energy efficiency, and
energy mix [13]. Others argue that the urbanization process is often accompanied by the
development of green product markets and low-carbon production, which could indirectly
reduce carbon emissions [14]. The inverted U-shaped relationship between urbanization
and carbon emissions has also been found in previous studies [15]. The carbon-increasing
effect of rapid urbanization will gradually converge under the influence of the residents’
environmental demands, green production technology upgrading, and environmental policy
guidance, eventually achieving emission reduction targets and carbon neutrality [16].

Existing controversies go far beyond this, as studies on the spatial heterogeneity effects
of urbanization on carbon emissions and the variability of impacts within urbanization
systems (e.g., population, economic, and land urbanization) have also had varying and
contradictory results. For example, Liu et al. (2021) found that economic urbanization
accelerates the upgrading of production technologies and promotes carbon emission reduc-
tion [17]. This contradicts the conclusions of Wang et al. (2022) that suggest the considerable
impact of economic urbanization on energy consumption and regional carbon emission
growth [14]. Zhang et al. (2018) found significant spatial spillover effects of population
urbanization on carbon emissions in adjacent areas, while the impact of land urbanization
on carbon emissions occurs mainly remained local [5]. Liu et al. (2021) found that economic
urbanization had a strong inhibitory effect on carbon emissions in the Yangtze River Eco-
nomic Belt, while the impact of population urbanization for the given study period was
not significant [7]. Given that research on the impact of urbanization on carbon emissions
has been inconclusive, more studies and investigations are needed to better understand the
heterogeneous effects of different urbanization dimensions on carbon emissions.

In addition, previous studies have largely focused on the driving effects of urban-
ization in highly developed urban agglomerations, such as the Yangtze River Delta and
the Beijing-Tianjin-Hebei [6,18,19]. Little attention has been given to China’s central and
western regions, even though they are already key areas for industrial transfer and con-
struction. While various approaches and models (e.g., Pearson correlation coefficient, IPAT
model, STIRPAT model, and environmental Kuznets index) have been used to analyze
the relationship between urbanization and carbon emissions, few studies have explored
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its spatial variabilities, which can be useful in developing and improving regional carbon
governance and carbon neutrality [20,21].

As a regional center where people, technology, information, resources, capital and
other elements converge, urban agglomerations have become important support platforms
for China’s rapid urbanization. The Chengdu-Chongqing urban agglomeration (CUA) is an
emerging urban agglomeration approved by the State Council of China in 2016, and is one of
China’s five national strategic urban agglomerations, alongside Beijing-Tianjin-Hebei (BTH),
Yangtze River Delta urban agglomeration (YRDUA), Guangdong-Hong Kong-Macau-Great
Bay Area (GBA), and Middle Yangtze River urban agglomeration (MYRUA). According
to data from the National Bureau of Statistics of China, the population urbanization rate
in the CUA increased from 50.10% (2000) to 66.71% (2018), with the GDP increasing from
4931.189 billion yuan (2000) to 5365.486 billion yuan (2018). And while urban development
has promoted economic progress, it has also generated ecological problems, such as haze
pollution, habitat degradation and declining net primary productivity of vegetation [22].
However, research on carbon emissions in the CUA has been scarce. To the best of our
knowledge, only Zeng et al. (2022) analyzed the spatio-temporal evolution of carbon
emissions in the CUA at the city level and explored the impact of energy intensity, economic
development level, and population size [23].

While previous studies have explored the driving effects of urbanization on carbon
emissions, the impact of rapid urbanization on carbon emission levels remains unresolved.
(1) The spatial heterogeneity of the impact of urbanization on carbon emissions in local
and adjacent regions requires further analysis. (2) The contrasting responses of carbon
emissions to population, economic, and land urbanization must be further analyzed and
differentiated. (3) Given that the driving mechanism of urbanization on carbon emissions
varies geographically, there has been limited research on the driving effects, particularly
in the CUA. In this study, the spatio-temporal evolution of carbon emissions in the CUA
from 2000 to 2018 is analyzed using the Open-Data Inventory for Anthropogenic Carbon
dioxide (ODIAC) and the GEE geographic cloud platform. The nighttime lighting remote
sensing data and the Landsat land-use interpretation data are combined to assess the
driving mechanisms of multi-dimensional urbanization on carbon emissions using the
bivariate spatial autocorrelation, and spatial regression model. The differential driving
effects of multi-dimensional urbanization are explored for local and adjacent areas based
on partial differential equation (P.D.E.) decomposition. The results help provide a better
understanding of the spatial effects of urbanization on carbon emissions and offer new
insights into emission reduction measures and environmental governance, particularly in
emerging urban agglomerations in China.

2. Study Area, Methods and Data Sources
2.1. Study Area

The CUA is located at the intersection of “the Belt and Road” and Yangtze River
Economic Belt strategies, with Chongqing and Chengdu as core, and includes 14 other
cities: Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Nanchong, Meishan,
Yibin, Guang’an, Dazhou, Ya’an, Ziyang (Figure 1). Based on the need for fine-grained
analysis, the sampling requirements for the regression, and the availability of statistical
data in the control variables, the assessment and analyses were conducted using geographic
grid units and administrative divisions.
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Figure 1. The geographical location of the CUA.

2.2. Methods
2.2.1. Carbon Emission Intensity Accounting

The spatio-temporal variations of total carbon emissions (TCE), the per capita carbon
intensity (PCI), and the economic carbon intensity (ECI) in the CUA were used in the
assessment of carbon emission levels (Figure 2) [24]. The PCI and ECI were calculated based
on the population, GDP, and TCE of the county-level units using the following equations:

PCI = CO2/POP (1)

ECI = CO2/GDP (2)

where POP and GDP are the total population and the gross domestic product of the
142 county-level units in the CUA, respectively.
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2.2.2. Slope Trend Analysis

Slope trend analysis is a mathematical calculation exploring the linear variation char-
acteristics of variables to avoid the randomness and contingency of the study results. By
fitting the data for all years, the regression slope of the variables can be obtained and used
to reflect the linear relationship between each unit attribute and time [25]. To analyze
the temporal trends for the TCE, the slope of the trend line (Slope) was calculated using
the formula:

Slope =
n

n
∑

i=1
(i · Yi)−

n
∑

i=1
i

n
∑

i=1
Yi

n
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (3)

where Y is the variable attribute of each study unit; n is the time span (n=19); i is the annual
variable. When Slope is greater than 0, the attribute value has an increasing trend over time;
when Slope is less than 0, the attribute value has a decreasing trend over time; when Slope is
equal to 0, the attribute value is neither increasing nor decreasing.

2.2.3. Analysis of Driving Effect

The bivariate spatial autocorrelation model was used to detect the spatial correlation
between urbanization and carbon emissions. This method is an extension of the traditional
spatial autocorrelation analysis and can be used to test for local non-stationarity in the
response of carbon emissions to urbanization. Using the Multivariate LISA tool of GeoDa
1.4.6, the bivariate local spatial autocorrelation method was used to quantify the spatial
correlation characteristics of the population, economy, land urbanization, and carbon
emissions [26,27]. The calculation formula for the bivariate Moran’ I is as follows:

Ii
kl =

xi
k − xk

σk
·

n

∑
j=l

(
Wij

xj
l − xl

σl

)
(4)

where Wij is the spatial weight matrix; xi
k is the observed value k of study unit i; xj

l is the
observed value l of study unit j; σk and σl are the variances of xk and xl, respectively. The
value range of I is between [−1, 1]. A value greater than 0 indicates a positive correlation,
wherein similar variables tend to be clustered in space; a value less than 0 indicates a
negative correlation, wherein similar variables tend to be discrete.

Bivariate spatial autocorrelations only reflect the underlying correlation between
variables and may not be able to properly express possible spatial heterogeneity of the
driving effects. The spatial regression model can solve this problem as it considers the
effect of spatial dependence on the regression coefficients. There are three common spatial
regression models: spatial error model (SEM), spatial lag model (SLM), and spatial Durbin
model (SDM). The SDM integrates the quantitative advantages of SEM and SLM for
variable exogenous and endogenous interaction effects and can partition the driving effects
of urbanization on carbon emissions into local direct effects, spatial spillover effects, and
total effects based on partial differential equations (P.D.E.) [28]. The formula of the SDM
equation is as follows:

Yit = ρWYit + βXit + θWXit + αi + λt + εit (5)

where Yit is the explanatory variable for region i in period t, i.e., carbon emissions; Xit is the
explanatory variable for region i in period t, including multi-dimensional urbanization and
control variables; α and λ are individual and periodic effects, respectively; ε is the random
disturbance term of normal distribution; ρ, β, and θ are parameters to be estimated; W is
the spatial weight matrix; WY is the spatial lagged dependent variable; WX is the spatial
error independent variable.



Land 2022, 11, 1858 6 of 19

To improve the scientific validity of the model runs, some variables were logarithmized
to eliminate heteroskedasticity. Possible multicollinearity among the variables was also
tested based on the variance inflation factor (VIF). Lagrange multipliers (LM) and likelihood
ratio (LR) estimates were used to evaluate the necessity of including spatial effects in the
model and the choice of the optimal model (either SEM, SLM, or SDM). According to
Du et al. (2021), in the LR estimation, if ρβ + θ = 0 passes the significance test, SDM can
be simplified to SEM; if θ = 0 passes the significance test, SDM can be simplified to SLM;
if both pass, the SDM is most suitable for the regression analysis [28]. The correlation
operations and tests were run in the MATLAB Spatial Regression Toolbox.

2.3. Data Sources
2.3.1. Multi-Dimensional Urbanization

Urbanization is a complex system process that includes multiple subsystems such as
population, economy, space, and society. Based on the recommendations and experiences of
previous studies, we measured the urbanization level of the CUA from three dimensions:
population, economy, and land. Population urbanization is usually measured by the propor-
tion of the urban population to the total population, reflecting the change in spatial structure
by the population migration from rural to urban areas. The data on the urban population
was obtained from the Sichuan Statistical Yearbook and Chongqing Statistical Yearbook [29].

Land urbanization is expressed by the ratio of urban land area to total land area,
indicating the increase in urban construction lands and the decline of rural areas [6]. The
data was obtained from the land use remote sensing monitoring dataset provided by the
Resources and Environmental Sciences of the Chinese Academy of Sciences. The dataset
was based on Landsat TM/ETM and Landsat 8 remote sensing images and contains six
primary land-use types (i.e., arable land, forest land, grassland, water, residential land and
unused land) and 25 secondary types determined through manual visual interpretation
(https://www.resdc.cn/, accessed on 31 August 2022).

Economic urbanization reflects the industrial transformation and production scale
and is usually measured by the proportion of the non-agricultural economy. Peng et al.
(2017) and Wang et al. (2021) found that GDP density is a good proxy for the non-farm
economic share. Given the available data for this study, GDP density was used to indicate
the level of economic urbanization [29,30]. The data was obtained from the grid dataset of
GDP density in China constructed by the Data Center for Resources and Environmental
Sciences of the Chinese Academy of Sciences, with a spatial resolution of 1 km and a unit
of 10,000 yuan/km2 (https://www.resdc.cn/, accessed on 31 August 2022).

2.3.2. Carbon Emissions

Most of the datasets used for carbon emission studies are from the Emissions Database
for Global Atmospheric Research (EDGAR), the British Petroleum (BP) carbon emission
reports, and other global carbon emission statistics [31]. China has also established carbon
accounting databases (China Emission Accounts and Datasets, CEADs) in recent years
providing multi-scale energy and carbon emission inventory data for China. However,
these data are mostly national scale or statistical panel data, which can be problematic
when evaluating the spatial distribution pattern of carbon emissions at the image element
level. In this study, the spatio-temporal evolution of carbon emissions in the CUA from
2000–2019 was analyzed using the Open-Data Inventory for Anthropogenic Carbon dioxide
(ODIAC) [32]. The dataset is from the Greenhouse Gas Observing Satellite (GOSAT) project
of the National Institute for Environmental Studies (NIES) of Japan, and the data products
provide global month-by-month CO2 emission data (emission sources are mainly fossil fuel
combustion, cement production, and natural gas combustion, with a spatial resolution of
1 km). The annual carbon emission raster dataset for the CUA was generated by adding the
average monthly data and cropping based on the GEE platform. Carbon emission index data
for 142 county-level units were obtained using the zonal statistics tool on ArcGIS platform.

https://www. resdc.cn/
https://www.resdc.cn/
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2.3.3. Control Variable Data

As used in previous research, the proportion of output value for the secondary indus-
try, the total retail sales of social consumer goods, the amount of actual utilization of foreign
investment, and the total investment in real estate development were used in this study to
indicate the error effects of industrial structure, commercial trade, foreign investment input,
and real estate development on carbon emissions, respectively [33–35]. These data were
acquired from the National Bureau of Statistics of China, the Statistical Yearbook of Sichuan
Province, and the Statistical Yearbook of Chongqing City. For natural control variables,
elevation, average temperature, wind speed, average annual precipitation, and normalized
vegetation index (NDVI) were used to reflect the error effects of the natural environment
on carbon emissions [36–38] (Table 1). The data for elevation, average temperature, wind
speed, and average annual precipitation were taken from the spatial dataset of meteoro-
logical conditions provided by the National Earth System Science Data Center of China
(http://www.geodata.cn/, accessed on 31 August 2022). The NDVI spatial distribution
was obtained from satellite remote sensing data (e.g., SPOT/VEGETATION and MODIS),
and the 1km-spatial resolution vegetation cover datasets were generated using projec-
tion transformation and mosaic stitching (https://www.resdc.cn/data.aspx?DATAID=343,
accessed on 31 August 2022).

Table 1. Variable category.

Variable Category Variable Abbreviation Unit

Socioeconomic

Population urbanization PU %
Economic urbanization EU 10,000 yuan/km2

Land urbanization LU %
The proportion of output value of the

secondary industry OVSI %

Amount of foreign capital actually utilized FCA 10,000 USD
Per capita real estate investment REI yuan

Natural

Carbon emissions TCE ton
Elevation DEM m

Average annual temperature TEM ◦C
Average wind speed WIND m/s

Average annual precipitation PRE mm
Normalized Difference Vegetation Index NDVI -

3. Results
3.1. Spatial and Temporal Distribution Patterns of Carbon Emissions
3.1.1. Overall Trend of Change

Figure 3 shows the overall changes in carbon emissions in the CUA. The results show
that carbon emissions from the CUA have generally maintained stable growth, with the
TCE increasing from 1.789 million tons in 2000 to 5.707 million tons in 2018 at an average
annual growth rate of 6.86%. The results also show that the carbon emissions in the CUA
have been largely focused on the regional center cities (i.e., Chengdu and Chongqing),
similar to the other four national strategic urban agglomerations (Figure 4). Compared
with the other urban agglomerations, the CUA had the lowest carbon emissions in general,
but the carbon emission increase for 2000–2018 reached 230.07%, far exceeding MYRUA,
BTH, and GBA. In terms of carbon intensity, YRDUA and GBA had the highest PCI and
ECI, while the CUA had the lowest values. The average PCI and ECI values in the CUA for
2018 were 0.059 t/person and 0.035 t/10,000yuan, respectively.

http://www.geodata.cn/
https://www.resdc.cn/data.aspx?DATAID=343
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3.1.2. Spatial Distribution Pattern

The carbon emission data for 2000–2018 was processed using ArcGIS to obtain the
spatial average carbon emission of CUA (see Figure 5). The figure shows a spatial pattern
of high emission values in the Chengdu and Chongqing Metropolitan areas, gradually
dissipating towards the peripheries. Aside from the urban centers, high carbon emission
values can be found along the railroads and rivers, possibly due to the long history of urban
construction, the high concentration of population and industries in these areas.
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ArcGIS-based regional statistical tools and spatial interpolation were used to ana-
lyze the distribution patterns for TCE, PCI and ECI at the administrative division level
(see Figure 6). In terms of TCE, the increases in TCE values were in or near the Chengdu
and Chongqing metropolitan areas. In 2000, high-value areas for TCE were mainly scattered
in Qijiang District, Jiangyou City, and Gao County; by 2010 and 2018, the high-value areas
were clustered in the Chengdu and Chongqing metropolitan areas, particularly in Qijiang
District, Hechuan District, Yubei District in Chongqing and Shuangliu District and Wuhou
District in Chengdu, where TCE exceeded 160,000 tons in 2018. This could be caused by
the “strong provincial capital” policy implemented in recent years, which has produced
substantial productive enterprises and factories in the region, generating higher demand
for energy consumption.

In terms of PCI, the values in the CUA have continued to increase, with the high-
value areas presenting a stable fragmented and dispersed distribution characteristic. In
2000, the high-value areas for PCI were scattered in the edge counties, such as Qianfeng
District, Gaoxian County, Hechuan District, Gong County, and Changning County; this
distribution pattern remained unchanged in 2010 and 2018. This means that the amount
of carbon emissions per unit in these regions remains high and that carbon efficiency and
environmental awareness should be urgently improved.

Although the average ECI declined from 0.043 t/10,000 yuan in 2000 to 0.023 t/10,000 yuan
in 2010, and then to 0.012 t/10,000 yuan in 2018, it maintained a fragmented distribution
pattern similar to that of the PCI. In 2000, the high-value areas for ECI were scattered in Gao
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County, Qianfeng District, Gongxian County, Qijiang District, and the Neijiang City Central
District; the ECI in these areas exceeded 0.170 t/10,000 yuan. In 2010 and 2018, these
urban areas remained the core of high ECI values, but the gap with the surrounding areas
decreased significantly (variation coefficient of ECI in CUA decreased from 1.971 in 2000 to
1.676 in 2018). This indicates that the CO2 produced per unit of GDP has been gradually
converging, which may be related to better regional green production standards and
technological advancements. For example, the Chengdu-Chongqing Urban Agglomeration
Development Plan released in 2016 sets out detailed requirements for energy conservation
in industry, construction, and transportation. The recently promulgated Joint Action Plan
for Carbon Neutralization in the Twin Cities Economic Circle of Chengdu and Chongqing
also provides specific action plans for the low-carbon transformation of industries and the
region-wide promotion of green technologies.
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3.2. Spatial Change Trend of Carbon Emissions

The spatial trends of carbon emissions were quantified using the Slope trend method.
As shown in Figure 7, the changes in carbon emissions in the CUA showed considerable
spatial heterogeneity. About 70.28% of the agglomeration showed a convergence trend;
these areas are mainly located around urban agglomerations, in mountainous terrains, and
those with relatively high forest coverage and more complete carbon cycle systems. The
core of carbon emission growth was in the main urban areas of Chengdu and Chongqing,
where the slope index exceeds 300, accounting for 0.01% of the total area. As the central
cities of the agglomeration, the rapid urbanization of Chengdu and Chongqing has attracted
a large urban population and generated an industrial agglomeration effect, causing high
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carbon product and energy consumption demand and accelerating CO2 emissions. Note
that 28.82% of the agglomeration has a slope index in the 1–15 range, indicating that the
growth of carbon emissions in the CUA is dominated by low growth rates.
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3.3. Analysis of the Driving Effect of Multi-Dimensional Urbanization on Carbon Emissions
3.3.1. Spatial Correlation Effect of Multi-Dimensional Urbanization and Carbon Emissions

We calculated the indices for the population, economic, and land urbanization of
the 142 county-level units in the CUA, and the local variability of the spatial association
between multi-dimensional urbanization and carbon emissions was quantified using the
bivariate local spatial autocorrelation tool on the GeoDA platform. As shown by the results
in Figure 8, the “Low-Low” positive correlation was the main cluster type, while the pro-
portion of the “High-High” positive correlation gradually increased in the association effect.
County units where carbon emissions clustering positively correlated with population,
economic, and land urbanization increased from 14.08%, 20.42%, and 20.42% in 2000 to
28.87%, 27.46%, and 29.58% in 2018. This implies that the synergistic growth trend of
multi-dimensional urbanization and carbon emissions has accelerated significantly and
that urbanization strategies have to be urgently adjusted to accommodate regional carbon
emission reduction targets.

In terms of population urbanization, the “Low-Low” positive correlation cluster in
2000 was distributed mainly in Leshan and Ya’an counties. Other than some areas in the
region (e.g., Asbestos County, Shawan District, and Jinkouhe District) with high levels of
population urbanization, most of the areas are located in mountainous areas with relatively
high vegetation coverage, thus having a perfect carbon cycle system and considerable
urban development constraints. By 2010, the “High-High” positive correlation cluster
gathered in the southeastern areas of Chongqing, such as Banan District, Jiangjin District
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and Bishan District, accounting for 4.23% in 2000 to 7.04% in 2010. By 2018, the “Low-Low”
positive correlation agglomeration had spread in the southwestern mountainous regions,
while the “High-High” positive correlation clustering further increased to 12.68%, the
main urban areas of Chongqing and Chengdu (e.g., Shapingba District, Yuzhong District,
Qingyang District, Wenjiang District, and Wuhou District) exhibited a synergistic growth
in population urbanization and high carbon consumption due to the rapid agglomeration
of urban residents. In terms of economic urbanization, the “Low-Low” positive correlation
was the dominant cluster type and mainly distributed in some counties of Ya’an, Leshan,
and Nanchong, with the proportion increasing from 16.90% in 2000 to 19.72% in 2018.
By 2018, the Chengdu and Chongqing metropolitan areas were surrounded by a “Low-
High” negative correlation cluster (area of about 9.15%), which included Dujiangyan
City, Pengzhou City, Jinyang City, Banan District, and Nanchuan District. While the
economic urbanization levels in these areas were less than 100 million yuan/km2, their
geographical proximity to main urban areas resulted in relatively high urban population
sizes, impervious surface coverages, and industry acceptance, resulting to release a large
amount of CO2 from production and living sources. In both 2000, 2010 and 2018, the
correlation between land urbanization and carbon emissions had a similar distribution
pattern to the economic urbanization-carbon emissions relationship. This association may
be related to the spatial synergy between urban land expansion and economic construction
and the coordination of economic and land factor inputs in urbanization.
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3.3.2. Further Analysis of the Driving Effect of Multi-Dimensional Urbanization on
Carbon Emissions

After the logarithmization and standardization of variables, several indicators (i.e., total
retail sales of consumer goods, actual utilization of foreign capital, total investment in
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real estate development, average annual precipitation, and NDVI) were excluded to avoid
multicollinearity among variables. Using the LM test for spatial lag and spatial error, the
LR-SLM, and the LR-SEM, the original hypothesis was rejected at the 1% confidence level.
Therefore, the SDM model was selected to fit the driving effects of multi-dimensional
urbanization on carbon emissions. The results of the SDM estimation and correlation test
are shown in Table 2.

Table 2. The SDM estimates of the impact of multi-dimensional urbanization on carbon emissions.

Variables
Model (SDM)

Model1-2000 Model2-2018

ln(PU) 0.149 ** 0.440 ***
ln(EU) 0.379 *** 0.381 ***
ln(LU) −0.014 −0.023 ***

ln(OVSI) 0.288 *** −0.054 ***
ln(DEM) −0.348 ** −0.282
ln(TEM) 1.526 0.13 3 *

ln(WIND) −0.176 0.145 **
W*ln(PU) −1.615 −2.069
W*ln(EU) 2.448 ** 3.235 **
W*ln(LU) −0.047 −0.320 **

W*ln(OVSI) −1.472 0.351 **
W*ln(DEM) 0.788 ** 0.866
W*ln(TEM) −2.363 −0.695 *

W*ln(WIND) 3.026 −1.350 *
R2 0.505 0.511

log-likelihood 133.8521 166.387
Lagrange Multiplier (SLM) 2.605 *** 2.761 ***
Lagrange Multiplier (SEM) 2.215 *** 2.323 ***
Likelihood Ratio Test(SLM) 11.850 *** 16.273 ***
Likelihood Ratio Test(SEM) 10.504 *** 13.809 ***

Note: * Statistical significance at 10% level; ** Statistical significance at 5% level; *** Statistical significance at
1% level.

The results show that the positive effects of population urbanization and economic
urbanization on carbon emissions significantly increased over time, especially in 2018, when
the regression coefficients were 0.440 and 0.381, respectively. The effect of land urbanization
on carbon emissions was not significant in 2000, but it contributed positively to carbon
reduction in 2018 with a regression coefficient of −0.023. The differential impact of the
secondary industry on carbon emissions was also evaluated. The regression coefficient
in 2000 was 0.288 and −0.054 in 2018, implying that the impact of industrial structure on
carbon emission reduction gradually shifted from inhibition to gain. Elevation, temperature
and wind speed also had differential effects on regional carbon emissions. However,
according to LeSage (2010) and Wei (2021), the marginal effects of the regression coefficients
would be difficult to accurately measure, and the regression effects of key variables need to
be further decomposed (i.e., direct, spillover, and total effects) to scientifically understand
the spatial heterogeneity of the driving effects of multi-dimensional urbanization on carbon
emissions [39,40].

Table 3 summarizes the decomposition estimation results of the driving effects of
multi-dimensional urbanization on carbon emissions. The results suggest that the driving
effects of urbanization on carbon emissions are usually ranked as follows: economic
urbanization > land urbanization > population urbanization, where the positive effect of
economic urbanization on carbon emissions is generally converging, while the negative
effect of land urbanization on carbon emissions is rapidly increasing. This means that the
amplification effect of economic urbanization on carbon emission levels in the CUA has
gradually declined, while the reduction influence of land urbanization on carbon emissions
has increased.
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Table 3. P.D.E decomposition of the driving effect of multi-dimensional urbanization on carbon emissions.

Variables
Direct Effects Spillover Effects Total Effects

2000 2018 2000 2018 2000 2018

ln(PU) 0.010 *
(1.379)

0.489 ***
(3.917)

−0.039
(−1.493)

−0.528 *
(−1.809)

−0.030
(−1.111)

−0.038
(0.895)

ln(EU) 0.603 ***
(3.429)

0.622 **
(2.206)

1.183 ***
(6.133)

0.786
(1.196)

1.786 ***
(17.419)

1.408 *
(1.967)

ln(LU) −0.027 **
(−2.09)

−0.172
(−0.781)

−0.076 **
(−2.180)

−0.144 *
(−1.784)

−0.104 ***
(−2.969)

−0.316 ***
(−2.756)

Note: * Statistical significance at 10% level; ** Statistical significance at 5% level; *** Statistical significance at
1% level.

For population urbanization, the elasticity coefficients in both the direct effect (at the
significance level) and the spillover effect (insignificant) were relatively small in 2000, but
increased to 0.489 and -0.528 in 2018. For economic urbanization, the elasticity coefficient
of the impact on local carbon emissions increased significantly from 0.603 (2000) to 0.622
(2018), while in adjacent areas, the value reached 1.183 in 2000 and was not significant
in 2018. For land urbanization, the direct and spillover effects on the impact of carbon
emissions were negative, with elasticity coefficients of −0.027 and −0.076 in 2000. The direct
effect was not significant in 2018, while the elasticity coefficient of the impact on adjacent
areas reached −0.144. Note that, except for land urbanization in 2018, the effects of multi-
dimensional urbanization on local carbon emissions in each period were weaker compared
to the adjacent areas. This means that the spatial spillover effect of urbanization dominates
the local direct effect. The findings highlight the need for interregional governance and
coordination for carbon emission control and urban construction.

4. Discussion

Urbanization is an integrated system involving various elements such as population
concentration, land expansion, economic production, cultural integration and landscape
ecological changes [41]. Different stages of urbanization will have varying effects on
carbon emissions since they have differentiated governance strategies, planning schemes,
environmental regulations, green production techniques, and economic development [42].
Previous studies have concluded that urbanization significantly contributes to regional
carbon emissions, while others found its suppressive effect in developed countries and
developed provinces [10,13]. In addition, in a unified and integrated system, different
dimensions of urbanization have differential driving effects on carbon emissions since
they represent different elements, including economy, socio-culture, land, technology, and
capital, and this effect may vary by region, a view also confirmed by Muhammad et al.,
(2020), Wu et al., (2017) [43,44]. Our study shows that the effect of multi-dimensional
urbanization on carbon emissions has significant spatial heterogeneity, which is similar to
the significant variability of the driving effect of multi-dimensional urbanization on carbon
emissions in local and adjacent area proposed in Chen et al. (2020) [11].

4.1. Driving Effects of Population Urbanization on Carbon Emissions in Local and Adjacent Regions

In terms of population urbanization, the direct effect is positive, while the spillover
effect is negative; the intensity of the effect is intensifying, especially the elasticity coefficient
of the direct effect increases from 0.010 to 0.489. On the one hand, urban population
agglomeration increases carbon-related consumption, leading to higher carbon emissions.
On the other hand, the increase in population mobility from regional integration produces
a siphoning effect on the consumption market demand from the surrounding regions into
main urban districts, indirectly weakening carbon-increasing effect of urbanization in the
adjacent area [18].
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4.2. Driving Effects of Economic Urbanization on Carbon Emissions in Local and Adjacent Regions

In terms of economic urbanization, the direct and spillover effects on carbon emissions
are both positive, but their effect intensities diverge, with the elasticity coefficient of the
direct effect increasing from 0.603 to 0.622 and the spillover effect decreasing from 1.183 to
0.786. Economic urbanization implies a large number of productive enterprises, high carbon
product demand, and increased resource consumption that would accelerate CO2 levels
from local construction [45]. Then, why does the amplifying effect of economic urbanization
on carbon emissions gradually weaken in adjacent areas? One possible explanation is the
industrial agglomeration effect [46]. With the support of industrial location theory and the
tendency to “strengthen the provincial capital”, industrial enterprises often concentrate in
cities, which have more pronounced advantages in capital, human resources, technology,
and information, objectively reducing the pressure of carbon emission reduction generated
by the economic urbanization of neighboring regions through industrial factor transfer.

4.3. Driving Effects of Land Urbanization on Carbon Emissions in Local and Adjacent Regions

For land urbanization, the results show that the direct and spillover effects are negative,
consistent with the findings of some scholars, especially the absolute value of the elasticity
coefficient of the spillover effect increases from 0.076 to 0.144. [6,16]. While urbanization
entails land conversion and significant resource consumption, low-carbon and sustainable
designs have incorporated urban planning that can effectively weaken the impact of
urbanization on CO2 levels [47–49]. Improvements in land-use efficiency and local, high-
quality ecological substrates also alleviate urbanization’s effect on the environment [50].
Due to the optimization policies in the CUA, the development of land-use intensification
techniques has received greater attention from policymakers. The CUA also has a high-
quality ecological substrate, guaranteeing the region’s strong ecosystem carbon cycling
capacity. In particular, the mean NDVI value in the region increased from 0.712 in 2000 to
0.760 in 2018, which may cause land urbanization to have a neutralizing effect on carbon
emissions [51–53]. Factors such as land planning, policies, and ecological substrate can
considerably limit the amplifying impact of land urbanization on carbon emissions. And
with land-use and ecological management improvements, particularly in urban built-up
areas such as city parks, greenways, and open spaces, land urbanization would more likely
have a positive effect on CO2 reduction in local and adjacent areas [54–58].

5. Conclusions
5.1. Main Conclusions

Previous studies have not thoroughly explored the differential impact of multi-dimensional
urbanization on local and neighborhood carbon emissions. To address some of the current
knowledge gaps, this study examined the spatio-temporal evolution trends of carbon emis-
sions in the CUA from 2000–2018, analyzed the spatial correlation distribution patterns
between urbanization and carbon emissions, and decomposed the driving effects using the
P.D.E. The highlights of the findings are as follows: (1) The carbon emissions of the CUA
increased by 3.918 million tons from 2000 to 2018 at an average annual growth rate of 6.86%.
The carbon emission centers were concentrated in the Chengdu and Chongqing metropoli-
tan areas and exhibited a “Core-Periphery” gradient decay feature. (2) Most regions of
CUA experiencing low growth and the growth core situated in the main urban areas of
Chengdu and Chongqing. The county units with a positive correlation have increased,
and the “Low-Low” positive correlation is the main cluster type for urbanization-carbon
emission association. (3) The direct and spillover effects varied significantly in different
dimensions urbanization, with economic urbanization having the strongest positive direct
and spillover effects.

5.2. Policy Implications, Shortcomings and Future Study

Although the CUA has the lowest TCE, PCI, and ECI values among the national
strategic urban agglomerations in China, with the strategic overlap of the “Belt and Road”
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initiative, the Yangtze River Economic Belt, and the Western Development Strategy, the
urban construction activities in the region are bound to have more considerable effects
on carbon emissions. Based on the findings in this study, considerable work is needed to
coordinate the harmonious relationship between urbanization and regional carbon control
in the CUA.

First, given the heterogeneous effects of urbanization, policymakers must reconceptu-
alize the coordination between multi-dimensional urbanization and carbon control using
various perspectives, such as driving mechanisms, human-earth coordination, and system
theory. The green transformation of industrial structures should be strengthened, and
policies addressing low environmental awareness and cognition should be explored and
implemented. Low-carbon measures for transportation and sustainable emission standards
for enterprises should also be on the schedule, in line with the recommendations of the 26th
Conference of the Parties (COP26) on carbon emissions from transportation and production
enterprises. Urban planning and design should pay more attention to land productivity
and approval control of undeveloped land to optimize resource use efficiency and avoid
encroachments over crucial carbon sink systems, such as forests, grasslands and arable
land. Inter-city and regional carbon governance should be emphasized, given the strong
spillover effects of multi-dimensional urbanization on carbon emissions in adjacent areas.
Joint carbon emission monitoring and environmental management should be encouraged
to help achieve the goals of China’s Action Plan for Carbon Peaking by 2030 and the Joint
Action Plan for Carbon Peaking and Carbon Neutralization in the Chengdu-Chongqing
Region Twin-City Economic Circle. Deepen cooperation in the fields of industrial low-
carbon transformation, urban-rural low-carbon integrated development, and ecological
space construction, and be alert to the risk of carbon emission spillover from urban popula-
tion flow, economic construction and urban expansion to build a low-carbon sustainable
urban agglomeration.

There are some shortcomings in this study. First, while the Landsat images used in this
study can generate regional land use structure, there is still room to improve the resolution
of the dataset by using other remote sensing images. Future research can utilize global
land-use datasets released by ESRI or ESA at 10 m resolution to improve the accuracy
of quantifying the level of land urbanization. Second, this study focuses on the driving
effect of multi-dimensional urbanization on carbon emissions in the CUA observed in
previous years, but future development trends and possible correlation changes between
variables were not thoroughly explored. Subsequent studies can explore the use of FLUS,
CA-Markov, or deep learning methods to simulate and predict the development scenarios
of urbanization and carbon emissions. Third, some of the remote sensing data used in this
study may be affected by the noise brought by atmospheric conditions and clouds to some
extent, and future studies will combine remote sensing technology to solve the error effects
brought by these noises and increase the scientificity of data use.
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