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Abstract: Machine learning models are now capable of delivering coveted digital soil mapping
(DSM) benefits (e.g., field capacity (FC) prediction); therefore, determining the optimal sample sites
and sample size is essential to maximize the training efficacy. We solve this with a novel optimal
sampling algorithm that allows the authentic augmentation of insufficient soil features using machine
learning predictive uncertainty. Nine hundred and fifty-three forest soil samples and geographically
referenced forest information were used to develop predictive models, and FCs in South Korea were
estimated with six predictor set hierarchies. Random forest and gradient boosting models were
used for estimation since tree-based models had better predictive performance than other machine
learning algorithms. There was a significant relationship between model predictive uncertainties
and training data distribution, where higher uncertainties were distributed in the data scarcity area.
Further, we confirmed that the predictive uncertainties decreased when additional sample sites were
added to the training data. Environmental covariate information of each grid cell in South Korea was
then used to select the sampling sites. Optimal sites were coordinated at the cell having the highest
predictive uncertainty, and the sample size was determined using the predictable rate. This intuitive
method can be generalized to improve global DSM.

Keywords: digital soil mapping; field capacity; machine learning; predictive uncertainty; sample site
survey; soil investigation plan

1. Introduction

Field capacity (FC) is one of the main factors representing the hydrologic characteristics
of the soil. It refers to the water content when its gravity-induced vertical movement speed
through the soil is reduced [1]. Because the term is frequently used to describe the actual
quantity of water in the soil that plants can use, it is actively leveraged as an input variable
in hydrologic models [1,2]. Therefore, a proper understanding of the spatial FC distribution
is essential for sustainable water management, especially in forested areas.

The digital soil mapping (DSM) technique is widely used to predict the soil prop-
erties of interest (e.g., FC and hydraulic conductivity) using geographically referenced
information or remote sensing (big) data [3,4]. DSM is a geospatial technique that can
handle numerous variables that describe soil properties as data accumulate over time. It
can predict the soil properties of large areas. To map the distribution of soil properties,
information on soil properties is analyzed from the soil investigation first. Then, environ-
mental covariate information corresponding to the points where soil samples were collected
is extracted through the available geographically referenced data. After this, a predictive
model for estimating soil properties is developed through the relationship between soil
properties and extracted environmental covariates. When the raster-based information of
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environmental covariates is used as input data for the model, then it is possible to predict
the soil properties in cell units and map the distribution of soil properties. In the past, it
was not easy to use DSM because it took a lot of time to process a large amount of data
at once. Further, it used a parallel computing technique involving multiple computers.
However, computing speeds have improved drastically, as have the various dedicated
processors. Additionally, several working DSM machine learning algorithms have been
developed. With the accumulation of spatial big data, these algorithms have become
extremely useful for understanding the growing quantitative relationships between field
values and laboratory measurements. Therefore, researchers are creating prediction models
with very high accuracy.

Data-driven machine learning models are strongly influenced by the available data
and the quality of the training datasets used to train them [5,6]. For example, even if the
number of input data is large, but the data quality is low, the prediction performance will
be poor, and the predictive uncertainty will be significant. Even when the data quality is
high, the prediction power will suffer if the amount is insufficient because the correlation
between variables cannot be fully understood after training. Therefore, a sufficient amount
of high-quality data must be collected to successfully develop an excellent predictive model.
Moreover, it is essential to have an appropriate investigation plan because collecting data,
especially in forests, is time-consuming.

Many sampling algorithms for effective investigation plans for DSM have been pro-
posed until now [7,8]. When we do not have any collected dataset, some methods can
choose sampling sites such that their distribution can cover all target sites [8,9]. Further,
sampling sites can be randomly selected according to the purpose of the researchers [10].
However, after collecting some data from the field, we can choose other methods for sam-
pling design, since we can understand the characteristics of the variables of interest more
deeply from the collected data. Nevertheless, we cannot rely on random sampling for
precision metrics. Moreover, we can never know all the features encountered at a new
study site. Hence, after sample data collection and during a study, one must identify the
missing features and compensate for them to avoid incorrect machine learning inferences
caused by faulty extrapolations. Notably, there are usually many variables to consider,
owing to the multivariate characteristics of DSM and the complex nature of the Earth’s
geology [10]. Therefore, one must pause the study to sample additional sites, leverage
additional (perhaps poorly fitting) datasets, or derive environmental covariates (given lin-
ear relationships and discrete variables). However, with soil studies, continuous variables
are the most common types encountered, and most have nonlinear relationships with the
target variable, rendering discretization difficult, even with augmented data.

The National Institute of Forest Science has collected many forest soil samples to
estimate FC in forested areas until now and wants to select additional sampling sites to
improve the existing DSM. However, few studies have been conducted on determining
the optimal sample size or coordinating the sampling locations while considering the
characteristics of all variables in this situation. Moreover, not many sampling algorithms
using machine learning have been reported.

This study aims to (1) develop a hierarchical predictive model to predict FC based
on the data collected until now in Korean forests on a national scale and (2) select optimal
sampling sites to strengthen the developed DSM model effectively. To this end, hierarchical
predictive models have been developed based on the data collected until now. In addition,
a simple optimal sampling algorithm is proposed through the relationship between the
predictive uncertainty of the machine learning model and the distribution of the training
dataset. Finally, this method is applied to the entire nation of South Korea, and the optimal
sample size and coordinates of sampling sites are suggested.
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2. Materials and Methods
2.1. Study Sites

South Korea is located in the range of 33–43◦ latitude and 124–132◦ longitude in
Southeast Asia (Figure 1), bordered to the north by North Korea and surrounded by water
on the other three sides. Thus, it is influenced by the characteristics of the Asian continent
and oceanic air masses. Located in a temperate climate zone, it has four seasons, with
annual average precipitation of 1343 mm and average temperatures of 23–25 Celsius.
Extensive forests have been cultivated since the 1970s, and most of the nation is now fully
covered. The Baekdudaegan watershed occupies most of the north–south length of the
country, providing vast spatial variability throughout. Figure 1 presents South Korea’s
general global location and a map of current soil sample sites.
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Figure 1. (a) South Korea’s global location and (b) its 953 forest soil sampling sites.

2.2. Collected Soil Samples and Their Properties

This study was conducted using the data from forest topsoil samples collected over
time from 953 sites by workers at the National Institute of Forest Science (Figure 1). Samples
were collected at 10 cm levels (mineral A horizon), and six soil properties, including FC,
were applied in this study, based on the study of Yang et al. [11], in which the detailed
analysis process was first suggested. All 953 soil samples were collected randomly since
there was no previous information about the forest soils and their relationship with other
environmental variables. In addition to this, soil sampling was conducted seven days after
the rain to eliminate the climatological effects. Moreover, all soil properties were analyzed
with the same method, which means that there was consistency in the soil property data.
Descriptive statistics for the six forest soil properties are shown in Table 1.

Table 1. Descriptive statistics for forest soil properties used in this study.

Soil Properties Abb. Unit Min Mean Max Std. Skew. Kurt.

Field capacity FC % 9.2 26.3 50.5 5.8 0.5 0.8
Sand fraction Sand % 3.3 39.5 91.0 16.3 0.2 −0.4
Silt fraction Silt % 1.5 37.6 87.3 15.7 0.6 0.0

Clay fraction Clay % 2.2 22.8 80.3 10.3 1.3 2.4
Bulk density ρb g cm−3 0.4 1.0 1.5 0.2 0.1 −0.3

Organic matter OM % 2.1 11.2 38.1 4.5 1.1 2.4

Abb, abbreviation; FC, field capacity; OM, organic matter; Std, standard deviation; Skew, skewness; Kurt, kurtosis;
ρb, bulk density.
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Soil size distribution (e.g., sand, silt, and clay fraction) was analyzed using the hy-
drometer method. The soil texture class (STC) was classified using the US Department of
Agriculture (USDA) texture classes, whose textural classes and FC distributions are shown
in Figure 2. Considering that the sample collection was randomly conducted at first, loam
is currently the most distributed soil texture class in forested areas of South Korea.
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2.3. Forest Environmental Covariates

South Korea has two essential big data forest type and characteristic site datasets:
Forest Site and Soil Map (FSSM) and Forest Type Map (FTM). In this study, the Geologic Map
(GM; 1:50,000), FSSM (1:25,000), FTM (1:25,000), and Digital Elevation Map (DEM; 10 m
resolution) datasets were used to extract 14 forest environmental covariates; the detailed
information about each variable is listed in Table S1. Some environmental covariates
derived from DEM (e.g., topographic position index (TPI), aspect, profile curvature, plan
curvature, topographic wetness index, and upper catchment area) were calculated using a
geospatial information system analyst tool.

2.4. Machine Learning Algorithms

Many studies on soil hydraulic properties have used machine learning algorithms
for their high predictive accuracy and dimensionality [12,13]. This study tested and com-
pared four widely used models: gradient boosting, random forest, k-nearest neighbors,
and multilayer perceptron. For the training of the four models, the optimal hyperparam-
eter determining the structure of the model was found using the grid searching method.
Grid searching was performed 20,000 times each to find the optimal hyperparameter
sets in this study. We used Python v.3.7.4 and SciKit-Learn v.1.1.2. to run these machine
learning models.

2.4.1. Gradient Boosting (GB)

GB is an ensemble method that enhances the prediction accuracy by combining the
results of multiple individual base classifiers [12,14]. Although other machine learning
models (e.g., decision trees and RF) focus on improving performance, the gradient of the GB
retains the weak residual errors learned until the present cycle [15]. This approach reduces
noisy data using decision trees and continuous runs. Eventually, GB lowers the mean-
squared error (MSE) by repeatedly training to correct those caused by earlier iterations [16].
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This study’s three hyperparameters were tuned for GB optimization: n_estimators, learn-
ing_rate, and max_depth.

2.4.2. Random Forest (RF)

RF was developed by Breiman [17] as a decision tree algorithm that combines a
bagging method with random variable selection [18]. Multiple training data are created
from a single dataset, and several more are produced by combining the decision trees,
which increases the predictability via reintegration [15]. Because it is indifferent to the
range of input values, RF is resistant to overfitting [19]. Three hyperparameters were tuned
for RF optimization: n_estimators, max_depth, and max_features.

2.4.3. K-Nearest Neighbors (KNN)

The KNN is a basic nonparametric technique that classifies unknown instances using
known instances as the baseline [19]. The maximum summed densities are calculated
to identify and classify the closest k neighbors. Because KNN can estimate complicated
and/or nonlinear problems, it has been used to analyze large datasets simultaneously [20]
for soil mapping [21]. Three hyperparameters were tuned for KNN optimization: leaf_size,
p, and n_neighbors.

2.4.4. Multilayer Perceptron (MLP)

The MLP neural network is one of the most common algorithms owing to its minimal
training needs and simple utility [19,22]. MLP creates many basic units (i.e., neurons)
capable of making simple decisions based on learning from training samples [12]. A neuron
uses interconnected layers to make final predictions by feeding those decisions to other neu-
rons, depending on the activation function. Generally, three layer types comprise an MLP
network: input, hidden, and output. In this study, the optimal number of neurons in the
hidden layer was determined by trial and error and was the only hyperparameter tuned.

2.5. Variable Importance
2.5.1. Variance Inflation Factor (VIF)

The variable importance measurement method produces inaccurate results when there
is an interrelationship between variables [17]. VIF is the most commonly used method
for quantifying variable correlation [23]. The VIF value for a single variable is derived
as follows:

VIFX1 =
1

1− R2
X1

(1)

where R2 is the coefficient of determination of the multiple linear regression equation, in
which variable X1 is the response variable, and the others (X2, X3, . . . , XN) are explanatory
variables. Generally, when the VIF is greater than five, a correlation between variables
exists, and the corresponding variable must be eliminated before the variable importance
can be accurately calculated [24].

2.5.2. Feature Importance

Feature importance is based on the mean decrease in impurity [17]. It is related to the
decision tree building process, in which a decision tree splits to obtain the most significant
modes of impurity reduction. The more the impurity can be reduced, the higher the variable
importance. Using this principle, feature importance is one of the most commonly used
methods for estimating variable importance because it is provided by most RF tools and
is easily applicable [17,25]. Feature importance can only be derived using the RF model.
After an optimal hyperparameter set is selected, the RF model is developed, and the feature
importance is averaged from 100 bagging cycles as slightly different results are provided in
each round. We used SciKit-Learn v.1.1.2 for this purpose.
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2.5.3. Permutation Importance

Permutation importance is another method of estimating variable importance, and it is
based on the mean decrease in accuracy. The general method permutes one test set variable
after model development, while the other variables are kept constant. The permutation
decrease is then reflected in the model accuracy (e.g., via the coefficient of determina-
tion; [26]). With a single dependent variable, model accuracy significantly decreases when
permuted [17]. In this study, 50 permutations were conducted per variable. Unlike feature
importance, permutation importance applies to all model types. Additionally, the results of
premutation importance estimation are directly affected by splitting the data into training
and testing sets. Thus, data splitting was randomly conducted 100 times, and permutation
importance was the averaged value of 100 results.

2.6. Predictor Set Hierarchy

In most cases, the proper predictor set is selected to simplify the model as much as
possible while maintaining the prediction performance [27]. A stepwise statistical method
is used, and several predictor sets may be constructed for performance comparisons. In this
study, in addition to this, there is one additional purpose of comparing the performance of
different predictor set hierarchies.

Currently, in South Korea, continuous forest surveys are being conducted, and ge-
ographically referenced information (e.g., FSSM, GM, and FTM) and in situ forest soil
measurements are continuously updated. It means that data coverage varies by location.
For the most accurate FC prediction, it is crucial to predict it using a hierarchy model with
the maximum accuracy for each location. Considering the above criteria, six predictor set
hierarchies were constructed in this study.

If the variables have correlations, a multicollinearity issue may occur, and the accu-
racy of model prediction may decrease. To prevent this, the VIF analysis described in
Section 2.5.1 was performed, and each predictor set was configured so that no correlated
variables would be included. For example, soil texture class and sand have VIF values of 5
or more, so one of the two variables should be removed from E14-S2 and E14-S4, where
these two factors overlapped. In order to minimize the decrease in the predictive models’
performance, we removed the variable that did not explain FC relatively well. In this study,
feature importance was used to determine the more important variable for prediction. In
this case, sand had higher feature importance and the soil texture class was eliminated.

2.7. Performance Evaluation

Model performance was evaluated using our developed model and a hold-out test set
that was not used for training. In particular, 80% of the total data was used for training, and
20% was used for testing. Five-fold cross-validation was used for performance evaluation.
To assess the model performance in each evaluation process, the Nash–Sutcliffe model
efficiency (NSE) coefficient, which is very effective in assessing predictive performance,
and the root mean-squared error (RMSE) were used. These evaluation methods are defined
as follows:

NSE = 1−
∑N

i=1

[
F̂Ci − FCi

]2

∑N
i=1
[
FCi − FCi

]2 (2)

RMSE =

√√√√ 1
N

N

∑
i=1

[
F̂Ci − FCi

]2
(3)

where N is the number of soil samples, F̂C is the modeled FC, and FC is the average value
of the measured FCs.
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2.8. Statistical Analysis

Several statistical analytical methods were used in this study. Performance evaluation
and descriptive statistics (e.g., average value, standard deviation, skewness, and kurtosis)
were performed with Numpy v.1.17.3 with Python v.3.7.4 by Python Software Foundation
in Delaware, United States.

3. Results and Discussion
3.1. Optimal Machine Learning Algorithm for FC Prediction

The model performance of GB, RF, KNN, and MLP was assessed to find the optimal
machine learning algorithm for FC prediction. The E14-S4 predictor set hierarchy was used
to develop the performance comparison model (see Table 2), and NSE and RMSE with
five-fold cross-validation were applied.

Table 2. Six predictor set hierarchies, the input variables of each hierarchy, and their data sources.

Hierarchy ID Input Variables Data Sources

E4-S0 STC, TSD, SC, Hardness FSSM

E12-S0 STC, TSD, SC, Hardness, Elevation, Slope, Aspect, CA, TWI,
TPI, ProC, PlanC FSSM, DEM

E14-S0 STC, TSD, SC, Hardness, Elevation, Slope, Aspect, CA, TWI,
TPI, ProC, PlanC, Bedrock, FT FSSM, DEM, GM, FTM

E0-S4 Sand, Clay, OM, ρb In situ measurement

E14-S2 TSD, SC, Hardness, Elevation, Slope, Aspect, CA, TWI, TPI,
ProC, PlanC, Bedrock, FT, Sand, Clay FSSM, DEM, GM, FTM, in situ measurement

E14-S4 TSD, SC, Hardness, Elevation, Slope, Aspect, CA, TWI, TPI,
ProC, PlanC, Bedrock, FT, Sand, Clay, OM, ρb

FSSM, DEM, GM, FTM, in situ measurement

DEM, Digital Elevation Map dataset; FSSM, Forest Site and Soil Map dataset; FTM, Forest Type Map dataset; GM,
Geologic Map dataset; STC, soil texture class; TSD, total soil depth; SC, stone content; CA, catchment area; TWI,
topographic wetness index; TPI, topographic position index; ProC, profile curvature; PlanC, plan curvature; FT,
forest type; OM, organic matter; ρb, bulk density.

Figure 3 shows that GB and RF performed better than KNN and MLP. GB and RF
showed a higher NSE, which reflects good accuracy (the closer to one, the higher the
predictive power). Moreover, GB and RF showed a smaller RMSE, which reflects low
errors between the predicted and true values. Both the GB and RF models are based on
decision trees, with splitting paths but no converging ones. Decision rules are used for
splitting; hence, two leaves are created each time. The tree grows more significantly as the
amount of information from the input data and its complexity increase [28]. Owing to these
characteristics, the GB and RF models can be trained without being affected by the scale of
the input data and variables (continuous or discrete).

For example, there are three categories of bedrock used in this study. Because all input
data of a machine learning model must consist of numeric variables, igneous rock was
converted to 1, sedimentary rock to 2, and metamorphic rock to 3. However, this does not
mean that the scale of characteristics of metamorphic rock is three times that of igneous
rock. In this case, the decision tree can effectively categorize these three characteristics.

KNN, on the other hand, measures the distances between two data values to evaluate

similarities [29]. The Euclidean distance is
√
(x1 − x2)

2 + (y1 − y2)
2, in which (x1, y1) and

(x2, y2) are coordinates. In other words, effective analysis becomes difficult when discrete
data are converted into numeric variables. As MLP is a fully connected feed-forward
artificial neural network [12], the activation functions and node weights are included in
each calculation process; hence, the results can be negatively affected by the scale of the
categorical data when converted into continuous values [30]. Therefore, although GB and
RF can effectively process these datasets, KNN and MLP cannot. Several methods have
been proposed to overcome this problem, such as one-hot encoding [31]. However, these
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methods will not be discussed further here because they are beyond the aim and scope of
this paper.
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3.2. Relationship between Predictors and FC

The GB and RF models were used to analyze the predictor importance for estimating
FC, noting that tree-based models are the most suitable. Three methods were used to
verify the importance of variables: permutation importance of GB and RF and feature
importance of RF. There were slight differences among these methods, but the variables
significantly influencing the prediction of FC showed similar trends (Figure 4). Among the
soil properties, sand and organic matter were important in predicting FC, and elevation
and TPI were important among the environmental covariates. With GB, the influence of
soil properties was more important than environmental covariates. However, in the RF
model, the influence of environmental covariates was quite similar to that of soil properties.
Therefore, it was found that using the RF model was more advantageous for the E4-S0,
E12-S0, and E14-S0 predictor set hierarchies, which mainly use environmental covariates
as predictors. Alternatively, the GB model was more advantageous for E0-S4, E14-S2, and
E14-S4, which mainly use soil properties as predictors.
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A 2D heatmap was drawn, as shown in Figure S1, to visualize the effect of each
variable on FC and their correlations. To verify the effect of environmental covariates
on FC, a 2D heatmap matrix was prepared with the top four variables selected through
importance analysis (Figure S1). The E14-S0 predictor set hierarchy-based RF model was
trained to verify the effect of environmental covariates on FC. To consider only the effect of
the two variables of interest, one soil type used in the training set was selected. The FC
was predicted by modifying only the two variables, whereas the others remained fixed.
The process of predicting FC by selecting soil was performed 500 times. After calculating
the average of the results, it was standardized to a value between zero and one so that
the trend could be checked more directly. The equation for standardization is as follows:
FC′i = (FCi − FCmin)/(FCmax − FCmin). The effect of soil properties on FC was examined
using the E0-S4 predictor set hierarchy-based GB model. It was found that the FC value
decreased as the elevation decreased, the TPI approached zero, and the aspect was closer to
the south. Regarding bedrock, the FC of forest soil with igneous rock as bedrock was higher
than the others. The result showed that as the sand decreased and the bulk density, organic
matter, and clay increased, the FC increased, and the correlation between each variable was
easily confirmed (Figure S2).

Sand, OM, elevation, and TPI were the most important variables to predict FC. The
interrelationship between soil properties and topographical features was analyzed by
Yang et al. [11] using the same soil samples in South Korea. In this paper, however, we
briefly discuss the relationship between FC and the important variables. FC is highly
correlated with capillary force, affected by the soil texture, which determines the microp-
ores [32]. Silt and clay fractions in soils have a great influence on the capillary force, and as
the sand fractions increase, the content of silt and clay decreases, meaning that FC tends
to decrease [11]. Organic matter particles attract water and can cause water to adhere to
the soil surface [33]. This is the main reason that the OM has higher variable importance.
Hudson [34] also stated that OM has a significant impact on the available water capacity.
In Figure S1, elevation and TPI show a positive relationship with FC. Elevation was highly
correlated with OM and sand in South Korea. One of the reasons is that the nationally
protected area that is strictly limited is mostly distributed in Baekdudaegan, which is a
higher-altitude area [11]. TPI represents the slope position, and it has a negative value
at the ridge and a positive value at the valley [35]. Since most of the ridges—showing
higher TPI values—are distributed in Baekdudaegan, TPI is an important variable and has
a positive relationship with FC.

3.3. Model Performance Evaluation by Different Predictor Set Hierarchies

FC prediction using the six predictor set hierarchies was performed to cover the
spatially differentiated data with optimal accuracy (Table 2). The machine learning models
were paired with their optimal predictor set hierarchies as follows: E4-S0 (RF), E12-S0 (RF),
E14-S0 (RF), E0-S4 (GB), E14-S2 (GB), and E14-S4 (GB).

To compare the prediction performance of each predictor set hierarchy, the measured
and predicted FCs were compared (Figure 5). A scatterplot of five-fold cross-validation was
built by arbitrarily selecting one of the five validations. The E4-S0 predictor set hierarchy
showed the lowest predictive performance, whereas there was little difference among
E12-S0, E14-S0, and E0-S4. The predictive accuracy increased as the number of soil property
types increased, and the E14-S4 model showed the highest performance.

Notably, the E14-S0 and the E0-S4-based models’ performance was almost identical.
The E14-S0 model can represent the DSM, and the E0-S4 model can represent the pedo-
transfer function (PTF). The PTF model predicts another soil property of interest based on
the soil’s physical and chemical properties [36]. Therefore, the predictive power of PTF,
which directly predicts soil characteristics, is generally higher than that of DSM, which
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predicts soil characteristics based on indirect environmental variables [37]. Although PTF
has the advantage of relatively high predictive power, its disadvantage is that it is difficult
to predict a large area because it can predict only the soil characteristics of the site from
which the soil was directly investigated [38]. On the contrary, DSM has lower predictive
power than PTF, while it can predict a broader range of soil properties [11]. However, the
data collected in this study indicate that the explanatory power of environmental covariates
is already very similar to the explanatory power of soil properties.
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Figure 5. Relationship between measured and predicted field capacities according to the six predictor
set hierarchies. Training sets are plotted with gray points, and test sets are plotted in yellow-to-
blue. Five-fold cross-validation was performed for model performance with the (a) E4-S0-based RF,
(b) E12-S0-based RF, (c) E14-S0-based RF, (d) E0-S4-based GB, (e) E14-S2-based GB, and (f) E14-S4-
based GB models.

In other words, the number of geographically referenced datasets collected so far
in Korea is as abundant, as it can follow the explanatory power of in situ measurement.
Furthermore, it can be seen that the characteristics of environmental covariates and soil
properties do not overlap because the performance of E14-S2 (Figure 5e,f), which combines
these two datasets, further increased.

The FC of South Korea was predicted using all six hierarchical sets (Figure 6), and
the averaged FC across the nation was found to be 24.70%. Notably, higher FCs are
found at higher altitudes, distributed mainly along the Baekdudaegan watershed crest
line. Additionally, the FCs in the northeast and southwest regions, with relatively higher
altitudes, were higher than those in the northwest and southeast regions.
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3.4. Relationship between Predictive Uncertainty and Distribution of Training Datasets

The E14-S0 and E0-S4 predictor set hierarchy-based RF models were used to estimate
the predictive uncertainty of the models. Here, 2D heatmaps were drawn with the two
most important variables among environmental covariates and soil properties. We also
compared the predicted FC and the distribution of training data alongside predictive un-
certainty (Figure 7). One soil sample from the training data was selected to obtain the
predicted FC. FC was predicted by modifying only the two variables of interest, while the
others remained fixed. The soil samples were selected 500 times, and the prediction was
repeated to understand the general trend. Then, the result values were averaged, which
was standardized to zero and one to check the relative differences (Figure 7a,d). Predictive
uncertainty was derived using the bagging algorithm of the RF model. After selecting
the optimal hyperparameter of the model via grid searching, the FC was predicted while
continuously changing the randomness of the bootstrapping method. In the “RandomFore-
stRegressor” library of SciKit-Learn, the parameter “random_state” controls randomness.
Note that the soil samples used to obtain the predictive uncertainty were the same as those
used to obtain the standardized predicted FC. The coefficient of variation (CV; standard
deviation/average) values from 500 results were extracted and standardized to zero and
one to check the relative difference (Figure 7b,e).

A strong correlation between predictive uncertainty and the distribution of the training
dataset was observed, whereas the predicted FC and predictive uncertainty were not found
to be significantly related (Figure 7). The part with relatively low predictive uncertainty
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(blue area in Figure 7b,e) coincides with an extensive training set distribution. Moreover,
the part with relatively high predictive uncertainty (red area in Figure 7b,e) corresponds to
the part where the training set was barely distributed.
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Figure 7. A 2D heatmap of (a,d) predicted FCs and (b,e) predictive uncertainties, which are the
standardized mean values of the CV, and (c,f) scatterplot of the training set. The distribution of the
predicted uncertainties is not related to the predicted FCs but is strongly related to the distribution of
the training set.

We added training data and simulated how the predictive uncertainties changed to
verify the relationship between training data scarcity and predictive uncertainty (Figure 8).
We used the E14-S0 predictor set hierarchy-based RF model. After selecting a soil sample,
only the elevation and TPI of the soil sample were changed to create 2D imaginary soils—a
simple version of the target site. The higher predictive uncertainties were distributed in
the upper-left, upper-right, and lower-right corners, where the training data were rarely
undistributed. The highest uncertainty was observed in the upper left and was added to the
training dataset, assuming that this soil was collected. Here, the FC value of the added data
was calculated based on the predicted value of the E14-S0 predictor set hierarchy-based
model. Note that a specific error was added to the predicted value because the FC value
of the actual soil was different from the model’s predicted value. This error follows the
distribution of the difference between the predicted and measured values of the training
data using the E14-S0 predictor set hierarchy-based model (see Appendix A). As a result of
the simulation, by adding a new soil sample to the training data and observing the changes
in predictive uncertainties, it was found that the uncertainty was high where the training
data were rarely distributed, and the predictive uncertainty decreased around the added
soil sample. The graph in Figure 8 shows that the uncertainty rapidly decreased, even
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when only one soil sample was added. This is because 2D imaginary soils simulating the
predictive uncertainty changes have precisely the same characteristics, except for elevation
and TPI. However, we confirmed that the high predictive uncertainties were distributed in
the data scarcity area, which can be reduced through additional investigation.
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Figure 8. Examples of adding training data and changes in predictive uncertainties. Predictive
uncertainties decreased when additional training data were used. Note that the 2D imaginary soils
used in this simulation had the same characteristics, apart from the two variables of interest (elevation
and TPI), which makes the predictive uncertainty reduction appear radical.

The bagging algorithm (bootstrap aggregation) is a machine learning ensemble that
trains models by selecting random subsets. It has many advantages, such as preventing
overfitting and increasing model stability or accuracy [39]. However, when a model is
necessary to predict the out-of-data distribution of the training dataset, extrapolation is
inevitably performed, and it can increase the uncertainty of the prediction. Zhang et al. [27]
also mentioned a correlation between data distribution and uncertainty when they devel-
oped a PTF model that predicted soil hydraulic properties on a global scale; they found
that a lack of relevant calibration samples might cause high uncertainty values. In other
words, when the bagging technique is used, the places where the relevant training dataset is
insufficient can be effectively identified through uncertainty testing. Predictive uncertainty
can be calculated simply with a few lines of code in SciKit-Learn.

3.5. Our Simple Optimal Sampling Algorithm

A simple optimal sampling algorithm was developed based on the relationship be-
tween predictive uncertainty and the training dataset. Firstly, a machine learning model
was developed by searching for an optimal hyperparameter set based on the collected
data. The predictive uncertainty of the training set was adopted as the threshold pre-
dictive uncertainty (TPU), which will be a criterion for determining the sample size. It
is determined based on the predictive uncertainty distribution of the training data used
when an RF model was developed. Subsequently, the predictive uncertainties of the target
site were calculated using environmental covariate data. At this point, the coordinate
corresponding to the soil with the highest predictive uncertainty becomes an additional
sample site. Afterward, the RF model predicts the FC value of the additional sample site,
and an error term is added to the predicted value (see Appendix A). An RF model was then
trained based on new training data, where a new hypothetical soil sample was added. The
above process was then repeated, and additional sample sites were selected one by one.
The optimal sample size was then determined based on the predictable rate, a ratio of the
number of cells smaller than the TPU to the total number of grid cells.

Using this new algorithm, we selected additional sample sites to enhance the existing
DSM of South Korea. The E14-S0 predictor set hierarchy-based RF model was trained using
953 collected soil samples. Afterward, we calculated the predictive uncertainty distribution
using the same 953 soil samples (Figure 9a). TPU was determined using the 95th-percentile
value of predictive uncertainties. Note that 95% is a subjectively selected ratio and may
vary depending on the research or business purpose. Then, the environmental covariate
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information from a 100 m × 100 m grid of forests across South Korea was used for target
data. The predictive uncertainty of each grid cell was calculated based on the developed
model, and the cell with the highest uncertainty was selected as an additional study site.
Afterward, updating the model and selecting additional survey sites was repeated while
including additional data in the training dataset.
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Figure 9. Selecting optimal sampling sites to strengthen the DSM of South Korea using the optimal
sampling algorithm suggested in this study. A predictive model was developed with 953 training
data items. (a) Threshold predictive uncertainty was determined by the distribution of the predictive
uncertainty when using the training data as input to the developed model. Epistemic uncertainty
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decreased with the addition of training data. We do not show all outliers in the box plot, and only
the maximum and minimum values of the dataset are indicated. (b) The predictable rate increased
according to the number of additional sites, which helped to confirm the optimal number of additional
survey sites. (c) Expected results of the spatial distribution of predictive uncertainty in South Korea
are shown when 30 and 60 data items are collected using the optimal sampling algorithm. Ntot,
number of grid cells in the target site.

The predictive uncertainty gradually decreased as additional survey sites were selected
(Figure 9a). If the predictive uncertainty of grid cells is less than the TPU, it can be assumed
that the training dataset already contains information from those grid cells. Thus, the ratio
of the number of cells smaller than the TPU (TPU95) to the total number of grid cells in
the target site (Ntot) was calculated to determine the predictable rate (TPU95/Ntot). It was
found that this rate increased with the number of additional sites (Figure 9b). Furthermore,
it was confirmed that 43 additional samplings were needed if the research goal was to
explain more than 80% of the target area. Additionally, the predictive uncertainty of
forests nationwide decreased as optimal sampling sites were added through the sampling
algorithm (Figure 9c).

We only used the training dataset’s predictive uncertainty to select the TPU. This is
because if we develop a model to estimate FC through the training dataset and estimate
FC using the same training dataset consecutively, the predictive uncertainty calculated at
this time will be caused by the following reasons: potential errors introduced from soil
collection, laboratory work, or incorrect geographical information. These factors pose
irreducible uncertainty in the current situation. In other words, it is a natural variation that
occurs equally, even if more soil samples are collected. Thus, the TPU was calculated based
on the training dataset.

Predictive uncertainty can be primarily divided into aleatoric and epistemic uncer-
tainties. Aleatoric (statistical) uncertainty refers to the variability of the results caused by
naturally occurring random effects [40,41]. Epistemic (systematic) uncertainty pertains to
the lack of epistemic conditions applied by analysts [42]. Thus, aleatoric uncertainty is the
non-reducible type, and epistemic uncertainty is reducible [43]. Hence, the TPU set, when
used as the standard, predictable rate in this study, has the characteristic of irreducible
aleatoric uncertainty. In contrast, predicting the FC of target site data contains not only the
epistemic uncertainty related to out-of-distribution data that were not used when the model
was trained but also aleatoric uncertainty. Therefore, the model learns the corresponding
soil information if new sample sites that did not exist before are added to the training
dataset over time. As a result, the epistemic uncertainty steadily reduces.

This sampling algorithm is useful for collecting soils with characteristics that were
not previously collected by suggesting the locations and sample size of the sample sites
in a simple way using machine learning. Therefore, it can make our understanding of the
explanation of FC more concrete. However, this requires future work. South Korea has
started an R&D project to collect additional forest soil samples. Thus, it is necessary to
verify whether the predictive uncertainty is reduced by checking the ground truth as we
increase the model’s prediction performance throughout this project. Notably, collecting
new samples is not the only method for enhancing DSM. A more enhanced model that
can predict the FC of forest soil could be developed if additional predictors that can better
explain FC are found in the future (using datasets from satellites or drones). Further, new
machine learning structures are being developed to describe FC characteristics effectively.

4. Conclusions

Nine hundred and fifty-three forest soil samples and four geographical big datasets
were used to develop FC predictive models. The predictive performance of four machine
learning algorithms was compared, and tree-based models (RF and GB) showed a higher
NSE and smaller RMSE; that is, they performed better than the other machine learning
models (KNN and MLP). Therefore, RF and GB models are suitable when treating the
geographically referenced big datasets of South Korea. Variable importance analysis
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confirmed that sand and OM as soil properties, and elevation and TPI as environmental
covariates, were important variables for predicting FC. We established a different six-
predictor set since data coverage varies by location across the nation. Further, considering
the variable importance of soil properties and environmental covariates, machine learning
models were paired with their optimal predictor set hierarchies (RF: E4-S0, E12-S0, and
E14-S0; GB: E0-S4, E14-S2, and E14-S4). The FCs of South Korea were predicted using the
developed models and were primarily distributed along the Baekdudaegan watershed
crest line.

There was a strong relationship between model predictive uncertainties (the coefficient
of variation of predicted FCs) and training data distribution. Further, we confirmed that
higher uncertainties were distributed in the data scarcity area. Changes in predictive
uncertainties were simulated to verify the relationship between training data scarcity and
predictive uncertainty. Predictive uncertainties decreased when additional sample sites
were added to the training dataset. To determine the optimal sample sites to strengthen
DSM in South Korea, environmental covariate information of each grid cell (raster with
a cell size of 100 m) was used. A grid cell with the highest predictive uncertainty was
selected as a new sample site. Geographical information of the new sample site was added
to the training dataset, and the site selection process was iterated. Epistemic uncertainty
decreased when new sample sites were added to the training dataset. The sample size
was determined using the predictable rate, calculated by the total number of grid cells
in the target site and a TPU that is subjectively established. When the TPU was decided
using the 95th-percentile value of predictive uncertainties, 80% of the target area could be
successfully explained when 43 optimal sample sites were added to the existing datasets.
This intuitive sampling design can be generalized to coordinate the sampling sites and
determine the sampling size for strengthening DSM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11112098/s1, Table S1: Forest environmental covariates from
the geographically referenced database used in this study; Figure S1: 2D heatmap matrix of predicted
field capacity (FC) for four environmental covariates. A random soil sample was selected, and two
variables of interest were changed while the other variables were fixed. This process was iterated
500 times, and all predicted FCs were averaged and standardized to show the effect of only two
variables of interest on FC. Note that Ign. is an igneous rock, Sed. is a sedimentary rock, Meta. is
a metamorphic rock. Regarding aspect, 0◦ is the northern aspect, and 180◦ is the southern aspect;
Figure S2: 2D heatmap matrix of predicted FC for four soil properties. A random soil sample was
selected, and two variables of interest were changed while the other variables were fixed. This process
was iterated 500 times and all predicted FCs were averaged and standardized to show the effect of
only two variables of interest on FC.
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Appendix A

When the FC value of added data is assumed, it can be calculated based on the output
value of the model. Here, the model’s predicted value was not added to the training dataset
as it was, but an error term was placed in the predicted FC to simulate the collected soil.
The error used here has the following distribution:

error ∼ normal(µ = 0, σ) (A1)

σ2 =
∑N

1

(
di f fi − di f f

)2

N
(A2)

di f fi = |FCS14−M0(
−→
EC i)− FCi| (A3)

where the symbol “~” indicates that the error is arbitrarily selected from the distribution
shown in the right side of Equation (A1). “normal” corresponds to the normal distribution
having two parameters: mean (µ) and standard deviation (σ). σ was calculated using the

model’s predicted FC value and the actual FC value.
−→
EC i is an input vector composed

of the i-th 14 environmental covariates, and FCS14−M0 is a random-forest-based E14-S0
model that predicts FC. FCi is the i-th measured FC. Here, FCS14−M0 was developed with

953 soil samples, and both
−→
EC i and FCi are predictors and FC values related to the same

soil samples. This study used 1.46 for σ.
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