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Abstract: Ordos Plateau is one of the primary sources of sediment in the Yellow River, and changes in
regional soil erosion directly affect the ecological status of the lower reaches of the Yellow River. Many
recent studies have been published using remote sensing (RS) and geographic information systems
(GIS) to evaluate soil erosion. In this study, much satellite remote sensing data in the Google Earth
Engine (GEE) can better track soil erosion protection, which is significant in guiding the ecological
protection and restoration of the Ordos Plateau and the Yellow River basin. In this study, we used
GEE to observe the changes in soil erosion in the Ordos area from 2013 to 2021. The Theil–Sen
procedure and Mann–Kendall significance test methods were used to evaluate the trend of land
erosion in the Ordos area from 2013 to 2021. Based on GEE, the RUSLE is applied to evaluate soil
erosion and analyze the changing trend. As a result, (1) we found that the annual change of soil and
water loss in the Ordos Plateau showed three stages: 2013–2015, 2016–2018, and 2018–2021. After
2018, soil loss decreased from 14 × 1017 Mg in 2018 to 4 × 1017 Mg in 2021, which indicates that the
environmental restoration project started in 2018 has achieved encouraging results. (2) The results
showed that 40.9% of the regional soil erosion trend showed a significant decline, and 45.7% of the
regional soil erosion trend showed a slight decline. Only 13.3% of the regional soil erosion is on
the rise. (3) The test results of different land use types show that 87.3% of soil erosion occurs in
bare and cultivated land. Because the terrain of Ordos is relatively flat, 95.39–96.17% of soil erosion
occurs in areas with a slope of 0 to 5. (4) The reliability of the RUSLE model based on the GEE
platform is proved by regression model verification of observation data and model prediction results.
(5) GEE’s cloud-based features can provide data and scripts to users in developing countries which
lack sufficient observation data or the necessary computing resources to develop these data. The
results show that GEE has robust analysis and processing ability, can analyze a large amount of data,
and can provide efficient digital products for soil erosion research.

Keywords: soil erosion; satellite observation; Google Earth Engine; Theil–Sen procedure; Mann–
Kendall significance test

1. Introduction

Soil and water loss is a widespread environmental problem in the world, which
seriously endangers the survival and sustainable development of human beings [1]. The
Yellow River basin is China’s region with the most serious soil erosion. Because of the severe
soil erosion, the Yellow River has become the river with the largest sediment concentration
in the world, and even the suspended river phenomenon has been formed in the middle
and lower reaches. The Ordos Plateau is one of the primary sediment sources in the Yellow
River basin. Early mineral exploitation and cultivated land reclamation caused a large
amount of sediment loss.

At present, the commonly used hydrological models are HSPF model, AGNPS model,
L-THIA model, SWAT model, and so on. The SWAT model is one of the most widely
used distributed hydrological models in water resource analysis and evaluation. When
predicting soil erosion modulus, the Water Erosion Prediction Project (WEPP) is often
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used [2–5]. It is a standard research method to quantitatively estimate soil erosion using the
soil erosion model [6–8]. The United States established the revised universal soil erosion
equation (RUSLE) based on the universal soil erosion equation (USLE) [9–11]. RUSLE is
one of the widely used soil erosion equations and has the advantages of simple structure,
readily available parameters, and more straightforward calculation [12,13]. However, using
RUSLE depends on image processing software, and the data collection and processing
workload is enormous. Therefore, it is difficult to use this model for long-term soil and
water loss monitoring. With the development of technology, the appearance of Google
Earth Engine [14], a cloud geographic information processing platform, makes it possible
to monitor soil erosion over a long time.

The satellite observation data accumulated by GEE can help us better understand
soil erosion changes. This paper selected the typical Ordos Plateau, which is strongly
disturbed by human activities, as the research area. Based on the platform of Google Earth
Engine, long-term satellite observation is used to review the changes in soil erosion and
monitor the effects of ecological restoration and protection. Google Earth Engine has a
massive data storage function compared to traditional image processing tools, which can
quickly call and process remote sensing data in batches. GEE can realize fast, multi-method
and batch processing of images by programming in JavaScript and Python. In recent
years, many scholars have applied GEE to water surface dynamic change monitoring,
agricultural yield estimation, urban development, and so on [14]. Relevant scholars have
made exemplary achievements in vegetation monitoring [15,16] using Google Earth Engine
for land use [17,18], crop classification [18–20] , and water quality inversion [19,20], and its
application for soil erosion monitoring is still in the preliminary exploration stage.

In this paper, we show the results of 9 years of long-term observation of soil and water
loss from 2013 to 2021 and discuss the changing trend and pattern of soil and water loss in
the Ordos Plateau. In this study, a long-term observation case study using Google Earth
Engine was put forward to provide strategic information for soil and water loss restoration.
The primary purpose of this study is to explore the deployment of end-to-end applications
on GEE and take the Ordos as an example to conduct a fully automatic and practical soil
loss assessment.

2. Study Area

The Ordos area is located in the southwest of the Inner Mongolia Autonomous Re-
gion and the hinterland of the Ordos Plateau. It is about 400 km long from east to west
and 340 km wide from north to south, with a total area of 87,000 square kilometers. Its
geographical location is shown in Figure 1.

The Ordos area has an average altitude of more than 1400 m, and its terrain is low in
the southeast and high in the northwest. The area has a complex terrain connected to the
Loess Plateau in the south and is surrounded by the Yellow River in the east, west, and
north. There are five landforms: plains, plateaus, desert, hills, and sandy land.

The Ordos is a semi-arid continental climate zone in the north temperate zone, with
drought and little rain. The precipitation is mainly concentrated from June to August every
year. The Yellow River is 590 km long in the Ordos, and there is water all year round. The
soil types are mainly aeolian sandy soil, swamp soil, saline soil, and chestnut soil. The land
is mainly divided into four categories: alluvial plain, hilly and gully, desert plateau, and
wavy plateau.
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Figure 1. Overview of the study area.

3. Materials and Methods
3.1. Satellite Data

This study was conducted in Ordos area, and all the data from 1 January 2013 to
31 December 2021 were analyzed to estimate the soil loss in the Ordos area. The data used
in this paper are shown in Table 1.

Table 1. Data list, sources, datasets, and original resolution.

Variables Source Dataset Resolution

RUSLE

Daily rainfall data UCSB/CHG CHIRPS 5566 m
Soil organic

carbon
Beijing Normal

University GSDE 10 km

Sand content Beijing Normal
University GSDE 10 km

Silty content Beijing Normal
University GSDE 10 km

Clay content Beijing Normal
University GSDE 10 km

Digital elevation
model (DEM)

University of
Tokyo MERIT 3 arc-second

NDVI USGS Landsat 8 30 m

Land cover European Space
Agency WorldCover (2020) 10 m

Among them, (1) soil data come from global soil data GSDE, including soil sand, silt,
clay, and organic matter content (http://poles.tpdc.ac.cn/zh-hans/data/2e46eb77-3ca2-4
b90-9a42-fd49f10630d4/ accessed on 6 December 2020) [21]. (2) Topographic data come
from MERIT DEM data provided by Yamazaki D et al., including processed flow direc-
tion and discharge data (https://developers.google.com/earth-engine/datasets/catalog/

http://poles.tpdc.ac.cn/zh-hans/data/2e46eb77-3ca2-4b90-9a42-fd49f10630d4/
http://poles.tpdc.ac.cn/zh-hans/data/2e46eb77-3ca2-4b90-9a42-fd49f10630d4/
https://developers.google.com/earth-engine/datasets/catalog/MERIT_Hydro_v1_0_1
https://developers.google.com/earth-engine/datasets/catalog/MERIT_Hydro_v1_0_1
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MERIT_Hydro_v1_0_1 accessed on 6 December 2020) [22]. (3) Rainfall data come from
the CHIRPS precipitation data set provided by Funk et al., which combines 0.05 resolu-
tion satellite images with in situ station data to create grid rainfall time series (https://
developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY ac-
cessed on 6 December 2020) [23]. (4) Land Use data come from ESA’s global 10 m resolution
land use images (https://developers.google.com/earth-engine/datasets/catalog/ESA_
WorldCover_v100 accessed on 6 December 2020) [24]. (5) USGS provides annual median
synthetic data of Landsat8 images from 2013 to 2021 (https://developers.google.com/
earth-engine/datasets/catalog/landsat accessed on 6 December 2020).

3.2. Method
3.2.1. Calculation Based on Goggle Earth Engine Platform

GEE, the world’s advanced geographic data scientific analysis platform [15], can
realize the fast calculation of large-area remote sensing index in the cloud. The ap-
proach to processing and analysis is shown in Figure 2. More details can be found in
our GUI application: (https://yqx0903.users.earthengine.app/view/erdssoil accessed on
15 December 2022).

According to the calculation formula of RUSLE in reference [25], the various factors
were calculated using the GEE platform’s powerful cloud computing capability, and RUSLE
calculation from 2013 to 2021 was completed.

A = R · K · LS · C · P (1)

where A refers to the amount of soil loss per unit time and area. R represents the rainfall
erosivity factor. K is the soil erodibility factor. L and S represent the topographic factor (di-
mensionless). C is the vegetation cover factor (dimensionless). P refers to the conservation
measure factor (dimensionless). K factor and LS factor are regarded as constants. R, K, and
P factor are variables.

The soil erodibility (K) factor is calculated as follows:

K =

{
0.2 + 0.3 exp

[
−0.0256Sand

(
1− Silt

100

)]}
×
[

Silt
Clay + Silt

]0.3
×[

1− 0.25C
C + exp(3.72− 2.95C)

]
×
[

1− 0.7Sn1
Sn1 + exp(−5.51 + 22.9Sn1)

]
.

(2)

where Sand, Silt and Clay represent the percentage content of sediment and sedimt and
clay in the soil, respectively, and C represents the organic carbon content in the soil;
Sn1 = 1-sand/100. Soil date comes from global soil data GSDE, which is uploaded to GEE
storage for the next calculation.

LS factor is composed of slope factor (S) and slope length factor (L). The LS factor can
be calculated in GEE by using MERIT DEM data [22,26–28].

To fully use the image information of the study area and overcome the influence of
cloudiness, this study adopts the minimum cloud cover image synthesis method. This
paper selects 9 years of Landsat 8 data from 2013 to 2021. The Landsat cloud mask algorithm
is used in the GEE platform (https://code.earthengine.google.com/?Script-path=examples:
datasets/Landsat_LT05_C01_T1_SR, accessed on 15 December 2022) to calculate the input
Landsat-8 data set, which accords with the time and space range, removes the cloud pixels
and reconstructs the composite image with the minimum cloud cover of the target year for
the cloudless pixels. Furthermore, the processed Landsat data set is used to calculate the
annual maximum NDVI in Google Earth Engine. The formula of C-factor is as follows:

C = exp
[
−a× NDVI

b− NDVI

]
(3)

where a = 2, b = 1.

https://developers.google.com/earth-engine/datasets/catalog/MERIT_Hydro_v1_0_1
https://developers.google.com/earth-engine/datasets/catalog/MERIT_Hydro_v1_0_1
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v100
https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v100
https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/landsat
https://yqx0903.users.earthengine.app/view/erdssoil
https://code.earthengine.google.com/?Script-path=examples:datasets/Landsat_LT05_C01_T1_SR
https://code.earthengine.google.com/?Script-path=examples:datasets/Landsat_LT05_C01_T1_SR
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Figure 2. Methodological workflow of RUSLE calculation based on GEE platform.
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To obtain the annual land use images, this study used the random forest method in
GEE to classify the annual LandSat8 image data in the Ordos area. The specific process is
as follows: the global land use data of 10 m resolution in 2020 provided by ESA is used as
the label, and using stratified sampling strategy, 1000 training points are randomly selected
every year. After manual visual interpretation, these sampling points are used as the final
training labels. Then, the median synthetic data of Landsat are calculated. Finally, the
random forest classifier is used to train the annual images to obtain the annual land use
images. In the study, we use the GEE random forest function (ee.Classifier.smileRandomForest)
to conduct the land cover and land use mapping. The number of trees and min leaf
population were 100 and 1, respectively. The latter parameter means that when the number
of nodes becomes 1, the tree stops growing. According in Table 2 [29], land use categories
were reclassified to the P-factor.

Table 2. P-values of different land use types.

Land Use
Types Trees Shrubland Grassland Cropland Built-Up Barren Water

P 1 1 1 0.24 0 1 0

3.2.2. Trend Analysis

In this study, the Theil–Sen procedure and Mann–Kendall significance test was used
to analyze the trend of soil erosion in the Ordos from 2013 to 2021. According to the value
of the Theil–Sen procedure and Mann–Kendall significance test, the changing trend of soil
erosion can be divided into five categories: significant increase, slight increase, insignificant
change, slight decrease, and significant decrease.

SD = Median
(Dj − Di

j− i

)
, (4)

S = ∑n−1
j−i ∑n

j−i+1 sgn
(

Di − Dj
)
, (5)

sgn
(

Dj − Di
)
=


1, Di − Dj > 0
0, Di − Dj = 0
−1, Di − Dj < 0

, (6)

s(S) =
n(n− 1)(2n + 5)

18
, (7)

Z =


S−1√

s(S)
, S > 0

0, S = 0
S+1√

s(S)
, S < 0

, (8)

where SD indicates the trend of soil erosion from 2013 to 2021, SD > 0 indicates the increase
in soil erosion from 2013 to 2021, and SD < 0 indicates the decrease in soil erosion from 2013
to 2021. Di and Dj are the observations at i and j. n is the length of the period. The trends
are shown in Table 3.

Table 3. Trend features.

SD Z Trend Feature

SD > 0 |Z| > 1.65 significant increase
|Z| < 1.65 slight increase

SD = 0 Z insignificant change

SD < 0 |Z| > 1.65 slight decrease
|Z| < 1.65 significant decrease
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3.2.3. Model Validation

In this study, we use the linear regression model to evaluate the accuracy of the RUSLE
model [2]. The specific methods are as follows: (1) The sediment transport moduli in the
Yangtze River and Yellow River basins of China are selected as the observation data. (2) The
observation data and prediction data are linearly fitted. (3) The effectiveness of the soil
erosion model is evaluated by using the fitting situation.

4. Results
4.1. Model Validation

We performed a regression analysis on the soil erosion intensity of the RUSLE model
and used the sediment transport modulus as the observed value of soil loss [2,30,31]; the
observed data are from Wang et al. [1]. The regression results are shown in Figure 3. The
results show that it is reliable to estimate the soil erosion in the Ordos area by using RUSLE
and its parameters (R2 = 0.5812).

Figure 3. Validation of (a–d) the RUSLE model: 2013, 2016, 2018, 2021.

4.2. Soil Erosion Changes in Loess Plateau

The intensity of soil erosion can be divided into six grades from slight erosion to severe
erosion, as shown in Table 4.
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Table 4. Classification standard of soil erosion intensity grades [32].

Soil Erosion Intensity Grades Soil Erosion Modulus (Mg/(km2 yr))

Micro-erosion <1000

Mild erosion 1000~2500

Moderate erosion 2500~5000

Strong erosion 5000~8000

Pole strong erosion 8000~15,000

Violent erosion >15,000

The analysis of soil erosion intensity shown in Figure 4 shows that the soil erosion
intensity of 32.1% of the study area decreased from 2016 to 2021, and the light erosion
gradually spread to the western region (Figure 4a–d). Total soil erosion decreased from
~12 × 1017 Mg in 2016 to 4 × 1017 Mg in 2021. In different soil erosion grades, the area
of violent erosion decreased significantly from 352 × 102 km2 in 2016 to 49 × 102 km2

in 2021. The area proportion and total amount of erosion at all levels are counted yearly
to obtain Figure 4f. Figure 4f shows that in each year, the proportions of slight and mild
erosion are the highest, the proportions of moderate and intensive erosion are lower, and
the proportion of severe erosion fluctuates significantly. It can be seen from Figure 4e that
the changing trend of erosion area for each grade is consistent with the total amount of
erosion every year. Before 2016, the total amount of erosion in the region showed an overall
upward trend, reaching a peak in 2016 and then began to decline, which is inseparable
from the measures taken by the country in the field of soil and water conservation. The
total amount of erosion in 2021 has decreased by 66.7% compared with the peak in 2016,
showing remarkable achievements in controlling soil and water loss in recent years.

4.3. Staged Characteristics of Soil Erosion Changes in the Ordos

Figure 5 shows the spatial distribution of soil erosion types in different periods. From
2013 to 2021, the spatial distribution of soil and water loss in the Ordos is relatively consis-
tent, with the south and north being mainly micro erosion and mild erosion, and the areas
with severe erosion being concentrated in the northeast. From 2013 to 2016, the intensity of
soil erosion in the Ordos increased yearly, from 577.9 × 1015 Mg to 1350.22 × 1015 Mg. The
soil erosion of pole strong erosion and violent erosion increased by 305.7847× 102 km2, ac-
counting for 27.16% of the total area. They are mainly distributed in the western region.
From 2016 to 2018, this trend remained unchanged. After 2018, the erosion intensity in
the western Ordos decreased yearly. In 2018, the erosion rates of pole strong erosion
and violent erosion were 227.82 × 103 km2 and 343.196 × 103 km2, respectively. How-
ever, in 2021, the erosion area of these two types of soil was only 125.32 × 103 km2 and
48.35 × 103 km2, respectively.
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Figure 5. Soil erosion intensity map for each year.

4.4. Change Tendency of Soil Erosion

The change trend chart shows that the central and western regions have the most
significant changes in the study area (Figure 6). Therefore, regarding significant changes,
the downward trend accounts for the main component, while the proportion of significant
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and non-significant upward trends is tiny. According to the conclusion drawn from Figure 4,
the erosion intensity in the southwest has gradually declined since 2016, with 40.94% of
the total pixels showing a significant decline and 45.74% of the total pixels with a slight
downward trend. Therefore, the decline of soil erosion is the primary trend in the Ordos.

Figure 6. Trend change of soil erosion from 2013 to 2018.

5. Discussion
5.1. Soil Erosion Characteristics of Different Land Use Types

Land use type is the most intuitive manifestation of human influence on soil erosion,
and different land use types have different abilities to maintain the soil [33]. Therefore,
there are significant differences in the possibility of soil erosion among different land types.
According to the data in 2020, the main land use types in the Ordos include cultivated land,
woodland, grassland, water bodies, construction land, and bare soil. Among them, the area
of bare soil is the largest, accounting for 51.53%, followed by grassland and cultivated land,
accounting for 33.92% and 8.23%, respectively. These three land use types account for 97%
of the total land use area and are the three main land use types in the Ordos. Because there
are too few samples of the other types, the central statistics are soil erosion on the three
main types in bare soil, grassland, and cultivated land.

Figure 7 shows that, among the different land use types, the most intense soil erosion
occurs in bare soil, followed by cultivated land. From 2013 to 2018, the erosion modulus of
bare soil gradually increased and gradually returned to the 2013 level from 2018 to 2021. The
erosion amount decreased from 20.37× 1011 Mg·km−2·yr−1 to 13.36 × 1011 Mg·km−2·yr−1.
The erosion modulus of grassland remained unchanged, and the changing trend of the
erosion modulus of cultivated land was similar to that of bare soil, reaching its peak in 2018
and then decreasing.
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Figure 7. Total amount of soil erosion under different land use from 2013 to 2021.

5.2. Soil Erosion Influenced by Climate and Human Activities

In Section 4.4, we show the changing trend of soil erosion in the Ordos, and we can
find that the trend of soil erosion in most areas of Ordos is declining to different degrees.
The main reason is related to the increasing vegetation coverage year by year. Increasing
vegetation coverage can reduce the soil erosion caused by rainfall to a certain extent and
enhance the service capacity of soil and water conservation.

The widespread distribution of barren land and farmland in the western Ordos leads
to the decline of soil erosion. Mechanically speaking, the barren land is not covered by
vegetation, which leads to the direct exposure of the soil to the wind. At the same time, the
farmland is seriously disturbed by human activities and production activities. Therefore,
poor land and farmland are easily affected by wind, which leads to severe soil and nutrient
loss, thus reducing soil erosion capacity.

Soil erosion is influenced by land use types, rainfall, and soil properties. The northwest
is mainly plains and plateaus, with flat terrain and mostly woodland and grassland, so the
soil conservation function in this area is mainly affected by vegetation cover.

There is a large amount of soil erosion in the central desert area, mainly due to the
scarcity of vegetation and poor soil and water conservation measures, which leads to
low soil conservation intensity. Therefore, the local soil and water conservation measures
significantly improve the soil conservation function in areas with severe soil erosion and a
bad ecological environment.

The northeast of Ordos has the highest degree of soil erosion, mainly because of the
excellent climate variability. The precipitation and temperature change significantly in
the northeast of Ordos. Consistent with previous studies, farmland soil erosion is high.
In addition, farmland is artificially managed, which makes it challenging to control soil
erosion in the farmland ecosystem.

5.3. Advantages of the Google Earth Engine Platform

In this study, the GEE platform was used to calculate the soil erosion in the Ordos from
2013 to 2020. The GEE platform can obtain a large amount of data quickly and provide
powerful data processing capabilities. Compared with traditional remote sensing image
processing tools (such as ENVI and ArcGIS), the GEE platform includes many encapsulation
functions, such as cloud removal, cropping, mosaic, operation, and classification. Through
code programming, data acquisition, processing, analysis, and result output can be carried
out quickly and conveniently, significantly improving research efficiency.

The calculation process for soil erosion needs a lot of intermediate processes, and
rainfall, DEM, soil, NDVI, and land use can all be collected and processed in the cloud
platform. Conventional data collection and processing work is heavy, and it is challenging
to calculate regional soil erosion quickly due to the influence of clouds and rain. The GEE
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platform can quickly collect and display data and judge the critical period of data quality
selection. All the methods proposed in this study are based on the GEE remote sensing
cloud platform, which eliminates the limitations of data storage and computing capacity
and has great application potential.

Google Earth Engine’s online data acquisition and powerful cloud computing ca-
pabilities can effectively solve the problems of data collection difficulties, complex data
preprocessing, and inefficiency of the RUSLE model. Compared with the traditional method
of using GIS software to calculate RUSLE, to extract soil erosion factors, the GEE cloud com-
puting platform can only process and calculate large-scale remote sensing data in batches
by writing codes and designing user interfaces. Under the same order of magnitude of data
processing, the efficiency has been dramatically improved, and the real-time visualization
module can make faster decisions on the experimental results.

6. Conclusions

In this study, the temporal and spatial changes of soil erosion in the Ordos Plateau
from 2013 to 2021 were calculated by GEE. The main results are as follows:

(1) From 2013 to 2021, the trend of soil and water loss increased at first, then decreased
after treatment, which was mainly divided into three stages: 2013–2015, 2106–2018,
and 2018–2021. Soil erosion in 2021 was slightly lower than that in 2013, and it showed
an improving trend compared with 2016 under the restoration and protection projects
implemented by the government.

(2) The results of testing the trend of land erosion in the Ordos area from 2013 to 2021
showed that 40.9% of the region experienced a significant decrease in soil erosion,
while 45.7% experienced a slight decline. Only 13.3% of the region had an increasing
trend in soil erosion.

(3) Compared with the measured data, it shows that the result of soil erosion detection
using Google Earth Engine is reliable. Using Google Earth Engine, we can better
understand the current situation and changes in soil and water loss and identify
the original or less manufactured landscapes by tracking the evidence of historical
changes to provide support for environmental restoration and protection management.
The long-term changes in soil erosion can be used as one of the target indicators of
sustainable development, which can be used to evaluate the sustainable management
of land resources and provide a basis for evidence-based decision-making.

One limitation of the validation of the model and the calculations with RUSLE is that
they do not accurately represent the relationship between erosion on slopes and sediment
transport in rivers. These are two separate processes, and in some cases, only a small
portion of material removed from slopes ends up in river channels. The catchment area can
also impact this relationship [32]. Future research work will focus on further expanding the
research scale, entirely using the cloud computing power of GEE, and using various soil
erosion models to comprehensively verify the study results to cope with environmental
changes in different regions.
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