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Abstract: Urban tree canopy (UTC) is commonly used to assess urban forest extent and has tradi-
tionally been estimated using photointerpretation and human intelligence (HI). Artificial intelligence
(AI) models may provide a less labor-intensive method to estimate urban tree canopy. However,
studies on how human intelligence and artificial intelligence estimation methods compare are limited.
We investigated how human intelligence and artificial intelligence compare with estimates of urban
tree canopy and other landcovers. Change in urban tree canopy between two time periods and
an assessment agreement accuracy also occurred. We found a statistically significant (p < 0.001)
difference between the two interpretations for a statewide urban tree canopy estimate (n = 397). Over-
all, urban tree canopy estimates were higher for human intelligence (31.5%, 0.72 SE) than artificial
intelligence (26.0%, 0.51 SE). Artificial intelligence approaches commonly rely on a training data set
that is compared against a human decision maker. Within the artificial intelligence training region
(n = 21) used for this study, no difference (p = 0.72) was found between the two methods, suggesting
other regional factors are important for training the AI system. Urban tree canopy also increased
(p < 0.001) between two time periods (2013 to 2018) and two assessors could detect the same sample
point over 90 % of the time.

Keywords: land cover; tree canopy cover; urban forest cover; urban forestry

1. Introduction

Urban tree populations offer a multitude of benefits, such as improved human health,
removal of air pollutants, increased property value, and stormwater reduction [1,2]. Several
approaches exist to estimate and model the net benefits that trees provide [3]. The simplest
and most cost-effective of these calculate ecosystem benefits based on trees in developed ar-
eas [2,4]. More complex models calculate ecological benefits based on the three-dimensional
structure of the canopy, accounting for gaps and dieback [5]. Urban tree canopy (UTC)
assessments are a method used to measure urban forests and UTC is represented by the
percentage of the total area directly covered by a tree crown [4,6,7]. Example methodolo-
gies of UTC assessment include on-the-ground assessments, visual interpretation of aerial
imagery, and classification by artificial intelligence (AI) programs [8–11]. Random point
sampling of aerial imagery is a common and potentially highly accurate method to measure
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how land is used, including how many trees are present in cities [8,12]. Quantifying UTC
provides a mechanism for assessing the status of the UTC and understanding how an area’s
tree canopy changes over time [7,12,13].

A UTC analysis is one of the most efficient ways to assess urban forest resources on
multiple scales, including regional (e.g., statewide), national (e.g., country), and global [10].
These analyses include measuring temporal changes due to urbanization impacts on urban
forests [13]; mapping where urban forests exist [11]; understanding the urban forest struc-
ture [14] determining how various landcover development affects forests [15]; planning
urban reforestation projects [16]; and testing the effectiveness of policy and management
practices on canopy and people [17–19]. For example, UTC can be a dependent variable
to test the effect of having common municipal forestry components such as professional
arborist and urban forestry staff, strategic plans, tree inventory, tree board, tree planting,
pest management, ordinances, and inclusion of community members in urban forest oper-
ations [19–22]. Thus, a UTC assessment is a measurement approach used to understand
factors that drive forest change in cities [4–9,17,23]. This metric can also be used to estimate
ecosystem services from trees (e.g., stormwater runoff management, carbon sequestration,
shade, and energy conservation, physical and mental health benefits), tree distribution
across neighborhoods, how equitably they are distributed, and management effects (e.g.,
ordinances and inventories) on urban tree populations [2,7,24–26].

Several socio-economic and sociodemographic factors are related to UTC. Studies
have shown positive relationships between UTC and income and resident education at-
tainment [7,27]. Places with low-income and/or minority communities often have a lower
UTC and, therefore, may receive fewer ecosystem services [24,28,29]. A study conducted in
Baltimore, Maryland, USA found a strong negative association between UTC and crime
rates [30]. Landcover change, including urbanization and the resulting increase in impervi-
ous area, may negatively impact UTC [1,17,31,32].

In the Atlanta Metropolitan Area, USA, tree protection ordinances and implementation
of tree protection in construction areas led to healthier trees, resulting in more UTC than
locations lacking tree ordinances and protection [33]. In Florida, USA, communities with
a heritage tree ordinance had approximately 6% greater UTC compared to communities
lacking one [17]. Pest outbreaks such as Dutch elm disease (Ophiostoma novo-ulmi) and
emerald ash borer (Agrilus planipennis) have negatively impacted urban forests. Dutch elm
disease caused the death of 50 to 100 million elms in 50 years throughout North America,
and it took approximately 40 years to recover the lost canopy coverage [21,34,35]. Wind
(e.g., hurricanes, typhoons, tornadoes, microbursts) and ice storms can reduce UTC [36,37].
Because many factors negatively impact UTC, assessing urban forests and developing
appropriate maintenance is important for meeting UTC goals [38–40].

A UTC assessment based on imagery is conventionally performed using human intelli-
gence (HI), with more recent applications using human-developed algorithms coupled with
machine-learned estimates of UTC through AI approaches [41–43]. An AI approach uses
human-developed estimates to train a computer to use imagery and landcover classifica-
tions to calculate UTC within a location [10,43]. Conceptually, computer-based algorithms
for landcover classifications are more efficient (e.g., less costly) and effective (e.g., precise
estimates) and can develop detailed cover maps. Urban tree canopy assessments through
AI may employ object-based image analysis (OBIA), deep learning models (i.e., U-net), or
an object-based convolution neural network or OB-CNN [10,42,44]. These methods use
algorithms for calculating landcover types based on variations in the shape, height, and
texture of pixels in images [44]. Although there is a possibility that the landcover in the
training location may differ from locations outside the training location, which can create
error and discrepancies [41].

Much like HI methods, AI methods may use satellite imagery (e.g., NAIP and SPOT
imagery sources) and/or other remotely sensed data sources (e.g., light detection and
ranging or LiDAR) to classify canopy cover [45–47]. Artificial intelligence canopy estimates
vary in accuracy, with current canopy assessments ranging from approximately 60 to
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90% [48–54]. A study by Erker [41] interpreted UTC using AI and found approximately
85.1% accuracy for Dane County, WI, USA. A large portion of the error was due to shadows,
spatial misregistration, mixed pixels, and pixels on borders of different landcover types [41].
The use of AI for tree canopy and landcover classification reduces human labor and possibly
expenses to develop detailed and accurate landcover maps specifically to calculate UTC.

Validating how AI systems perform with UTC estimation outside regions and datasets
where they were created is important to improve estimations. This study aims to assess
whether AI and HI vary in UTC estimation. Our objectives are to investigate and quantify
differences in estimates of urban tree canopy (UTC) and other landcovers determined by
human intelligence and artificial intelligence, evaluate the efficacy of AI algorithms for
estimating landcover types outside of the training area, assess agreement between human
assessors in estimates of UTC, and determine if there were changes in UTC between two
time periods. We asked the following questions: (1) Does a UTC assessment generated
through an AI approach differ from an HI, (2) Do AI estimations differ from HI estimates
within training areas from which the AI was developed, (3) What is the level of agreement
in UTC estimates between two human assessors, and (4) Was there a change in UTC in
Wisconsin communities between 2013 and 2018 for the HI estimation method.

2. Materials and Methods
2.1. Study Site

The study occurred in Wisconsin, USA and used census designated places (which
are defined as a community in this study) throughout the state as sample locations
(Figure 1) [55,56]. The state has approximately 5.9 million inhabitants and 17 million
hectares of total landcover [55]. A sample of 404 communities were selected from a total of
685 cities (191), villages (411), and towns (83) in the state [56]. The study locations were
selected based on communities that participated in a 2017 study that detailed what urban
forestry activities they undertake [57], as well as on the availability of aerial imagery for
creating a UTC assessment. Communities, mainly towns, which lacked aerial imagery or
AI-derived landcover were excluded from the study. The sampled community populations
ranged from 75 to 584,000 people.

2.2. Tree Canopy Cover Estimation Process

Estimates of UTC through HI used aerial imagery acquired from the National Agricul-
ture Imagery Program (NAIP). The NAIP images were leaf-on for both 2013 and 2018 and
1 m resolution [58]. The study dates were selected based on available NAIP imagery in 2013
and 2018. The 2013 imagery was the base for comparison to an AI system by Erker et al. [41].
Community boundary data for the selected sample communities were obtained from the
Wisconsin Department of Natural Resources (WIDNR) Forestry GIS repository [55]. Each
community had 1000 randomly placed sample points which were used to estimate UTC,
using the Create Random Points tool in ArcMap 10.8.1 (ESRI, Redlands, CA, USA) using
methods of Hilbert et al. [17]. Each point was identified as fitting within one of seven
assessed landcover classifications used in the AI study. These classifications included (1)
agriculture, (2) herbaceous and grass, (3) impervious, (4) soil, (5) tree and shrub, (6) water,
and (7) wetland. The tree and shrub classification are also defined as UTC to calculate total
% UTC in the results. A team of eight assessors collectively classified communities for both
time periods, with images randomly assigned to each assessor. A training session was used
to calibrate assessors for a consensus on which landcover classification a sample point was
located over. To determine the landcover for the HI, an assessor would zoom into each ran-
dom point at a scale of 1:1600 or greater magnification of up to 1:800 to classify the location
using the center of the sample point (a circle with cross hairs). For each community, the
points for each landcover classification category were summed and divided by 1000 points.
This number was then multiplied by 100 to convert to a percentage of the total landcover
for that location. The process was performed in both 2013 and 2018 to analyze the change
in landcover between the 5-year interval for each community.
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Figure 1. Study locations throughout the state of Wisconsin USA where urban tree canopy was sam-
pled (shaded green) compared to non-sampled locations (unshaded white). Milwaukee metropolitan
(bottom right) expanded to show greater sample clarity.

2.3. Tree Canopy Cover Comparison Process

Results from 2013 HI estimates were compared against AI estimates for 2013 for
communities throughout the state [41]. To be consistent with the AI approach, the imper-
vious and soil classification were summed together within an impervious classification
unit. Agriculture was also combined with the herbaceous and grass. This resulted in five
categories (herbaceous and grass, impervious and soil, tree and shrub, water, and wetland)
used in the AI system [41]. The AI-generated estimates for each community used data
from: (https://dnr.wisconsin.gov/topic/urbanforests/ufia/landcover (WIDNR Wisconsin
Community Canopy Cover, accessed on 16 December 2022) derived from Erker et al. [41].
The AI system did not classify water and wetland; they were derived from vector layers
provided by the WIDNR.

2.4. Accuracy Assessment for Human Intelligence Estimates

Two assessors classified a random 10 % sample (100 points per map) of HI points for
each community using both 2013 and 2018 imagery to test for assessment accuracy using
the same landcover classifications. The ArcMap 10.8.1 Create Random Points function
was used to select the random sample for cross validation. The Assessors Agreement
explains how many points within a landcover classification that both assessors agreed upon
relative to points they classified in a landcover classification. The approach was calculated
as follows:

Assessors Agreement: (Total Agreement/Mean Sample Points) ∗ 100

Total Agreement was the number of sample points that the 1st Assessor and 2nd
Assessor agreed upon within a classification. Mean Sample Points was the mean number

https://dnr.wisconsin.gov/topic/urbanforests/ufia/landcover
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of sample points that the 1st Assessor and 2nd Assessor evaluated within a classification.
For example, the Assessors had total agreement for 86 sample points in a landcover
classification that combined they had had 180 points (Mean Sample Points = 90; 88 for
Assessor 1 and 92 for Assessor 2):

Assessors Agreement: (86 ⁄ 90) ∗ 100 = 95.6%

2.5. Statistical Approach

We used SPSS Version 28 (IBM Corp, Armonk, NY, USA) for statistical analysis. A
paired t-test was used to compare the estimates of each landcover classification from AI
and HI methods using data from all communities (n = 397) statewide. A paired t-test was
also used to evaluate for the difference between the HI and AI methods in the location
(Dane County, WI, USA) used to train the AI system (n = 21). Similarly, a paired t-test
was used to test for differences in landcover classification estimates between two time
periods (2013–2018) and percent change in each landcover classification (n = 404). An
ANOVA was used to test for assessor agreement. For this study, an α ≤ 0.05 was used for
decision-making to interpret differences. A standard error of the mean (SEM) was further
calculated for the interpretation of the findings.

3. Results

This study found differences in the UTC classification between AI and HI for com-
munities outside the training location. However, no difference was found between the
AI and the HI within the training location for UTC. The HI system also showed a change
in landcover between the years of 2013 and 2018 with the percentage of UTC increasing.
Lastly, assessor agreements for the HI were between 90% and 95% for UTC.

3.1. HI vs. AI Using Training Location Imagery

No difference was found within the training location between the HI and AI for UTC
estimates (p = 0.723). Additionally, no difference was found for the herbaceous and grass
(p = 0.332) and impervious (p = 0.218) landcover classifications for the training location
(Table 1). Differences were found with water (p = 0.003) and wetland (p = 0.006). Both
water and wetland were uncommon and each below approximately 4% overall of total land
cover for the communities studied. Herbaceous was most common with approximately
more than 41% of overall land cover. Both impervious and soil and trees and shrubs
each comprised approximately one-quarter of the overall landcover for the 21 studied
communities in the Dane County, WI, USA region training location (Figure 2).

Table 1. Comparison of percent estimates of different landcover classes using human intelligence
(HI) and artificial intelligence (AI) in the AI training area (Dane County, WI, USA). n = 21.

Landcover
Classifications

HI
Mean

(%)

AI
Mean

(%)

Mean
Difference =
HI − AI (%)

Standard
Error of the
Mean (%)

95% Lower
Confidence

Interval

95% Upper
Confidence

Interval

Paired
t-Value p-Value

Herbaceous
and Grass 42.69 40.60 1.83 1.84 −2.03 5.69 1.00 0.332

Impervious and Soil 27.26 29.04 −1.40 1.10 −3.70 0.90 −1.28 0.218
Trees and Shrubs 25.17 24.66 0.43 1.19 −2.07 2.92 0.36 0.723

Water 2.94 1.46 1.48 0.43 0.57 2.38 3.42 0.003
Wetland 1.94 4.24 −2.34 0.75 −3.91 −0.77 −3.13 0.006
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Figure 2. Landcover classification boxplot comparison between artificial intelligence and human
intelligence in Dane County, WI, USA (n = 21). Only water and wetland were significantly different
(p < 0.01). Box plots parts are lower box 1st quartile, line median, X mean, upper box 3rd quartile,
line ends are minimum and maximum values, and circles are outliers.

3.2. HI vs. AI Using Statewide Imagery

A difference was found between the HI and AI systems when land classifications
were conducted beyond the AI training area were included. Four landcover classifications
(impervious and soil, trees and shrubs, water, and wetland) significantly differed (p < 0.001)
between HI and AI systems (Table 2). No difference (p = 0.743) occurred for the herbaceous
category. The herbaceous landcover classification was most common for both systems
(~42%). The tree and shrub estimate was higher for the HI (31.5%, SE = 0.72) than in AI
(26.0%, SE = 0.72). In contrast, the impervious and soil classification was higher for the AI
(26.2%, SE = 0.53) than in HI (21.5 %, SE = 0.51). Both wetland and water classifications
each covered a small area, below 4% overall (Figure 3).

Table 2. Mean landcover classification for human intelligence and artificial intelligence and their
difference for communities in WI, USA using 2013 imagery. n = 397.

Landcover
Classifications

HI
Mean

(%)

AI Mean
(%)

Mean
Difference =
HI − AI (%)

Standard
Error of the
Mean (%)

95% Lower
Confidence

Interval

95% Upper
Confidence

Interval
t-Value p-Value

Herbaceous 41.83 41.64 0.18 0.56 −0.92 1.29 0.33 0.743

Impervious and Soil 21.46 26.25 −4.79 0.39 −5.56 −4.02 −12.29 <0.001

Trees and Shrubs 31.51 26.03 5.48 0.48 4.55 6.41 11.54 <0.001

Water 3.64 2.94 0.70 0.10 0.50 0.90 6.90 <0.001

Wetland 1.57 3.14 −1.57 0.18 −1.92 1.22 −8.88 <0.001

3.3. Comparison between 2013 and 2018 Using HI Method

Three of the seven land classifications significantly changed (p < 0.001) between 2013
and 2018 (Table 3, Figure 4). The tree-and-shrub-based UTC increased by 1.73% (0.17 SEM)
from 31.6% (2013) to 33.3% (2018). Decreases occurred for soil (0.47%, 0.08 SEM) and
agriculture (1.38%, 0.17 SEM). Water increased (p = 0.043) by 0.11% (0.06 SEM).
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Table 3. Landcover classification change between 2013 and 2018 in WI, USA. Percentages are based
on human interpretation of NAIP aerial imagery. n = 404.

Landcover
Classifications

2013
Mean

(%)

2018 Mean
(%)

Mean
Change

(%)

Standard
Error of the
Mean (%)

95% Lower
Confidence

Interval

95% Upper
Confidence

Interval

Paired
t-Value p-Value2

Agriculture 18.47 17.04 −1.38 0.17 −1.05 −1.71 −8.17 <0.001
Herbaceous and

Grass 23.28 23.20 −0.08 0.20 0.30 −0.46 −0.42 0.674

Impervious 19.78 19.91 0.13 0.11 0.34 −0.09 1.17 0.242
Soil 1.69 1.22 −0.47 0.08 −0.31 −0.63 −5.78 <0.001

Trees and Shrubs 31.58 33.31 1.73 0.16 2.05 1.41 10.73 <0.001
Water 3.64 3.75 0.11 0.06 0.22 0.00 2.03 0.043

Wetland 1.56 1.52 −0.04 0.06 0.09 −0.17 −0.62 0.539
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Figure 4. Landcover classification box plot comparison between 2013 and 2018 in Wisconsin, USA.
(n = 404). Box plots parts are lower box 1st quartile, line median, X mean, upper box 3rd quartile, line
ends are minimum and maximum values, and circles are outliers.
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The UTC varied between 4.4% and 84.0% for communities in 2013. In 2018 the range
was 6.8% to 86.3%. Tree cover was the most common classification for both 2013 (31.6%)
and 2018 (33.3%). Herbaceous and grass were the next most common in 2013 (23.3%) and
2018 (23.2%). Impervious area was unchanged (p = 0.242) between the two time periods,
2013 (19.8%) and 2018 (19.9%). Agriculture decreased (p < 0.001) from 18.5% in 2013 to
17.1% in 2018. Soil, water, and wetland were all relatively uncommon, each below 5%.

3.4. Assessor and Land Class Agreement

The assessor’s agreement showed no significant difference (p = 0.990) between as-
sessors, or between 2013 and 2018 (p = 0.725). However, significant difference (p < 0.001)
occurred for the wetland (<40% agreement) and soil (<50%) classifications (Figure 5). Agree-
ment with impervious and tree and shrub were highest and exceeded 90%. Overall, for all
landcover classifications during both periods an 87.9% agreement occurred (Figure 5).
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4. Discussion
4.1. HI vs. AI Using Training Location Imagery

The study showed no significant difference between AI and HI in the training location
for terrestrial land covers. This finding is consistent with the results of Erker et al. [41],
who found no difference between their AI estimates and estimated UTC using a random
point sample method. That approach is the same as we used for our HI method. Thus, this
provides evidence supporting the AI estimates from the Erker [41] method in the training
location. Water and wetland land classes were significantly different between the AI and
HI systems. However, these aquatic features were derived from a data source independent
of the imagery used to estimate landcover classifications in the AI [41].

4.2. HI vs. AI Using Statewide Imagery

The statewide comparison between HI and AI were significantly different for all land
cover classifications except herbaceous. The interpretation methods may differ due to
inconsistencies in the AI algorithm, shadows, differing tree heights, as well as change in
tree community structure (e.g., northern Wisconsin is more coniferous) by location [41].
Common misclassifications with AI systems may also be related to pixels occurring on
the edge of vegetated and non-vegetated areas, and spectral similarities between certain
landcover classification types [54]. The AI might misclassify UTC in areas that have mixed-
use landcover compared to urban and agricultural areas [39].

There are reasons that explain AI challenges to identify UTC and non-represented
training data may be a factor. A change in forest structure, phenology, and composition
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from the training location may decrease the accuracy of the AI [59]. If the canopy structure
changes due to different tree species, the AI might not be able to identify trees correctly, as
coniferous and deciduous trees can have a spectral reflectance difference [59–61]. Likewise,
weather-driven differences across a region may lead to different spectral signatures for the
same species (e.g., because of drought). It is important to train AI to represent the variability
present in landcover types that will be assessed [60]. This is especially true if the assessment
area is large and has differing landcover and geography throughout. Additionally, it is
important to take into consideration that there are different methods of assessing UTC as
well as data sources of varying scales, qualities, and time periods [11,59–64]. For example,
an AI method [41] that used NAIP imagery provided much higher levels of accuracy for
UTC estimations than SPOT imagery [41]. Thus, there are many AI methods and algorithms
that would impact the final product as well.

4.3. Comparison between 2013 and 2018 Using HI Method

The UTC in 2018 from this study was approximately 33.3% based on the HI assessment,
while Nowak and Greenfield [65] used a similar methodology to this study and reported
a mean 38.3 % (1.5 SE) UTC from 2015 data in Wisconsin. Differences between these two
estimates can be attributed to Nowak and Greenfield [65] excluding water bodies (~4%
in Wisconsin communities), fewer sample points (1000) versus much greater (~800,000)
from this study, and different geographies (they included Census-defined urban areas and
Census-designated places). Although the tree canopy increased overall, some communities
experienced a local loss of UTC which may be due to pests such as emerald ash borer [66],
storms [36], or urbanization [32].

The UTC in Wisconsin increased significantly between 2013 and 2018. Unlike locations
in the conterminous United States, which experienced a 0.2% annual UTC loss, Wiscon-
sin’s UTC has increased by almost 2% in the five-year interval studied [31,65]. The UTC
increased, while agricultural landcover decreased over the 5-year period. Agricultural
landcover area has decreased in some conterminous United States regions, while urban-
ized area has increased [66]. Areas that transition from agricultural landcover to urban
or suburban may experience an increase in UTC [64], although there are some locations
such as Detroit, Michigan where urbanized areas are in decline and agricultural areas are
increasing [67].

4.4. Assessor and Land Class Agreement

Another assessor validated the HI interpretation. It is important to assess agreement
of the first assessor as a form of quality control [8]. Both the soil and wetland classifications
had the highest level of disagreement, which might be in part due to the low percent of
landcover overall that is made up of these two landcover types. However, water also
comprised a low overall percentage of sample points and two assessors readily agreed on
this landcover classification. As the number of sample points for a landcover increases, error
declines [6,8]. Error in assessments may also be related to aerial imagery quality [47,48].
Thus, it is more likely that estimating soil and wetland is currently a challenge and improved
methods are needed for soil and wetland interpretation. Further, the sampling intensity
(e.g., number of sample points) is a function of the area covered by a landcover attribute
and a pre-sampling estimate can be used to determine the sampling point intensity.

The overall agreement for UTC was between 90% and 95% for 2013 and 2018 which
is consistent with other current UTC studies [8,17]. The agreement between assessors for
the study in Florida ranged from 94.9% to 99.5% [17]. The higher levels of accuracy in
Florida are most likely due to the classification system of tree or not tree compared to
seven different landcover types in this study. These high levels of agreement reinforce the
accuracy of HI assessments in this study between two assessors using an HI approach.
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5. Conclusions

We created an HI assessment of landcover specifically with UTC to compare to AI
estimates. We found a significant difference in UTC between the two methods for those
for communities outside the training location. However, we found that there was no
difference in UTC in the training location of the AI. Findings from this study could aid
in understanding how AI canopy assessment performs outside of its training locations to
improve AI development. Future research could include appropriate sampling and training
in multiple locations to aid in higher accuracy levels for the AI system. We also compared
HI between 2013 and 2018 and found an increase in UTC. The availability of high-resolution
imagery and the implementation of UTC goals whether statewide or by municipality have
created an increase in research related to urban forest land cover. Research comparing
canopy assessments using AI to HI methods is limited, especially on a statewide scale [6].
These comparison analyses will provide insight into the most accurate and beneficial UTC
assessments. Understanding the UTC and, therefore, urban forest is crucial for appropriate
management and improved policies.
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