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Abstract: In 2019, South Korea’s Framework Act on The Management of Disasters and Safety was
revised to include respirable particulate matter as a social disaster. Urban air pollution, especially
particulate matter pollution, has been a serious threat to socioeconomic development and public
health. In order to address this problem, strong climate crisis response strategies and policies to
improve urban air quality are necessary. Therefore, it is of great importance to assess the frequency
of urban air pollution occurrence and its influencing factors. The objective of this study is to
develop consistent methodologies for the construction of an index system and for assessing the
influencing factors of urban particulate matter pollution based on population, social welfare, land
use, environmental, transportation, and economic governance considerations. We applied the local
indicators of spatial association and geographical detector methods, and 35 influencing factors were
selected to assess their influence on urban air pollution occurrence in 229 cities and counties in
South Korea. The results indicated the spatial pattern of the particulate matter concentration in
these locations showed strong spatial correlation, and it was confirmed that there was a difference in
distribution according to the season. As a result of the analysis of influencing factors, it was found
that environment and land use characteristics were the main influencing factors for PM10 and PM2.5.
The explanatory power between the two influencing factors of particulate matter was greater than
that of a single influencing factor. In addition, most influencing factors resulted in both positive
and negative effects on urban fine particulate matter pollution. The interaction relationship of all
factors showed a strong action effect in the case of both PM10 and PM2.5, so it was confirmed that all
influencing factors were interdependent. In particular, the findings proved that combining the two
factors would have a more pronounced effect on particulate matter than when they were independent.
We confirmed the significant results for the factors affecting particulate matter. This study offers
suggestions on reducing urban air pollution occurrence that can be used to provide a basis and
reference for the government to form policies on urban air pollution control in cities and counties.

Keywords: coarse particulate matter (PM10); fine particulate matter (PM2.5); spatial analysis; geographical
detector; climate change; urban planning

1. Introduction

Particulate matter is an air pollutant that is very harmful to humans and has been
designated as a class 1 carcinogen by the International Institute for Cancer Research under
the World Health Organization (WHO). The problem of inhalable particulate matter has
increased sharply over the last decade; it has become an issue for all seasons and is no
longer purely a simple environmental issue but also a policy matter that should be resolved
by governments.

The South Korean government revised the Basic Act on Disaster and Safety Man-
agement in March 2019 and began to define particulate matter as a social problem. Since
February 2019, emergency reduction measures to deal with high concentrations of particu-
late matter have been officially implemented under the Special Act on Particulate matter
Reduction and Management [1], while the Comprehensive Countermeasures for Particulate
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matter Management are currently being developed and promoted. From a macro perspec-
tive, this policy response aims to reduce the annual average concentration of particulate
matter based on a nationwide target. Since it has been suggested that a limitation of this
relatively uniform policy is that it is unable to take into account regional characteristics, it
can be said that spatial characteristics should be discussed.

In addition, the focus is on managing emission sources through the regulation of auto-
mobile exhaust gases and the Indoor Air Quality Control Act. However, the concentration
of particulate matter in the atmosphere is affected by a number of characteristics, such
as weather, land use, and topography, in addition to pollutant [2–4], and its distribution
depends on several other factors. Since it is difficult to achieve the particulate matter
concentration target only by reducing emissions within the scope of existing policies, the
legislation suggests that factors such as land use, urban environment, and human activities
should be considered [5]. In addition, it is not always possible to conclude that all influ-
encing factors act independently, but they are inevitably interdependent; therefore, it is
necessary to consider the effects that they can cause when they interact.

This study analyzes the spatial and temporal distribution characteristics of particulate
matter in Korea and captures them by region and season. Secondly, the factors influencing
the dust are derived, the interactions between the factors are considered, and the differences
in the degree of influence are compared and analyzed. Finally, the results of the study are
synthesized and policy implications for dust reduction are proposed.

2. Literature Review
2.1. Main Causes of Respirable Particulate Matter

Air pollution and climate change are already critical environmental issues worldwide.
The WHO has used satellite and atmospheric transport models to observe atmospheric
conditions in more than 100 countries and more than 3000 urban and rural areas around the
world [6]. It has been estimated that the number of deaths due to air pollution has reached
4.2 million per year, based on 2016 data, and among the air pollutants, particulate matter has
been reported to have a significant effect on the human body [7]. Particulate matter consists
of solid and liquid particles suspended in the atmosphere and is mainly classified by particle
size. It is divided into coarse particles of 2.5 µm or more generated by mechanical processes
on the surface of the earth (PM10) and fine particles of 2.5 µm or less generated by physical
and chemical processes such as condensation or agglomeration (PM2.5) [8]. There, it has
been judged necessary to look at the two pollutants (PM10 and PM2.5) separately because
their physical properties and chemical composition differ depending on their origin.

Some studies have mentioned particulate matter generated in cities, and research has
pointed out that weather and topographical conditions and emission sources are the main
causes of it [2–4,9]. The interesting points are also meaningfully related to natural factors
such as topography and meteorological conditions, which can have a large impact on the
process of diffusion and removal of atmospheric pollutants, and thus may be related to
the causes of differences in the distribution of particulate matter in different seasons or
regions [10,11]. Due to southeastern winds and high rainfall in August in South Korea,
atmospheric pollutants are washed away, and their concentration is lower than in winter,
but in winter the northwesterly winds blow from China and Russia due to the influence of
high pressure over Siberia. Thus, based on this meteorological characteristic, it is possible to
speculate on the reasons for the differences in temporal and spatial distribution depending
on the wind direction [12].

Although the causes of particulate matter have been debated, there is still no clear
consensus on the urban characteristics or distribution dispersion pathways [13]. If the
problem of particulate matter can be resolved by one-sided emission sources alone, it
should not be difficult to find a corresponding solution. It cannot be concluded that
particulate matter is influenced only by directly occurring sources. Therefore, it is necessary
to consider the factors that may influence particulate matter from the perspective of urban
planning. For example, while it may be influenced by overall factors that come into focus
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at the national level, it may also be influenced not only by a variety of factors related to by
regional characteristics but also by indirect policy decisions and socioeconomic factors that
may become relevant to the distribution of particulate matter.

2.2. Influencing Factors of Particulate Matter Distribution

To analyze the factors influencing the distribution of particulate matter, it is essential to
review the previous studies on the subject. It has been shown that it is necessary to look at
the urban planning perspective, so this study considers factors related to (1) demographic
characteristics, (2) human social activity, (3) economic governance, (4) land use, (5) the
environment, and (6) transportation.

In attempts to illustrate demographic characteristics, methods such as evaluation of
city size or population structure have mainly been used. With demographic changes, human
activities such as increased energy consumption and the rising number of private cars are
necessary stages that lead to the deterioration of air quality in the short term [14–16]. Thus,
there is continuing discussion about urbanization, industrialization, and high population
density being the main causes of deteriorating air quality [17–19]. It is necessary to analyze
the significance of demographic structure on social issues, mainly by studying population
numbers and dependency payments, and to confirm that these indicators also have an
impact on environmental issues [20].

In discussing the relationship between urban characteristics and micro-dust, most
studies observing social welfare characteristics have aimed to measure the welfare of
humans within cities. Regarding social welfare characteristics, variables such as number of
hospital beds, number of doctors, and ratio of health and social welfare enterprises have
been utilized [21]. This is related to the adaptive capacity of cities. Previous studies have
discussed the relationship between adaptive capacity and the reduction of dust in a way
that implies that the degree of adaptive capacity affects the distribution of dust. For the
same reason, a study of economic governance–related considerations consisting of factors
that can account for the adaptive capacity of the economy and the size of the city economy
was conducted. For this, the rate of change of GDP (Gross Domestic Product), GDP per
capita, industrial structure, and business structure were considered [22,23].

To examine air pollution’s relationship with land use, many studies have analyzed the
effects of urban landscape structure and urban morphology on air pollution, confirming
the existence of meaningful relationships [24–26]. At the microscopic level, the most
representative factors are the type and intensity of land use, which directly affect the
emission of air pollutants. At the macroscopic level, the most representative factor is
the urban spatial structure, which also affects the spatial distribution and occurrence of
pollutants. [25]. As variables to analyze the effect of land use on particulate matter, the
most representative ones are the ratio of green space and commercial, industrial, residential,
and river areas. Using variables that can account for the degree of mixing and diversity
level of land use, the compact spatial structure of population growth rate compared with
the rate of increase of municipalized area has been calculated as a variable [27–29].

Compared with other influencing factors, environment characteristics can be more
intuitively appreciated and therefore considered as variables that directly affect the occur-
rence of particulate matter. It has been reported that industrial emissions from human
activities and dust from construction have already had a direct impact on air quality [30].
The analysis of air pollutant emissions from urban activities and production activities from
point, surface, and mobile sources can be done visually, such as from industrial activities
and waste emissions. In South Korea, quantitative emissions statistics from various sectors
are currently provided by the Atmospheric Policy Support System (CAPSS) of the Ministry
of Environment. Furthermore, as studies proposing the problem of micro-dust generation
due to incineration are gradually being discussed, open burning performed in agricultural
activities or the incineration ratio among domestic waste disposal methods, for example,
can be used as variables [31].
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Analyzing the relationship between particulate matter and automobile traffic, which
is often named as a source of pollution in existing studies, is an essential process. The
number of vehicle registrations, road area ratio, and total annual vehicle distance traveled
are generally considered [32–35]. The study by Song and Nam (2009) concluded that
the higher the proximity ratio between workplace and residence, calculated in terms of
internal traffic volume compared with total traffic volume, the lower the traffic energy
consumption; therefore, the direct residence proximity fee was used as a variable of the
relevant factor [27].

From previous studies, it is possible to understand that particulate matter is influenced
by a variety of factors in cities. Most of the research has discussed the degree of influence
when capturing the relationship between dust and the influencing factors so that not only
positive or negative influence but the strength of the influence can be identified. The factors
identified from prior research are not independent effects, but rather the characteristics of a
city that cannot but coexist. This implies that when the factors are combined, they have
other influences on micro-dust. Therefore, it is necessary to analyze what kind of positive
and negative effects occur when factors interact with each other, rather than consider
independent effects.

2.3. Summary

This study seeks to identify if there are differences in the spatial and temporal dis-
tribution patterns of particulate matter and outline the factors that affect the particulate
matter concentration and the interactions between them. The previous study confirmed
the existence of spatial and temporal distribution differences due to various factors. The
meteorological characteristics of Korea imply that there are differences in concentrations
between seasons, and it is assumed that the areas with high concentrations are located
in the capital region due to a combination of influencing factors. In addition, to identify
specific factors influencing the distribution of particulate matter, this study focuses on the
characteristics of population, social welfare, land use, environment, transportation, and eco-
nomic governance based on the basic correlations proposed by many studies. In addition,
a hypothesis is proposed that the relationships are different when they are independent
and when they interact with each other. In this study, the following research questions and
hypotheses have formulated based on previous studies and theoretical investigations:

Q1. Is there a difference in the temporal and spatial distribution pattern of particulate matter?

H1. There will be spatial differences between seasons and regions.

Q2. What specific factors affect the distribution of particulate matter, and is there an interaction
relationship between the factors?

H2-1. Specific factors affecting the distribution of particulate matter are related to characteristics of
population, social welfare, land use, environment, transportation, and economic governance.

H2-2. Because the factors have an interdependent relationship, the effect will be greater when they
interact than when they are independent.

In this study, the influencing factors of particulate matter have been considered based
on six characteristics—demographics, social welfare, land use, the environment, transporta-
tion, and economic management—using the Geodetector analysis method. The importance
of each influencing factor on dust has been calculated, and the degree of influence observed,
to confirm whether the relevant factors are positive or negative for particulate matter.
Finally, the differences in the degree of influence on dust when the influencing factors are
independent and when they interact with each other have been compared and analyzed,
and policy implications have been drawn as the final goal of this study.
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3. Materials and Methods
3.1. Research Implementation Process

In this study, the temporal and spatial distribution characteristics of particulate matter
and the influencing factors were analyzed in cities, counties, and districts across South
Korea. The research flowchart of this study is shown in Figure 1. First, the indicators
required for the analysis were selected, and the spatial clustering pattern of dust distribution
by season was captured by using the Local Indicators of Spatial Association (LISA) analysis
of the GeoDa program. Finally, the q statistics were calculated by implementing the
Geodetector analysis. This is used to derive the factors influencing the dust and to grasp
the interactions between the factors.
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3.2. Study Area and Materials

The units of analysis for this study were set as administrative area cities, counties, and
districts, and a total of 229 cities, counties, and districts, including 226 basic self-governing
bodies, Sejong Special Self-Governing City, and Jeju City and Seogwipo City in Jeju Special
Self-Governing Province, were used with the base year set at 2019. This study mainly used
the 2019 data, but the Job-housing balance ratio and GRDP data of 2019 were not updated
and difficult to obtain, so the data of Job-housing balance ratio and GRDP (Gross Regional
Domestic Product) was used for 2016 and 2017, respectively.

According to the purpose of this study, the dependent variables used for the annual
average and seasonal average concentrations of PM2.5 and PM10 for 2019 were taken by
the Ministry of Environment and AirKorea. The information collected for this period was
site-specific concentration information based on points, so it was difficult to appreciate the
current status of unmeasured areas. In addition, since the location and number of measure-
ment stations were not categorized by area, it was difficult to select specific concentration
information that would be representative of a local self-governing group. Therefore, the
information collected was spatial data centered on having location information, and there-
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fore a spatial interpolation method of ArcGIS was used to supplement the concentration
values with a spatial resolution of 1 km × 1 km [36,37].

Based on the research hypotheses, the factors influencing the dependent variables
were selected based on prior studies and constituted the indicators for analysis. In general,
the analysis was divided into six sectors, namely demographic, social welfare, land use,
environmental, transportation, and economic governance characteristics, and detailed
indicators were selected (Table 1). For the environmental budget indicators in the eco-
nomic governance characteristic, only the information on the atmosphere, environmental
protection, and nature budget, which are considered to be related to dust, were extracted
and used.

Table 1. Variables.

Large Category Detail Variable Reference

Dependent Variable
PM10 seasonal, annual average concentration Air Korea

PM2.5 seasonal, annual average concentration Air Korea

Population
(6)

Population density Statistics Korea

Dependency ratio Statistics Korea

Medical expenses for patients with malignant
neoplasms of the bronchi and lung Statistics Korea

Primary industry worker ratio Statistics Korea

Secondary industry worker ratio Statistics Korea

Tertiary industry worker ratio Statistics Korea

Social and Welfare
(4)

Percentage of health and social service businesses Statistics Korea

Number of hospital beds per thousand population Statistics Korea

Number of hospital doctors per thousand population Statistics Korea

Percentage of the population within the living area
park area National Geographic Information Institute

Land Use
(8)

Land use compression National Geographic Information Institute

Land use complexity National Geographic Information Institute

Compact space structure * Statistics Korea

Green ratio Ministry of Environment

River ratio National Geographic Information Institute

Commercial area ratio Statistics Korea

Industrial area ratio Statistics Korea

Residential area ratio Statistics Korea

Environment
(7)

Incineration rate of domestic waste treatment methods Ministry of Environment

Number of workplaces that emit air pollutants * Ministry of the Interior and Safety

Emissions from agricultural activities CAPSS

Emissions from industrial activities CAPSS

Emissions from waste CAPSS

Emissions from vehicles CAPSS

NDVI (Normalized Difference Vegetation Index) Landsat8
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Table 1. Cont.

Large Category Detail Variable Reference

Transportation
(5)

Number of vehicle registrations Statistics Korea

Road ratio Statistics Korea

Job-housing balance ratio * Korea Transport Database

Pedestrian road ratio Statistics Korea

Total vehicle mileage per year Statistics Korea

Economic Governance
(5)

Environmental budget per capita * Ministry of the Interior and Safety

Ratio of social welfare budget in general account Statistics Korea

GRDP Statistics Korea

Financial independence of local government Statistics Korea

Number of businesses Statistics Korea

Note: * Author’s edit.

3.3. Methods
3.3.1. LISA Analysis

Particulate matter is a substance in the air and cannot exist in complete isolation;
therefore, it can only have the characteristic of interdependence. The closer the distance,
the higher the correlation. This is called spatial autocorrelation, and it can be analyzed
from both global and local perspectives.

Global spatial autocorrelation refers to the presence of a specific pattern between a
variable and a location, or the presence of a high value for a particular variable at that
location, while the surrounding values also show high values. It refers to the similarity
between these locations and variables. Moran’s I coefficient, which usually confirms this,
has a positive spatial autocorrelation range of +1 and a negative spatial autocorrelation of
−1. It has been seen to show a positive spatial autocorrelation with similar values [21]. It is
closer to −1 because the adjacent regions are different, and it appears closer to 0 because
autocorrelation is not present.

However, because Moran’s I index displays relationships across study sites as a single
value, it cannot explain the local structure of spatial relationships for each target area
analyzed when the target area is large [37]. Local spatial autocorrelation can be confirmed
by LISA analysis, a technique used to explore spatial clustering patterns based on the
numerical similarity of attributed values between adjacent regions [38]. Four clusters
have been derived. High–High (HH) and Low–Low (LL) indicate correlation between
adjacent regions, while Low–High (LH) and High–Low (HL) indicate dissimilarity between
adjacent regions. HH clusters are those where the corresponding region has high values
and the surrounding region shows a tendency to be high; LL clusters are those where
the surrounding region has low values and the corresponding region has low values. LH
clusters are those where the corresponding region has low values and the surrounding area
shows a high trend. At this point, it can be confirmed that HH and LL clusters each have
positive spatial correlation and LH and HL clusters each have negative correlation, so they
can be seen as spatially isolated regions [39].

Therefore, this approach is a suitable tool for identifying specific regions of location-
based data and analyzing spatial distribution patterns. In this study, to analyze the spatial
magnetic correlation of the dust distribution, LISA analysis was performed using GeoDa
spatial analysis software 1.20.

3.3.2. Geodetector

Particulate matter is a spatially distributed pollutant, so for the study of its spatial
and temporal distribution characteristics and influencing factors, econometric and spatial
econometric models are mainly used. Spatial autocorrelation has been mentioned previ-
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ously, and the models reflecting this situation include the spatial lag model (SLM), spatial
error model (SEM), and general spatial autocorrelation model (GSAM), which are all spatial
analysis methods. However, in order to use spatial data, both spatial magnetic correlation
and spatial stratified heterogeneity should be considered [40]. Spatial heteroskedasticity is
a characteristic of spatial data and can be explained by the uneven distribution of relation-
ships between characteristics, events, and regions [41,42]. The q statistic of the Geodetector
model, which reflects this situation, has been used in many recent studies. In addition, the
existing traditional methods have some shortcomings in terms of quantifying the interac-
tion of influencing factors. The interaction of two factors can actually be combined in many
forms, but in traditional regression methods, it is generally expressed as the product of
two factors, although this does not have sufficient ability to account for spatially stratified
heterogeneity [43]. Therefore, unlike prior studies that have used multiple linear methods,
this study has concluded that the Geodetector model, which reflects the characteristics of
spatial data, would be more appropriate, along with the nonlinear model.

The Geodetector method has several advantages compared with other models. First, it
can consider the space [40]. Second, the relationship between the dependent and indepen-
dent variables analyzed using the Geodetector method has the advantage of being more
reliable than classical regression models [44]. Third, the problem of multicollinearity is
excluded because no linearity assumption is made on the factors [45]. Fourth, the priority
order of the influencing factors can be derived, and the change of the degree of influence
over time can be analyzed [46]. With these advantages, the Geodetector method has been
applied to many fields, including natural sciences and social sciences, and can be fully
applied to the environmental field.

The Geodetector method is a statistical method that conducts analyses based on
the hypothesis of similarity in the spatial distribution of dependent and independent
variables when the independent variable has a significant influence on the dependent
variable. In other words, if a particulate matter’s high concentration based on a certain
characteristic is induced in a city, this concentration will show spatial distribution similar
to that characteristic, which can indicate the existence of a causal factor. In addition,
if the present model is used, the concept of spatial dispersion can be used to observe
the interactions between independent variables. In the former case, after analyzing the
influence of emission factors of various industries on urban PM2.5 pollution concentrations,
buildings and traffic were identified as the main influencing factors [47]. In addition, the
results of a latter study, which used this model to analyze the influencing factors of lead
(Pb) in particulate matter in residential areas, showed that automobile exhaust, human
daily life activities, and industrial emissions interacted to produce the effects [48].

The main framework of the Geodetector model is to first divide the study site into
the dependent variable Y-strata (Y layer) and the influencing factor (independent variable)
X-strata (Figure 2) [44].
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Next, the q statistic is used to explain the degree of influence of the influencing factor
X on the dependent variable Y. The q statistic takes values in the range (0,1), which can
be interpreted in such a way that the higher the q statistic, the greater the influence of the
influencing factor X on the dependent variable Y. The formula for calculating the q-statistic
is as follows:

q = 1− ∑A
i−1 Niσ

2
i

Nσ2 = 1− SSW
SST

(1)

SSW =
A

∑
i−1

Niσ
2
i , SST = Nσ2. (2)

Using the ArcGIS program, the study area was transformed into a grid of 10 km × 10 km
(Figure 3). Since the independent variable used in this model is a type variable, it should
be graded [40,44]. Therefore, for data pre-processing, all data were divided into 5 classes
using ArcGIS’s Natural Breaks classification method and applied to the grid (Appendix A).
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The analysis results of the Geodetector method are divided into factor detector, risk
detector and interaction detector, and the principles and concepts are the same as those
in Table 2 [40,44]. First, factor detector is used to verify the spatial dispersion of each
influencing factor, and the main factors are selected by prioritizing them according to
the q statistic. Risk detector analyzes the direction of influence of each factor on the dust
and indicates whether it is positive or negative. Interaction detector evaluates whether
the combination of two influencing factors diminishes or intensifies the influence on the
dependent variable (Y), and whether the influence is independent.
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Table 2. Conceptual framework of the geographical detector method.

Detector Illustration

Factor Detector
Uses the q value to assess the impact of demographic, socioeconomic, environmental, and land use
factors on the spatial pattern of particulate matter (PM10/PM2.5) emissions. High q value means the

influencing factor has a stronger contribution to the occurrence of particulate matter emissions.

Risk Detector

Compares the differences in average particulate matter (PM10/PM2.5) emission rates between
subregions generated by demographic, socioeconomic, environmental, and land use factors. It uses
T-test to identify whether the average PM10/PM2.5 emission rates among different subregions are
significantly different. Greater differences mean greater impact to particulate matter (PM10/PM2.5)

emissions within the subregion.

Interaction Detector

Uses the q value to compare the combined contribution of individual influencing factors to
particulate matter (PM10/PM2.5) emissions. It assesses whether the two influencing factors weaken
or enhance each another, or whether they independently influence the development of the particulate

matter (PM10/PM2.5).

Source: [40,44] Wang et al., 2016; Wang & Xu, 2017.

4. Results
4.1. LISA Results

Exploratory spatial analysis was performed to understand the spatial association
pattern of particulate matter. Prior to the analysis, the spatial autocorrelation of the index
was confirmed through Moran’s I test, and then LISA analysis was performed to confirm
the spatial clustering pattern of the temporal and spatial distribution of particulate matter
at the local level.

According to a previous study confirming spatial autocorrelation, it was judged that
there was spatial autocorrelation when Moran’s I coefficient was 0.267 [49]. Choi et al.
(2018) judged that a coefficient value of 0.2857 showed a significant level of positive spatial
autocorrelation [21]. Yeom et al. (2020) confirmed exponential values of 0.398, 0.607,
and 0.483 for the three indicators and found that they appeared to have high spatial
autocorrelation [38].

Figure 4 shows the results of the analysis of global spatial autocorrelation by annual
mean concentration and season in this study. The average annual mean was 0.37 for both
PM2.5 and PM10, showing a significant level of positive spatial autocorrelation. In spring
and winter, it was confirmed that both materials had a high spatial correlation by checking
an index value of 0.4 or higher. In the case of autumn, a positive spatial autocorrelation of
0.27 was also confirmed. However, in the case of summer, the index values of PM2.5 and
PM10 were 0.080 and 0.044, respectively, and the spatial autocorrelation was found to be
rather weak. Through this, the spatial distribution of PM10 and PM2.5 across Korea was
positive and confirmed to have spatial autocorrelation.

Through the global spatial autocorrelation analysis, the correlation in the distribu-
tion of particulate matter throughout Korea was confirmed. Furthermore, using the local
Moran’s I and LISA analysis, local correlation was identified, as shown in Figure 5. As a
result of the analysis, it was confirmed that this correlation had interdependent characteris-
tics and influence with neighboring regions. In addition, it was found that the distribution
of PM2.5 and PM10 was spatially different according to the season. It was confirmed that
HH-type hot spot clusters appeared in the metropolitan area. Therefore, the hypothesis of
question 1 of this study was satisfied.

In all seasons, except summer, and average annual results, a cluster type with a
generally similar shape was found between PM2.5 and PM10. HH type (hotspot cluster)
was found in some areas of Chungcheongnam-do and North Korea centering on the
metropolitan area. The LL type (cold spot cluster) was identified in the southern and
eastern regions of the Korean Peninsula. In the former case, it was because the road
transportation infrastructure is relatively well developed around Seoul. It is considered
to be an area with high development density due to high population density and land
use compression. In addition, South Korea has the characteristic of land development in
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that urbanization centered on the metropolitan area has been actively carried out. This
is believed to be due to the relatively insufficient green area. In the latter case, there is a
region in the southeast that has achieved economic growth mainly in secondary industries.
Compared with the metropolitan area, the population density and land use compression are
relatively low, so the development density is low. In addition, there are many cities centered
on primary industries, and these are judged to have excellent environment characteristics.
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4.2. Geodetector Results
4.2.1. Factor Detector

Factor detector can measure not only the spatial heteroskedasticity of the dependent
variable Y but also the degree of influence of the influencing factor X on the dependent
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variable Y through the q statistic. Factor detector results for the average annual concentra-
tions of PM10 and PM2.5 are presented in Table 3, and only factors within the significance
level of 0.1 have been extracted and are shown in Figure 6. In order to better compare
the degree of influence of the influencing factors on PM10 and PM2.5, the priorities of the
influencing factors were sorted according to the value of the q statistic. The range of the q
statistic for each factor was 0.038 to 0.208 for PM2.5 and 0.077 to 0.376 for PM10. Overall, the
degree of influence on PM10 was confirmed to be greater than that of PM2.5. In addition,
the number of workplaces emitting air pollutants (XE2) and waste emission (XE5) and
green area (XL4) were found to have the greatest impact for both pollutants. The emission
source that contributed the most to the concentration of particulate matter was workplace
emission facilities, which is consistent with previous research, namely that it amounts to
about 38% [50]. The effect of green spaces on the reduction of particulate matter was judged
to be clear, as has been revealed in several studies [51–53]. From the results of this study,
we can conclude the degree of influence of the function of green areas to be very large.

Table 3. The results of factor detection for the influencing factors of urban PM10 and PM2.5 in 2019.

Large Category Factor
PM10 PM2.5

q Rank q Rank

Population

XP1 Population density 0.2183 *** 9 0.0950 ** 12
XP2 Dependency ratio 0.1695 *** 15 0.0724 19

XP3 Medical expenses for patients with malignant neoplasms
of the bronchi and lung 0.1031 *** 26 0.0402 30

XP4 Primary industry worker ratio 0.0835 *** 29 0.0379 *** 31
XP5 Secondary industry worker ratio 0.0772 *** 30 0.0280 33
XP6 Tertiary industry worker ratio 0.1728 *** 14 0.0917 *** 13

Social and
Welfare

XS1 Percentage of health and social service businesses 0.1100 *** 24 0.0569 *** 27
XS2 Number of hospital beds per thousand population 0.1094 *** 25 0.1026 *** 10
XS3 Number of hospital doctors per thousand population 0.0119 35 0.0063 35

XS4 Percentage of the population within the living area
park area 0.1265 *** 22 0.0592 *** 25

Land Use

XL1 Land use compression 0.1416 19 0.0525 28
XL2 Land use complexity 0.2242 *** 7 0.1082 * 8
XL3 Compact space structure * 0.0680 32 0.0832 18
XL4 Green ratio 0.2905 *** 3 0.1710 *** 4
XL5 River ratio 0.0383 33 0.0106 34
XL6 Commercial area ratio 0.0253 34 0.0322 32
XL7 Industrial area ratio 0.1150 23 0.0866 * 14
XL8 Residential area ratio 0.0682 31 0.0603 ** 24

Environment

XE1 Incineration rate of domestic waste treatment methods 0.1436 *** 18 0.1082 *** 7
XE2 Number of workplaces that emit air pollutants * 0.3759 *** 1 0.2076 *** 2
XE3 Emissions from agricultural activities 0.1317 *** 20 0.1612 *** 5
XE4 Emissions from industrial activities 0.2355 4 0.1727 3
XE5 Emissions from waste 0.3428 *** 2 0.2083 *** 1
XE6 Emissions from vehicles 0.1993 11 0.1237 6
XE7 NDVI 0.0856 28 0.0686 21

Transportation

XT1 Number of vehicle registrations 0.2199 *** 8 0.0854 ** 16
XT2 Road ratio 0.1920 12 0.0721 20
XT3 Job-housing balance ratio * 0.1269 21 0.0493 29
XT4 Pedestrian road ratio 0.1517 *** 17 0.0683 *** 22
XT5 Total vehicle mileage per year 0.2314*** 5 0.0863 ** 15

Economic
Governance

XG1 Environmental budget per capita * 0.0917 *** 27 0.0591 *** 26
XG2 Ratio of social welfare budget in general account 0.1829 *** 13 0.0980 *** 11
XG3 GRDP 0.2181 *** 10 0.0844 17
XG4 Financial independence of local government 0.1627 *** 16 0.0680 23
XG5 Number of businesses 0.2250 *** 6 0.1029 ** 9

Note: Significance levels: *~p < 0.1, **~p < 0.05, ***~p < 0.01.
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Agricultural activity emission (XE3) and incineration rate among domestic waste
treatment methods (XE1) ranked next in PM2.5. Biological combustion such as incineration
can be interpreted to be the cause of high local concentration of PM2.5. This is considered
consistent with the results of previous studies that have reported it to be one of the factors
influencing the occurrence of PM2.5 and shown a rather low ranking for PM10 [31]. On the
other hand, in PM10, total mileage per year (XT5) ranked second, but this factor ranked
slightly lower in PM2.5. These results suggest that there is a difference in the factors affecting
PM10 and PM2.5. Combining the analysis results, it was confirmed that the environmental
(XE), land use (XL), and transportation (XT) characteristics were large through the priority
results of factors affecting the distribution of particulate matter.

4.2.2. Risk Detector

Risk detector can use the T statistic to determine the direction of the influencing factor.
The relationship between particulate matter and influencing factors is shown in five linear
and non-linear relationships (Table 4). Positive (+) and negative (−) mean that the higher
the natural break grade of the influencing factors, the linear relationship increases and
decreases, respectively. (±) indicates a non-linear relationship. Negative/positive (−/+)
means changing from decreasing to increasing, and positive/negative (+/−) means an
increasing and decreasing relationship.

Table 4. The results of risk detection for the influencing factors of urban PM10 and PM2.5 in 2019.

Large Category Factor Relation

Population

XP1 Population density +
XP2 Dependency ratio +

XP3 Medical expenses for patients with malignant neoplasms of the
bronchi and lung −

XP4 Primary industry worker ratio +
XP5 Secondary industry worker ratio −
XP6 Tertiary industry worker ratio −/+
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Table 4. Cont.

Large Category Factor Relation

Social and Welfare

XS1 Percentage of health and social service businesses +/−
XS2 Number of hospital beds per thousand population +/−
XS3 Number of hospital doctors per thousand population +/−
XS4 Percentage of the population within the living area park area +

Land Use

XL1 Land use compression +
XL2 Land use complexity +
XL3 Compact space structure −/+
XL4 Green ratio −
XL5 River ratio ±
XL6 Commercial area ratio −/+
XL7 Industrial area ratio +
XL8 Residential area ratio ±

Environment

XE1 Incineration rate of domestic waste treatment methods ±
XE2 Number of workplaces that emit air pollutants +
XE3 Emissions from agricultural activities ±
XE4 Emissions from industrial activities ±
XE5 Emissions from waste +
XE6 Emissions from vehicles ±
XE7 NDVI −

Transportation

XT1 Number of vehicle registrations ±
XT2 Road ratio +/−
XT3 Job−housing balance ratio +
XT4 Pedestrian road ratio −
XT5 Total vehicle mileage per year ±

Economic Governance

XG1 Environmental budget per capita −
XG2 Ratio of social welfare budget in general account +/−
XG3 GRDP +
XG4 Financial independence of local government +
XG5 Number of businesses +

Note: “+” positive effector; “−” negative effector; “±” the relationship between PM10 & PM2.5 and its influencing
factors is complex; “−/+” the influencing factor on PM10 & PM2.5 changes from negative to positive; “+/−” the
influencing factor on PM10 & PM2.5 changes from positive to negative. Source: [54] Zhou et al., 2021.

Looking at the results of the analysis, the effects of environmental factors on particulate
matter are more complex than those of population, land u se, transportation, and economic
governance characteristics (Table 4, Appendix B). First, environmental characteristics
such as agricultural activity (XE3), industrial activity (XE4), waste (XE5), and automobile
(XE6) emissions show a distinct non-linear effect on particulate matter. The effect of the
number of workplaces emitting air pollutants (XE2) on particulate matter tends to increase
according to grade (Appendix B). In this case, the closer to 1st grade, the smaller the number
of workplaces. Second, the relationship between particulate matter and the number of
influencing factors of population, land use, transportation, and economic governance
characteristics shows a gradually decreasing or increasing trend.

4.2.3. Interaction Detector

Interaction detector can verify the interaction between factors. In other words, it
analyzes whether the influence on the dependent variable Y increases or decreases when
the two influencing factors act in combination. The evaluation method is as follows. The
q statistic of each influencing factor is calculated, then the q statistic is calculated when
the two influencing factors are combined, and the two results are compared and analyzed.
The interaction relationship between the two factors is shown in Table 5, and the analysis
results are shown in Appendices C and D. All interaction relationships of the two factors
showed a strong agonistic effect (enhance, bivariate and enhance, nonlinear) on both PM10
and PM2.5. No weak action relationship was observed for any of the factors.
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Table 5. Interaction relationships between two factors.

Interaction Description

Enhance if q (X1 ∩ X2) > q (X1) or q (X2)
Enhance, bivariate if q (X1∩ X2) > q (X1) and q (X2)
Enhance, nonlinear if q (X1 ∩ X2) > q (X1) + q (X2)

Weaken if q (X1∩ X2) < q (X1) + q (X2)
Weaken, univariate if q (X1 ∩ X2) < q (X1) or q (X2)
Weaken, nonlinear if q (X1 ∩ X2) < q (X1) and q (X2)

Independent if q (X1 ∩ X2) = q (X1) + q (X2)
Note: “∩” denotes the intersection between X1 and X2. Source: [40,44] Wang et al., 2016; Wang et al., 2017.

The following looks at the interaction relationship analyzed for each characteristic:
In terms of population characteristics (XP), when independent, the population density

(XP1) was found to be 0.2183 and 0.0950 for PM10 and PM2.5, respectively, and the most
influential factor among the characteristics. In the case of interaction, the strongest effect
relationship (enhance, nonlinear) appeared with the ratio of workers in the secondary
industry (XP5), with 0.4060 and 0.2910, respectively, in the same characteristic. In relation
to other characteristics, when interacting with the number of workplaces emitting air
pollutants (XE2), a stronger effect relationship (enhance, bivariate) was shown, with 0.5419
and 0.4417, respectively.

For the social and welfare characteristics (XS), 0.1265 of the population ratio (XS4) in
the living area park area was the largest q value for PM10. PM2.5 had the largest q value, as
the number of beds per 1000 population (XS2) was 0.1026. As a result of the interaction
analysis, the ratio of health and social welfare organizations (XS1) was found for both PM10
and PM2.5 with the same characteristics. In other characteristics, the number of workplaces
emitting air pollutants (XE2) was found to have the strongest effect (enhance, nonlinear).

In terms of land use characteristics (XL), it was confirmed that the green area ratios
(XL4) of PM10 and PM2.5 were 0.3759 and 0.1710, respectively, which were the largest q
values. In the case of interaction, for the same characteristic, the residential area ratios (XL8)
were 0.4272 and 0.3121, respectively, indicating the strongest effect (enhance, nonlinear). In
other characteristics, the number of workplaces emitting air pollutants (XE2) was found to
have the strongest effect (enhance, bivariate).

For the environmental characteristics (XE), the number of workplaces emitting air
pollutants (XE2) was found to be the most influential factor, with 0.3759 for PM10 and
0.2076 for PM2.5. In the case of interaction, agricultural activity emissions (XE3) were 0.7550
and 0.2076, respectively, for the same characteristic, indicating the strongest interaction
(enhance, nonlinear). In terms of the other characteristics, in the case of PM10, the ratio
of health and social welfare organizations (XS1) was found to have the strongest effect
(enhance, nonlinear). In the case of PM2.5, it was found that the number of doctors in
medical institutions per 1000 population (XS3) had the strongest effect (enhance, nonlinear).

In terms of the transportation characteristics (XT), PM10 and PM2.5 showed 0.2314 and
0.8627 values, respectively, of annual vehicle total mileage (XT5) when independent, and it
was found to be the most influential factor. In the case of interaction, it was found that the
direct pole proximity ratio (XT3) had the strongest action relationship (enhance, bivariate)
in the same characteristic. In the other characteristics, in the case of PM10, the number of
workplaces emitting air pollutants (XE2) was 0.5243, indicating that this had the strongest
effect (enhance, nonlinear). And in the case of PM2.5, agricultural activity emission (XE3)
was 0.4414, which showed the strongest effect relationship (enhance, bivariate).

In the economic governance characteristics (XG), the total number of businesses (XG5)
was analyzed to be the most influential factor, with 0.2250 for PM10 and 0.1023 for PM2.5. In
the same characteristic, the per capita environmental budget (XG1) was 0.3889 and 0.2884,
respectively, indicating the strongest effect relationship (enhance, nonlinear). In the other
characteristics, PM10 showed the strongest effect (enhance, bivariate) with the number
of workplaces emitting air pollutants (XE2), with 0.5352. On the other hand, in the case
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of PM2.5, the agricultural activity emission (XE3) was 0.5352, confirming that it had the
strongest effect (enhance, bivariate).

It was confirmed that the factors affecting particulate matter had a greater effect when
they interacted than when they were independent. Through this, it was confirmed that all
influencing factors were interdependent, and this conclusion proved that Hypothesis 2 of
Question 2 of this study was satisfied.

5. Conclusions

This study used the concentration data of PM10 and PM2.5 in 2019 and classified them
into six categories: characteristics of population, social welfare, land use, the environment,
transportation, and economic governance. Detailed indicators that can be explained were
selected.

Looking at the spatial distribution of particulate matter, it was confirmed that both
pollutants have a spatial correlation with the distribution of particulate matter throughout
Korea. In particular, each has interdependent characteristics with neighboring regions. In
particular, HH-type hotspot clusters were identified centered on the metropolitan area,
proving Question 1 and Hypothesis 1. As a result of seasonal analysis, it was found to be
high in spring, autumn, and winter and low in summer.

The influencing factors of this study were confirmed to have a greater degree of
influence on PM10 than on PM2.5 as a whole. The number of workplaces emitting air
pollutants (XE2) and waste (XE5) and amount of green area (XL4) were found to have
the greatest impact on both pollutants, suggesting that they are the major influencing
factors. However, by confirming that there is a difference between the two pollutants
in the ranking that appears next to the relevant factors, it is possible to show that the
factors to be considered for each substance are somewhat different. In addition, the
interaction relationship of all factors showed a strong action effect on both pollutants,
so it was confirmed that all influencing factors are interdependent. In particular, it was
proven that the combinations of population and land use characteristics, population and
environmental characteristics, social welfare and environment characteristics, and land use
and environment characteristics have a more pronounced effect on particulate matter than
when independent.

We would like to suggest some policy proposals to improve air pollution, as follows.
First, through the results of the LISA analysis, it was confirmed that air pollution in one
area is related not only to the influence within the area but also to the air quality of the
surrounding area. Since it has been shown that there is a spatial diffusion effect on particu-
late matter pollution, it is necessary to strengthen cooperation between neighboring local
governments. For example, the findings suggest that the standards for energy conservation
and environmental protection among regions should be identical, and that cooperation and
enforcement systems for sharing air quality information between regions and responding
to emergencies are necessary.

Today, cities are expanding rapidly and continuously, and the reality is that nonurban
areas are relatively underdeveloped. Therefore, it is necessary to limit the indiscriminate
increase of the population accompanying urban expansion. In addition, it is necessary
to establish a land use development plan that considers the balance of economy, social
welfare, and resources in consideration of local environment and resource sustainability.
Measures prepared by the government are also important in the existing fragmentary
management and reduction of emission sources. However, in the future, the influence of
urban characteristics, which has a high correlation with the qualitative level of the urban
environment, must be considered.

Through this study, we have confirmed significant results for the factors affecting
particulate matter. However, it is necessary to discuss the topographical factors that form
the basis for land use planning. In addition, an in-depth study on the relationship with the
wind direction should be added as the basis for the hypothesis setting. In addition, if time
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series analysis of more than 10 years is carried out to solve the limitation of the temporal
range, it is expected that more effective and specific measures can be proposed.
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Appendix C. The Results of the Interaction Detection for the Influencing Factors of Urban PM10 in 2019

XP1 XP2 XP3 XP4 XP5 XP6 XS1 XS2 XS3 XS4 XL1 XL2 XL3 XL4 XL5 XL6 XL7 XL8

XP1 0.2183
XP2 0.2553 0.1695
XP3 0.2917 0.2611 0.1031
XP4 0.3540 0.3552 0.2169 0.0835
XP5 0.4059 0.3794 0.2162 0.1115 0.0772
XP6 0.3069 0.3393 0.2441 0.3214 0.3556 0.1728
XS1 0.3643 0.3083 0.3264 0.2964 0.2648 0.3330 0.1100
XS2 0.3424 0.3117 0.2527 0.2972 0.2502 0.3175 0.2868 0.1094
XS3 0.2789 0.3070 0.1310 0.1836 0.1619 0.2258 0.1791 0.1499 0.0119
XS4 0.2586 0.2139 0.1959 0.2648 0.2608 0.2039 0.2783 0.2759 0.1668 0.1265
XL1 0.2867 0.2468 0.1630 0.2878 0.2540 0.1944 0.2480 0.2760 0.1884 0.2172 0.1416
XL2 0.3025 0.3059 0.2453 0.3069 0.3144 0.2701 0.3385 0.3134 0.2899 0.2418 0.2293 0.2242
XL3 0.3011 0.2526 0.1907 0.1347 0.1239 0.2650 0.1747 0.1777 0.0788 0.2162 0.2219 0.2845 0.0680
XL4 0.4696 0.3903 0.4395 0.4055 0.3732 0.4571 0.3675 0.4025 0.3561 0.4754 0.3961 0.3975 0.3375 0.2905
XL5 0.2962 0.2384 0.1431 0.1964 0.1713 0.2191 0.1695 0.2113 0.0681 0.2201 0.1908 0.2866 0.1146 0.3646 0.0383
XL6 0.3326 0.2793 0.1788 0.2401 0.1512 0.2749 0.1886 0.1637 0.0686 0.2865 0.2667 0.3219 0.1267 0.3967 0.1276 0.0253
XL7 0.3785 0.3692 0.2860 0.2217 0.1993 0.3930 0.2966 0.2603 0.1730 0.3087 0.2956 0.4012 0.2001 0.4148 0.2081 0.3331 0.1150
XL8 0.3885 0.3409 0.3009 0.2919 0.2577 0.3055 0.2485 0.2581 0.1555 0.3160 0.3064 0.3243 0.1704 0.4272 0.1792 0.1516 0.3200 0.0682
XE1 0.4809 0.5172 0.3713 0.4106 0.3999 0.4555 0.3699 0.3952 0.2947 0.4822 0.3847 0.4559 0.2173 0.5075 0.2831 0.2850 0.4063 0.3567
XE2 0.5419 0.5011 0.4649 0.4905 0.5022 0.4949 0.5968 0.5566 0.5576 0.5070 0.5173 0.5309 0.4215 0.5870 0.5106 0.4862 0.5292 0.5421
XE3 0.4896 0.4654 0.3629 0.4806 0.4950 0.4540 0.3487 0.3908 0.2184 0.4292 0.3758 0.5031 0.2031 0.4577 0.2497 0.2743 0.4162 0.3290
XE4 0.5225 0.5183 0.4100 0.4419 0.3532 0.4935 0.4296 0.4469 0.3486 0.4968 0.4791 0.4987 0.3037 0.5668 0.4181 0.4387 0.4246 0.4192
XE5 0.3997 0.4545 0.4797 0.5421 0.5128 0.4602 0.5775 0.5226 0.4721 0.4883 0.4600 0.4481 0.3849 0.5436 0.4334 0.4688 0.5180 0.5625
XE6 0.4280 0.3897 0.2633 0.4143 0.3768 0.3346 0.4189 0.3818 0.3369 0.3526 0.3000 0.4313 0.2848 0.4910 0.2780 0.4120 0.4319 0.4565
XE7 0.2702 0.2315 0.1742 0.1748 0.1635 0.2482 0.2008 0.2019 0.1022 0.1988 0.2110 0.2725 0.1539 0.3426 0.1245 0.1184 0.2214 0.1514
XT1 0.2556 0.2486 0.3114 0.3401 0.3662 0.3386 0.3593 0.3319 0.2793 0.2880 0.2769 0.3198 0.3203 0.4009 0.2788 0.3327 0.3508 0.3722
XT2 0.2900 0.3018 0.2421 0.2985 0.2966 0.2554 0.3212 0.3140 0.2266 0.2333 0.2114 0.2757 0.2552 0.3750 0.2396 0.3169 0.3338 0.3087
XT3 0.3306 0.2889 0.1789 0.2673 0.2606 0.2211 0.2161 0.3330 0.1861 0.1851 0.1806 0.2744 0.1896 0.3491 0.1489 0.2059 0.3017 0.2618
XT4 0.2776 0.2539 0.2012 0.3318 0.3373 0.2836 0.3407 0.3342 0.2118 0.2160 0.1989 0.2521 0.2479 0.3983 0.2106 0.2178 0.3727 0.2443
XT5 0.3064 0.2974 0.3243 0.3366 0.3610 0.3456 0.3615 0.3743 0.3214 0.3048 0.2735 0.3330 0.3311 0.4525 0.2947 0.3134 0.3730 0.3816
XG1 0.3470 0.3312 0.3113 0.2697 0.2351 0.3825 0.2420 0.2731 0.1256 0.2444 0.2161 0.2868 0.1695 0.3760 0.1489 0.2235 0.2894 0.2764
XG2 0.2897 0.2709 0.2479 0.3842 0.3802 0.2393 0.2845 0.3434 0.2989 0.2306 0.2165 0.2600 0.2651 0.4586 0.2816 0.2828 0.3799 0.3277
XG3 0.3195 0.3519 0.2737 0.3821 0.3821 0.3062 0.3691 0.3574 0.3522 0.2558 0.2584 0.3574 0.2693 0.4828 0.2492 0.3470 0.4155 0.4043
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XP1 XP2 XP3 XP4 XP5 XP6 XS1 XS2 XS3 XS4 XL1 XL2 XL3 XL4 XL5 XL6 XL7 XL8

XG4 0.3146 0.2782 0.2707 0.3129 0.2989 0.2949 0.3149 0.2921 0.1880 0.2873 0.2290 0.2823 0.2467 0.4572 0.1977 0.3276 0.3243 0.4047
XG5 0.2610 0.2568 0.3033 0.3490 0.3931 0.3246 0.3749 0.3419 0.3185 0.2655 0.3047 0.3055 0.3061 0.4736 0.2792 0.3321 0.3693 0.3918

XE1 XE2 XE3 XE4 XE5 XE6 XE7 XT1 XT2 XT3 XT4 XT5 XG1 XG2 XG3 XG4 XG5

XE1 0.1436
XE2 0.6857 0.3759
XE3 0.5667 0.7550 0.1317
XE4 0.5821 0.5618 0.6428 0.2355
XE5 0.7535 0.5499 0.6714 0.5527 0.3428
XE6 0.5239 0.5567 0.5451 0.5200 0.5934 0.1993
XE7 0.2266 0.4238 0.2203 0.3288 0.3962 0.2566 0.0856
XT1 0.5078 0.5188 0.5280 0.5004 0.4287 0.3804 0.2675 0.2199
XT2 0.3849 0.5239 0.3924 0.4593 0.4471 0.3209 0.2503 0.2909 0.1920
XT3 0.3517 0.4961 0.3551 0.4597 0.4704 0.3141 0.1928 0.3299 0.2724 0.1269
XT4 0.4524 0.5336 0.4109 0.4013 0.4499 0.3242 0.2144 0.2557 0.2515 0.2627 0.1517
XT5 0.5164 0.5243 0.5242 0.5180 0.4103 0.4170 0.2802 0.2602 0.3216 0.3422 0.2802 0.2314
XG1 0.3813 0.4967 0.4637 0.3708 0.5254 0.3717 0.1718 0.3733 0.2702 0.2149 0.2496 0.3463 0.0917
XG2 0.4739 0.5002 0.4499 0.5008 0.4612 0.4016 0.2407 0.2811 0.2934 0.2693 0.2683 0.2971 0.2760 0.1829
XG3 0.5235 0.4759 0.5156 0.4998 0.4870 0.3984 0.2827 0.3184 0.2636 0.2862 0.3269 0.3422 0.3906 0.3372 0.2181
XG4 0.4401 0.4858 0.4677 0.4920 0.4027 0.3389 0.2345 0.3267 0.2439 0.2621 0.2516 0.3458 0.2673 0.2871 0.2662 0.1627
XG5 0.4883 0.5352 0.4851 0.5317 0.3827 0.4351 0.2779 0.2879 0.3215 0.3248 0.2547 0.2890 0.3889 0.2867 0.3157 0.2840 0.2250
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Appendix D. The Results of the Interaction Detection for the Influencing Factors of Urban PM2.5 in 2019

XP1 XP2 XP3 XP4 XP5 XP6 XS1 XS2 XS3 XS4 XL1 XL2 XL3 XL4 XL5 XL6 XL7 XL8

XP1 0.0950
XP2 0.1232 0.0724
XP3 0.1836 0.1825 0.0402
XP4 0.2222 0.2396 0.1493 0.0379
XP5 0.2910 0.2525 0.1345 0.0450 0.0280
XP6 0.1617 0.2154 0.1590 0.2368 0.2842 0.0917
XS1 0.2171 0.1971 0.2363 0.2307 0.1773 0.2078 0.0569
XS2 0.2484 0.2047 0.1885 0.2598 0.2358 0.2195 0.2336 0.1026
XS3 0.2119 0.2222 0.0790 0.1429 0.1247 0.1887 0.1151 0.1546 0.0063
XS4 0.1223 0.1060 0.1360 0.1860 0.1921 0.1125 0.2012 0.2208 0.0993 0.0592
XL1 0.2122 0.1685 0.0681 0.1419 0.1237 0.0986 0.1532 0.1936 0.1414 0.1584 0.0525
XL2 0.1610 0.1754 0.1342 0.1745 0.1689 0.1737 0.2011 0.2234 0.2029 0.1368 0.1264 0.1082
XL3 0.1997 0.1729 0.1679 0.1317 0.1139 0.2115 0.1570 0.2045 0.1013 0.2062 0.1690 0.2182 0.0832
XL4 0.3122 0.2667 0.2752 0.2762 0.2464 0.3077 0.2430 0.2957 0.2627 0.3399 0.2336 0.2512 0.2770 0.1710
XL5 0.1525 0.1449 0.0577 0.1438 0.0964 0.1304 0.1160 0.1862 0.0452 0.1291 0.1029 0.1601 0.1307 0.2534 0.0106
XL6 0.2552 0.1953 0.1365 0.1842 0.1197 0.2164 0.1428 0.1927 0.0750 0.2455 0.2017 0.2328 0.1690 0.2990 0.1047 0.0322
XL7 0.2607 0.2382 0.2109 0.1803 0.1406 0.3285 0.2102 0.2205 0.1463 0.2874 0.2018 0.2697 0.1976 0.2852 0.1619 0.2954 0.0866
XL8 0.2760 0.2469 0.2137 0.2414 0.1946 0.2679 0.1759 0.2332 0.1612 0.2509 0.2419 0.2183 0.1898 0.3121 0.1320 0.1202 0.2751 0.0603
XE1 0.3693 0.4244 0.2705 0.3673 0.3680 0.3291 0.2708 0.3895 0.2513 0.4092 0.2861 0.3153 0.2228 0.4122 0.2174 0.3231 0.3834 0.3202
XE2 0.4417 0.3545 0.3110 0.3463 0.3419 0.3725 0.4435 0.4184 0.4621 0.3714 0.3226 0.3016 0.2984 0.4430 0.4272 0.3660 0.4325 0.4121
XE3 0.4360 0.4328 0.3556 0.4429 0.4317 0.4542 0.3066 0.4343 0.2511 0.3889 0.3376 0.4614 0.2643 0.4100 0.2791 0.2866 0.3999 0.3382
XE4 0.4257 0.4379 0.3224 0.3618 0.2759 0.4338 0.3462 0.3798 0.3028 0.4096 0.3926 0.3840 0.2779 0.4454 0.3425 0.3562 0.3239 0.3569
XE5 0.2856 0.3094 0.3732 0.4292 0.3425 0.3565 0.4104 0.4051 0.3392 0.3626 0.3463 0.3183 0.2953 0.4112 0.3287 0.3674 0.3929 0.4498
XE6 0.3480 0.3010 0.1770 0.3334 0.2636 0.2553 0.3722 0.3239 0.3030 0.2530 0.2014 0.3277 0.2131 0.4042 0.2130 0.3229 0.3583 0.3918
XE7 0.1528 0.1331 0.1064 0.1153 0.1037 0.1642 0.1319 0.1692 0.0840 0.1244 0.1179 0.1572 0.1587 0.2189 0.0852 0.1103 0.1789 0.1305
XT1 0.1199 0.1150 0.2065 0.1970 0.2477 0.1826 0.2184 0.2223 0.1915 0.1671 0.1643 0.1829 0.2343 0.2215 0.1236 0.2444 0.2473 0.2470
XT2 0.1556 0.1708 0.1068 0.1666 0.1465 0.1522 0.1765 0.2329 0.1266 0.1122 0.0924 0.1460 0.1759 0.2259 0.1139 0.2405 0.1999 0.2271
XT3 0.1785 0.1785 0.0741 0.1304 0.1326 0.1243 0.1104 0.2400 0.1215 0.1160 0.0757 0.1568 0.1462 0.2031 0.0733 0.1344 0.1984 0.1812
XT4 0.1548 0.1433 0.1142 0.2358 0.2159 0.1926 0.2504 0.2511 0.1214 0.1335 0.1027 0.1300 0.1912 0.2125 0.1113 0.1781 0.2875 0.1676
XT5 0.1416 0.1403 0.1926 0.2067 0.2358 0.1808 0.2061 0.2485 0.2310 0.1556 0.1548 0.1746 0.2329 0.2693 0.1252 0.2182 0.2626 0.2391
XG1 0.2816 0.2239 0.2182 0.2667 0.1470 0.3009 0.2279 0.2239 0.0800 0.2176 0.1264 0.1755 0.1602 0.2599 0.1129 0.1740 0.2520 0.2341
XG2 0.1717 0.1595 0.1803 0.2347 0.2263 0.1450 0.1783 0.2222 0.2412 0.1347 0.1328 0.1339 0.2298 0.2845 0.1927 0.2298 0.2705 0.2502
XG3 0.1786 0.2059 0.1626 0.2018 0.2428 0.1759 0.2128 0.2553 0.2810 0.1239 0.1238 0.1919 0.1764 0.3088 0.1578 0.2226 0.3001 0.2510
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XP1 XP2 XP3 XP4 XP5 XP6 XS1 XS2 XS3 XS4 XL1 XL2 XL3 XL4 XL5 XL6 XL7 XL8

XG4 0.1775 0.1744 0.1753 0.2446 0.1879 0.2050 0.2072 0.2260 0.1355 0.1882 0.1303 0.2077 0.2072 0.3044 0.0883 0.2677 0.2457 0.2985
XG5 0.1364 0.1344 0.2042 0.2140 0.2605 0.1907 0.2270 0.2475 0.2391 0.1413 0.1977 0.1763 0.2113 0.3105 0.1506 0.2520 0.2369 0.2631

XE1 XE2 XE3 XE4 XE5 XE6 XE7 XT1 XT2 XT3 XT4 XT5 XG1 XG2 XG3 XG4 XG5

XE1 0.1082
XE2 0.6685 0.2076
XE3 0.6613 0.6968 0.1612
XE4 0.5092 0.4490 0.6105 0.1727
XE5 0.6753 0.4798 0.5879 0.4645 0.2083
XE6 0.4726 0.4793 0.4928 0.4486 0.4983 0.1237
XE7 0.1833 0.2711 0.2283 0.2773 0.2720 0.1789 0.0686
XT1 0.4262 0.4114 0.4461 0.4132 0.3039 0.2959 0.1408 0.0854
XT2 0.2490 0.3594 0.3361 0.3716 0.3046 0.2115 0.1368 0.1308 0.0721
XT3 0.2499 0.2839 0.3178 0.3588 0.3303 0.2399 0.1071 0.1781 0.1217 0.0493
XT4 0.3273 0.3705 0.3716 0.3874 0.3090 0.2509 0.1271 0.1110 0.1162 0.1507 0.0683
XT5 0.4013 0.4025 0.4414 0.4102 0.2807 0.3318 0.1404 0.1192 0.1603 0.1838 0.1166 0.0863
XG1 0.3229 0.3283 0.4113 0.3190 0.4217 0.2966 0.1253 0.2981 0.1678 0.1156 0.1850 0.2702 0.0591
XG2 0.3748 0.3559 0.4751 0.4040 0.3475 0.2921 0.1498 0.1588 0.1753 0.1659 0.1788 0.1651 0.2104 0.0980
XG3 0.4062 0.3056 0.4466 0.4202 0.3314 0.3107 0.1497 0.1588 0.1164 0.1577 0.2025 0.1694 0.2624 0.1815 0.0844
XG4 0.3508 0.3102 0.3874 0.4143 0.3163 0.2823 0.1375 0.1668 0.1237 0.1463 0.1385 0.1740 0.1829 0.2001 0.1619 0.0680
XG5 0.3972 0.3884 0.4335 0.4241 0.2556 0.3525 0.1592 0.1596 0.1754 0.2073 0.1353 0.1373 0.2884 0.1654 0.1451 0.1709 0.1029
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