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Abstract: Wildlife corridors are critical for maintaining the viability of isolated wildlife populations
and conserving ecosystem functionality. Anthropogenic pressure has negatively impacted wildlife
habitats, particularly in corridors between protected areas, but few studies have yet quantitatively
assessed habitat changes and corresponding wildlife presence. We quantified land use/land cover and
human–elephant conflict trends over the past two decades in the Wami Mbiki–Saadani (WMS) wildlife
corridor, Tanzania, using RS and GIS combined with human–wildlife conflict reports. We designed
landscape metrics and habitat suitability models for the African savanna elephant (Loxodonta africana) as
a large mammal key species in the WMS ecosystem. Our results showed that forest cover, a highly
suitable habitat for elephants, decreased by 3.0% between 1998 and 2008 and 20.3% between 2008 and
2018. Overall, the highly suitable habitat for elephants decreased by 22.4% from 1998 to 2018, when
it was scarcely available and when small fragmented patches dominated the unprotected parts of the
corridor. Our findings revealed that large mammalian habitat conservation requires approaches beyond
habitat-loss detection and must consider other facets of landscape patterns. We suggest strengthening
elephant habitat conservation through community conservation awareness, wildlife corridor mapping,
and restoration practices to ensure a sustainable pathway to human–wildlife coexistence.

Keywords: remote sensing; Loxodonta africana; edge density; landscape matrix; human–elephant
conflicts; wildlife corridor

1. Introduction

Over the past few decades, rapid spatial and temporal change of land use by human
activities has become apparent, affecting landscape structure, patterns, and dynamics [1].
Especially in the tropics, a severe forest cover loss has been observed recently [2,3], thus
highlighting the need to understand the relationship between habitat loss, fragmentation,
and wildlife population viability for successful conservation effort [2,3].

Increasing the currently threatened structural connectivity and wildlife movements
between protected areas (PAs) will help maintain ecosystem services and biodiversity con-
servation [4]. Wildlife corridors are critical for maintaining the viability of isolated popula-
tions and conserving ecosystem functionality in increasingly fragmented landscapes [5–8].
They secure the integrity of physical environmental processes that are essential for vari-
ous wildlife species. Corridors act as an extension of core PAs and, hence, con-tribute to
maintaining the biodiversity inside and outside the PAs; however, they have been rapidly
deteriorated in recent years, mainly due to anthropogenic activities [9].

Worldwide, the transformation of natural forests, woodlands, bushlands, and water
bodies into agricultural land or settlements has drastically reduced ecosystem services
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and wildlife habitat [10,11]. Habitat fragmentation and loss are substantial threats to
biodiversity globally [12]. In addition, habitat fragmentation can create small isolated
populations that are at an increased risk of extinction through demographic and genetic
stochasticity [12]. This is of particular concern for large ungulates species in many habitats
in the Sub-Saharan Africa region [13–16], where habitats have been lost due to land-cover
change and agricultural and pastoral activities [17–20]. In Tanzania, corridors have recently
been encroached by local communities because of the need for natural resources and the
lack of legal-protection status [9]. For example, some corridors, such as Kwakuchinja and
Kitendeni, are under intensive pressure of agriculture, settlements, and extensive livestock
grazing, which threatens their [21,22].

While mapping and analyzing habitat loss and fragmentation is of utmost significance
for biodiversity conservation and its ecosystem services [23], only a few studies exist that
have quantified land-use/land-cover (LULC) change over time and directly linked this
change to wildlife habitat suitability [24,25]. Furthermore, maps of landscape metrics
and connectivity, particularly in wildlife corridors, are missing [26,27] to guide conserva-
tion priorities of critical wildlife species. Only few research projects have applied habitat
suitability models for large mammalian wild herbivores living in human-impacted ecosys-
tems [23] and combined those with human–wildlife conflict occurrences to understand
spatial landscape patterns. Furthermore, habitat classification has rarely been combined
with landscape metrics analyses that link land-use changes with the resulting habitat loss
for those species [28,29].

The loss of elephant (Loxodonta africana Blumenbach, 1797) habitat and connectivity has
been a major concern in the Wami Mbiki–Saadani (WMS) wildlife corridor, Northeastern
Tanzania, caused by human population growth, anthropogenic pressure, and climate
change [9,30–32]. Elephant populations have declined by 66% over the last two decades in
the WMS ecosystem, and one reason might be the lack of interchanging subpopulations
and high poaching incidents, particularly in areas where human population numbers are
rocketing [32–34].

Our research combined remote-sensing images, human–elephant conflict (HEC) re-
ports and landscape metrics to understand overall human-induced processes on land cover
and how they affect wildlife conservation in the WMS wildlife corridor. We mapped and
modeled the impacts of land-use/land-cover changes on elephant habitat fragmentation,
loss, and general habitat suitability of the WMS corridor. We anticipated that settlement
and agricultural land have increased in the WMS wildlife corridor, accelerating HEC and
negatively affecting habitat connectivity. We also anticipated that elephants would prefer to
roam in landscapes of high forest cover, which will have declined in the corridor over time.
We used landscape metrics analyses to combine spatial patterns of land cover with habitat.
Our results will help guide and establish land-use policies and management strategies
to provide buffer zones and corridors for coexistence between large mammals, such as
elephants and humans.

2. Materials and Methods
2.1. Description of the Study Area

The Wami Mbiki–Saadani (WMS) wildlife corridor is part of the Wami Mbiki–Saadani
Ecosystem in Tanzania’s wildlife-rich northeastern tourist circuit [35]. The corridor in
Eastern Tanzania connects Saadani National Park, Mikumi National Park, Nyerere National
Park, and Selous Game Reserve via the Wami Mbiki Wildlife Management Area (WMA) as
a stepping stone to offer a refuge for migratory wildlife as they travel from one protected
area to another [32]. The approximately 2063 km2 large area (5◦0′40” and 6◦0′40” S,
37◦50′0”and 38◦50′0” E) spans an altitudinal gradient of approximately 875 m above
sea level [36]. The Wami River sub-basin is a unique ecosystem linking terrestrial and
marine ecosystems [32,36,37]. The WMS wildlife corridor lies within this region and in
one of the world’s known hotspots of biological diversity. It includes both the Eastern Arc
Mountains and coastal forest [36] (Figure 1), with the Wami River flowing east through the
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center of the Wami Mbiki wildlife management area toward the southern tip of Saadani
National Park [38]. The climate is warm, with a mean daily temperature of 25 ◦C and mean
annual rainfall of over 1000 mm [36,39], with dry periods occurring from July to October
and wet periods from November to December and from March to June [36]. The WMS
wildlife corridor is essential in Tanzania [23], and the African elephant is one of the iconic
large mammal species that use the corridor. The corridor was classified as being under
extreme threat of disappearance in the imminent future if no intervention is performed
for its protection [23]. The vegetation type is lowland and coastal forest, with scattered
patches of miombo woodlands in some parts of the ecosystem [38]. The area comprises
a complex mosaic of land cover interspersed with human settlements; pastoralists; small
shifting cultivation agriculturalists; large-scale agriculture, especially sugar plantations in
the eastern part of the corridor; and infrastructure development, which poses significant
challenges for wildlife conservation in Eastern Tanzania.
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Figure 1. Map of the study area surveyed in Tanzania from 1998 to 2018 (B), the green patches in the
small map (A) (map of Tanzania) show the protected areas in Tanzania, in general, in national parks
and game reserves. The purple line is the protective areas boundary.

2.2. Data Collection
2.2.1. Remote-Sensing Image Classification

In consideration of seasonality, cloud cover and phenological effects, we selected dry
season remote sensing images with a minimum cloud cover of <10% and were downloaded
from Earth Explorer (https://earthexplorer.usgs.gov) web plat form (accessed on 15 January
2020) for image processing and change analysis. We used satellite images (Landsat 7
ETM and Landsat 8) from 1998, 2008, and 2018 for land-use/land-cover (LULC) change
classifications, downloaded via Google Earth Code Editor [40,41]. We conducted visual
and digital image preprocessing before images were extracted from the full scenes as

https://earthexplorer.usgs.gov
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subset scenes. We used the UTM coordinate zone 37 South and prepared a color composite
band (4,5,3), with its contrast being stretched by a standard deviation to enhance visual
interpretability of vector features, such as rivers, agricultural land, forests, etc. The image
processing was conducted by using ArcGIS software version 10.8.

We used Maximum Likelihood Classifier (MLC) for supervised image classification
and to create a base map, as it considered the spectral variation within each category and
the cover overlap of the different classes and was verified on the ground. Accordingly, land
use and land cover were classified into seven classes: forest, bushland, agriculture with
scattered settlements, grassland, bare soil, water, and urban area (Table 1). Random Forest
(RF) classification using RF classifier in R generated the final land-use/land-cover map [42]. We
then filtered the classified images by using a majority-neighborhoods’ filter to eliminate smaller
patches and replaced them with the most common value among the neighboring pixels.

Table 1. Description of the land-use/land-cover (LULC) classes used in our analyses on land-cover
change from 1998 to 2008 to 2018 in the Wami Mbiki–Saadani wildlife corridor, Tanzania, based on
Reference [43], with some modifications.

LULC Types Description

Agriculture with scattered settlements Land actively used to grow crops (seasonal and permanent)

Bare ground No vegetation (exposed rock outcrops and bare soil)

Bushland Dominated by multi-stemmed plants from a single root base and woody cover

Forest >50% canopy cover of woody plants of ≥5 m height

Grassland <10% cover of sparse woody plants, dominated by continuous herbaceous cover

Urban area Urban and rural settlements (houses, roads, infrastructure)

Water Water bodies, mostly permanent (inland water)

2.2.2. Analyzing Land-Cover Change

We used a post-classification comparison to quantify the extent of land-use/land-
cover changes over 20 years (1998, 2008, and 2018) for high change-detection accuracy
and to validate remotely sensed data by comparing classified images with the provided
ground-truth data [44]. We performed an accuracy assessment based on ground-truth
data collected in the field, together with high-resolution images from Google Earth, and
executed a cross-tabulation between the class values and reference data, and we presented
the results as an error matrix. We also performed a non-parametric kappa test to measure
the extent of accuracy of classification and presented the results in confusion matric. In
addition, we used the spatial analyst tool in Arc GIS to calculate change detection matrix
tables for 1998–2008 and 2008–2018 and plotted the land-cover conversion to other classes.
Estimation for the rate of change for different land use/land cover was computed based on
the following formulae [45]:

% Cover change =
Areaiyear x − Areaiyearx+1

∑n
i=1 Areaiyear x

× 100 (1)

Annual rate o f change =
Areai year x − Areai year x+1

tyears
(2)

% Annual rate o f change =
Areai year x − Areai year x+1

Areaiyearx × tyears
× 100 (3)

where Area iyearx = area of cover i at the first date, Areaiyearx+1 = area of cover i at the second
date, ∑n

i=1 Area iyearx is the total cover area at the first date, tyears = period in years between
the first and the second scene acquisition.
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2.3. Human–Elephant Conflicts (HEC)

Data on human–elephant conflicts (HEC) in the WMS wildlife corridor were obtained
from reports collected by the District Game Officer’s office of Bagamoyo, Chalinze, and
Handeni District councils and the Tanzania Wildlife Research Institute (TAWIRI). The
reports comprised the complaints of villagers whose crops had been raided or who have
been injured or their livestock impacted by wildlife, spanning the years 2016 to 2020.
The reports indicated the location, type, and extent of destroyed crops; and the livestock
species and numbers affected/killed by elephants, as well as human killings or injuries by
elephants. Each incident was classified as a unique event. In addition, we computed and
mapped the distances of HEC locations to the park boundaries, to the nearest road, and
nearest river by using ArcGIS software. A Kernel Density Estimation (KDE) and Gedis-Ord
Gi algorithms were carried out to identify high concentration and hotspot areas of HEC. We
combined the KDE surface with different LULC classes and generated a HEC hotspot risk
map. According to time of records, the spatiotemporal distribution points collected by HEC
reports across different locations were overlaid with the land-use/land-cover map according
to time of records to reveal the preferred habitat for the elephants in the WMS corridor.

2.4. Habitat Suitability Modeling

For the habitat suitability model for the WMS wildlife corridor, we used the ele-
phant as model species for the span of two decadal time steps (1998, 2008, and 2018). For
habitat suitability modeling, it is most important to identify factors that influence the spa-
tial distribution of animal species to develop effective conservation planning and habitat
suitability evaluation [46]. We selected these factors based on the elephant-distribution
literature [24,35,46–48], as well as the locations of HEC through reports across the entire
WMS corridor. We included four key environmental variables as basic representative crite-
ria of main features of suitable habitat for elephants [24]: land-cover structure (vegetation
cover), proximity to permanent water, Normalized Difference Vegetation Index (NDVI),
and proximity to road networks [49–52] (Table 2). Elephants tend to rest in shaded areas
during the day when not moving [48,53,54], and areas with high tree cover can act as refuge
in areas of high human activity [55] and provide foraging areas. We, thus, classed forest
as optimal habitat, and the more forest patches, the better the habitat. Each factor was
assigned a value based on the Analytical Hierarchy Process (AHP) [56]. The AHP is the
most used multi-criteria decision-making method to determine weightage for assigning,
in particular, habitat parameters [47,57]. The AHP assumed that some factors are more
important than others for the species under study [58].

Table 2. Assigned ranked values based on the various factors that might impact elephant habitat
selection used in the Analytical Hierarchy Process (AHP) model [24,56,58]. Land-use categories are
described in Table 1. AR = associated rank weight, NDVI = Normalized Difference Vegetation Index.

Factor Class (Unit) AR

Land-use/land-cover change
Agriculture 1
Bushland 7

Forest 9

Proximity to permanent water

Grassland 3
<100 m 5

100–200 m 3
>200 m 1

Proximity to road
<100 m 1

100–200 m 2
>200 m 3

NDVI
0.4–0.5 3
0.5–0.6 2

<0.4 and >0.6 1
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The Analytical Hierarchy Process (AHP).
The AHP is a flexible and structured GIS-based model for analyzing and solving

complex decision-problems work [56] to rank and select the best in a set of alternatives.
The ranking is performed concerning an overall goal and broken down into criteria (ob-
jectives and attributes), applying a nine-point scale of measurements: 1 = equal impor-
tance, 3 = moderate importance, 5 = strong importance, 7 = very strong importance, and
9 = extreme importance. The intermediate values 2, 4, 6, and 8 help grading between two
adjacent judgments [59]. The AHP method was selected because we did not have many
species location data available and AHP allows habitat modeling when empirical data are
scarce [51,52]. For our AHP model, the main factors for the elephant habitat suitability
were land-use/land-cover change, NDVI, proximity to permanent water, and proximity
to road. The alternatives or sub-factors were bushland, agriculture, forest, grassland, and
urban area. Each criterion was given a value according to Reference [56] (Table 2).

We conducted a pairwise comparison (Table 3a) to reduce the conceptual complexity,
since only two components were considered at any given time, developing a comparison
matrix, computing and assigning weights for each element in the hierarchy tree, and
normalizing those to determine the priority vector (Eigen vector) (Table 3b). The associated
rank weight (AR) values were used in estimating the consistency ratio (C/R). The priority
vector, also known as the normalized principal Eigen vector, was calculated by determining
the means of the rows of the normalization table (Table 3).

Table 3. (a) Estimated weights for elephant habitat parameters that were used in the Analytical
Hierarchy Process (AHP) model [58]. The table shows a pairwise comparison matrix. Decimal values
are reciprocals. LULC = land-use/land-cover change, Pw = proximity to water, Pr = proximity to roads,
NDVI = Normalized Difference Vegetation Index. (b) Normalized values to determine the propriety
vector or weights of habitat parameters in the model. The priority in % (normalized principal Eigen
vector) was calculated by determining the means of the rows of the normalization table.

(a)

Habitat Parameters LULC Pw Pr NDVI

LULC 1.00 9.00 9.00 9.00
Pw 0.11 1.00 5.00 5.00
Pr 0.11 0.20 1.00 0.25

NDVI 9.00 5.00 0.25 1.00
SUM 19.11 15.20 15.25 15.25

(b)

Habitat Parameters LULC Pw Pr NDVI %Priority

LULC 0.05 0.59 0.59 0.59 45.6
Pw 0.47 0.07 0.33 0.33 29.8
Pr 0.01 0.01 0.07 0.02 2.5

NDVI 0.47 0.33 0.02 0.07 22
SUM 1.00 1.00 1.00 1.00 100

Estimation of the consistency ratio (CR).
The following formula computed the consistency ratio (CR) [56]. The CR is used to

confirm that the matrix judgements were randomly generated [56,58].

CR =
CI
RI

(4)

where CI is the consistency index, RI is the random consistency index, and CR is the
consistency ratio.

CI =
λmax− n

n− 1
(5)
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where λmax is the principal Eigen value, i.e., the sum or the products between each
element of the priority vector and column totals; n is number of factors; and the random
consistency index = 0.9 for four factors, CI = 4.3 [56,58]. After computing the CR, potential
parameters were integrated in the GIS domain [2,60] to determine the elephants’ different
levels of habitat suitability. First, vector layers (proximity to permanent water and road
distance) were converted into raster format and multiplied with their specific weight. Next,
we conducted kernel density estimation to generate raster-based maps from vector data
(river shape files) and human disturbances (land use and road networks) in Arc GIS 10.8.
Afterward, the resulting raster layer values were combined to get the final habitat suitability
map. We used the weight analysis method in the novel habitat suitability model to extract
the suitable habitat area based on Equation (6). Here, the suitable habitat area (SHA) was
computed in the weighted overlay tool in ARC GIS as follows:

SHA = [(LULCwi) + (Pwwi) + (Prwi) + (NDVIwi)] (6)

where LULC is land use/land cover, Pw is proximity to permanent water, Pr is proximity to
road networks, and NDVI is the Normalized Difference Vegetation Index. The subscript wi
is the weights of individual habitat suitability factors.

2.5. Habitat Fragmentation Analysis

We conducted landscape habitat fragmentation analysis to designate the spatial con-
figuration of landscape metric classes of interest [61], using Fragstat 4.2 landscape met-
rics [3,62,63]. Landscape metrics are a quantitative link between landscape patterns and
ecological or environmental processes [64]. They display numerical information about
landscape composition, configuration, and dimensions; allow for comparisons of different
times; and even help recreate future scenarios [65]. They have become useful in linking
patterns found in the landscape to various environmental and ecological processes [64].
We calculated class and landscape-level statistics for raster GeoTIFF land-use/land-cover
classes of 1998, 2008, and 2018. We calculated landscape metrics for class levels, such
as the total class area (CA), percentage of landscape (PLAND), edge density (ED), patch
density (PD), number of patches (PN), landscape shape index (LSI), interspersion and
jurisdiction index (IJI), and largest patch index (LPI) [66]. In addition, we calculated Shan-
non’s Diversity Index (SHDI) for landscape-level metrics (Table 4), as rare patch types
have a considerable influence on the extent of the index [67]. LSI enables us to measure
a standardized total edge, while ED adjusts for the size of the landscape; LPI at the class
level quantifies the percentage of total landscape area comprising the largest patch; it is a
measure of dominance [68]. Specifically, NP is an outstanding measure of the fragmentation
of a given class within the landscape, since the landscape size is continuous. IJI provides
metrics of shape and interspersion.
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Table 4. Different landscape metrics types that we assessed in this study for the Wami Mbiki–Saadani
wildlife corridor, Tanzania, from 1998, 2008, and 2018, according to the descriptions used by Fragstat [68].

Fragstat Metrics Abbreviation Unit Description

Total area CA m2 Sum of areas (m2) of all patches for each patch type

Percentage of landscape PLAND % Proportional abundance for each patch type (habitat)
across the landscape

Largest patch index LPI % Percentage of total landscape area characterized by the
largest patch

Edge density ED m/ha Edge length per unit area

Patch density PD km2 Measures the number of all patches per unit area
increases with heterogeneity

Landscape shape index LSI n/a
Measures the total edge or edge densitywhile adjusting

for the size of an area. Themetric increases with
increasing heterogeneity

Patch number NP n/a Number of patches within each class

Interspersion and
Juxtaposition Index IJI % The adjacency of each patch with all other forest types

Shannon Diversity Index SHDI n/a Relative index for comparing different landscapes or the
same landscape at different times

2.6. Statistical Analysis

To avoid multi-collinearity, we created a Pearson’s correlation matrix for all landscape
structure metrics and removed ED and LSI (|r|) ≥ 0.60, because they showed a high
correlation with several other variables. Using Principal Component Analysis (PCA), we
examined the variance structure among the remaining conformation metrics to ordinate and
reduce superfluous variables. PCA based on the correlation metrics with varimax rotation
revealed the differences in multivariate space. Biplot diagrams showed the correlation
structure of the variables, besides indicating the changes based on the involved metrics [2].
These components explained 89.2% of the cumulative proportion of variance. We observed
the highest loading scores among PLAND, LPI, IJI, PD, NP, and CA and selected these
landscapes metrics for further analysis. These metrics were chosen and used because they
have been robust and efficient for characterizing the land-cover fragmentation at the land-
cover-class level. We conducted a post hoc analysis based on Turkey’s to see significant
changes in landscape metrics across different land-use classes and years of investigation;
the results are presented in Supplementary Materials Tables S1–S6. The statistical analyses
were performed by using R software [69] and the factor Miner package [70].

3. Results
3.1. Accuracy Assessment

The overall accuracy assessment for LULC change classification levels for the three-
time step ranges from 75% to 97%, with kappa agreement indices ranging from 0.71 to
0.75. Accuracies per individual LULC classes, i.e., user’s accuracy (UA) and producer’s
accuracy (PA), are presented in Table 5. The values for the three classification results are
satisfactory for the study area because they satisfy a minimum of 71%, which agrees with
the [71] classification scheme. According to Reference [72], the kappa agreement is poor
when k < 0.4, good when 0.4 < k < 0.7, and excellent when k > 0.75. Thus, according to these
agreement schemes, our classification denotes good-to-excellent agreement. The overall
accuracy of our study is considered acceptable based on Reference [71]. The results provide
a major platform for the subsequent analysis of LULC changes.
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Table 5. Accuracy assessment of LULC classification for WMS corridor, Tanzania, for 1998, 2008, and
2018. LULC = land-use/land-cover change, PA = producer’s accuracy, UA = user’s accuracy.

1998 2008 2018

LULC PA UA PA UA PA UA

Forest 81 81 71 64 77 92
Grassland 82 69 76 97 79 68
Bushland 61 44 95 76 77 71

Urban 75 91 65 65 67 60
Water 87 91 62 81 74 90

Agriculture 79 88 71 84 78 60
Bare Soil 0 0 76 85 71 93
Over all 79 77 75
Kappa 0.75 0.72 0.71

3.2. Land-Use/Cover Change in the WMS Wildlife Corridor over the Last 20 Years

We created two transition matrices in land cover for 1998–2008 and 2008–2018, analyz-
ing change detection by cross-tabulation and plotted graphs for land-cover conversions
to other cover classes. The results revealed that there were significant changes in land
use/land cover between the time of investigation. Over the past two decades, the WMS
wildlife corridor has witnessed a large forest cover loss (Table 6), whereby between 1998
and 2008, forest cover declined by 3.1% and further by 20.3% between 2008 and 2018. In
contrast, agriculture and grassland increased, while bushland declined from 34.0% in 1998
to 25.2% in 2018. In 1998, forest area occupied 55.0%, followed by bushland with 34.0%
(Table 6).

Table 6. Land-cover class area (in ha and %) over the years 1998–2018 and annual rate of change
(in %/year and km2/year) in the Wami Mbiki–Saadani (WMS) wildlife corridor. Land-cover classes
are defined in Table 1.

Year 1998 2008 2018 1998–2008 2008–2018 1998–2008 2008–2018 1998–2008 2008–2018

Land Cover Area
(ha)

Area
(%)

Area
(ha)

Area
(%)

Area
(ha)

Area
(%) Area (%) Area (%) km2/year km2/year (%/year) (%/year)

Agriculture 14,330 7 23,749 11.6 32,873 16 −4.6 −4.4 −9.4 −9.1 −6.6 −3.8
Bare soil 0 0 1123 0.6 1182 0.6 −0.5 0 −1.1 −0.1 0 −0.5
Bushland 69,684 34 60,115 29.3 51,679 25.2 4.7 4.1 9.6 8.4 1.4 1.4

Forest 112,981 55 106,614 51.9 64,983 31.6 3.1 20.3 6.4 41.6 0.6 3.9
Grassland 7581 3.7 12,917 6.3 54,183 26.4 −2.6 −20.1 −5.3 −41.3 −7 −31.9
Urban area 16 0 188 0.1 306 0.2 −0.1 −0.1 −0.2 −0.1 −107.5 −6.3

Water 865 0.4 548 0.3 247 0.1 0.2 0.1 0.3 0.3 3.7 5.5

Total 205,457 100 205,254 100 205,453 100

The urban settlement area increased only slightly by 0.1% between 1998 and 2018
(Table 6). The forest showed a high annual rate of change from 6.4 km2/year between
1998 and 2008 to 41.6 km2/year in 2008–2018 (Table 6). The overall urban-area-cover
class is small compared to other land-use/cover classes but significant in wildlife habitat
conservation, as all urban centers were located within the wildlife corridor. The road
network expanded more than twice as much to approximately 500 km in 2018 compared to
216 km in 1998. The length of secondary roads increased only slightly from 79 km in 1998
to 98 km in 2018.

3.3. Habitat Suitability Change for Elephants

Our AHP model revealed that LULC (45.6%), proximity to permanent water (29.8%),
vegetation status (NDVI) (22.0%), and proximity to road (2.5%) were the most influential
habitat suitability parameters for elephants (Table 3). The Consistency Ratio (CR) computed
through AHP was 4.8%, which is within the accepted range but lower than the reasonable
level of acceptance (<10%) [56]. The highly suitable habitat areas decreased in total by
22.4% between 1998 and 2018 (Figure 2). The unsuitable habitat (Category 1) increased
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only slightly by 3.8% between 1998 and 2008 and by 0.2% between 2008 and 2018 (Figure 2).
Moderately suitable habitat decreased by 1.4% between 1998 and 2008 and again declined
by 6.5% between 2008 and 2018, while poorly suitable habitat increased by 2.8% between
1998 and 2008 and by 21.2% between 2008 and 2018. Suitable habitat area rose by 0.6%
between 1998 and by 8.1% between 2008 and 2018, especially in areas near Saadani National
Park. Forest patches significantly declined over time (Figure 2), and this has also led to a
significant decline in areas of moderately suitable and highly suitable habitat.
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Figure 2. Changes in area size of different habitat suitability classes in the Wami Mbiki Saadani
wildlife corridor, Tanzania, for 1998, 2008, and 2018, based on Analytical Hierarchy Process (AHP)
calculations [58,59]. Suitability was assessed by using the spatial analyst tool in Arc Map (10.8). The
horizontal line represents median, standard error of the mean (box), and 95% confidence interval of
the mean (whiskers).

3.4. Landscape Metrics Analysis

Our results showed that the forest comprised the highest percentage of the landscape
(PLAND) compared to other habitat types over the entire period and decreased from 55.0%
in 1998 to 51.0% in 2008 and further to 16.0% in 2018 (Figure 3a and Supplementary Table S4).
The forest’s largest patch index (LPI) for bushland decreased by 27.0% between 1998
and 2008 and 1.2% between 2008 and 2018 (Figure 3b), highlighting that the landscape
became considerably fragmented between 1998 and 2018 in the WMS wildlife corridor. The
Shannon’s Diversity Index (SHDI) of the landscape metrics increased from 1.0 in 1998 to 1.2
in 2008 and then to 1.4 in 2018, further indicating an increase in landscape fragmentation
in the WMS wildlife corridor [73]. PLAND significantly increased for bushland (21.8%,
p < 0.001) and agriculture with scattered settlements (29.4%, p < 0.001), while it declined
for forest area (29.0%, p < 0.001; Supplementary Table S1). The same trend was observed
for forests compared to bushland and grassland (Supplementary Table S2). The increase in
PD and NP (Supplementary Tables S4 and S5) and decrease in LPI over time, especially for
the bushland class, indicates significant landscape fragmentation due to the cohesion of
bushland [74]. IJI shows some increasing trends, but there was no significant difference
(Figure 3e and Supplementary Table S6), suggesting that patches are not well-interspersed
or equal to other patch types. The CA for bushland and forest (Figure 3f) decreased from
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69,742 and 113,074 ha in 1998 to 65,036 and 32,900 ha in 2018, respectively, indicating high
conversion of bushland and forest land into agricultural land and other land uses. We also
conducted a multivariate analysis, using PCA on landscape metrics based on Root Mean
Square Root Residual, off diagonal (RMSR) and Goodness of Fit Index (GFI) values [2]. The
model explained 89.2% of the total variance. PC1 explained 67.0% and PC2 22.2% of the
variance based on the PCA, with individual variable contributions shown in Appendix A
Figure A1.
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Figure 3. Temporal shifts in total area coverage of (a) percentage of landscape (PLAND), (b) largest
patch index (LPI), (c) patch density (PD), (d) number of patches (NP), (e) interspersion and juxtapo-
sition index (IJI), and (f) total class area (CA) for the different land-cover categories as indicated in
Table 1 for the Wami Mbiki–Saadani wildlife corridor, Tanzania, for the years 1998, 2008, and 2018,
as assessed through landscape metrics. See also Supplementary Materials on Turkey post hoc test
(Supplementary Tables S1–S6).

3.5. Human–Elephant Conflict and Hotspot Locations

In total, 621 HEC incidences were collected from Handeni, Chalinze, and Bagamoyo
District Councils between 2016 and 2020, with the highest incidences recorded in 2017
(N = 290) and the lowest in 2020 (N = 16). The HEC frequencies decreased with increasing
distance from the protected area into the corridor, corresponding to elephants’ unsuitable
and poorly suitable habitat. HEC incidences were reported more often in the wet season
(N = 569), i.e., between November and February, than in the dry season (N = 52; Figure 4.
The most frequently reported HEC was crop-raiding (73%), while human and livestock
injuries comprised 23% of the cases. The most strongly affected villages were about 3 to
5 km away from protected areas, including Gongo, Kiwangwa, Matipwili, and Kwangandu
(Figure 4). Crop-raided agricultural areas had increased dramatically from 300 ha in 2017
to 426 ha in 2019.



Land 2022, 11, 307 12 of 20

Land 2022, 11, x FOR PEER REVIEW 12 of 21 
 

3.5. Human–Elephant Conflict and Hotspot Locations 

In total, 621 HEC incidences were collected from Handeni, Chalinze, and Bagamoyo 

District Councils between 2016 and 2020, with the highest incidences recorded in 2017 (N 

= 290) and the lowest in 2020 (N = 16). The HEC frequencies decreased with increasing 

distance from the protected area into the corridor, corresponding to elephants’ unsuitable 

and poorly suitable habitat. HEC incidences were reported more often in the wet season 

(N = 569), i.e., between November and February, than in the dry season (N = 52; Figure 4. 

The most frequently reported HEC was crop-raiding (73%), while human and livestock 

injuries comprised 23% of the cases. The most strongly affected villages were about 3 to 5 

km away from protected areas, including Gongo, Kiwangwa, Matipwili, and Kwangandu 

(Figure 4). Crop-raided agricultural areas had increased dramatically from 300 ha in 2017 

to 426 ha in 2019. 

 

Figure 4. Heat map for human-elephant conflict (HEC) hotspots reported per year by the District 

Game officers of Handeni, Chalinze and Bagamoyo in Wami Mbiki-Saadani Wildlife corridor, 

Tanzania, in 2009, 2016, 2017, 2018, and 2019 (different symbols). The color shades indicate the 

intensity based on the number of reported cases. The heat map was generated by using kernel 

density in the Spatial analyst tool of ARC GIS in the WMS wildlife corridor. WMA = wildlife man-

agement area, SANAPA = Saadani National Park. 

4. Discussion 

4.1. Forest Loss and Agricultural Expansion in the Corridor 

Our results showed that urban areas, grassland, and agriculture with scattered set-

tlements have expanded in the Wami Mbiki–Saadani wildlife corridor over the last 20 

years, while forest and bushland have strongly declined. Likely, these changes have been 

caused by a rapid human population growth [75,76], agricultural expansion, infrastruc-

ture development, and forest clearance for timber and charcoal production. Over time, the 

Figure 4. Heat map for human-elephant conflict (HEC) hotspots reported per year by the District
Game officers of Handeni, Chalinze and Bagamoyo in Wami Mbiki-Saadani Wildlife corridor, Tanza-
nia, in 2009, 2016, 2017, 2018, and 2019 (different symbols). The color shades indicate the intensity
based on the number of reported cases. The heat map was generated by using kernel density in the
Spatial analyst tool of ARC GIS in the WMS wildlife corridor. WMA = wildlife management area,
SANAPA = Saadani National Park.

4. Discussion
4.1. Forest Loss and Agricultural Expansion in the Corridor

Our results showed that urban areas, grassland, and agriculture with scattered settle-
ments have expanded in the Wami Mbiki–Saadani wildlife corridor over the last 20 years,
while forest and bushland have strongly declined. Likely, these changes have been caused
by a rapid human population growth [75,76], agricultural expansion, infrastructure devel-
opment, and forest clearance for timber and charcoal production. Over time, the decline in
water might have been caused by the destruction of riverbanks, which led to high surface
runoff during the rainy season followed by drying of rivers, especially the tributaries of the
Wami river [77,78]. Our results identified the locations of different socio-economic activi-
ties that acted as the driving forces for land-cover changes in the WMS Saadani wildlife
corridor. These activities could be attributed to an increasing human population growth;
that is, the number of people living in the corridor increased from 311,627 in 2002–2012
to 356,320 in 2018, according to Reference [79]. Population increases have been caused
by the immigration of people from different parts of the country seeking fertile land for
agriculture, especially for pineapple growing, grazing pastures, and charcoal burning [9].
In addition, the poverty of local communities along the corridor was identified as one
important reason for enhancing shifting cultivation practices [9]. These activities have
caused the decline in forest cover in WMS which is a well-known phenomenon in other
parts of the world, where forest loses are often caused by increased human populations
and, consequently, declines in biodiversity [80,81].
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Our LULC analyses highlighted the vulnerability, degradation, and loss of wildlife
habitats, which will negatively affect biodiversity conservation [82]. A destruction of
elephant habitat (i.e., forest) and foraging areas and an interruption of elephant movement
might lead to large-scale blockage of the entire WMS corridor, which was already mentioned
as a possible scenario by AHP. Reference [83] reported that overgrazing, shifting cultivation,
and charcoal burning were significant factors for the degradation of the wildlife corridors
in Njombe and Mbalizi districts, Tanzania, as was also observed by Reference [23].

Our results showed that although the WMS wildlife corridor forms an important
connection between the Saadani National Park and Wami Mbiki Wildlife Management
Area [84], its status has been decreasing with time, particularly the cover and connectivity
of natural vegetation. We, thus, highlight that the WMS wildlife corridor comprises a
fragile ecosystem of lowland and coastal forests, where agricultural activities are becom-
ing increasingly common, which needs particular attention for protection to guarantee
human–wildlife coexistence.

4.2. Habitat Suitability and Quality Decline over Time

Our results from AHP indicated that the forest and bush cover were the most in-
fluencing parameter in the distribution of elephant habitat in the study area, which is
consistent with other studies [24,46,47], as the elephants are undisturbed and can acquire
food in such types of habitat. We found that the highly and moderately suitable habitats
for elephants decreased by 22.4% and 8.1% within the WMS ecosystem, especially in the
wildlife corridor, respectively, over the last 20 years. In 1998, the highly suitable habitat
(57.6%) dominated the southwestern part of the corridor, near the Wami Mbiki WMA.
Likely, as protection and conservation activities by the Wami Mbiki society have been
rather intense, it received conservation funds for conservation activities, such as regular
patrol, from a tourist hunting company until the late 2010s [30,84]. However, more poorly
suitable and unsuitable habitats became visible in the northeastern and middle parts of the
WMS corridor, in the later years, likely due to the intensification of agricultural activities
around urban areas. A slight increase in suitable habitat on the northeastern part might
have been due to upgrading the former Mkwaja ranch to Saadani National Park and im-
proving mangrove protection within Saadani National Park (SANAPA), [84], as well as
due to the establishment of the Kisampa conservancy adjacent to Saadani National Park,
which is a private community conservation sanctuary covering 60 km2, established in 2004,
Kisampa Conservancy (http://www.afrikaafrikasafaris.com/kisampa-overview/) web
page accessed on 25th January 2020.

In contrast, the unprotected areas in the corridor exhibited poor and unsuitable habi-
tats. Furthermore, the intensification of infrastructure, such as roads and construction of
two military bases at Wami and Pongwe Kwa Msungura, which are within the wildlife cor-
ridor, likely stipulated settlements and agricultural activities, thereby restricting elephant
migration routes [85]. A hampered migration might foster genetic isolation of wildlife
in the near future [86–89], since connectivity between the protected areas will be ham-
pered [90–95]. As we used the elephant as an umbrella species, whose protection can
facilitate the linkage, i.e., corridor networks, for multiple other wildlife species [96], our
results showed that the highly and moderately suitable habitat likely also declined for other
wildlife species, thus signifying an urgent need for habitat restoration of the WMS corridor.

4.3. Elephant Distributions and HEC Hotspots

The results from human–elephant conflict (HEC) reports showed the distributions
of HECs close to the protected areas, especially Saadani National Park, which might be
due to habitat loss and corridor blockage by human activities, limiting wildlife move-
ments [29,32,97]. This might also have caused the increase in human–elephant conflicts in
our study area, as people encroached on the wildlife corridor, restricting mammal move-
ment close to protected areas (PAs), a phenomenon also found in other areas of Tanzania
and other parts of the world [98,99]. The high HEC occurrences within 3–5 km away

http://www.afrikaafrikasafaris.com/kisampa-overview/
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from the protected areas is in agreement with Harich [100], who showed that Asian ele-
phants (Elephas maximus indicus) only moved less than 3 km away from protected areas into
cultivated land, i.e., rubber plantations, in Thailand.

4.4. Overall Landscape Fragmentation in WMS Wildlife Corridor

Our landscape metrics analysis showed that PLAND was highest for forest com-
pared to other habitat types over the entire period but declined rapidly over time, thus
highlighting the dominant processes of landscape fragmentation [63] in our study area.
References [101,102] have shown a strong relationship between landscape fragmentation
and wildlife habitat loss. The largest patch index (LPI) changes indicated that wooded
patches have drastically declined in size and connectivity, as was also seen for forests in
the Lincang River Valley of China [103], leading to a general decline in wildlife biodiver-
sity [103,104]. Generally, a declining LPI leads to habitat exposure to edge effects, which
are often associated with loss in biodiversity through the loss of habitat area [105,106].

In our study, we only had limited information on elephant distribution data and used
a rather coarse land-cover-classification scheme. However, our land-use metrics model,
in combination with LULC changes, as well as HEC conflict data, highlighted areas of
conservation importance within the corridor. We showed that deriving habitat indices
for mega herbivores can help drawing attention to rapid declines in habitat availability,
illustrate hotspot areas of decline, and, thus, point out areas of concern for managers.

5. Conclusions

Our study on land-cover change and landscape fragmentation has revealed severely
impacted elephant habitat in the Wami Mbiki–Saadani wildlife corridor within the last
two decades. Our combination of LULC change maps and habitat suitability features with
conflict abundance data stressed a constant decrease in highly suitable habitat for elephants.
The wildlife corridor experienced a strong forest decline and agriculture expansion, and
the landscape has become more fragmented for elephants.

Our findings highlight an urgent need to strengthen the conservation of significant
wildlife habitat through community conservation awareness and extension programs,
which advocate the sustainable utilization of natural resources. We suggest conducting
aerial surveys in addition to our study, especially in the wildlife corridor, to see the levels
of habitat loss and whether the corridor is still accessible and used by wildlife. We pinpoint
spatial and temporal trends of HEC occurrences and relate those to large-scale landscape ma-
trix properties in the WMS wildlife corridor. We further stress the negative impacts of human
activities on elephant habitat and suggest that management should promote human–wildlife
coexistence in this fragile ecosystem. We recommend that communities living within or adja-
cent to wildlife corridors plant crops less preferred by elephants or use prevention measures,
to enable human–elephant coexistence in the Wami Mbiki–Saadani ecosystem.

6. Implication for Conservation

Our study combined remote sensing and GIS, as well as secondary data and landscape
metrics quantifications, for modeling habitat suitability for elephants. This can be useful
and essential for helping to provide timely and accurate data for modeling and mapping
habitat suitability for elephants. We further show how HEC data can be used to derive
heat maps and indicate hotspot areas, where mitigation and prevention of conflicts can
be focused on. Our work showed general trends of wildlife conservation challenges, such
as the decline of the African elephant habitat due to increasing anthropogenic activities,
especially outside protected areas, which can be applied in various ecoregions [39,74,95].
Our study revealed a decreasing area of highly and moderately suitable habitat and an
increase of unsuitable and poorly suitable habitats over time. We conclude that the WMS
corridor is highly threatened and claim that essential environmental variables, such as
vegetation cover, NDVI status, LULC change, and water sources, should be prioritized for
habitat suitability models, while planning the wildlife corridor management strategies.
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Our ranking of the habitat suitability parameters computed by AHP can be used
as a general guideline to identify optimal elephant habitat locations [24,95]. We stress
that landscape analysis knowledge is essential for keystone species conservation, such as
the African elephant, whose population is declining across a range of unprotected and
protected areas [107].
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Test) for landscape fragmentation for LPI among land use, Table S3: The mean (Ha) difference
(Tukey Post–Hoc Test) for landscape fragmentation for CA among land use, Table S4:The mean
(Km2) difference (Tukey Post–Hoc Test) for landscape fragmentation for PD among la Table S5: The
mean difference (Tukey Post–Hoc Test) for landscape fragmentation for NP among land use nd use,
Table S6: The mean (%) difference (Tukey Post–Hoc Test) for landscape fragmentation for IJI among
land use.

Author Contributions: L.T.N., conceptualization, methodology, software, formal data analysis, data
curation, writing initial draft preparation, and project administration; L.K.M. and A.C.T., method-
ology, validation, and interpretation of results; E.K., data contribution; A.C.T., E.K. and L.K.M.,
reviewing and editing of the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received funding from CREATES grant number BG.129/649/04/75. The APC
will be funded from individual sources.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Special thanks to Y.J. Magangali, who helped during data collection, and O.
Simon from the Institute of Resource Assessment (IRA), University of Dar es Salaam, for tech-
nical support during land-use/land-cover classifications. This research has a clearance permit
No. 2020-209-NA-2020-082 from Tanzania Commission for Science and Technology (COSTECH) and
was permitted by the Tanzania Wildlife Research Institute, Tanzania National Parks, and Tanzania
Wildlife Area.

Conflicts of Interest: The authors declare that there is no potential conflict of interest.

Appendix A

Table A1. Landsat images used to map land-cover classes of the Wami Mbiki–Saadani wildlife
corridor in 1998, 2008, and 2018. Source: Earth Explorer (https://earthexplorer.usgs.gov) web plat
form accessed on 15 January 2020. All images have <10% cloud cover.

Sensor Year Path/Row Resolution

Landsat TM 1998 167/065. 167/064. 166/064 and 166/065 30 m

Landsat TM 2008 167/065. 167/064. 166/064. and 166/065 30 m

Landsat 8 2018 167/065. 167/064. 166/064. and 166/065 30 m

https://www.mdpi.com/article/10.3390/land11020307/s1
https://www.mdpi.com/article/10.3390/land11020307/s1
https://earthexplorer.usgs.gov
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Table A2. Landscape fragmentation metrics used in this study (McGarigal, 2002) are compared over
the years 1998, 2008, and 2018 for the study area in WMS wildlife corridor, Tanzania. Land-cover
classes according to Table 3. CA = class area, PLAND = percentage of landscape, NP = number of
patches, PD = patch density, LPI = largest patch index, ED = edge density, LSI = largest shape index,
IJI = interspersion and juxtaposition index.

Metrics CA (m2) PLAND (%) NP (#/100 ha) PD (km2)

Land Use 1998 2008 2018 1998 2008 2018 1998 2008 2018 1998 2008 2018

Forest 113,074 106,702 32,900 55.0 51.9 16.0 597 524 1582 0.3 0.3 0.8
Bushland 69,742 60,164 65,036 33.9 29.3 31.6 1026 1218 1161 0.5 0.6 0.6

Agriculture 14,342 23,769 54,227 7.0 11.6 26.4 527 870 1524 0.3 0.4 0.7
Grassland 7588 12,928 51,722 3.7 6.3 25.2 408 524 1674 0.2 0.3 0.8
Bare soil 0.0 1124 1183 0.0 0.5 0.6 0 145 160 0.0 0.1 0.1

Water 866 549 247 0.4 0.3 0.1 94 63 36 0.0 0.0 0.0
Urban 16 188 307 0.0 0.1 0.1 1 7 16 0.0 0.0 0.0

Metrics LPI ED (m/ha) LSI (n/a) IJI (%)

Land Use 1998 2008 2018 1998 2008 2018 1998 2008 2018 1998 2008 2018

Forest 30.8 46.7 3.2 24.6 25.1 15.8 39.2 41.0 45.3 40.0 50.3 64.2
Bushland 12.3 9.1 16.0 25.9 24.4 24.5 51.4 52.2 50.5 44.6 50.5 64.2

Agriculture 1.0 1.0 5.6 6.8 11.4 27.8 29.5 38.9 62.5 52.8 54.3 61.1
Grassland 0.4 0.4 6.8 3.9 6.3 27.9 23.2 29.0 64.1 58.7 59.8 60.5
Bare soil 0.0 0.0 0.0 0.0 0.8 0.9 0.0 12.6 13.2 0.0 79.4 75.5

Water 0.0 0.0 0.0 0.6 0.4 0.2 10.2 8.5 6.1 58.6 65.8 77.3
Urban 0.0 0.0 0.0 0.0 0.1 0.2 1.0 3.5 4.3 41.1 72.2 74.1
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