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Abstract: As many urban areas undergo increasing densification, there is a growing need for methods
that can extend spatial analysis and decision-making for three-dimensional (3D) environments.
Traditional multicriteria evaluation (MCE) methods implemented within geographic information
systems (GIS) can assist in spatial decision-making but are rarely suited for 3D environments. These
methods typically use a simplified decision logic that limits the number of evaluation criteria and
variability of output suitability scores. In this study, the logic scoring of preference (LSP) as a
generalized MCE method is used for 3D suitability analysis to better represent human reasoning
through flexible soft computing stepwise decision logic operators. This research: (1) implements the
LSP–MCE method to compare the suitability of high-rise residential units in 3D, and (2) performs
criteria weight sensitivity and cost–suitability analyses using datasets for the City of Vancouver,
Canada. LSP aggregation structures are developed for unique priorities and requirements of three
demographic profiles. The results demonstrate the method’s flexibility in representing unique
preference sets comprising 2D and 3D criteria, and that cost has a significant effect on residential unit
attractiveness in a dense built environment. The proposed 3D LSP–MCE method could be adapted to
benefit other stakeholders, such as property tax assessors, urban planners, and developers.

Keywords: 3D spatial multicriteria evaluation (MCE); dense built environment; 3D suitability analysis;
logic scoring of preference (LSP); spatial decision-making; three spatial dimensions (3D); geographic
information systems (GIS)

1. Introduction

To mitigate the negative environmental and social impacts of increasing urbanization,
many cities are seeking to accommodate growing populations while also reducing environ-
mental degradation [1]. One widely implemented practice has been urban densification,
which focuses new development within existing urban boundaries rather than converting
natural or agricultural lands in urban peripheries. By limiting outward sprawl, populations
and economic activities are concentrated in previously serviced land, and urban form shifts
to a more compact and higher density model that better supports public transportation and
physical activity [2–4]. To achieve higher densities, many municipalities are encouraging
high-rise development to maximize the use of limited land [5].

As residential high-rise units become a more common alternative to low-density
detached housing, the housing choice problem becomes more complex. Many housing
features and environmental qualities, such as viewscapes, vary with respect to not only the
neighborhood where a unit is situated within but also the unit’s vertical location within a
given building. These three-dimensional (3D) attributes can ultimately influence the overall
desirability of different units for prospective residents [6]. Multicriteria evaluation (MCE)
methods have been used extensively with geographic information systems (GISs) to aid
in two-dimensional (2D) spatial decision-making problems and in a wide range of spatial
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applications [7,8]. However, there is a lack of such methods for accommodating decision
problems where alternatives, criteria, or processes are situated in 3D space.

Furthermore, software that can handle spatial visualization and analysis in three
spatial dimensions, such as Autodesk Revit [9], ArcGIS Urban [10], and CityEngine [11],
generally excel in urban design, visualization, 3D mapping, or selected types of “objective”
analyses, such as viewscapes or shadow analysis [12,13]. While these tools can perform
certain types of 3D analysis, they are ill-suited to aiding decision-making where stakehold-
ers must consider many factors simultaneously that vary in importance. With increasing
3D data availability, there is a demand to move beyond simple 3D analysis and to develop
spatial decision methods, such as MCE, that operate in 3D space. There are no off-the-shelf
software packages that combine 3D and MCE currently. Hence, the analytical processes
related to suitability analysis must be coded and embedded within existing geospatial
software in order to operationalize 3D MCE. Munn and Dragićević [14] recently proposed
and applied a 3D MCE approach to residence selection scenarios with 3D decision alter-
natives using CityEngine software with additional programming routines. However, the
core of this 3D GIS–MCE approach is based on weighted linear combination (WLC), a very
simple and commonly used MCE that has shortcomings. Typical MCE methods available
in common GIS software, such as WLC, analytical hierarchy process (AHP), or ordered
weighted average (OWA), are based on the simple additive scoring (SAS) that uses the
geometric mean with a linear additive nature [15]. When a larger number of attributes are
necessary to resolve a complex spatial decision problem, each individual attribute’s impor-
tance decreases within the standardized weighting schema [16,17]. This oversimplification
insufficiently describes decision-making perspectives typical of human reasoning.

The logic scoring of preference (LSP) is a generalized MCE method that has been
developed to overcome these limitations [17]. LSP addresses large and complex decision
problems through a variety of logic operators that better depict nuances of decision-making
processes and the use of stepwise hierarchies to allow more criteria to be considered.
Many of these logic aggregators are not available in any other MCE decision method, thus
making the LSP method more appropriate to address complex spatial problems such as 3D
suitability analysis in the dense built environment. However, up to this point, LSP–MCE
has only been used for 2D spatial decision-making studies. Therefore, the objectives of
this research are to: (1) develop an LSP–MCE to operate in 3D as a novel approach applied
to/for dense built environments; (2) to implement the 3D LSP–MCE for suitability analysis
of high-rise residences using data for downtown Vancouver, Canada; and (3) perform
LSP–MCE sensitivity and cost–suitability analysis on decision alternatives in 3D. The
novel approach proposed in this study will allow planners, urban developers, real estate,
taxation offices, and other end users to interactively and independently address all the 3D
components, criteria, and scenarios, and seamlessly follow through all of the analytical
processes that are embedded within a 3D MCE analysis.

2. Logic Scoring of Preference Method

The logic scoring of preference (LSP) is a soft-computing-based MCE method charac-
terized by stepwise aggregation and a wide range of flexible decision logic conditions [17].
Stepwise criteria aggregation allows more evaluation criteria to be considered as the sig-
nificance of each criterion is not diminished by the others through a linear combination
function. Furthermore, LSP includes decision logic aggregators representing simultaneity
and replaceability, which are intrinsic to most real-world decision-making problems. As a
result, LSP–MCE analysis and output suitability maps can better reflect real-world decision
logic than traditional MCE methods [18,19].

LSP–MCE analysis consists of five steps [17] and begins with the definition of the
decision problem related to the interested stakeholders, experts, or groups. Next, a hierar-
chical attribute tree is created that contains the attributes that affect the overall suitability
of a decision alternative. The structure forms a hierarchy of groups and subgroups of
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related components that are iteratively decomposed until the simplest components, termed
elementary attributes, remain.

The third step involves defining elementary criteria or suitability functions, which
transform raw elementary attribute values into standardized unitless elementary preference
values. This permits a comparison of performance between attributes with differing units
of measurement [20]. Each function describes the relationship between possible attribute
values and the associated degree of satisfaction (i.e., elementary preference) established for
that attribute [21].

In step 4, the hierarchical LSP aggregation structure is defined to determine how
elementary preferences are aggregated to compute the overall suitability of each alternative.
The attribute tree serves as the framework for the structure, with each subgroup in the
attribute tree system comprising at least one preference aggregation block, depending
on whether components in the subgroup are mandatory, desired (nonmandatory), or a
combination thereof. Mandatory attributes must be satisfied for the decision alternative to
be considered at all, whereas desired attributes are preferred but not necessary. Weights
of relative importance are determined by the relevant stakeholders or field experts and
are assigned to each component such that all weights in an aggregation block sum up
to 1or 100%. In its entirety, the overarching LSP system can be referred to as the LSP
criterion function.

A logic aggregator is also applied to each aggregation block. Aggregators are graded
preference logic functions that dictate how components are combined to compute the
satisfaction degree of each block [16]. They are derived from the fundamental general-
ized conjunction/disjunction (GCD) function used to model human reasoning across the
spectrum of decision logic ranging from full conjunction or ANDness (α = 1;ω = 0) to full
disjunction or ORness (α = 0;ω = 1) [19].

Conjunctive and disjunctive aggregators model logic requirements for simultane-
ity and replaceability, respectively. The spectrum of partial conjunction/disjunction ag-
gregators can be divided into hard (HPC/HPD) and soft (SPC/SPD) partial conjunc-
tion/disjunction aggregators as presented in Figure 1 as per [17]. HPC aggregators model
mandatory requirements, where an elementary preference of zero results in an overall suit-
ability score of zero regardless of how completely other attributes are satisfied. Conversely,
HPD aggregators represent sufficient requirements, where an elementary preference of
1 results in an overall score of 1 regardless of whether other attributes are satisfied. SPC
and SPD model softer versions of simultaneity and replaceability. The SPC aggregators
(Figure 1) apply a penalty to preference values when desired attributes are not satisfied,
rather than assigning an automatic suitability score of zero. Similarly, SPD aggregators sim-
ply apply a reward to preference values when one of the desired attributes is fully satisfied,
instead of an overall score of 1. The neutrality aggregator A also exists as the arithmetic
mean for cases where a high elementary preference for any attribute can partially offset a
low preference of any other [21], making this logical operator parallel to the compensatory
nature of MCE, such as WLC. The last step involves calculating the overall suitability scores
of each decision alternative and creating the suitability map.
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Figure 1. Logic scoring of preference (LSP) logic aggregators with associated symbols and r exponent values.

A hypothetical example of LSP-based site selection for a new college location is shown
in Figure 2. Mandatory criteria, such as a sufficient site area and an appropriate slope,
are combined using an HPC aggregator. Referencing Figure 1, this can be any aggregator
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from C−+ to C++, depending on the level of ANDness or simultaneity desired. An SPC
aggregator is likewise applied to desired criteria where both are wanted but a location is not
automatically rejected if either is unsatisfied (e.g., distance from other schools, availability
of nearby parking). Finally, an SPD aggregator is assigned to desired criteria where
replaceability is being modeled. The disjunctive aspect allows for train and bus access to
partially substitute for the other, while the soft aspect enables rewarding of locations that
offer both.
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Recent studies have integrated LSP–MCE with GIS to address a number of spatial
decision-making problems, including groundwater contamination vulnerability assess-
ment [20], conservation planning [22], and landfill site selection [23]. LSP–MCE analysis has
also been used for urban land use suitability [24], residential development [20], and urban
densification [25]. While GIS-based LSP–MCE has been used to evaluate the suitability of
residences or neighborhoods [17,19,26], these studies have not been applied to high-rise
residential units where some attributes vary in magnitude along the vertical gradient.
Furthermore, LSP–MCE output suitability maps have been restricted to 2D raster displays
of decision alternatives to date. The 3D LSP–MCE approach used in this research is capable
of analyzing alternatives spanning 3D space and visualizing their suitability in 3D to aid
comprehension of outputs for decision-making.

3. Methods
3.1. Study Area and Datasets

The City of Vancouver, Canada, grew by 10% between 2011 and 2021 and was home
to 662,248 residents in 2021 [27]. For that reason, it has become increasingly densified to
accommodate population growth while simultaneously meeting municipal and regional
sustainability goals [28]. This trend is most pronounced in downtown Vancouver, where
a significant proportion of residential and office buildings are high-rises as defined by
Statistics Canada [29] with five or more stories. Unlike many North American cities,
downtown Vancouver is known as an attractive, livable space and not simply a central
work hub [30].

Building footprints from the City of Vancouver [31] were used to generate residential
unit data layers for all open market residential high-rise buildings in downtown Vancouver,
amounting to 613 buildings comprising 49,130 residential units. Building height, story
number, and number of units were available for many buildings [32]. However, as floor
plans were not publicly accessible due to privacy and availability issues, hypothetical 3D
units were created. Additional geospatial datasets used to derive criteria attribute values
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were obtained from [31,33–40]. Attribute analyses were conducted in the ArcGIS Desktop
suite v.10.7.1 [41].

The residential units are represented in the 3D suitability map as cubelike voxel data
structures, here defined as 3D spatial units possessing attribute values for each criterion,
located at a position (x, y, z) in a 3D GIS environment. The 3D LSP–MCE analysis was
implemented using CityEngine [11] software, and its CGA programming language with
scripts developed to voxelize the units (i.e., extrude the 2D data layers to create 3D voxels),
run the 3D analysis, and select a color symbology to display the obtained level of suitability
for each voxel unit.

3.2. Decision Problem, LSP Attribute Tree, and Elementary Criteria

In this research, the decision problem consists of identifying the most suitable high-rise
residential units for prospective residents. LSP attributes and 3D preference scenarios can
be developed for various groups and stakeholders, including real-estate tax assessments,
urban planners, and developers. For this study, three generalized sociodemographic
groups were chosen with characteristics based on existing scientific literature: families with
children (Scenario 1), elderly (Scenario 2), and working professionals (Scenario 3). Many
3D attributes, defined here as attributes whose values are affected by the vertical location
of the unit, were included as factors that need to be considered in high-rise home selection
in addition to the typical 2D factors and amenities. Ultimately, 10 2D and 11 3D elementary
attributes influencing residence selection were identified and included in Scenario 1, three
of which were omitted from either Scenario 2 or 3. The attribute trees presented for each
scenario in Figure 3 are composed of three overarching attribute groups: neighborhood
features (11), housing features, and (12) and environmental quality (13). The figure also
distinguishes between attributes that are mandatory and nonmandatory and those that are
2D or 3D for each scenario.

The neighborhood features group (11) is composed entirely of 2D attributes. Family
areas are specific to Scenario 1 and link the suitability of a neighborhood for raising a family
to the number of children available to play and interact with [42]. Similarly, distance to the
nearest elementary school is important to families as shorter distances reduce children’s
travel time and safety risks [43]. Prospective residents may also base their decision on
neighborhood crime level, which is negatively correlated with neighborhood satisfaction
and mental health [44,45], or population density, which often has positive correlations with
neighborhood satisfaction and smaller but stronger social networks [46,47]. Living in close
proximity to urban parks is also beneficial for mental health, promotes physical activity,
and provides recreational opportunities [48]. The bike, transit, and walk scores for each
residential building were included as assessments of multimodal accessibility to desirable
neighborhood features based on walking, cycling, or transit travel [49].

The housing features group (12) includes the compass aspect of the unit and the year
the building was built, as certain orientations are typically preferred over others [50], and
newer homes are generally considered more desirable [51,52]. The remaining attributes
are 3D in nature. Units with a larger viewshed are more pleasing and valued higher [53],
as are views that encompass desirable features, such as parks or bodies of water [54].
Safety as referred to in this study relates to the floor a unit is on; particularly, residents
on higher floors will require more travel time and may encounter more hazards in the
event of an emergency evacuation [55]. Privacy is also an important factor impacting home
satisfaction [56,57]. Here interunit visibility was calculated as a proxy for privacy.

The environmental quality group (13) entirely comprises 3D attributes. High levels
of traffic-related air pollution or tree pollen can exacerbate respiratory conditions and
asthmatic attacks [58,59]. Strong winds can cause thermal discomfort or in extreme cases
may pose a level of danger [60]. Excessive noise from various sources (e.g., SkyTrain,
railways, cars) can negatively affect physical and mental well-being [61], while increased
exposure to sunlight improves both mental and physical well-being [62].
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Most elementary attribute data were not readily available and so were computed or
estimated through GIS-based analyses using methods found in the literature (see Table 1).
Elementary criteria functions were defined for each attribute using breakpoints based on
values found in the literature (Table 1).

Table 1. Elementary attribute criteria in vertex notation format with associated criterion function
breakpoints and rationale. Attributes that are 3D in nature are highlighted in bold text.

Attribute Analysis Method Rationale

N
ei

gh
bo

rh
oo

d
Fe

at
ur

es

Family Areas
{(20,0), (80,1)}
(percentile of all census tract areas %
occupied dwellings with children)

Preferences of 0 and 1 assigned to 20th and 80th percentile
values, respectively, as more children means more peers to
interact with.
Analysis: Percentage of occupied dwellings with families.

Neighborhood
Crime

{(0–0.005,1), (0.005–0.0015,0.8),
(0.0015–0.005,0.6), (0.005–0.01,0.4),
(0.01–0.02,0.2), (0.02,0)}
(crime density)

Crime is negatively correlated with neighborhood
satisfaction and mental health [44], so lower crime level
is preferred.
Analysis: Kernel density of geolocated crime incidents.

Population
Density

{(29,0), (211,1)}
(people per ha in each census tract)

Based on the density-satisfaction study of [46], which
averaged 29 people/ha for low-density neighborhoods and
211 people/ha for high-density neighborhoods.
Analysis: Population density.

Distance to
Parks

{(400,1), (800,0)}
(m)

City of Vancouver aimed to have every resident within
5 min’ walk (400 m) of a green space [63]; 99% are within
10 min’ walk (800 m) [64].
Analysis: Network distance.

Distance to
School

{(400,1), (2000,0)}
(m)

Preference of 1 assigned to 5 min’ walk, 0 to 25 min’ walk
(2000 m), putting the 50% mark close to the average distance
of 1274 m [65].
Analysis: Network distance.

Bike Score,
Transit Score,
Walk Score

{(0–24,0), (25–49,0.25), (50–69,0.5),
(70–89,0.75), (90–100,1)
(score)

Based on walk score’s [49] score class ranges and
score values.

H
ou

si
ng

Fe
at

ur
es

Aspect
{(N, 0), (NE/NW, 0.25), (E/W, 0.5), (SE/SW,
0.75), (S, 1)}
(aspect)

How property values proportionally increase with different
aspects is presented in [66].
Analysis: Determine unit aspect(s) using building and unit
footprints and linear directional mean tool.

Privacy
{(Low, 0), (relatively low, 0.33), (medium,
0.67), (high, 1)}
(privacy level)

Four levels of visual exposure are defined in [67]: low
(>50 m from nearest view point); relatively low (25–50 m),
medium (10–25 m), and high (<10 m).
Analysis: Intervisibility.

Safety {(1,0.5), (2,0.75), (3,1), (7,1), (18,0)}(floor
number)

First few floors [68,69] are more likely to be burglarized,
while typical aerial ladder reach limits fire rescue to about
the seventh floor [55]. Average time to descend one floor is
16.4 s [70]; 18th floor is equivalent to 5 min’
evacuation time.

Year Built
{(1960, 0), (1983, 0.42), (1984, 0.1), (1998, 0.35),
(1999, 0.71), (2015, 1)}
(year built)

Newer homes are generally more desirable, but 1984–1998
buildings are from Vancouver’s “leaky condo era” and may
be prone to leaks [71]. Buildings from 2015 onwards built
under the most recent National Building Code. Only 8% of
Metro Vancouver high-rises built before 1961 [72].

Total View
Amount

{(10,0), (90,1)}
(percentile of view amount (m2) results)

Larger views are more pleasing and positively correlated
with property prices [53,73].
Analysis: Visibility [54].

View Type {(0,0), (100,1)}
(% desirable view)

Properties with larger views of desirable view features
(e.g., water) are priced higher than properties with smaller
views [53].
Analysis: Overlay of visibility output and raster of
desirable/undesirable view features.
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Table 1. Cont.

Attribute Analysis Method Rationale

En
vi

ro
nm

en
ta

lQ
ua

lit
y

Air Pollution {(7,1), (17,0)}
(ppb NO2)

Metro Vancouver’s air quality objective for NO2 is an
annual average of 17 ppb. Areas of cleaner air in Metro
Vancouver average around 7 ppb [74].

Hours of
Sunlight

{(0,0), (12,1)}
(h)

More hours of direct sunlight is considered desirable due to
its beneficial effects [62].
Analysis: Points solar radiation [75] for the equinox.

Pollen Level {(2,0), (12,1)}
(m above ground level)

Although pollen level decreases with height, the most
significant decrease generally occurs within 10 m, with
concentrations at ground level ~1.5 times higher than those
10 m higher [76].

Wind
{(low, 1), (moderate, 0.75), (very low, 0.5),
(high, 0.25), (very high, 0)}
(ventilation potential)

High wind speeds can bring thermal discomfort or even a
level of danger [60]. In the mild Vancouver climate, a low to
moderate amount of ventilation would be more appreciated.
Analysis: Computed relative wind level for three 50 m
height increments [77] using most predominant winds in
Vancouver.

Railway Noise,
SkyTrain
Noise,
Traffic Noise

{(45,1), (95,0)}
(dBA)

Sleep disruption can occur at a sustained noise level of
≥30 dBA. More severe consequences (e.g., hearing damage)
can occur at levels of ≥80 dBA [78]. However, it is assumed
that transmission loss at windows is ~15 dBA [79].
Railway analysis: Estimated using similar site noise map
digitization and extrapolation [80].
SkyTrain analysis: Estimated using digitization and
extrapolation of SkyTrain noise maps [81].
Traffic analysis: Estimated using traffic noise equation
in [78] as per [14].

3.3. LSP Aggregation Structures

The LSP aggregation structures created for the three scenarios are depicted in Figure 4.
An SPD aggregator is applied to the accessibility aggregation block (node 1143 in Figure 3)
to indicate that walk, bike, and transit score criteria are replaceable to an extent, but a
higher satisfaction degree is awarded to locations that satisfy all three. Similarly, an SPD
aggregator is used for the view aggregation block (node 125) to suggest that while having
both a large and desirable view is preferred, either criterion can partially replace the other.
The remaining standard aggregators are either SPC or HPC, selected based on whether
mandatory or desired components were being aggregated and the level of ANDness desired.
For instance, an HPC aggregator is applied to aggregate the mandatory environment block
(134–135) in Scenario 2 as they are mandatory requirements (Figure 4B), and C− + in
particular is chosen to indicate that only a low to moderate level of simultaneity is needed.
Both of the nonmandatory neighborhood (112–113) and nonmandatory housing (121–123)
aggregation blocks in Scenario 3 are composed of desired components and thus require SPC
aggregators (Figure 4C), but a larger ANDness (C−) is used for nonmandatory housing,
denoting the demographic’s desire for a slightly higher level of simultaneity in having all
of safety, privacy, and a desired aspect.

Criteria weights were selected based on the expected priorities for each demographic.
In reality, subject matter experts or decision problem stakeholders should be consulted
in determining the appropriate criteria weights, as the resulting suitability scores can be
highly sensitive to input weight values. However, the weight estimations used are sufficient
for the purposes of this study, as the primary goal is to demonstrate the 3D LSP–MCE
approach, and the decision problem itself is subjective in nature. Some weights were
identical across the three scenarios. For example, the view type is weighted as 60% of the
view block (node 125) value for all prospective resident types, while the total view amount
is set at 40% (Figure 4). However, most weights and, more generally, the aggregation blocks
vary between scenarios. For instance, aspect is a nonmandatory attribute in all scenarios
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and varies in weight from 0.2 (Scenario 2) through 0.3 (Scenario 1) to a high of 0.45 for
Scenario 3.
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Where asymmetric logic occurs in the aggregation structures (i.e., combination of a
mandatory and a desired input), a conjunctive partial absorption (CPA) aggregator must
be used, in this case an A/CA aggregator combination [17]. The CPA is a compound
aggregator that requires the selection of reward (R) and penalty (P) values in order to
determine the relationship between the inputs and the weights assigned to them in each
aggregation step [21]. R and P are percent values used, respectively, to either increase
the elementary preference if the desired input is fully satisfied or decrease the preference
if the desired input is not satisfied [19]. Accordingly, the magnitudes of P and R reflect
the desirability of the nonmandatory input. For instance, Scenario 2 both penalizes and
rewards units much higher on the combined nonmandatory housing features than it does
on population density attributes, an indication of the preferences for elderly residents
(Figure 4B).
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To compute the 3D suitability values, elementary attribute values were converted to
elementary preferences that were aggregated in a stepwise manner from the leaves of the
tree structure towards the root to calculate the overall suitability score of each voxel unit
in the study area buildings. Individual logic aggregators were implemented using the
weighted power mean, which can be described as follows [17]:

GCD(X1, . . . , Xn) = [W1X1
r + . . . + WnXn

r]1/r (1)

where GCD(X1, . . . , Xn) is the suitability score for an alternative with the input elementary
preferences X1, . . . , Xn for a set of n attributes; W1, . . . , Wn are the weights of relative
importance for the preference inputs; and r indicates the degree of simultaneity and
replaceability as determined by the aggregator (Figure 1). More broadly, the overall 3D
suitability score S(vi) for a voxel unit i located at position (Xi, Yi, Zi) can be expressed
as the output of the overarching LSP criterion function, as presented in the following
extended formula:

S(vi) = g(a1(vi), a2(vi), . . . , an(vi)) (2)

where g is the LSP criterion function, and (a1(vi), a2(vi), . . . , an(vi)) is the array of n
elementary attributes associated with the 3D voxel unit i at position (Xi, Yi, Zi).

A cost–suitability analysis was also conducted to compute the overall value of each
unit alternative, which can be viewed as a function of the suitability and cost of a unit [16,17].
Cost is incorporated separately from suitability in this manner as it is better aligned with
human reasoning [26]. The cost–suitability analysis is extended in 3D and implemented to
calculate the overall value V(vi) for a voxel unit i located at a position (Xi, Yi, Zi) using the
following extended value indicator formula:

V(vi) =
[
Wu(U(vi))

r + Wp(P(vi))
r]1/r

0 ≤ Wu ≤ 1, 0 ≤ Wp ≤ 1, Wu + Wp = 1,−∞ ≤ r ≤ +∞
(3)

where U(vi) is the usefulness indicator defining the range of acceptable suitability scores;
P(vi) is the inexpensiveness indicator defining the range of acceptable cost; Wu and Wp
are the weights of relative importance assigned to the usefulness and inexpensiveness
indicators, respectively; and r indicates the degree of simultaneity and replaceability as
determined by the aggregator. Unit conveyance prices were obtained from BC Assess-
ment [82] datasets, with missing values estimated using proximate unit prices.

4. Results and Discussion
4.1. Three-Dimensional Suitability Analysis

The LSP criterion functions and 3D LSP–MCE suitability analyses were coded and
run in CityEngine 2019.1 software [11] using the Computer Generated Architecture (CGA)
programming language. The suitability scores for the 3D voxel units are presented and
classified into seven equal interval classes of suitability: unacceptable (0.0–0.14), very poor
(0.14–0.28), poor (0.28–0.43), average (0.43–0.57), good (0.57–0.71), very good (0.71–0.86),
and excellent (0.88–1.00). Figure 5 presents the suitability analysis results for each scenario.

The 3D LSP–MCE suitability results vary considerably between the three scenarios.
Scenario 1 is the most restrictive scenario with both the most low suitability units and the
least high suitability units (Table 2). Some 44% of high-rise residential units fall within the
unacceptable category, while no units are classified as excellent. Only 1% exhibit very good
suitability with most confined to lower- to midlevel floors of waterfront buildings along the
southern downtown boundary (Table 2, Figure 5A). This is due primarily to the scenario’s
stricter requirements with a greater number of mandatory attributes. For instance, low
levels of noise, crime, and air pollution are considered mandatory requirements for families,
which eliminates units located in higher crime areas and near high volume streets. Safety
is also mandatory, resulting in lower suitability for lower floors and lower suitability or
nonsuitability for higher floors.
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Table 2. Number and percentage of units in each suitability class by scenario.

Suitability Class Scenario 1 Scenario 2 Scenario 3
# of Units % of Units # of Units % of Units # of Units % of Units

Excellent
(0.88–1.00) 0 0.00 999 2.03 9454 19.24%

Very Good
(0.71–0.86) 492 1.00 12,563 25.57 6822 13.88%

Good
(0.57–0.71) 5187 10.55 8743 17.79 12,180 24.79%

Average
(0.43–0.57) 12,718 25.88 4676 9.51 10,526 21.42%

Poor
(0.28–0.43) 6678 13.59 1177 2.39 6341 12.90%

Very Poor
(0.14–0.28) 2449 4.98 809 1.64 3788 7.71%

Unacceptable
(0.00–0.14) 21,606 43.97 20,163 41.04 19 0.03%

Although no voxel units are completely unsatisfied for the mandatory noise attribute,
units near busy streets, the railyard, or the SkyTrain receive lower noise preference scores
and thus lower suitability scores. Units with good or very good suitability are found
primarily along the downtown periphery as they have greater access to higher weighted
(≥0.4) desired attributes, such as large desirable water views and sunlight, although there
is also a cluster of higher suitability voxel units towards the downtown center due to
their proximity to an elementary school. The units exhibiting very good suitability along
the southern downtown edge are also influenced by the high family area score of the
neighborhood. Moderately suitable units in the northwest downtown region are located
in areas with higher crime rates and lower percentages of families and have lower quality
views and sunlight due to their central position, shorter stature, and obstructions from
neighboring downtown buildings (Figure 5A).

There is considerable overlap in unacceptable units between Scenarios 1 and 2, par-
ticularly on higher floors, as both scenarios share mandatory safety, crime, and noise
attributes (Figure 5A,B). However, Scenario 2 results depict many additional unacceptable
units along the downtown periphery, reflecting the mandatory emphasis on a low-wind
environment for the elderly demographic. Overall, Scenario 2 has the greatest number
of high suitability units, with 2% and 26% of voxel units displaying excellent and very
good suitability, respectively (Table 2). This may be partly attributable to having fewer
mandatory attributes and partly to some high-scoring desired attributes, such as distance
to parks, transit score, and walk score, being weighted relatively highly. Similar to Scenario
1, many of the highest suitability units are found along the downtown perimeter where
views are generally abundant and pollution is less, but a few streets in where the wind is
not as strong.

The pattern of suitability is drastically different in Scenario 3 as safety, crime, and noise
are not mandatory attributes, and instead, building age, view, and sunlight are prioritized
(Figure 5C). As a result, buildings located along high-volume streets or in higher crime
areas are not as heavily penalized, and units on higher floors are actually preferred as they
are less prone to view and sunlight obstruction. Conversely, most units on lower floors are
less suitable due to restricted views and sunlight, except for buildings along the downtown
periphery. Unsurprisingly, many of the high suitability units occur in waterfront buildings,
which have the extra advantage of having a desirable view type. The influence of building
age is also evident, with older buildings predominantly situated in the northwest region of
downtown, where the majority of low suitability voxel units are located. Scenario 3 has
both the most excellent suitability units and the least unacceptable units (Table 2).

Certain trends are visible across all scenarios. Figure 6 presents a subsection of the
study area permitting higher detail. For instance, corner units and units on higher floors
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tend to exhibit higher levels of suitability as they typically have access to larger views and
longer hours of sunlight. Higher levels of near-ground noise, pollen, and air pollutants
further contribute to the disparity in suitability between units on higher and lower floors.
Privacy also has an influence as units within viewing distance of other units or from street
spectators are considered less suitable. Units near parks or water also tend to score higher as
they have more desirable views than units with views of surrounding city buildings. South-
oriented units (Figure 6C) typically display higher levels of suitability than those oriented
north (Figure 6D) as a south aspect is generally preferred and receives more sunlight.
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4.2. Sensitivity and Cost–Suitability Analysis

In addition to performing the 3D LSP–MCE suitability analysis, the sensitivity of
parameters was tested by modifying parameters for Scenario 1 using four separate test sce-
narios and by comparing the obtained results. The first sensitivity test involved increasing
the number of mandatory attributes for Scenario 1, namely, family areas, population density,
privacy, and pollen. The second test removed all mandatory attributes from Scenario 1
such that all attributes were desired. The third test weighted all components within each
aggregation block in Scenario 1 equally. Finally, the last test implemented a one-at-a-time
approach by incrementally increasing the input elementary attribute and elementary pref-
erence values for three elementary criteria (traffic noise, family areas, distance to schools)
and the ANDness of aggregators for three aggregation subgroups (mandatory environmen-
tal, desired environmental, mandatory neighborhood) at three residential unit locations
(Figure 7) to derive sensitivity curves and influence ranges.
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suitability scores for Scenario 1.

To visualize the change in results for the first two tests, 3D difference maps were
created by subtracting the original Scenario 1 suitability value for each unit from the
corresponding new suitability value. Figure 8 presents the results of the sensitivity analysis
with the initial Scenario 1 provided in panel (A) as a reference. Contrasting suitability values
for more and no mandatory attributes are found in panels (B) and (C), and the respective
difference maps are shown in panels (D) and (E). The results of the third sensitivity analysis
test with equal weights provide a very small change in obtained values for 3D suitability
ranging from −0.12 to +0.05, which can be explained by the aggregation block components
in Scenario 1 not having extreme differences for weights.

The addition of further mandatory attributes generates more unacceptable units com-
pared with the original Scenario 1. This is particularly evident along the west downtown
border, where the percentage of family units is relatively low (Figure 8B), although some
units’ suitability has increased marginally. Overall, the range in suitability increase was
minimal with a maximum increase of 0.11, compared with a maximum decrease in suit-
ability of 0.75. The results of the second test with all nonmandatory attributes show a
considerably different pattern of many fewer unacceptable units with the majority of units
increasing in suitability with some exceptions, most notably in the same section as the first
test results (Figure 8C). This can be explained that nonmandatory attributes that score rela-
tively low in this area, such as family neighborhood composition and year built, now have
a relatively larger influence on suitability outcome as there are no mandatory attributes.
While approximately a quarter of all units have decreased in suitability by as much as −0.5,
the overwhelming majority have increased by a maximum of 0.72. These results demon-
strate how significantly suitability can change depending on the designation of mandatory
or nonmandatory attributes, as mandatory attributes are inherently restrictive. For this
reason, the LSP–MCE method should be used with direct consultation with interested
groups who can provide direct input in the choice of parameters for decision-making.
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parameter variation.

Sensitivity curves from the fourth sensitivity test are presented in Figure 9 along with
corresponding influence ranges for each of the three locations. Distance to school has the
largest influence range of the three criteria, which can be explained by its designation as a
mandatory criterion, whereas the desired criterion family areas has the smallest influence
range (Figure 9A). Traffic noise is also a desired criterion, but it serves as an input for a
mandatory component, which may explain its intermediate range of influence. The shapes
of the curves are also significant with all following increasing concave functions with a
progressively slower rate of increase in suitability for higher preference scores, although
it is most pronounced for distance to school (Figure 9B). This makes sense as mandatory
criteria model hard simultaneity, and therefore, suitability is more strongly limited by other
potentially lower-scoring criteria in the same aggregation block. The distance to school
curve starts at the origin (0,0) representing its mandatory nature and the automatic rejection
of locations that do not satisfy the criterion. Another observation is that Location 1 with
the highest overall suitability score also produces the greatest ranges in output suitability,
while Location 3 with the lowest suitability produces the smallest ranges.
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Figure 9. Sensitivity curves obtained for three locations using varying values for (A) input elementary
attributes and (B) input elementary preferences for three elementary criteria and (C) aggregators of
varying ANDness for three aggregation subgroups.

When the ANDness of aggregators is increased, the overall pattern is one of decreasing
suitability as the progression towards simultaneity is more restrictive with fewer oppor-
tunities to satisfy user requirements based on other aggregation subgroup component
preference scores (Figure 9C). In this case, Location 1 has the largest range in output suit-
ability values under the desired environment subgroup, although Location 2 has the largest
range under the two mandatory subgroups. Mandatory environment demonstrates the
largest influence ranges of the three subgroups, which may be explained by the smaller
number of input components that can ultimately impact the output preference score. The
results suggest that extra care should be taken in assigning proper attribute values and
calculating preference scores for the most sensitive parameters, namely, mandatory criteria,
particularly where elementary preferences are low.

The cost–suitability analysis on the three scenarios was performed using unique use-
fulness U(vi) and inexpensiveness P(vi) indicators and associated importance weights for
each scenario to represent the relative importance and range of acceptable cost for each de-
mographic type. The calculated values of the 3D voxel units for each scenario are displayed
in Figure 10 and summarized by class distribution in Table 3. The minimum suitability
threshold of the usefulness indicator further restricts the overall value scores compared
with the suitability scores and results in an increase in the number of unacceptable units
across all scenarios (Figure 10, Table 3). Conversely, the number of higher-value units has
decreased for Scenarios 2 and 3, but has actually increased significantly for Scenario 1. This
can be explained by the scenario’s relatively wide range in acceptable cost values for the
family demographic’s inexpensiveness indicator, which results in relatively high cost scores
at voxel unit alternatives that already possessed at least a moderate degree of suitability.
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Table 3. Number and percentage of units in each value class by scenario.

Suitability Class Scenario 1 Scenario 2 Scenario 3
# of Units % of Units # of Units % of Units # of Units % of Units

Excellent
(0.88–1.00) 3878 7.89 82 0.16 8 0.01

Very Good
(0.71–0.86) 1770 3.60 2513 5.11 784 1.59

Good
(0.57–0.71) 3054 6.21 6812 13.86 3177 6.46

Average
(0.43–0.57) 7254 14.76 6939 14.12 3830 7.79

Poor
(0.28–0.43) 6010 12.23 4331 8.81 5379 10.94

Very Poor
(0.14–0.28) 3151 6.41 1644 3.34 4935 10.04

Unacceptable
(0.00–0.14) 24,013 48.87 26,809 54.56 31,017 63.13

In contrast, the number of higher-value voxel units in Scenario 2 has decreased as a
lower acceptable price range is assigned to the elderly demographic, which reduces the
desirability of higher-priced units. Working professionals are assigned a wider acceptable
cost range, but higher-priced units, which typically coincide with highly suitable units in
Scenario 3, receive lower inexpensiveness scores. Clearly, incorporating a cost requirement
is necessary as both an important factor in residential selection decision problems and a
strong influence on the overall unit value abundance and distribution. This analysis can
also be interpreted as an indicator of affordability as conveyance price is a proxy for market
value and the ability for the three demographic groups to afford a particular unit.

5. Conclusions

This research builds on the work of [14] by implementing a more advanced LSP–MCE
method and extending it to operate in a 3D GIS environment. The suitability scenarios
used in this study demonstrate the proposed method’s ability to effectively analyze the
suitability of thousands of 3D unit decision alternatives based on the distinct priorities,
requirements, and desires of different prospective resident demographic types. In addition,
the sensitivity analysis illustrated the 3D LSP–MCE method’s responsiveness to different
LSP structures as the results varied greatly across the three scenarios in terms of both the
abundance and distribution of units for each suitability class. More broadly, the study
provides evidence of the LSP method’s ability to accommodate various decision scenarios
and flexibility in decision logic for modeling human reasoning across a large number of
criteria. Furthermore, the cost–suitability analysis results support the need for incorporating
the cost factor into such decision problems, as it is integral to real-world residence selection
and can substantially alter alternative value outcomes.

Validation measures were not performed as the residential unit data layers were syn-
thetically created due to privacy and data availability issues, and the LSP criterion function
parameters by nature of the decision problem are highly subjective. Thus, the results are not
meant necessarily to inform home-buying decisions in downtown Vancouver, but rather to
demonstrate the functionality and application of the proposed 3D LSP–MCE method for a
dense built environment. However, if residential data, such as precise unit floor plans, were
available, the results would be improved through more accurate statistics of units under
each suitability class, as well as other potential metrics, such as total floor area or volume.
This study can be improved with more detailed residence data, such as information on the
number of bedrooms and bathrooms and market pricing. It could also further benefit from
more quantitative sensitivity analyses on other parameters, such as surveying prospective
residents to refine criteria weights and designation of mandatory/desired attributes, and
more accurate attribute analysis methods. For instance, inclusion of 3D vegetation data
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could change view attribute values considerably where lower units’ views are obscured by
street trees or privacy shrubbery. Transportation infrastructure could also affect view at-
tributes; however, this is not critical in the current study, where only one SkyTrain platform
and rail exists aboveground on the periphery of the study area.

The 3D LSP–MCE method could benefit fields of study that require analysis and
modeling of decision alternatives occurring across three dimensions, particularly where
large numbers of attributes are involved. The wide range of decision logic aggregators
allows for more expressive suitability values in 3D through criterion function structures that
better reflect human reasoning in comparison with more traditional MCE methods, such as
WLC, that implement a limited decision logic on a smaller number of criteria and produce
less variability in output 3D scores. The study could be extended by including more
relevant criteria, analyzing a larger study area of a built environment, or by considering
different user group requirements. In addition, it could be applied to much denser built
environments, such as those in Asian, US, or larger European cities, to examine and compare
the effects of different potential evaluation criteria and their aggregations. The proposed
method can assist urban planners and developers in assessing various urban development
scenarios by analyzing the impacts of new development on neighboring buildings. More
broadly, the 3D LSP–MCE approach developed in this research study can support spatial
decision-making in real time or in applications that require analysis and representation in
3D, such as management of the housing market, urban property, and tax assessments.
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5. Koziatek, O.; Dragićević, S. A local and regional spatial index for measuring three-dimensional urban compactness growth.

Environ. Plan. B Urban Anal. City Sci. 2019, 46, 143–164. [CrossRef]
6. Ying, Y.; Koeva, M.; Kuffer, M.; Asiama, K.O.; Li, X.; Zevenbergen, J. Making the Third Dimension (3D) Explicit in Hedonic Price

Modelling: A Case Study of Xi’an, China. Land 2021, 10, 24. [CrossRef]
7. Malczewski, J.; Jankowski, P. Emerging trends and research frontiers in spatial multicriteria analysis. Int. J. Geogr. Inf. Sci. 2020,

34, 1257–1282. [CrossRef]
8. Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015.

[CrossRef]

http://doi.org/10.1016/j.cities.2014.06.006
http://doi.org/10.1016/j.jclepro.2020.120897
http://doi.org/10.1016/j.scs.2017.09.021
http://doi.org/10.1016/j.progress.2011.07.001
http://doi.org/10.1177/2399808317703983
http://doi.org/10.3390/land10010024
http://doi.org/10.1080/13658816.2020.1712403
http://doi.org/10.1007/978-3-540-74757-4


Land 2022, 11, 443 20 of 22

9. Autodesk. Revit; Version 2022; Autodesk: San Rafael, CA, USA, 2022; Available online: https://www.autodesk.ca/en/products/
revit/overview?term=1-YEAR&tab=subscription (accessed on 10 December 2021).

10. ESRI. ArcGIS Urban. 2022. [Online Software]. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-urban/
overview (accessed on 10 December 2021).

11. ESRI. CityEngine, Version 2019.1; ESRI: Redlands, CA, USA, 2019. Available online: https://www.esri.com/en-us/arcgis/
products/esri-cityengine/overview (accessed on 10 December 2021).

12. Trubka, R.; Glackin, S.; Lade, O.; Pettit, C. A web-based 3D visualisation and assessment system for urban precinct scenario
modelling. ISPRS J. Photogramm. Remote Sens. 2016, 117, 175–186. [CrossRef]

13. Saran, S.; Oberai, K.; Wate, P.; Konde, A.; Dutta, A.; Kumar, K.; Kumar, A.S. Utilities of virtual 3D city models based on CityGML:
Various use cases. J. Indian Soc. Remote Sens. 2018, 46, 957–972. [CrossRef]
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